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To the memory of my grandfather, Harold H. Hensold, Jr.
In these notes we give a construction for a certain L-function attached to

a globally generic automorphic representation of the quasi-split unitary group
in 3 variables associated to a quadratic extension E/F of number fields. Recall
that the finite Galois form of the L-group of this group is a semidirect product
of GL3(C) and Gal(E/F ). The representation we consider has the property
that when restricted to GL3(C) it is the adjoint representation of this group.
For this reason, we refer to the associated L function as the adjoint L function.
In fact, there are two representations of GL3(C) o Gal(E/F ) with the above
property– related to one another by twisting by the unique nontrivial one
dimensional representation of Gal(E/F ). We pin down precisely which one
we are talking about in section 0.1.1 below. Let us mention that a small
modification of this construction gives the other.

The construction is a slight modification of that given in [3].

0.1 Notation

Let F be a global field, and A its ring of adèles. Let E = F (τ) be a quadratic
extension, such that ρ := τ2 ∈ F. Let J =

(
1

1
1

)
. Abusing notation, we

will also denote by J the analogous matrix of any size with points in any ring
(with unity). The F points of our special unitary group may be thought of
as the set of 3 × 3 matrices with determinant 1 with entries in E such that
gJ tḡ = J. Here ¯ denotes conjugation by the nontrivial element of Gal(E/F ).
Presently we shall also identify this group with a group of matrices having
entries in F. We denote this group by SU2,1.

We consider also the split exceptional group of type G2 defined over F,
which we denote simply by G2. We recall a few facts about this group. (Cf.
[4], pp. 350-57.) First, it may be realized as the identity component of the
group of automorphisms of a seven dimensional vector space which preserve a
general skew-symmetric trilinear form. Second, this seven dimensional “stan-
dard” representation of G2 is orthogonal: the image also preserves a symmetric
bilinear form. We wish now to pin things down explicitly. It will be convenient
to realize G2 as a subgroup of SO8.

Thus, we consider SO8 = {g ∈ GL8 : gJ tg = J}. Let

v0 = t(0, 0, 0, 1,−1, 0, 0, 0).

By SO7 we mean the stabilizer of v0 in SO8. Let V0 denote the orthogonal
complement of v0, defined relative to J. To fix an embedding of G2, into SO7,
we fix a trilinear form of V0 in general position, namely:

T := e∗7∧(e∗4+e
∗
5)∧e∗2+e∗1∧(e∗4+e

∗
5)∧e∗8+e∗6∧(e∗4+e

∗
5)∧e∗3+2e∗3∧e∗2∧e∗8−2e∗6∧e∗7∧e∗1

(which is obtained from the form written down on p. 357 of [4] via suitable
identifications). The identity component of the stabilizer of T in GL(V0) is a
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group of type G2, defined and split over F, and contained in SO7 as defined
above.

Now, let vρ = t(0, 0, 1, 0, 0, ρ, 0, 0), and let Hρ denote the stabilizer of vρ

in G2.

Lemma 0.1.0.1 Hρ
∼= SU2,1.

Remarks 0.1.0.2 1. This is essentially the same embedding of SU2,1 into
G2 described on p. 371 of [1].

2. One may also obtain this embedding by making the following identifica-
tions between an F -basis of E3 and one for the orthogonal complement of
〈v0, vρ〉 in F 8.

(1, 0, 0) ↔ e1 (−τ−1, 0, 0) ↔ e2 (0,−2τ, 0) ↔ e3 − ρe6
(0,−2, 0) ↔ e4 + e5 (0, 0, 2τ) ↔ e7 (0, 0, 2) ↔ e8

Proof. On the one hand, we know from [5], pp.808-810 that the stabilizer
of a vector in this representation having nonzero length (relative to J) is
isomorphic to either SL3 or SU(Q) for a suitable Q. On the other hand, Hρ

is clearly contained in the group of automorphisms of the six dimensional
complement of vρ in V0 which preserve both the original symmetric bilinear
form and the skew symmetric form obtained by plugging in vρ as one of the
arguments of T. This latter group is isomorphic to U2,1 (with an isomorphism
being given by the identification of bases above). The result follows.

To aid in visualizing these groups and checking various assertions below, we
write down a general element of each of their Lie algebras.

G2 :



T1 a c d d e f 0
g T2 − T1 b −c −c d 0 −f
h l 2T1 − T2 a a 0 −d −e
i −h g 0 0 −a c −d
i −h g 0 0 −a c −d
j i 0 −g −g T2 − 2T1 −b −c
k 0 −i h h −l T1 − T2 −a
0 −k −j −i −i −h −g −T1


(0.1.0.3)

SU2,1 :



T1 a −ρe d d e f 0
ρa T1 −ρd ρe ρe d 0 −f
h l 0 a a 0 −d −e
−ρl −h ρa 0 0 −a −ρe −d
−ρl −h ρa 0 0 −a −ρe −d
−ρh −ρl 0 −ρa −ρa 0 ρd ρe
k 0 ρl h h −l −T1 −a
0 −k ρh ρl ρl −h −ρa −T1


(0.1.0.4)

The set of upper triangular matrices in G2 is a Borel subgroup BG2 , and
the set of diagonal matrices in G2 is a maximal torus TG2 . We use this torus
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and Borel to define notions of “standard” for parabolics and Levis. We also
fix a maximal compact subgroup K =

∏
v Kv of G2(A) such that G2(Fv) =

BG2(Fv)Kv for all v and Kv = G2(ov) for almost all finite v. (Here ov denotes
the ring of integers of Fv.)

For any matrix A we let tA denote the “other transpose” J tAJ, , obtained
by reflecting A over the diagonal that runs from upper right to lower left.
Finally, if H is any F group, then H(F\A) := H(F )\H(A).

0.1.1 The representation r

Let us now describe explicitly the representation r which appears in the Lang-
lands L function we will construct. We first describe the L-group we consider,
which is the finite Galois form of the L group of U2,1(E/F ). Let Fr denote the
nontrivial element of Gal(E/F ). Our L group is GL3(C) o Gal(E/F ), where
the semidirect product structure is such that

Fr ·g · Fr = tg
−1. (0.1.1.1)

Now consider the 8 dimensional complex vector space of 3 × 3 traceless ma-
trices, with an action of GL3(C) by conjugation. The definition

Fr ·X = tX (0.1.1.2)

extends this to a well-defined action of GL3 o Gal(E/F ). This is our repre-
sentation r.

It is not difficult to check that there is only one other way to define
the action of Fr which is compatible with (0.1.1.1) and (0.1.1.2), namely
Fr ·X = −tX. Now, it is part of the L-group formalism that the parame-
ter of π at an unramified place v is in the identity component iff ρ is a square
in the completion of F at v. Hence, if we let r′ denote the representation corre-
sponding to the action Fr ·X = −tX, then LS(s, π, r′) is the twist of LS(s, π, r)
by the quadratic character corresponding to the extension E/F. An integral
for this L-function may be obtained from the one considered in this paper by
inserting this character into the induction data for the Eisenstein series.

0.1.2 Eisenstein series

We shall make use of the same Eisenstein series on G2(F\A) as in [3]. We
recall the definition. Let P denote the standard maximal parabolic of G2 such
that the short simple root of G2 is a root of the Levi factor of P. Take f a
K-finite flat section of the fiber-bundle of representations IndG2(A)

P (A) |δP |s (non-
normalized induction). Thus, for each s, f(g, s) is a function G2(A) → C such
that f(pg, s) = |δP (p)|sf(g, s) for all p ∈ P (A), g ∈ G2(A), and for k ∈ K, the
value of f(k, s) is independent of s. The associated Eisenstein series is defined
by the formula
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E(g, s) =
∑

γ∈P (F )\G2(F )

f(γg, s)

for <(s) sufficiently large, and by meromorphic continuation elsewhere.

0.2 Unfolding

Lemma 0.2.0.1 The space P (F )\G2(F )/SU2,1(F ) has two elements, repre-
sented by the identity and (any representative in G2(F ) for) the simple re-
flection in the Weyl group of G2 associated to the long simple root, which we
denote w2.

Proof. This follows easily from our characterization of SU2,1 as a stabilizer.
Indeed, P (F )\G2(F )/SU2,1(F ) may be identified with the set of P (F ) orbts
in the G2(F )-orbit of vρ. Write v ∈ G2(F )vρ as t(v1, v2, v3) with v1, v3 ∈ F 2

and v2 ∈ F 4. Either v3 = 0 or not. This distinction clearly separates P (F )
orbits, and in particular separates the P (F )-orbit of the identity from that of
w2. On the other hand, an element of the G2(F )-orbit of vρ is certainly in V0

and of norm 2ρ. It is not hard to check that P (F ) permutes the set of such
elements with v3 = 0 and v3 6= 0 each transitively.

Let ϕπ be a cusp form in the space of an irreducible automorphic cuspidal
representations π of SU2,1(A). Let N denote the maximal unipotent subgroup
of SU2,1 

1 x y
1 −x̄

1

 : x, y ∈ E,Tr y + Normx = 0

 .

Fix a nontrivial additive character ψ of (F\A), and let ψN denote the charac-
ter of N(A) with coordinates as above to ψ( 1

2 Trx). (The 1
2 is for convenience:

it cancels the 2 that arises when we take the trace of an element of F.)
We assume that the integral

Wϕπ
(g) :=

∫
N(F\A)

ϕπ(ng)ψN (n) dn (0.2.0.2)

does not vanish identically. (And hence, that π is generic.) We consider the
integral

I(ϕπ, f, s) :=
∫

SU2,1(F\A)

ϕπ(g)E(g, s).

Theorem 0.2.0.3 (The Unfolding) Let N2 denote the two-dimensional unipo-
tent subgroup of SU2,1 corresponding to the coordinates e and f in (0.1.0.4).
Then for <(s) sufficiently large,

I(ϕπ, f, s) =
∫

N2(A)\SU2,1(A)

Wϕπ
(g)f(w2g, s)dg. (0.2.0.4)
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Proof. By the lemma, we find that I(ϕπ, f, s) is equal to∫
(SU2,1∩P )(F )\SU2,1(A)

ϕπ(g)f(g, s)dg

+
∫

(SU2,1∩w2Pw2)(F )\SU2,1(A)

ϕπ(g)f(w2g, s)dg.

The first integral vanishes by the cuspidality of π.
The group SU2,1 ∩ w2Pw2 consists of the one-dimensional F -split torus

and the two-dimensional unipotent group N2. Incidentally, when written as
elements of GL3(E), this unipotent group is

1 rτ tτ + r2ρ
2

1 rτ
1

 : r, t ∈ F

 .

We now expand ϕπ along the subgroup of elements of the form1 s − s2

2
1 −s

1

 .

The constant term vanishes by cuspidality. The remaining terms are permuted
simply transitively by the action of the F -split torus. The term corresponding
to 1 yields the integral (0.2.0.2).

0.3 Unramified computations

We now consider the value of the local analogue of (0.2.0.4) at a place where
all data is unramified. Thus, let F be a nonarchimedean local field. We denote
the nonarchimedean valuation on F by v, and the cardinality of the residue
field by q. We keep the definitions of all the algebraic groups above. However,
we now allow the possibility that ρ is a square in F. In this case the group
SU2,1 defined by the equations above is isomorphic to SL3 over F. We assume
that ρ and 2 are both units in F. In this section we encounter only the F -points
of algebraic groups, so we suppress the “(F ).”

Let f be the spherical vector in the induced representation IndG2
P |δP |s,

and let W denote the normalized spherical vector in the Whittaker model of
an unramified local representation π of GL3. The integral we consider is

I(s, π) =
∫

N2\SU2,1

W (g)f(w2g, s)dg.

The main result of this section is the following:
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Proposition 0.3.0.5 For <(s) sufficiently large,

I(s, π) =
L(3s− 1, π, r)

ζ(3s)ζ(6s− 2)ζ(3s− 9)
.

Here, all zeta and L functions are local. Thus, if q is the number of elements
in the residue field of F, then ζ(3s) = (1− q−3s)−1, etc.

Proof. We begin with some computations which are valid regardless of whether
or not ρ is a square in F. The one-dimensional subgroup of SU2,1 correspond-
ing to the variable d in (0.1.0.4) maps isomorphically onto the quotient N2\N.
An element of this group may also be expressed as xα2(ρu)x2α1+α2(−u), where
xα2 and x2α1+α2 are maps of Ga onto the one parameter unipotent subgroups
oof G2 corresponding to the indicated roots. These subgroups correspond to
the variables b and d in (0.1.0.3). Using the Iwasawa decomposition, we express
the integral over N2\SU2,1 as integrals over the maximal compactK, the torus
T, and this one-dimensional subgroup. Since W and f are spherical, and the
volume of K is 1, we may erase the integral over K. Also w2x2α1+α2(u) ∈ P.
Hence, we find that

I(s, π) =
∫

T

∫
F

f(w2xα2(ρu)t, s)ψN (u)duW (t)δ−1
B (t)dt.

Here δB denotes the modular quasicharacter of the Borel subgroup of SU2,1.
Now, an element of T may be visualized as an element of SL3(F (

√
ρ)) of the

form a+ b
√
ρ

a−b
√

ρ

a+b
√

ρ
1

a−b
√

ρ

 .

The corresponding 8× 8 matrix is

a −b
−bρ a

a2

N −ab
N −ab

N − b2

N

−abρ
N

a2

N
b2ρ
N

ab
N

−abρ
N

b2ρ
N

a2

N
ab
N

− b2ρ2

N
abρ
N

abρ
N

a2

N
a
N

b
N

bρ
N

a
N


, where N := a2 − b2ρ.

We now write the Iwasawa decomposition for this as an element of G2. First,
suppose that |bρ| ≤ |a|. Then the decomposition is

1 − b
a

1

1 − b
a − b

a − b2

a2

1 b
a

1 b
a
1

1 b
a
1




N
a

a
N
a2

1
1

a2
N

1
a

a
N





1
bρ
a 1

1
bρ
a 1
bρ
a 1

− b2ρ2

a2 − bρ
a − bρ

a 1

1
− bρ

a 1

 .
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If, |bρ| > |a|, it is
1 − a

bρ

1

1 − a
bρ − a

bρ −( a
bρ )2

1 a
bρ

1 a
bρ

1
1 a

bρ

1





N
bρ

bρ
N

b2ρ2

1
1

b2ρ2

N
1

bρ
bρ
N




1

−1 a
bρ

−1
−1 − a

bρ

−1 − a
bρ

−1 a
bρ

a
bρ

a2

b2ρ2

−1
1 a

bρ

 .

Let us denote the three factors by u′, t′ and k′, respectively. Then u′ has the
property that w2u

′w−1
2 and w2[xα2(u), u

′]w−1
2 (where [ , ] denotes the com-

mutator) are both in P. Thus f(w2xα2(u)t, s) = f(w2xα2(u)t
′, s). We have

I(s, π) =
∫

T

(∫
F

f(w2xα2(u), s)ψ(α2(t′)u)du
)
K(t)δ−

1
2

B (t)δs
P (w2t

′w2)|α2(t′)|dt,

where t′ is as above, and K(t) := W (t)δB(t)−
1
2 . We find that

δ
− 1

2
B (t) = |N |−1, δP (w2t

′w2) =
|N |2

max(|a|, |b|)3
, |α2(t′)| =

max(|a|, |b|)3

|N |
.

Lemma 0.3.0.6∫
F

f(w2xα2(u), s)ψ(cu)du = (1− q−3s)
(1− q(−3s+1)(v(c)+1))

(1− q−3s+1)
.

Proof. There is an embedding j of SL2 into G2 such that j
(

1
−1

)
= w2 and

j ( 1 u
1 ) = xα2(u). The lemma is a well-known computation from SL2 applied

to this copy of SL2. One has only to check that f
(
j
(

t
t−1

)
, s

)
= t−3s.

Let x = q−3s+1. Then the above reads

(1− q−1x)
(1− xv(c)+1)

(1− x)
.

To complete the argument, we must consider the two cases (SU2,1 splits over
F or does not) separately.

Split Case

In this case put t1 = a + b
√
ρ and t2 = a − b

√
ρ. Then t1 and t2 are just

two independent variables ranging over F×. The quantity called “N” above
us equal to t1t2. Since ρ and 2 are units, max(|a|, |b|) = max(|t1|, |t2|). Let
β1, β2 denote the simple roots of SL3. We get

δP (w2t
′w2) =

|t1t2|2

max(|t1|, |t2|)3
= min(|t−1

1 t22|, |t21t−1
2 |) = min(|β1(t)|, |β2(t)|),
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|α2(t′)| =
max(|t1|, |t2|)3

|t1t2|
= max(|β1(t)|, |β2(t)|).

Now define two integer-valued variables, depending on t by mi = v(βi(t)), i =
1, 2. As t ranges over the torus of SL3, the pair (m1,m2) ranges over

{(m1,m2) ∈ Z2 : m1 −m2 is divisible by 3}.

Every part of our local integral can now be expressed in terms of m1 and m2.
First, we consider the function K(t). This is evaluated using the Casselman-
Shalika formula [2]. It is equal to zero unlessm1 andm2 are both non-negative.
If m1 and m2 are both non-negative, then the pair corresponds to a domi-
nant weight for the group PGL3(C). Let Γm1.m2 denote the corresponding
irreducible finite dimensional representation, which we may also regard as a
representation of GL3(C). Then we have

K(t) = TrΓm1,m2(t̃π),

where t̃π is the conjugacy class of GL3(C) associated to the local repre-
sentation π. Also δP (w2t

′w2) = q−max(m1,m2), |α2(t′)| = q−min(m1,m2), and

δ
− 1

2
B (t) = q−m1−m2 . Thus, we consider,

(1− q−1x)
∑

m1,m2

1− xmin(m1,m2)+1

1− x
xmax(m1,m2) TrΓm1,m2(t̃π),

where the sum is overm1,m2 both non-negative, such thatm1−m2 is divisible
by 3.

We now make use of the relationship between local Langlands L-functions
and the Poincaré series of certain graded algebras. We first review some defi-
nitions. Fix N ∈ N, and

A =
⊕

i1,...,iN∈N
Ai1,...,iN

a graded algebra over a field k. The Poincaré series of A is a power series in
N indeterminates

∞∑
i1,...,iN=0

dim(Ai1,...,iN
)T i1

1 . . . T iN

N .

The graded algebra which is relevant for consideration of Langlands L-
functions is described as follows. Let LG be a semisimple complex Lie group,
and (r, V ) a finite-dimensional representation. Inside the symmetric algebra
Sym∗(V ) we consider the subalgebra Sym∗(V )

LU of LU -invariants. This sub-
algebra contains the highest weight vectors of each of the irreducible compo-
nents of Sym∗(V ) and is graded by the semigroup of dominant weights of LG
as well as by degree.
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Let us use a slightly different notation from that above. We use X for
the indeterminate associated to the grading by degree, and T1, . . . , TN for
the grading by weight. Let π be an unramified representation of G(F ) where
F is a non-archimedean local field and G is an algebraic group such that
LG is the L-group. Let t̃π be the semisimple conjugacy class in LG corre-
sponding to π. Then it follows from the definitions that the local Langlands
L-function L(s, π, r) may be obtained from the Poincaré series of Sym∗(V )

LU

by substituting q−s for X and TrΓk1$1+···+kN $N
(t̃π) for T k1

1 . . . T kN

N . Here
Γk1$1+···+kN $N

denotes the irreducible finite dimensional representation of
LG with highest weight k1$1 + · · ·+ kN$N .

In cases when LG is reductive but not semisimple, this discussion must be
adapted, as the choice of maximal unipotent LU does not by itself pin down
a basis for the weight lattice which may be used to define the grading. In the
case at hand, one needs only to observe that, since the adjoint representation
of GL3(C) factors through the projection to PGL3(C) (which is semisimple)
each of the representations appearing in the decomposition of the symmetric
algebra must as well. Alternatively, one may define the grading using the
weights of the derived group.

The following fact is well-known:

Lemma 0.3.0.7 Let $1, $2 denote the fundamental weights of PGL3(C).
Let T1, T2 and X be indeterminates associated, as above, to the grading on
Sym∗(V )

LU , where V is the eight-dimensional adjoint representation. Then
the Poincaré series of Sym∗(V )

LU may be summed, yielding the rational func-
tion:

1− T 3
1 T

3
2X

6

(1− T1T2X)(1− T1T2X2)(1− T 3
1X

3)(1− T 3
2X

3)(1−X2)(1−X3)
.

To complete the proof of proposition 0.3.0.5 in the split case, we just need to
show that∑

m1,m2=0
3|(m1−m2)

1−Xmin(m1,m2)+1

1−X
Xmax(m1,m2)Tm1

1 Tm2
2

=
1− T 3

1 T
3
2X

6

(1− T1T2X)(1− T1T2X2)(1− T 3
1X

3)(1− T 3
2X

3)
,

which is a straightforward computation.

Non-Split Case

Suppose now that ρ is not a square in the local field F. Then it is part
of the L-group formalism that the semisimple conjugacy class t̃π in LG =
GL3(C) o Gal(E/F ) associated to π is in the coset corresponding to the
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nontrivial element of Gal(E/F ), which we denote Fr . Each such conjugacy
class contains an element of the formµ ±1

µ−1

 ,Fr

 .

Adjusting by an element of the center, we may assume the sign in the middle
is plus.

Referring to section 0.1.1, we see that our eight-dimensional representation

decomposes into a 5 dimensional +1 eigenspace for Fr on which
( µ

1
µ−1

)
acts with eigenvalues µ2, µ, 1, µ−1, µ−2, and a 3-dimensional −1 eigenspace

for Fr, on which
( µ

1
µ−1

)
acts with eigenvalues µ, 1, µ−1. Hence, the local

L-function is
1

(1− µ2x)(1− µ2x2)(1− x2)(1− µ−2x)(1− µ−2x2)
,

where x = q−3s+1 as before. This may also be written as

1
(1− x2)

∞∑
k1,k2=0

Tr(Γk1 ⊗ Γk2)
(

µ2

µ−2

)
xk1+2k2 .

Turning to the local integral, we find that in this case we have m1 = m2. Let
us therefore denote this quantity simply “m.”

Lemma 0.3.0.8 With the notation as above, we have

K(t) = TrΓm

(
µ2

µ−2

)
.

Proof. This can be verified either by direct computation or by a close reading
of [2]. In either method it is necessary first to identify the precise unramified

character of the torus of SU2,1 corresponding to
((

µ
±1

µ−1

)
,Fr

)
. For the

convenience of the reader, we record that it is the map sending the torus
element with coordinates a and b as above to µv(a2−b2ρ). (Here v is again the
discrete valuation on the field F.)

This case of the proposition now follows from the identity

∞∑
k1,k2=0

min(k1,k2)∑
i=0

Xk1+2k2T k1+k2−2i =
1

(1−X3)(1− TX)(1− TX2)

=
1

1−X3

∞∑
m=0

Xm 1−Xm+1

1−X
Tm,

which is straightforward to verify

This also completes the proof of Proposition 0.3.0.5
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