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Sun’s conjectures on fourth powers in the class
group of binary quadratic forms

Robert W. Fitzgerald
Southern Illinois University

Carbondale, IL 62901-4408
rfitzg@math.siu.edu

Abstract

We prove five of Sun’s conjectures on the index of the subgroup of
fourth powers in the class group of binary quadratic forms.

Sun [5] proved that of p and q are distinct odd primes then (−1)(q−1)/2q is
a quartic residue modulo p iff p is represented by an element of G(−16q2)4,
where G(Δ) is the class group of primitive binary quadratic forms of discrim-
inant Δ. In [6] Sun posed a series of conjectures, labeled (8.2) through (8.6),
on the order of G(Δ)4, denoted by h4(Δ). Liu [4] has found counterexamples
to conjecture (8.4). Here we prove Sun’s conjectures (8.2), (8.3), (8.5) and
(8.6) are correct and prove a modified version of (8.4) is also correct. The
proofs are elementary.

1 Background

We will write the binary quadratic form f(x, y) = ax2+bxy+cy2 more briefly
as f = (a, b, c). We denote the SL2(Z) equivalence class by [f ] = [a, b, c].

For an odd prime p dividing Δ, the associated generic character is χp(f) =(
r
f

)
, where r is any value represented by f that is prime to p. We also need:

χ−1(f) =

(−1

r

)
χ2(f) =

(
2

r

)
χ−2(f) =

(−2

r

)
,
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where r is any odd number represented by f . [1] has a chart (page 52) that
lists which generic characters go with each discriminant. We will use this
frequently without further reference.

We present a classical result since it does not appear in precisely this form
in most references.

Proposition 1.1. Let Δ be a discriminant and let g be the number of generic
characters for G(Δ).

1. The principal genus has index 2g−1. The number of genera is 2g−1.

2. The elements of exponent 2 in G(Δ) form a subgroup of order 2g−1.

3. The number of cyclic factors in the Sylow 2-subgroup of G(Δ) is g− 1.

4. Every element of the principal genus is a square.

Proof: Let χ1, χ2, . . . χg be the generic characters and consider χ =
(χ1, . . . , χg) : G(Δ) → {±1}g. Then [1] Theorem 7.6 gives that the image
of χ has order 2g−1. This proves (1) and (2) follows from [1] Theorem 4.17.
Last, (2) implies (3) which implies (4).

We need one other classical result. We denote |G(Δ)| by h(Δ).

Proposition 1.2. Suppose Δ is negative, even and not −4. Then h(16Δ) =
4h(Δ).

Proof: This follows from the formula [2] Theorem 2 (page 217)

h(f 2Δ) = fh(Δ)
∏
q|f

[
1 −

(
d

q

)
q−1

]
,

where the product is over prime divisors q of f . This is stated for ideal class
groups, but for negative discriminants these coincide with the form class
groups of the same discriminant.

Our computations depend on the following.

Lemma 1.3. Let g be the number of generic characters for G(Δ). Let K
denote the principal genus and E the subgroup of elements of exponent 2 in
G(Δ). Write |K ∩ E| = 2e. Then:

h4(Δ) = h(Δ)/2g+e−1.
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Proof: Write

G(Δ) = C(2k1) × C(2k2) × · · · × C(2kg−1) ×H,

where C(2k) denotes the cyclic group of order 2k, H has odd order and we
have used Theorem 1.1 (3) for the number of factors. Let a be the number
of ki equal to 1 and let b be the number of ki greater than 1. The element of
order 2 in a C(2k) is a square (equivalently, in K) iff k ≥ 2. Hence 2e = 2b.
Thus:

[G(Δ) : G(Δ)4] = 2a · 4b = 2g−1−b · 4b = 2g+b−1 = 2g+e−1.

We will use the notations K,E and e throughout the paper.

2 Proof of the conjectures

We begin by proving Conjectures (8.2), (8.3) and (8.5), in this order. The
method of proof is the same in each. Find the elements of exponent 2 (that
is, the subgroup E). This can be done by finding the possible (a, ka, c) of
the given discriminant and reducing each; use 1.1 (2) to check that all have
been found. Evaluate the generic characters of these forms and so determine
those in the principal genus, K ∩ E, and e, where 2e = |K ∩E|.
Theorem 2.1. Let p be a prime with p ≡ 1 (mod 8). Then

h4(−8p) = h(−8p)/4 = h4(−128p).

Proof: For Δ = −8p there are two generic characters, χp and χ−2. The
two elements of exponent two are [1, 0, 2p] and [2, 0, p] which are both sent to
1 by both characters (as p ≡ 1 (mod 8)). Hence E is contained in K. Thus
e = 1 and Lemma 1.3 gives h4(−8p) = h(−8p)/4.

For Δ = −128p there are three generic characters, χp, χ−1 and χ2. The
elements of exponent two are:

[1, 0, 32p] [4, 4, 32p+ 1] [32, 0, p] [32, 32, p+ 8].

Again, each character sends each of these forms to 1. Hence e = 2 and we
have:

h4(−128p) = h(−128p)/16 by 1.3

= h(−8p)/4 by 1.2

= h4(−8p),
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by the first paragraph.

Theorem 2.2. Let p be a prime with p ≡ 1 (mod 24). Then

h4(−24p) = h(−24p)/8 = h4(−384p).

Proof: For Δ = −24p, there are three generic characters: χ3, χp and
χ2. The elements of exponent 2 in G(−24p) are: [1, 0, 6p], [2, 0, 3p], [3, 0, 2p]
and [6, 0, p]. The first and last are sent to 1 by each character while χ3

maps the middle two to -1 (as
(

2
3

)
= −1). Hence e = 1 and 1.3 gives

h4(−24p) = h(−24p)/8.
Next, G(−384p) = G(−16 · 24p) has four generic characters: χ3, χp, χ−1

and χ2.The eight elements in G(−384p) of exponent 2 are:

f1 = [1, 0, 96p] f2 = [4, 4, 24p+ 1]

f3 = [32, 0, 3p] f4 = [32, 32, 3p+ 8]

f5 = [3, 0, 32p] f6 = [12, 12, 8p+ 3]

f7 = [96, 0, p] f8 = [96, 96, p+ 24]

A simple computation shows f1, f2, f7 and f8 are in the principal genus
while χ3 sends f3, f4, f5 and f6 to -1. Thus e = 2 and

h4(−384p) = h(−384p)/32 = h(−24p)/8 = h4(−24p).

Theorem 2.3. Let p and q be primes with p, q ≡ 1 (mod 8). Then

h4(−8pq) = h(−128pq) =

⎧⎪⎨
⎪⎩
h(−8pq)/16, if

(
p
q

)
= 1

h(−8pq)/8, if
(

p
q

)
= −1.

Proof: G(−8pq) has three generic characters: χp, χq and χ−2. Let ε =(
p
q

)
. The elements of exponent 2 are: f1 = [1, 0, 2pq], f2 = [2, 0, pq], f3 =

[p, 0, 2q] and f4 = [2p, 0, q]. Then f1 and f2 are in the principal genus while
f3 and f4 are mapped by (χp, χq, χ−2) to (ε, ε, 1). Thus if ε = 1 then e = 2
and if ε = −1 then e = 1. Hence 1.3 gives the result for h4(−8pq).
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G(−128pq) has four generic characters: χp, χq, χ−1 and χ2. The elements
of exponent 2 are:

f1 = [1, 0, 32pq] f2 = [4, 4, 8pq + 1]

f3 = [32, 0, pq] f4 = [32, 32, pq + 8]

f5 = [p, 0, 32q] f6 = [4p, 4p, p+ 8q]

f7 = [32p, 0, q] f8 = [32p, 32p, 8p+ q]

Computation shows that f1, f2, f3 and f4 are in the principal genus while
f5, f6, f7 and f8 are mapped by (χp, χq, χ−1, χ2) to (ε, ε, 1, 1). Say ε = 1.
Then e = 3 and

h4(−128pq) = h(−128pq)/64 = h(−8pq)/16 = h4(−8pq).

When ε = −1 then e = 2 and

h4(−128pq) = h(−128pq)/32 = h(−8pq)/8 = h4(−8pq),

which proves the result.
Sun’s conjecture (8.4) states that if p and q are primes with p, q ≡ 1

(mod 4) and
(

p
q

)
= 1 then

h4(−4pq) = h4(−64pq) = h(−4pq)/8.

Liu [4] has shown this may fail. We identify precisely when the conjecture is
valid.

Theorem 2.4. Let p and q be primes with p, q ≡ 1 (mod 4) and
(

p
q

)
= 1.

1. If one of p or q is ≡ 5 (mod 8) then conjecture (8.4) holds.

2. If p, q ≡ 1 (mod 8) then

2h4(−4pq) = h4(−64pq) = h(−4pq)/8,

contrary to conjecture (8.4).
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Proof: G(−4pq) has three generic characters: χp, χq and χ−1. The
elements of exponent 2 are f1 = [1, 0, pq], f2 = [2, 2, 1

2
(pq + 1)], f3 = [p, 0, q]

and f4 = [2p, 2p, 1
2
(p + q)]. It is easy to check that f1 and f3 are in the

principal genus and that f2 and f4 lie in the same genus. We compute the
values of f2.

(p, q) (mod 8) χp(f2) χq(f2) χ−1(f2)
(1,1) 1 1 1
(5,1) -1 1 -1
(1,5) 1 -1 -1
(5,5) -1 -1 1

If p, q ≡ 1 (mod 8) then e = 2 and h4(−4pq) = h(−4pq)/16, proving one
half of (2). If one of p or q is ≡ 5 (mod 8) then e = 1 and h4(−4pq) =
h(−4pq)/8, proving one half of (1).

G(−64pq) has four generic characters: χp, χq, χ−1 and χ2. The eight
elements of exponent 2 are listed below. One can check that χp, χq and χ−1

send each of them to 1. We give the values of χ2 for each possible pair of
(p, q) (mod 8).

(1,1) (5,1) (1,5) (5,5)
[1, 0, 16pq] 1 1 1 1
[4, 4, 4pq1] -1 -1 -1 -1
[16, 0, pq] 1 -1 -1 1

[16, 16, pq + 4] -1 1 1 -1
[p, 0, 16q] 1 -1 1 -1

[4p, 4p, p+ 4q] -1 1 -1 1
[16p, 0, q] 1 1 -1 -1

[16p, 16p, 4p+ q] -1 -1 1 1

In each case, there are four elements of exponent 2 in the principal genus.
So e = 2 and

h4(−64pq) = h(−64pq)/32 = h(−4pq)/8,

which completes the proof of (1) and (2).
The proof of Conjecture (8.6) follows a different path. We use the compo-

sition on different orders described in Section 7.3 of [1]. Given a discriminant
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Δ, let I(Δ) denote the identity of G(Δ). The map:

ψ : G(n2Δ) → G(Δ)

ψ([g]) = [I(Δ) ◦ g],

is a homomorphism by [1] Theorem 7.9. Buell’s proof shows that ψ is in fact
surjective. Namely, let [f ] ∈ G(Δ). We can find (a, b, c) ∈ [f ] with (a, n) = 1.
Then g = (a, nb, n2c) is primitive of discriminant n2Δ and I(Δ)◦g = (a, b, c).

Theorem 2.5. Let d > 2 be square-free. If h4(−64d) is odd then h4(−64d) =
h4(−4d).

Proof: The hypothesis means that G(−64d) has no elements of order
2k, k ≥ 3. Then G(−4d) also has no elements of order 2k, k ≥ 3. Namely,
suppose [f ] ∈ G(−4d) has order 2k, k ≥ 3. Consider ψ : G(16(−4d)) →
G(−4d) and say ψ([g]) = [f ]. Now the order of [g] is 2sr for some odd r and
0 ≤ s ≤ 2. Then [f ]4 = ψ([g]4) has order dividing r and 2k and so [f ]4 = 1,
a contradiction.

Let |G(−4d)| = 2tm with m odd. Then |G(−64d)| = 2t+2m. We can
write

G(−64d) = C(2)a × C(4)b ×H

G(−4d) = C(2)a′ × C(4)b′ ×H ′,

where |H| = m = |H ′|. Then G(−64d)4 = H and G(−4d)4 = H ′ so that
h4(−64d) = m = h4(−4d).

We note that G(Δ)/G(Δ)4 ∼= S, the spinor genera group (see [3]), and
so the results here can be viewed as results on the order of certain spinor
genera groups.
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