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DESCENT CONSTRUCTION FOR GSPIN GROUPS– ODD CUSPIDAL CASE

JOSEPH HUNDLEY AND EITAN SAYAG
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Abstract. In this paper we provide an extension of the theory of descent of Ginzburg-Rallis-
Soudry to the context of “almost symplectic” representations, that is representations τ with the
property that the exterior square L-function twisted by some Hecke character ω has a pole. Our
theory supplements the recent work of Asgari-Shahidi on the functorial lift from GSpin2n+1 groups
to GL2n.

1. Introduction

The theory of descent for symplectic cuspidal representations of the general linear group GL2n(A)
was developed in a sequence of remarkable works [GRS1]-[GRS5]. In these works the authors
constructed in an explicit way a space σ(π) of cuspidal automorphic functions on SO2n+1(A) which
weakly lifts to a cuspidal self-dual representation π of GL2n(A) with the property that L(π,∧2, s)
has a pole at s = 1. In [C-K-PS-S2] the method of converse theorem is used to show the existence
of a weak functorial lift from generic cuspidal automorphic representations of classical groups to
automorphic representations of the general linear group. The combination of these methods allows
the authors of [GRS4] to describe the image of the functorial lift of [C-K-PS-S1].

Thus, the conjunction of the descent method with the method of the converse theorem provides
a very detailed description of the image of functoriality corresponding to the standard embedding
of LG→ GLN (C) with G a classical group. For an excellent survey we refer the reader to [So1].

Key words and phrases. Langlands functoriality, descent, unipotent integration.
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Recently, Asgari and Shahidi proved in [Asg-Sha1] the existence of weak functorial lift from
GSpin groups to the general linear group. Later, in the special case of GSp(4) they were able to
show in [Asg-Sha2] that this weak functorial lift is in fact strong in an appropriate sense.

In this paper we extend the descent method of Ginzburg, Rallis, and Soudry to GSpin groups.
As a bonus we can complete the results of Asgari and Shahidi and describe the cuspidal image of
their functorial lift from GSpin2n+1, for n ≥ 2.

Let us briefly review the method:
We begin with an irreducible unitary cuspidal automorphic representation τ of GL2n(A). We

first relate the property of essential self-duality to the existence of a pole of an L-function of τ , and
then construct an Eisenstein series with the L-function appearing in the constant term. In fact
there are two possibilities for what the L-function is, and hence two possibilities for the structure
of the Eisenstein series, and we only consider one in these notes. Our Eisenstein series will be
defined on the group GSpin4n induced from a Levi M isomorphic to GL2n × GL1. Now, a pole
of the relevant L-function allows us to construct a residue representation E−1(τ, ω) of GSpin4n.
Next, we give an embedding of GSpin2n+1 into GSpin4n, and construct, using formation of Fourier
coefficient, a space of functions DCω(τ) on this subgroup of GSpin4n. We prove that DCω(τ) is
nonzero, and that all of the functions in it are cuspidal. It follows that it decomposes as a direct
sum of irreducible automorphic cuspidal representations of GSpin2n+1. We then show that each of
these irreducible constituents lifts weakly to τ by the functorial lifting associated to the inclusion

L(GSpin2n+1) = GSp2n(C) ↪→ GL2n(C) = LGL2n.

1.1. Acknowledgements. The authors wish to thank the following people for helpful conversa-
tions: Dubravka Ban, William Banks, Daniel Bump, Wee Teck Gan, Hervé Jacquet, Erez Lapid,
Omer Offen, Yiannis Sakellaridis, Gordan Savin, and Freydoon Shahidi. In addition, we wish to
thank Mahdi Asgari, Jim Cogdell, Anantharam Raghuram and Freydoon Shahidi for their interest,
which stimulated the work.

Without David Ginzburg and David Soudry’s many careful and patient explanations of the
“classical” case– ω = 1– this work would not have been completed. It is important to point out
that not all of the arguments shown to us have appeared in print. Nevertheless, in each case the
specialization of our arguments to the case ω = 1 may be correctly attributed to Ginzburg, Rallis,
Soudry (with any errors or stylistic blemishes introduced being our own responsibility).

This work was undertaken while both authors were in Bonn at the Hausdorff Research Institute
for Mathematics, in connection with a series of lectures of Professor Soudry’s. They wish to thank
the Hausdorff Institute and Michael Rapoport for the opportunity. Finally, the second author
wishes to thank Prof. Erez Lapid for many enlightening discussions on the subject matter of these
notes.

2. The main result

Let G = GSpin2n+1 and let H = GL2n. Consider the inclusion
LG =L (GSpin2n+1) = GSp2n(C) ↪→ GL2n(C) = LGL2n =L H.

We denote this map r. Also, if π ∼= ⊗′vπv is an automorphic representation of a group G′(A), where
A is the ring of adeles of a number field F, then the semisimple conjugacy class in the L-group
LG′ associated to the local representation πv at an unramified place v will be denoted tπv . We say
that an automorphic representation σ of G(A) is a weak lift of the automorphic representation τ
of H(A) if for almost all places, r(tσv) = tτv .

To formulate our main result we introduce the notion of η symplectic representations. Let τ be
an irreducible automorphic cuspidal representation of GL2n. Suppose that τ is essentially self-dual,
i.e. that the contragredient τ̃ of τ is isomorphic to τ ⊗ η for some Hecke character η. It follows
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from [Ja-Sh2] (see remark (4.11) pp. 553-54) that L(s, τ × τ ⊗ η) has a simple pole at s = 1. Now,
L(s, τ × τ ⊗ η) is the Langlands L function of the representation τ � η (exterior tensor product) of
the group GL2n(A)×GL1(A) associated to the representation of the L group GL2n(C)×GL1(C)
(finite Galois form) on M2n×2n(C) in which GL2n(C) acts by g · X = gX tg and GL1(C) acts
by scalar multiplication. But this representation is reducible, decomposing into the subspaces of
skew-symmetric and symmetric matrices. We denote the associated L functions L(s, τ,∧2 × η)
and L(s, τ, sym2 × η) respectively. The local factors at finite ramified places may be defined using
the local Langlands classification ([L2],[H-T],[Henn1]) and the definition of an Artin L function
attached to a finite dimensional representation of the Weil group [Tate1], or they may be defined
as in [Sha2]. By [Henn2] these two definitions agree. Then we have

L(s, τ × τ ⊗ η) = L(s, τ,∧2 × η)L(s, τ, sym2 × η).

As both of the L functions on the right-hand side are obtainable via the Langlands-Shahidi method,
neither may vanish at s = 1 (see [Gel-Sha] §2.6 p. 84). Thus, exactly one of these two L functions
has a simple pole at s = 1 while the other is holomorphic and nonvanishing. Similarly, if τ̃ is
not isomorphic to τ ⊗ η then they are both holomorphic at s = 1. (This requires the extension
of [Ja-Sh2] remark (4.11) to completed L functions– i.e., the statement that none of the local L
functions has a pole at s = 1. The requisite facts about local L functions are well-known and a
proof is reviewed at the end of Theorem 4.0.3.) One may prove the second assertion using results
of Langlands via the method explained on p. 840 of [Kim].

We will say that τ is η-symplectic in case L(s, τ,∧2 × η) has a pole at s = 1 and η-orthogonal
otherwise. We also define “almost symplectic” to mean “η-symplectic for some η,” and “almost
orthogonal” similarly.

Remarks 2.0.1. (1) There is another natural notion of “orthogonal/symplectic representa-
tion.” Specifically, one could say that an automorphic representation is orthogonal/symplectic
if the space it acts on supports an invariant symmetric/skew-symmetric form. The two no-
tions appear to be related, but do not coincide. See [PraRam].

(2) There is a third approach to defining a local factor for L(s, τ,∧2 × η), which is to apply the
“gcd” construction described in [Gel-Sha] section I.1.6, p. 17, to the integrals in [Ja-Sh1].
As far as we know this is not written down anywhere.

(3) An integral representation for L(s, τ, sym2) was given in [BG]. The problem of extending
this to L(s, τ, sym2×η) has been considered by Banks [Banks1, Banks2]. Nontrivial technical
difficulties arise, particularly in the case we consider, when τ is defined on GL2n [Banks3].

(4) Let AS denote the functorial lift constructed in [Asg-Sha1]. It is shown in [Asg-Sha1] that

AS(π) is nearly equivalent to ÃS(π) ⊗ ωπ, where ωπ denotes the central character of the
representation π. (Of course, this means that they are the same space of functions when
AS(π) is cuspidal.) Thus, in practice it turns out to make sense to use η = ω−1(= ω̄).

Theorem 2.1. Let τ be an irreducible cuspidal automorphic ω̄- symplectic representation of GL2n(A).
Then there exists an irreducible generic cuspidal automorphic representation σ of GSpin2n+1(A)
such that

• σ weakly lifts to τ, and
• the central character ωσ of σ is ω.

Remark 2.0.2. The case n = 1 is trivial because GSpin3 = GSp2 = GL2, so the inclusion r is
simply the identity map, and one may take σ = τ. Henceforth, we assume n ≥ 2. The careful reader
will find places where this assumption is crucial to the validity of the argument.

Corollary 2.2. The cuspidal image of the functorial lift AS described in Theorem 1.1 (p. 140) of
[Asg-Sha1] is exactly the set of almost symplectic cuspidal automorphic representations of GL2n(A).
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3. Notation

3.1. General. Throughout most of the paper, F will denote a number field. In Appendix I, it will
be a non-Archimedean local field of characteristic zero.

We denote by J the matrix, of any size, with ones on the diagonal running from upper right
to lower left, and by J ′ the matrix

(
J

−J
)

of any even size. We also employ the notation tg for
the transpose of g and tg for the “other transpose” J tgJ. We employ the shorthand G(F\A) =
G(F )\G(A), where G is any F -group.

We denote the Weyl group of the reductive group G by WG or by W, when the meaning is clear
from context.

If π is an automorphic or local representation, then π̃ is the contragredient, and ωπ the central
character.

3.2. Similitude groups and GSpin groups. We first define the similitude orthogonal and sym-
plectic groups to be

GOm = {g ∈ GLm : gJ tg = λ(g)J for some λ(g) ∈ Gm},

GSp2n = {g ∈ GL2n : gJ ′ tg = λ(g)J ′ for some λ(g) ∈ Gm}.
For each of these groups the map g 7→ λ(g) is a rational character called the similitude factor. If
m is odd then GOm is in fact isomorphic to SOm ×GL1. This case will play no further role. The
group GO2n is disconnected; indeed the subgroup generated by SO2n and

{(
λIn

In

)
: λ ∈ Gm

}
is

a connected index two subgroup, which we denote GSO2n.
We shall now define GSpin groups as the groups whose duals are the similitude classical groups

GSp2n(C), GSO2n(C). Thus we write down the based root data, but employ notation appropriate
to the application in which what we write down will arise as the dual of something.

The groups GSp2n and GSO2n share a maximal torus, consisting of matrices of the form

diag(t1, . . . , tn, λt−1
n , . . . , λt−1

1 ).

The coordinates used just above correspond to a choice of Z-bases for the lattices of characters and
cocharacters. For i = 1 to n, let e∗i denote the character that sends this torus element to ti for i = 1
to n and e∗0 being the map that sends it to the similitude factor, λ. Let {ei : i = 0 to n} denote the
dual basis for the cocharacter lattice. Let X∨ denote the character lattice and X the cocharacter
lattice. Each similitude classical group has a Borel subgroup equal to the set of upper triangular
matrices which are in it. In each case we employ this choice of Borel, and let ∆∨ denote the set of
simple roots and ∆ the set of simple coroots. Then we easily compute that for GSp2n

∆∨ = {e∗i − e∗i+1, i = 1 to n− 1} ∪ {2e∗n − e∗0}.

∆ = {ei − ei+1, i = 1 to n− 1} ∪ {en}.
and for GSO2n

∆∨ = {e∗i − e∗i+1, i = 1 to n− 1} ∪ {e∗n−1 + e∗n − e∗0}.
∆ = {ei − ei+1, i = 1 to n− 1} ∪ {en−1 + en}.

We now define GSpin2n+1 to be the F−split connected reductive algebraic group having based
root datum dual to that of GSp2n, and GSpin2n to be the one having based root datum dual to
that of GSO2n. We have here used the fact that F -split connected reductive algebraic groups are
classified by based root data, for which see p.274 of [Spr].

To save space, the group GSpinm will usually be denoted Gm.
Observe that in either the odd or even case e∗0 is a generator for the lattice of cocharacters of

the center of Gm.
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Because we define Gm in the manner we do, it comes equipped with a choice of Borel subgroup
and maximal torus, as do various reductive subgroups we shall consider below. In each case, we
denote the Borel subgroup of the reductive group G by B(G), and the maximal torus by T (G).

A straightforward adaptation of the proof of Theorem 16.3.2 of [Spr] shows that there exist
surjections Gm → SOm defined over F. We fix one such and denote it pr . We require that pr is
such that pr(B(Gm)) consists of upper triangular matrices.

An alternative description of the same group as a quotient of Spinm × GL1 is given in [Asg].
Proposition 2.4 on p. 678 of [Asg] shows that the two definitions are equivalent.

For those familiar with the construction of Spinm as a subgroup of the multiplicative group of
a Clifford algebra, we remark that there is a third construction of GSpinm as the slightly larger
group obtained by including the nonzero scalars in the Clifford algebra as well. In this guise, it is
sometimes referred to as the “Clifford group.” (See, e.g., [I] p.999.) This description will not play
a role for us.

We will construct an Eisenstein series on G2m induced from a standard parabolic P = MU such
that M is isomorphic to GLm ×GL1. There are two such parabolics. We choose the one in which
we delete the root em−1 + em and the coroot e∗m−1 + e∗m − e∗0 from the based root datum. We shall
refer to this parabolic as the “Siegel.”

Remark 3.2.1. • We can identify the based root datum of the Levi M with that of GLm×GL1

in such a fashion that e0 corresponds to GL1 and does not appear at all in GLm. We can then
identify M itself with GLm×GL1 via a particular choice of isomorphism which is compatible
this and with the usual usage of ei, e∗i for characters, cocharacters of the standard torus of
GLm.

• The lattice of rational characters of M is spanned by the maps (g, α) 7→ α and (g, α) 7→
det g. Restriction defines an embedding X(M) → X(T ), which sends these maps to e0 and
(e1 + · · ·+ em), respectively. By abuse of notation, we shall refer to the rational character
of M corresponding to e0 as e0 as well.

• The modulus of P is (g, α) → det g(m−1).

The group G2n has an involution † which reverses the last two simple roots. The effect is such
that

pr(†g) =


In−1

1
1

In−1

pr(g)


In−1

1
1

In−1

 .

As is well known, there is a group Pin4n ⊃ Spin4n such that pr extends to a two-fold cover-
ing Pin4n → O4n. The involution † can be realized as conjugation by a preimage of the above
permutation matrix.

We also fix a maximal compact subgroup Km of Gm(A). Any which satisfies the conditions
required in [MW1] (see pages 1 and 4) will do.

3.3. Unramified Correspondence.

Lemma 3.3.1. Suppose that τ ∼= ⊗′vτv is an ω̄-symplectic irreducible cuspidal automorphic repre-
sentation of GL2n(A). Let v be a place such that τv is unramified. Let tτ,v denote the semisimple
conjugacy class in GL2n(C) associated to τv. Let r : GSp2n(C) → GL2n(C) be the natural inclusion.
Then tτ,v contains elements of the image of r.

Proof. For convenience in the application, we take GL2n to be identified with a subgroup of the Levi
of the Siegel parabolic as in section 3.2. Since τv is both unramified and generic, it is isomorphic
to IndGL2n(Fv)

B(GL2n)(Fv)
µ for some unramified character µ of the maximal torus T (GL2n)(Fv) such that
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this induced representation is irreducible. (See [Car], section 4, [Z] Theorem 8.1, p. 195.) Let
µi = µ ◦ e∗i .

Since τ ∼= τ̃ ⊗ω, it follows that τv ∼= τ̃v ⊗ωv and from this we deduce that {µi : 1 ≤ i ≤ 2n} and
{µ−1

i ω : 1 ≤ i ≤ 2n} are the same set.
By Theorem 1, p. 213 of [Ja-Sh1], we have

∏2n
i=1 µi = ωn.

Now, what we need to prove is the following: if S is a set of 2n unramified characters of Fv, such
that

(1)
∏2n
i=1 µi = ωn

(2) For each i there exists j such that µi = µ−1
j ω

then there is a permutation σ : {1, . . . , 2n} → {1, . . . , 2n} such that µσ(i) = ωµ−1
2n−σ(i) for i = 1 to

n. This we prove by induction on n. When n = 1, we know that µ1 = µ−1
i ω for i = 1 or 2. If i = 2

we are done, while if i = 1 we use ω = µ1µ2 to obtain µ1 = µ2, and the desired assertion. Now,
if n > 1 it is sufficient to show that there exist i 6= j such that µi = µ−1

j ω. If there exists i such
that µi 6= µ−1

i ω then this is clear. On the other hand, there are exactly two unramified characters
µ such that µ = µ−1ω. The result follows �

3.4. Unipotent subgroups and their characters. The kernel of pr consists of semisimple el-
ements. In particular, the number of unipotent elements of a fiber is zero or one, and it’s one if
and only if the element of SOm is unipotent. In other words, pr yields a bijection of unipotent ele-
ments (indeed, an isomorphism of unipotent subvarieties), and we may specify unipotent elements
or subgroups by their images under pr . This also defines coordinates for any unipotent element or
subgroup, which we use when defining characters. Thus, we write uij for the i, j entry of pr(u).

Above we fixed a specific isomorphism of a subgroup of G2m with GLm. If u is a unipotent
element of of this subgroup this identification with an m ×m matrix gives a second definition of
uij This is not a problem, however, as the two definitions agree.

Most of the unipotent groups we consider are subgroups of the maximal unipotent of Gm con-
sisting of elements u with pr(u) upper triangular. We denote this group Umax. A complete set of
coordinates is {uij : 1 ≤ i < j ≤ m − i}. We denote the opposite maximal unipotent by Umax. It
consists of all unipotent elements of Gm such that pr(u) is lower triangular.

We fix once and for all a character ψ0 of A/F. We use this character together with the coordinates
just above to specify characters of our unipotent subgroups.

When specifying subgroups of Umax and their characters, the restriction to {(i, j) : 1 ≤ i < j ≤
m− i} is implicit.

It will also sometimes be necessary to describe unipotent subgroups such that only a few of
the entries in the corresponding elements of SOm are nonzero. For this purpose we introduce the
notation e′ij = eij − em+1−j,m+1−i. One may check that for all i 6= j and a ∈ F, the matrix I + ae′ij
is an element of SOm(F ).

3.5. “Unipotent periods”. We now introduce the framework within which, we believe, certain
of the computations involved in the descent construction can be most easily understood.

Let G be a reductive algebraic group defined over a number field F . If U is a unipotent subgroup
of G and ψU is a character of U(F\A), we define the unipotent period (U,ψU ) associated to this
pair to be given by the formula

ϕ(U,ψU )(g) :=
∫
U(F\A)

ϕ(ug)ψU (u)du.

Clearly, ϕ must be restricted to a space of left U(F )-invariant functions such that the integral is
defined (for example, because ϕ is smooth).
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Let U denote the set of unipotent periods. For V a space of functions defined on G(A), put

U⊥(V ) = {(U,ψ) ∈ U : ϕ(U,ψ) ≡ 0 ∀ϕ ∈ V }.

When V is the space of a representation π we will employ also the notation U⊥(π). We also employ
the notation (U,ψ) ⊥ V for (U,ψ) ∈ U⊥(V ) and similarly (U,ψ) ⊥ π.

We also require a vocabulary to express relationships among unipotent periods. We shall say
that

(U,ψU ) ∈ 〈(U1, ψU1), . . . , (Un, ψUn)〉
if V ⊥ (Ui, ψUi)∀i ⇒ V ⊥ (U,ψU ). Clearly, if (U1, ψU1) ∈ 〈(U2, ψ2), (U3, ψ3)〉, and (U2, ψ2) ∈
〈(U4, ψ4), (U5, ψ5)〉 then (U1, ψ1) ∈ 〈(U3, ψ3), (U4, ψ4), (U5, ψ5)〉.

We also use notation (U1, ψ1)|(U2, ψ2), or the language “(U1, ψ1) divides (U2, ψ2),” “ (U2, ψ2) is
divisible by (U1, ψ1) ” for (U2, ψ2) ∈ 〈(U1, ψ1)〉. Finally, (U1, ψ1) ∼ (U2, ψ2) means (U1, ψ1)|(U2, ψ2)
and (U2, ψ2)|(U1, ψ1). This is an equivalence relation and we shall refer to unipotent periods which
are related in this way as “equivalent.”

It is sometimes possible to compose unipotent periods. Specifically, if f (U1,ψ1) is left-invariant
by U2(F ), then one may consider (f (U1,ψ1))(U2,ψ2). We denote the composite by (U2, ψ2) ◦ (U1, ψ1).

Now, suppose that U is the unipotent radical of a parabolic P of G with Levi M. The choice
of ψ0 gives rise to an identification of the space of characters of U(F )\U(A) with the F points of
U/(U,U) which is compatible with the action of M(F ). Here U denotes the unipotent radical of
the parabolic P of G opposite to P. For ϑ a character, let Mϑ denote the stabilizer of ϑ (regarded
as a point in U/(U,U)(F )) in M. So Mϑ is an algebraic subgroup of M defined over F.

Definition 3.5.1. Then we define FCϑ : C∞(G(F\A)) → C∞(Mϑ(F\A)) by

FCϑ(ϕ)(m) = ϕ(U,ϑ)(m) =
∫
U(F\A)

ϕ(um)ϑ(u)du.

This is certainly an Mϑ(A)-equivariant map.

4. Eisenstein series

Let τ be an irreducible cuspidal automorphic representation of GLm.
We will construct an Eisenstein series on G2m induced from the Siegel parabolic P = MU. Let s

be a complex variable. Using the identification of M with GLm ×GL1 fixed in section 3.2 above,
we define an action of M(A) on the space of τ by

(g, α) · ϕ(g1) = ϕ(g1g)ω(α)|det g|s.

We employ the “outer tensor product” notation for this representation of M(A), denoting it τ ⊗
|det |s � ω.

For each s we have the induced representation IndG2m(A)
P (A) τ ⊗ |det |s � ω, (normalized induction)

of G2m(A). The standard realization of this representation is action by right translation on the
space V (1)(s, τ, ω) given by{

F̃ : G2m(A) → Vτ , smooth
∣∣∣F̃ ((g, α)h)(g1) = F̃ (h)(g1g)ω(α)|det g|s+

(m−1)
2

}
.

(The factor |det g|
(m−1)

2 is equal to |δP |, and makes the induction normalized.) A second useful
realization is action by right translation on

V (2)(s, τ, ω) =
{
f : G2m(A) → C,

∣∣∣f(h) = F̃ (h)(id), F̃ ∈ V (1)(s, τ, ω)
}
.

(Here id denotes the identity element of GLm(A).)
7



These representations fit together into a fiber bundle over C. So a section of this bundle is a
function f defined on C such that f(s) ∈ IndG2m(A)

P (A) τ ⊗ |det |s �ω for each s. We shall only require

the use of flat, K-finite sections, which are defined as follows. Take f0 ∈ IndG2m(A)
P (A) τ � ω, K-finite,

and define f(s)(h) by
f(s)(u(g, α)k) = f0(u(g, α)k)|det g|s

for u ∈ U(A), g ∈ GLm(A), α ∈ A×, k ∈ K. This is well defined. (I.e., although g is not uniquely
determined in the decomposition, |det g| is. Cf. the definition of mP on p.7 of [MW1].)

Remark 4.0.2. Clearly, the function f is determined by f(s0) for any s0. In particular, any
function of f may be regarded as a function of fs0 ∈ IndG2m(A)

P (A) τ ⊗ |det |s0 � ω, for any particular
value of s0. We have exploited this fact with s0 = 0 to streamline the definitions. A posteriori it will
become clear that the point s = 1

2 is of particular importance, and we shall then switch to s0 = 1
2 .

For such f the sum
E(f)(g)(s) :=

∑
γ∈P (F )\G(F )

f(s)(γg)

converges for Re(s) sufficiently large ([MW1], §II.1.5, pp.85-86), and has meromorphic continuation
to C ([MW1] §IV.1.8(a), IV.1.9(c),p.140). These are our Eisenstein series. We collect some of their
well-known properties in the following theorem.

Theorem 4.0.3. (1) The following are equivalent:
(a) There exist f0 ∈ IndG2m(A)

P (A) τ � ω, and g ∈ G2m(A) such that E(f)(g) has a pole at
s = 1

2 .
(b) The representation τ is ω̄-symplectic.

(2) In the case when the equivalent conditions above hold, the pole at s = 1
2 is simple.

(3) Let us now assume the equivalent conditions of (1) hold, and regard f as a function of
f 1

2
∈ IndG2m(A)

P (A) τ ⊗ |det |
1
2 � ω. If E−1(f 1

2
)(g) := lims→ 1

2
(s− 1

2)E(f)(g)(s), then E−1(f) is

an L2 function for all f 1
2
∈ IndG2m(A)

P (A) τ ⊗ |det |
1
2 � ω.

(4) The function E−1 is an intertwining operator from IndG2m(A)
P (A) τ ⊗ |det |

1
2 � ω into the space

of L2 automorphic forms.
(5) If E−1(τ, ω) is the image of E−1, and ψLW is the character of Umax given by ψLW (u) =

ψ0(
∑m−1

i=1 ui,i+1), then (Umax, ψLW ) /∈ U⊥(E−1(τ, ω)).

Proof. Let w denote the shortest element of WMw`WM where WM = M ∩WGm is the Weyl group
of GLm embedded as the intersection of the Weyl group of G2m with the Levi M of P and w` is
the longest element of G2m. Let ẇ denote any representative for w in G2m(F ), and let Uw = Umax∩
ẇ−1Umaxẇ The standard intertwining operator M(s) is an operator from IndG2m(A)

P (A) (τ ⊗|det |s�ω)

to IndG2m(A)
P (A) (τ ⊗ |det |s � ω) ◦Ad(ẇ).

Lemma 4.0.4. (τ ⊗ |det |s � ω) ◦Ad(ẇ) ∼= τ̃ ⊗ ω ⊗ |det |−s � ω.

Proof. We compute the automorphism of the character and cocharacter lattices given by Ad(ẇ). It
is determined by the fact that it permutes the roots and coroots, and the condition that it sends
every simple root except em−1 + em to a positive root, and sends em−1 + em to a negative root.
The only such map is the one given by

ei 7→ −em+1−i i > 0; e0 7→ e0 + e1 + · · ·+ em;

e∗i 7→ −e∗m+1−i + e∗0 i > 0; e∗0 7→ e∗0.
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It then follows from Theorem 16.3.2 of [Spr] that up to inner automorphism Ad(ẇ)(g, α) is given
by (tg−1, α · det g), whence

(τ ⊗ |det |s � ω) ◦Ad(ẇ) ∼= (τ̃ ⊗ ω ⊗ |det |s � ω).

Here we have used the fact that the contragredient τ̃ of τ may be realized as an action on the same
space of functions as τ via g ·ϕ(g1) = ϕ(g1 tg

−1). This follows from strong multiplicity one and the
analogous statement for local representations, for which see [GK75] page 96, or [BZ1] page 57. �

Corollary 4.0.5. It τ ∼= τ̃ ⊗ω (for example, if τ is ω̄-symplectic) then (τ ⊗ |det |s �ω) ◦Ad(ẇ) ∼=
τ ⊗ |det |−s � ω.

The operator M(s) is defined for Re(s) large by the integral (cf. [MW1] II.1.6)

(M(s)f(s))(g) =
∫
Uw(A)

f(s)(ẇug)du,

and elsewhere by meromorphic continuation ([MW1] IV.1.8 (b)).
It is an application of [MW1] IV.1.9 and II.1.7 that if Q is a standard parabolic of G2m and

f0 ∈ IndG2m(A)
P (A) τ � ω, then the constant term of E(f0, s) along Q (cf. [MW1] I.2.6) is trivial unless

Q = P in which case it is
f(s) +M(s)f(s).

It follows from [MW1] I.4.10, that E(f) has a pole at s0 if and only if M(s)f(s) does. We show
below that for s0 = m

2 this is the case if and only if τ is ω̄-symplectic. This will complete the proof
of item (1).

Item (2) is an application of [MW1] IV.1.11 (c).
Since f(s) is clearly entire, it now follows from [MW1] I.4.11 that when E(f) has a residue at s0

with Re(s0) > 0, this residue is L2. Item (3) follows.
It follows from [MW1] IV.1.9 (b)(i) applied to (s− 1

2)E(f) (which is valid by IV.1.9 (d)) that the
residue is an automorphic form. To complete the proof of (4), let ρ(g) denote right translation. It is
clear that for values of s in the domain of convergence, (s− 1

2)E(ρ(g)f)(s) = (s− 1
2)ρ(g)(E(f)(s)).

By uniqueness of analytic continuation, the equality also holds at values of s where both sides are
defined by analytic continuation, including 1

2 . The action of the universal enveloping algebra at the
infinite places is dispatched in the same manner.

Similarly, in the case when M(s)f(s) has a pole at 1
2 , we may continue (s − 1

2)M(s)f(s) to 1
2 ,

where it gives a nontrivial element of IndG2m(A)
P (A) τ̃⊗ω⊗|det |−

1
2 �ω. (Cf. [MW1] IV.1.4.) Of course,

we may also write “IndG2m(A)
P (A) τ ⊗ |det |−

1
2 � ω,” since it will be shown below that this only occurs

when τ is ω̄-symplectic. Item (5) now follows from the genericity of τ.
What remains is to complete the proof that M(s) has a pole at 1

2 iff τ is ω̄-symplectic.
Now, let M̃(s) denote the analogue of M(s) defined using V (1)(s, τ, ω). It maps into the space

V (3)(−s, τ̃ ⊗ ω, ω) given by{
F̃ : G2m(A) → Vτ , smooth

∣∣∣F̃ ((g, α)h)(g1) = ω(α det g)|det g|−s+
(m−1)

2 F̃ (h)(g1 tg
−1)
}
.

Fix realizations of the local representations τv and an isomorphism ι : ⊗′vτv → τ. Define, for each
v, V (1)(s, τv, ωv) to be{

F̃v : G2m(Fv) → Vτv , smooth
∣∣∣∣F̃v((g, α)h) = ωv(α)|det g|s+

(m−1)
2

v τv(g)F̃v(h)
}
,

V (3)(s, τ̃v ⊗ ωv, ωv) to be{
F̃v : G2m(Fv) → Vτv , smooth

∣∣∣∣F̃v((g, α)h) = ωv(α det g)|det g|s+
(m−1)

2
v τv(tg−1)F̃v(h)

}
.
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Then the formula
ι̃(⊗vF̃v)(g) = ι(⊗′vF̃v(gv))

defines maps
⊗′vV (1)(s, τv, ωv) → V (1)(s, τ, ω),

⊗′vV (3)(s, τ̃v ⊗ ωv, ωv) → V (3)(s, τ̃ ⊗ ω, ω),
both of which we denote by ι̃.

It is known that each map is, in fact, an isomorphism. For the benefit of the reader we sketch an
argument. On pp. 307 of [Sha1] certain explicit elements of (a generalization of) V (1)(s, τ, ω) are
constructed as integrals involving matrix coefficients. Using Schur orthogonality, one may check
that F̃ is expressible in this form iff both the K-module it generates and the K ∩M(A)-module it
generates are irreducible. It is clear that such vectors span the space of all K-finite vectors. On the
other hand the (finite dimensional) space of matrix coefficients of this irreducible representation of
K is spanned by those that factor as a product of matrix coefficients of local representations, and
these are clearly in the image of ι̃.

For F̃v ∈ V (1)(s, τv, ωv), let

Av(s)F̃v(g) =
∫
Uw(Fv)

F̃v(ẇug)du.

Then the following diagram commutes

⊗′vV (1)(s, τv, ωv)
A(s)−−−−→ ⊗′vV (3)(−s, τ̃v ⊗ ωv, ωv)

ι̃

y ι̃

y
V (1)(s, τ, ω)

M̃(s)−−−−→ V (3)(−s, τ̃ ⊗ ω, ω),

with A(s) := ⊗vAv(s).
Now, M(s)f(s) has a pole (i.e., there exists g ∈ G4n(A) such that M(s)f(s)(g) has a pole) if and

only if M̃(s)F̃ (s) has a pole (i.e., there exist g ∈ G4n(A) and m ∈M(A) such that M̃(s)F̃ (s)(g)(m)
has a pole), where F̃ is the element of V (1)(s, τ, ω) such that f(g) = F̃ (g)(id).

We wish to show that there exists F̃ such that this is the case iff τ is ω̄-symplectic. Clearly, we
may restrict attention to F̃ of the form ι̃(⊗vF̃v).

Recall that for all but finitely many non-archimedean v, the space Vτv comes equipped with a
choice of GL2n(ov)-fixed vector ξ◦v used to define the restricted tensor product.

If F̃ = ι̃(⊗vF̃v) ∈ V (1)(s, τ, ω), then there is a finite set S of places, such that if v /∈ S then v

is non-archimedean, τv is unramified, and F̃v(s) = F̃ ◦(s,τv ,ωv) is the unique element of V (1)(s, τv, ωv)

satisfying F̃(s,τv ,ωv)(k) = ξ◦v for all k ∈ G4n(ov).
Now

Av(s)F̃ ◦(s,τv ,ωv) =
Lv(2s, τv,∧2 × ω̄v)

Lv(2s+ 1, τv,∧2 × ω̄v)
F̃ ◦(−s,τ̃v⊗ωv ,ωv).

(A proof of this appears in [L1], albeit not in this precise language. See especially pp. 25-27.)
Thus,

A(s)ι̃(⊗vF̃v) =
LS(2s, τ,∧2 × ω̄)

LS(2s+ 1, τ,∧2 × ω̄)
ι̃

((⊗
v∈S

Av(s)F̃v(s)

)
⊗

(⊗
v/∈S

F̃ ◦−s,τ̃v⊗ωv ,ωv

))
.

To complete the proof of 1 (and of the theorem) we must show:

(i): Av(s) is holomorphic and nonvanishing (i.e., not the zero operator) on Ind
G2m(A)
P (A) τ ⊗

|det |s � ω at s = 1
2 , for all τ.
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(ii): Lv(s, τv,∧2 × ω̄v) is holomorphic and nonvanishing at s = 1, for all τv.
(iii): LS(s, τ,∧2 × ω̄) is holomorphic and nonvanishing at s = 2.

Item (iii) is covered by Proposition 7.3 of [Kim-Sh].
Items (i) and (ii) are essentially contained in Proposition 3.6, p. 153 of [Asg-Sha1]. Since what

we need is part of the same information, presented differently, we repeat the part of the arguments
we are using.

The nonvanishing part of (i) is a completely general fact (i.e., holds at least for any Levi of any
split reductive group). For example, the only element of the arguments made on p. 813 of [GRS3]
which is particular to the situation they consider there (the Siegel of Sp4n) is the precise ratio of
L functions appearing in the constant term.

Similarly, local L functions never vanish. At a finite prime the local L function is P (q−sv )−1 for
some polynomial P, while at an infinite prime it is given in terms of the Γ function and functions
of exponential type.

We turn to holomorphicity.

Lemma 4.0.6. Let πv be any representation of GLm(Fv), which is irreducible, generic, and unitary.
Then there exist

• integers k1, . . . , kr of such that k1 + · · ·+ kr = m,
• real numbers α1, . . . , αr ∈ (−1

2 ,
1
2),

• discrete series representations δi of GLki(Fv) for i = 1 to r
such that

πv ∼= Ind
GLm(Fv)
P(k)(Fv)

r⊗
i=1

(δi ⊗ |det i|αi).

Here P(k) denotes the standard parabolic of GLm with Levi consisting of block diagonal matrices
with the block sizes k1, . . . , kr (in that order), and deti denotes the determinant of the ith block.

Remark 4.0.7. In fact, one may prove a much more precise statement, but the above is what is
needed for our purposes.

Proof. This follows from the main theorem of [Tad2] (see p. 3) together with the fact that the
representation denoted u(δ,m) in that paper is only generic if m = 1. For this latter statement see
the “Proof of (a)⇒(f)” on p. 93 of [Vog] in the Archimedean case and Theorem 8.1 on p. 195 of
[Z] in the non-Archimedean case. (For the notion of “highest derivative” see p. 452 of [BZ2]: a
representation is generic iff its “highest derivative” is the trivial representation of the trivial group,
which corresponds to the empty multiset under the Zelevinsky classification.) �

Continuing with the proof of 1, let (k) = (k1, . . . , kr), δ = (δ1, . . . , δr) and α = (α1, . . . , αr)
be obtained from τv as just above, and let P̃(k) denote the standard parabolic of G2m which is
contained in the Siegel parabolic P such that P̃(k) ∩M = P(k).

Then
Ind

G2m(Fv)
P (Fv)

τv ⊗ |det |sv � ωsv
∼= Ind

G2m(Fv)

P̃(k)(Fv)
�r
i=1 (δi ⊗ |det i|s+αiv ) � ωv.

This family (as s varies) of representations lies inside the larger family,

Ind
G2m(Fv)

P̃(k)(Fv)
�r
i=1 (δi ⊗ |det i|si) � ωv s = (s1, . . . , sr) ∈ Cr,

and our intertwining operator Av(s) is the restriction, to the line si = s + αi of the standard
intertwining operator for this induced representation, which we denote Av(s). This operator is
defined, for all Re(si) sufficiently large, by the same integral as Av(s).

A result of Harish-Chandra says that “Re(si) sufficiently large” can be sharpened to “Re(si) > 0.”
(This is because all δi are discrete series, although tempered would be enough.) This result is given
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in the p-adic case as [Sil] Theorem 5.3.5.4, and in the Archimedean case, [Kn] Theorem 7.22, p.
196.

Hence, the integral defining Av(s) converges for s > maxi(−αi), and in particular converges at
1
2 .

From the relationship between the local L functions and the so-called local coefficients, it follows
that the local L functions are also holomorphic in the same region. For this relationship see [Sha3]
for the Archimedean case and [Sha2], p. 289 and p. 308 for the non-Archimedean case.

This completes the proof of (i) and (ii), of (1), and of the theorem. �

5. Main Results

5.1. Descent Construction. Next we describe certain unipotent periods of G2m which play a key
role in the argument. For 1 ≤ ` < m, let N` be the subgroup of Umax defined by uij = 0 for i > `.
(Recall that according to the convention above, this refers only to those i, j with i < j ≤ m − i.)
This is the unipotent radical of a standard parabolic Q` having Levi L` isomorphic to GL`1×G2m−2`.

Let ϑ be a character of N` then we may define

DC`(τ, ω, ϑ) = FCϑE−1(τ, ω).

Theorem 5.1.1. Let τ be an ω̄-symplectic irreducible cuspidal automorphic representation of
GL2n(A). If ` ≥ n, and ϑ is in general position, then

DC`(τ, ω, ϑ) = {0}.

Proof. By Theorem 4.0.3, (3) the representation E−1(τ, ω) decomposes discretely. Let π ∼= ⊗′vπv be
one of the irreducible components, and pπ : E−1(τ, ω) → π the natural projection.

Fix a place v0 such which τv0 and πv0 are unramified. For any ξv0 ∈ ⊗′v 6=v0Ind
G4n(Fv)
P (Fv)

τv⊗|det |
1
2
v �

ωv we define a map

iξv0 : IndG4n(Fv0 )

P (Fv0 ) τv0 ⊗ |det |
1
2
v0 � ωv0 → Ind

G4n(A)
P (A) τ ⊗ |det |

1
2 � ω

by iξv0 (ξv) = ι(ξv0 ⊗ ξv0), where ι is an isomorphism of the restricted product ⊗′vInd
G4n(Fv)
P (Fv)

τv ⊗

|det |
1
2
v � ωv with the global induced representation IndG4n(A)

P (A) τ ⊗ |det |
1
2 � ω. Clearly

E−1(τ, ω) = E−1 ◦ ι(⊗′vInd
G4n(Fv)
P (Fv)

τv ⊗ |det |
1
2
v � ωv).

For any decomposable vector ξ = ξv0 ⊗ ξv0 ,

pπ ◦ E−1 ◦ ι(ξ) = pπ ◦ E−1 ◦ iξv0 (ξv0).

Thus, πv0 is a quotient of IndG4n(Fv0 )

P (Fv0 ) τv0 ⊗ | det |
1
2
v0 � ωv0 , and hence (since we took v0 such that

πv0 is unramified) it is isomorphic to the unramified constituent unInd
G4n(Fv0 )

P (Fv0 ) τv0 ⊗ |det |
1
2
v0 � ωv0 .

Denote the isomorphism of π with ⊗′vπv by the same symbol ι. This time, fix ζv0 ∈ ⊗′v 6=v0πv,

and define iζv0 :un IndG4n(Fv0 )

P (Fv0 ) τv0 ⊗ |det |
1
2
v0 � ωv0 → π. It follows easily from the definitions that

FCϑ ◦ iζv0

factors through the Jacquet module JN`,ϑ( unInd
G4n(Fv0 )

P (Fv0 ) τv0 ⊗ |det |
1
2
v0 � ωv0). In appendix 6 we

show that this Jacquet module is zero. The result follows. �
12



Remark 5.1.2. A general character of N` is of the form

ψ(c1u1,2 + · · ·+ c`−1u`−1,` + d1u`,`+1 + · · ·+ d4n−2`u`,4n−`).

The Levi L` acts on the space of characters (cf. section 3.5). Over an algebraically closed field
there is an open orbit, which consists of all those elements such that ci 6= 0 for all i and tdJd 6= 0.
Here, d is the column vector t(d1, . . . , d4n−2`), and J is defined as in 3.1. Over a general field two
such elements are in the same F -orbit iff the two values of tdJd are in the same square class.

Let ψ` be the character of N` defined by

ψ`(u) = ψ0(u12 + · · ·+ u`−1,` + u`,2n − u`,2n+1).

It is not hard to see that
• the stabilizer Lψ`` (cf. Mϑ in definition 3.5.1) has two connected components,
• the one containing the identity is isomorphic to G4n−2`−1,

• there is an “obvious” choice of isomorphism inc : G4n−2`−1 → (Lψ`` )0 having the following
property: if {e∗i : i = 0 to 2n} is the basis for the cocharacter lattice of G4n as in section
3.2, and {ē∗i , i = 0 to n} is the basis for that of G2n+1, then

(5.1.3) inc ◦ e∗i =

{
e∗0, i = 0
e∗n−1+i, i = 1 to n.

In the case when ` = 2n− 1, N` = Umax, and ψ` is a generic character. The above remarks remain
valid with the convention that G1 = GL1.

Let
DCω(τ) = FCψn−1E−1(τ, ω).

It is a space of smooth functions G2n+1(F\A) → C, and affords a representation of the group
G2n+1(A) acting by right translation, where we have identified G2n+1 with the identity component
of Lψn−1

n−1 .

Theorem 5.1.4. The space DCω(τ) is a nonzero cuspidal representation of G2n+1(A), which sup-
ports a nonzero Whittaker integral. If σ is any irreducible automorphic representation contained in
DCω(τ), then σ lifts weakly to τ under the map r. Also, the central character of σ is ω.

Remark 5.1.5. Since DCω(τ) is nonzero and cuspidal, there exists at least one irreducible com-
ponent σ. In the case of orthogonal groups, one may show ([So1], pp. 8-9, item 4) that all of the
components are generic using the Rankin-Selberg integrals of [Gi-PS-R],[So2]. On the other hand,
in the odd case, one may also show ([GRS4], Theorem 8, p. 757, or [So1] page 9, item 6) using the
results of [Ji-So] that DCω(τ) is irreducible.

Proof. The statements are proved by combining relationships between unipotent periods and knowl-
edge about E−1(τ, ω).

For genericity, let (U1, ψ1) denote the unipotent period obtained by composing the one which
defines the descent with the one which defines the Whittaker function on G2n+1 embedded into
G4n as the stabilizer of the descent character. Thus U1 is the subgroup of the standard maximal
unipotent defined by the relations ui,2n = ui,2n+1 for i = n to 2n− 1, and

ψ1(u) = ψ(u1,2 + · · ·+ un−2,n−1 + un−1,2n − un−1,2n+1 + un,n+1 + · · ·+ u2n−1,2n).

Next, let U2 denote the subgroup of the standard maximal unipotent defined by ui,i+1 = 0 for
i even and less than 2n. (One may also put ≤ 2n: the equation u2n,2n+1 = 0 is automatic for any
element of Umax.) The character ψ2 depends on whether n is odd or even. If n is even, it is

ψ(u1,3 + u2,4 + · · ·+ u2n−1,2n+1),
13



while, if n is odd, it is

ψ(u1,3 + u2,4 + · · ·+ u2n−3,2n−1 + u2n−2,2n+1 + u2n−1,2n),

Finally, let U3 denote the maximal unipotent, and ψ3 denote

ψ3(u) = ψ(u1,2 + · · ·+ u2n−1,2n).

Thus (U3, ψ3) is the composite of the unipotent period defining the constant term along the Siegel
parabolic, and the one which defines the Whittaker functional on the Levi of this parabolic. By
Theorem 4.0.3 (5) this period is not in U⊥(E−1(τ, ω)).

In the appendices, we show
(1) (U1, ψ1)|(U2, ψ2), in Lemma 7.3.1, and
(2) (U3, ψ3) ∈ 〈(U2, ψ2), {(N`, ϑ) : n ≤ ` < 2n and ϑ in general position.}〉 in Lemma 7.3.2.

By Theorem 5.1.1 (N`, ϑ) ∈ U⊥(E−1(τ, ω)) for all n ≤ ` < 2n and ϑ in general position. It follows
that (U1, ψ1) /∈ U⊥(E−1(τ, ω)). This establishes genericity (and hence nontriviality) of the descent.

Turning to cuspidality, we prove in the appendices an identity relating:

• Constant terms on G2n+1 embedded as (Lψn−1

n−1 )0,
• Descent periods in G4n,
• Constant terms on G4n,
• Descent periods on G4n−2k, embedded in G4n as a subgroup of a Levi.

To formulate the exact relationship we introduce some notation for the maximal parabolics of GSpin
groups.

The group G2n+1 has one standard maximal parabolic having Levi GLi×G2n−2i+1 for each value
of i from 1 to n. Let us denote the unipotent radical of this parabolic by V 2n+1

i . We denote the
trivial character of any unipotent group by 1.

The group G4n has one standard maximal parabolic having Levi GLk × G4n−2k for each value
of k from 1 to 2n− 2. We denote the unipotent radical of this parabolic by Vk.

(The group G4n also has two parabolics with Levi isomorphic to GL2n × GL1, but since they
will not come up in this discussion, we do not need to bother over a notation to distinguish them.)

We prove in Lemma 7.3.4 that (V 2n+1
k ,1) ◦ (Nn−1, ψn−1) is contained in

〈(Nn+k−1, ψn+k−1), {(Nn+j−1, ψn+j−1)(4n−2k+2j) ◦ (Vk−j ,1) : 1 ≤ j < k}〉,

where (Nn+j−1, ψn+j−1)(4n−2k+2j) denotes the descent period, defined as above, but on the group
G4n−2k+2j , embedded into G4n as a component of the Levi with unipotent radical Vk−j .

By Theorem 5.1.1 (Nn+k−1, ψn+k−1) ∈ U⊥(E−1(τ, ω)) for k = 1 to n. For all k, j such that
1 ≤ j < k ≤ n, the period (Vk−j ,1) is the constant term along a parabolic which is not associated
to P. Hence (Vk−j ,1) ∈ U⊥(E−1(τ, ω)) by [MW1] Proposition II.1.7. This shows that any nonzero
function appearing in any of the spaces DCaω(τ) must be cuspidal. Such a function is also easily
seen to be of uniformly moderate growth, being the integral of an automorphic form over a compact
domain. In addition, such a function is easily seen to have central character ω, and any function
with these properties is necessarily square integrable modulo the center ([MW1] I.2.12). It follows
that each of the spaces DCaω(τ) decomposes discretely.

Now, suppose σ ∼= ⊗′vσv is an irreducible representation which is contained in DCω(τ). Let pσ
denote the natural projection DCω(τ) → σ. Once again, by Theorem 4.0.3, (3) the representation
E−1(τ, ω) decomposes discretely. Let π be an irreducible component of E−1(τ, ω) such that the
restriction of pσ ◦ FC to π is nontrivial. As discussed previously in the proof of Theorem 5.1.1,
at all but finitely many v, τ is unramified at v and furthermore, πv is the unramified constituent
unInd

G4n(Fv)
P (Fv)

τv�ωv⊗|det |
1
2
v of IndG4n(Fv)

P (Fv)
τv�ωv⊗|det |

1
2
v . If v0 is such a place, the map pσ◦FC◦iζv0 ,
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with iζv0 defined as in Theorem 5.1.1, factors through JNn−1,ψn−1

(
unInd

G4n(Fv)
P (Fv)

τv ⊗ |det |
1
2
v � ωv

)
,

and gives rise to a G2n+1(Fv0)-equivariant map from this Jacquet-module onto σv0 .
To pin things down precisely, assume that τv is the unramified component of IndGL2n(Fv)

B(GL2n)(Fv)
µ,

and let µ1, . . . , µ2n be defined as in the proof of Lemma 3.3.1. By Lemma 3.3.1, we may assume
without loss of generality that µ2n+1−i = ωµ−1

i for i = 1 to n.
We also need to refer to the elements of the basis of the cocharacter lattice of G2n+1 fixed in

section 3.2. As in the remarks preceding the definition of DCω(τ), we denote these ē∗0, . . . , ē
∗
n.

In the appendices, we show that

JNn−1,ψn−1

(
unInd

G4n(Fv)
P (Fv)

τv � ωv ⊗ |det |
1
2
v

)
is isomorphic as aG2n+1(Fv)-module to IndG2n+1(Fv)

B(G2n+1)(Fv)
χ for χ the unramified character ofB(G2n+1)(Fv)

such that
χ ◦ ē∗i = µi, i = 1 to n, χ ◦ ē∗0 = ωv.

It follows that τ is a weak lift of σ associated to the map r. �

6. Appendix I: Local results on Jacquet Functors

In this appendix, F is a non-archimedean local field, on which we place the additional technical
hypothesis

(6.0.6) B(G2n−1)(F )G2n−1(o) = G2n−1(F ),

which is known (see [Tits], 3.9, and 3.3.2) to hold at all but finitely many non-Archimedean com-
pletions of a number field. Here, G2n−1 is identified with (Lψn−1)

0 is defined as in (5.1.3), and o
denotes the ring of integers of F.

Proposition 6.0.7. Let τ = Ind
GL2n(F )
B(GL2n)(F )µ, where µ satisfies µ ◦ e∗i = ωµ ◦ e∗2n+1−i. Then for

` ≥ n and ϑ in general postion, the Jacquet module JN`,ϑ(unInd
G4n(F )
P (F ) τ ⊗ |det |

1
2 � ω) is trivial.

Proof. First, let µi : F → C be the unramified character given by µi = µ ◦ e∗i . By induction in
stages,

unInd
G4n(F )
P (F ) τ ⊗ |det |

1
2 � ω = unInd

G4n(F )
B(G4n)(F )µ̃,

where µ̃ ◦ e∗i (x) = |x|
1
2µi(x), for i = 1 to 2n and µ̃ ◦ e∗0 = ω. By the definition of the unramified

constituent
unInd

G4n(F )
B(G4n)(F )µ̃ = unInd

G4n(F )
B(G4n)(F )µ̃

′,

where µ̃′ ◦ e∗2i−1(x) = µi(x)|x|
1
2 , and µ̃′ ◦ e∗2i(x) = µi(x)|x|−

1
2 , for i = 1 to n, and µ̃′ ◦ e∗0 = ω. Now,

it is well known that
unInd

GL2(F )
B(GL2)(F )µ| |

1
2 ⊗ µ| |−

1
2 = µ ◦ det .

It follows that
unInd

G4n(F )
B(G4n)(F )µ̃

′ = unInd
G4n(F )
P22n (F )µ̂,

where P22n is the parabolic of G4n having Levi isomorphic to GLn2 × GL1, such that the roots of
this Levi are e1 − e2, e3 − e4, . . . , e2n−1 − e2n, and µ̂ is the character given by µ̂ ◦ e∗2i−1 = µ̂ ◦ e∗2i =
µi, µ̂ ◦ e∗0 = ω.

The space IndG4n(F )
P22n (F )µ̂ has a filtration as a Q`(F )-module, in terms of Q`(F )-modules indexed

by the elements of (W ∩ P22n)\W/(W ∩ Q`). For any element x of P22n(F )wQ`F ) the module

corresponding to w is isomorphic to c − ind
Q`(F )
x−1P22n (F )x∩Q`(F )

µ̂δ
1
2
P22n

◦ Ad(x). Here Ad(x) denotes
15



the map given by conjugation by x. It sends x−1P22n(F )x ∩ Q`(F ) into P22n(F ). Also, here and
throughout c− ind denotes non-normalized compact induction. (See [Cass], section 6.3.)

Lemma 6.0.8. The Weyl group of Gm is canonically identified with that of SOm.

Proof. For this lemma only, let T denote the torus of SOm and T̃ that of Gm. Then the following
diagram commutes:

ZGm(T̃ ) NGm(T̃ )

ZSOm(T ) NSOm(T ).

-

? ?
-

Both horizontal arrows are inclusions and both vertical arrows are pr . �

One easily checks that every element of the Weyl group of SO4n is represented by a permutation
matrix. We denote the permutation associated to w also by w. The set of permutations w obtained
is precisely the set of permutations w ∈ S4n satisfying,

(1) w(4n+ 1− i) = 4n+ 1− w(i) and
(2) detw = 1 when w is written as a 4n× 4n permutation matrix.
As representatives for the double cosets (W∩P22n)\W/(W∩Q`) we choose the element of minimal

length in each. As permutations, these elements have the properties
(3) w−1(2i) > w−1(2i− 1) for i = 1 to 2n, and
(4) If ` ≤ i < j ≤ 4n+ 1− ` and w(i) > w(j), then i = 2n and j = 2n+ 1.
Let Iw be the Q`(F )-module obtained as

c− ind
Q`(F )
ẇ−1P22n (F )ẇ∩Q`(F )

µ̂δ
1
2
P22n

◦Ad(ẇ)

using any element ẇ of pr−1(w).
A function f in Iw will map to zero under the natural projection to JN`,ϑ(Iw) iff there exists a

compact subgroup N0
` of N`(F ) such that∫

N0
`

f(hn)ϑ(n)dn = 0 ∀h ∈ Q`(F ).

(See [Cass], section 3.2.) Let ϑh(n) = ϑ(hnh−1). It is easy to see that the integral above vanishes
for suitable N0

` whenever

(6.0.9) ϑh|N`(F )∩w−1P22n (F )w is nontrivial.

Furthermore, the function h 7→ ϑh is continuous in h, (the topology on the space of characters of
N`(F ) being defined by identifying it with a finite dimensional F -vector space, cf. section 3.5) so
if this condition holds for all h in a compact set, then N `

0 can be made uniform in h.
Now, ϑ is in general position. Hence, so is ϑh for every h. So, if we write

ϑh(u) = ψ0(c1u1,2 + · · ·+ c`−1u`−1,` + d1u`,`+1 + · · ·+ d2m−2`u`,2m−`),

we have that ci 6= 0 for all i and tdwd 6= 0.
Clearly, the condition (6.0.9) holds for all h unless
(5) w(1) > w(2) > · · · > w(`).
Furthermore, because tdwd 6= 0, there exists some i0 with ` + 1 ≤ i0 ≤ 2n such that di0−` 6= 0

and d4n+1+`−i0 6= 0. From this we deduce that the condition (6.0.9) holds for all h unless w has the
additional property

(6) There exists i0 such that w(`) > w(i0) and w(`) > w(4n+ 1− i0).
16



However, if ` ≥ n it is easy to check that no permutations with properties (1),(3) (5) and (6)
exist.

Thus JN`,ϑ(Iw) = {0} for all w and hence JN`,ϑ(unInd
G4n(F )
P (F ) τ ⊗ |det |

1
2 �ω) = {0} by exactness

of the Jacquet functor. �

Proposition 6.0.10. Let τ = Ind
GL2n(F )
B(GL2n)(F )µ, where µ satisfies µ ◦ e∗i = ωµ ◦ e2n+1−i. Then the

Jacquet module
JNn−1,ψn−1

(
unInd

G4n(F )
P (F ) τ ⊗ |det |

1
2 � ω

)
is isomorphic as a G2n+1(F )-module to a subquotient of IndG2n+1(F )

B(G2n+1)(F )χ for χ the unramified
character of B(G2n+1)(F ) such that

χ ◦ ē∗i = µi, i = 1 to n, χ ◦ ē∗0 = ω.

Proof. As before, we have
unInd

G4n(F )
P (F ) τ ⊗ |det |

1
2 � ω =un Ind

G4n(F )
P22n

µ̂,

and we filter IndG4n(F )
P22n (F )µ̂ in terms of Qn−1(F )-modules Iw. This time, JNn−1,ψn−1(Iw) = {0} for all

w except one. This one Weyl element, which we denote w0, corresponds to the unique permutation
satisfying (1),(2),(3),(4) of the previous result, together with w(i) = 4n− 2i+ 1 for i = 1 to n− 1.
Exactness yields

JNn−1,ψn−1

(
unInd

G4n(F )
P (F ) τ ⊗ |det |

1
2 � ω

)
∼= JN`,ϑ(Iw0).

(This is an isomorphism ofQψn−1

n−1 (F )-modules, whereQψn−1

n−1 = Nn−1·Lψn−1

n−1 ⊂ Qn−1, is the stabilizer
of ψn−1 in Qn−1 (cf. Lϑ above).)

Now, recall that for each h ∈ Qn−1(F ) the character ψhn−1(u) = ψn−1(huh−1) is a character of
Nn−1 in general position, and as such determines coefficients c1, . . . , cn−2 and d1, . . . , d2n+2 as in
remark 5.1.2. Clearly,

Qon−1 := {h ∈ Qn−1(F )| di 6= 0 for some i 6= n+ 1, n+ 2}
is open. Moreover, one may see from the description of w0 that for h in this set 6.0.9 is satisfied.
We have an exact sequence of Qψn−1

n−1 (F )-modules

0 → I∗w0
→ Iw0 → Īw0 → 0,

where I∗w consists of those functions in Iw whose compact support happens to be contained in
Qon−1, and the third arrow is restriction to the complement of Qon−1. This complement is slightly
larger than Q

ψn−1

n−1 (F ) in that it contains the full torus of Qn−1(F ), but restriction of functions is
an isomorphism of Qψn−1

n−1 (F )-modules,

Īw0 → c− ind
Q
ψn−1
n−1 (F )

Q
ψn−1
n−1 (F )∩w−1

0 P22n (F )w0

µ̂δ
1
2
P22n

◦Ad(w0).

Clearly JNn−1,ψn−1

(
I∗w0

)
= {0}, and hence

JNn−1,ψn−1

(
Ind

G4n(F )
P22n (F )µ̂

)
∼= JNn−1,ψn−1

(
c− ind

Q
ψn−1
n−1 (F )

Q
ψn−1
n−1 (F )∩w−1

0 P22n (F )w0

µ̂δ
1
2
P22n

◦Ad(w0)
)
.

Now let W denote{
f : Qψn−1

n−1 (F ) → C

∣∣∣∣∣ f(uq) = ψn−1(u)f(q) ∀ u ∈ Nn−1(F ), q ∈ Qψn−1

n−1 (F ),

f(bm) = χ(b)δ
1
2

B(G2n+1)f(m) ∀ b ∈ B(Lψn−1

n−1 )(F ), m ∈ Lψn−1

n−1 (F )

}
.
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For f ∈ c− ind
Q
ψn−1
n−1

Q
ψn−1
n−1 ∩w−1

0 P22nw0

µ̂δ
1
2
P22n

◦Ad(w0), let

W (f)(q) =
∫
Nn−1(F )∩w−1

0 Umax(F )w0

f(uq)ψ̄n−1(u)du.

Then W maps c − ind
Q
ψn−1
n−1 (F )

Q
ψn−1
n−1 (F )∩w−1

0 P22n (F )w0

µ̂δ
1
2
P22n

◦ Ad(w0) into W. That is, the functions in c −

ind
Q
ψn−1
n−1 (F )

Q
ψn−1(F )

n−1 ∩w−1
0 P22n (F )w0

µ̂δ
1
2
P22n

◦Ad(w0) are left equivariant with respect to the group B(G2n+1)(F ),

and a quasicharacter of this group that differs from χδ
1
2

B(G2n+1) by the Jacobian of Ad(b), b ∈
B(G2n+1)(F ), acting on Nn−1(F ) ∩ w−1

0 Umax(F )w0.
Let us denote

c− ind
Q
ψn−1
n−1 (F )

Q
ψn−1(F )

n−1 ∩w−1
0 P22n (F )w0

µ̂δ
1
2
P22n

◦Ad(w0)

by V and denote by V (Nn−1, ψn−1) the kernel of the linear map V → JNn−1,ψn−1(V ).
It is easy to show that V (Nn−1, ψn−1) is contained in the kernel of W. In the next lemma, we

show that in fact, they are equal. Restriction from Q
ψn−1

n−1 (F ) to Lψn−1

n−1 (F ) is clearly an isomorphism

W → Ind
G2n+1(F )
B(G2n+1)(F )χ. �

Lemma 6.0.11. With notation as in the previous proposition, we have Ker(W ) ⊂ V (Nn−1, ψn−1).

Proof. For this proof, we denote the Borel of Lψn−1

n−1 by B. Also, let Nw0 = Nn−1 ∩w−1
0 P22nw0, and

Nw0 = Nn−1 ∩ w−1
0 Umaxw0,

We consider a smooth function f : Qψn−1

n−1 (F ) → C which is compactly supported modulo
Q
ψn−1

n−1 (F ) ∩ w−1
0 P22n(F )w0, and satisfies

f(bm) = χδ
1
2
B(b)f(m) ∀ b ∈ B(F ),

and
f(uq) = f(q) ∀ u ∈ Nw0(F ) and q ∈ Qψn−1

n−1 (F ).
We assume that ∫

Nw0 (F )
f(uq)ψ̄n−1(u)du = 0,

for all q ∈ Q
ψn−1

n−1 (F ). What must be shown is that there is a compact subset C of Nn−1(F ) such
that ∫

C
f(gu)ψ̄n−1(u)du = 0,

for all q ∈ Qψn−1

n−1 (F ).
Consider first m ∈ L

ψn−1

n−1 (o). Let p denote the unique maximal ideal in o. If U is a unipotent
subgroup and M an integer, we define

U(pM ) = {u ∈ U(F ) : uij ∈ pM ∀i 6= j}.
Observe that for eachM ∈ N, Nn−1(pM ) is a subgroup ofNn−1(F ) which is preserved by conjugation
by elements of Lψn−1

n−1 (o).We may chooseM sufficiently large that supp(f) ⊂ Nw0(p
−M )Nw0(F )Lψn−1

n−1 (F ).
Then we prove the desired assertion with C = Nn−1(p−M ). Indeed, for m ∈ Lψn−1

n−1 (o), we have∫
Nn−1(p−M )

f(mu)ψn−1(u)du =
∫
Nn−1(p−M )

f(um)ψn−1(u)du,

18



because Ad(m) preserves the subgroup Nn−1(p−M ), and has Jacobian 1. Let c = Vol(Nw0(p−M )),
which is finite. Then by Nw0-invariance of f, the above equals

= c

∫
Nw0 (p−M )

f(um)ψn−1(u)du.

This, in turn, is equal to

= c

∫
Nw0 (F )

f(um)ψn−1(u)du,

since none of the points we have added to the domain of integration are in the support of f, and
this last integral is equal to zero by hypothesis.

Next, suppose q = u1m with n ∈ Nn−1(F ) and m ∈ L
ψn−1

n−1 (o). If u1 ∈ Nn−1(F ) − Nn−1(p−M )
then qu is not in the support of f for any u ∈ Nn−1(p−M ). On the other hand, if u1 ∈ Nn−1(p−M ),
then ∫

Nn−1(p−M )
f(u1mu)ψn−1(u)du =

∫
Nn−1(p−M )

f(u1um)ψn−1(u)du

= ψn−1(u1)
∫
Nn−1(p−M )

f(um)ψn−1(u)du,

and now we continue as in the case u1 = 1.
The result for general q now follows from the left-equivariance properties of f and (6.0.6). �

7. Appendix II: Global results

7.1. A Lemma Regarding Unipotent Periods. There is a natural action of G(F ) on U given by
γ ·(U,ψ) = (γUγ−1, γ ·ψ) where γ ·ψ(u) = ψ(γ−1uγ). We shall refer to this action as “conjugation.”
Obviously, unipotent periods which are conjugate are equivalent.

It is convenient to allow ourselves to conjugate our unipotent periods by a slightly larger set of
elements. We may allow the involution † to act on unipotent periods by f

†(U,ψU )(g) = f (U,ψU )(†g).
Denoting the action of Pin4n(F ) on U by γ · (U,ψU ), we have

γ · (U,ψU ) ∼

{
(U,ψU ) when det pr γ = 1,
†(U,ψU ) when det pr γ = −1.

Observe that in general †(U,ψU ) is not equivalent to (U,ψU ). For example, it is not difficult to
verify that †(Umax, ψLW ) ∈ U⊥(E−1(τ, ω)).

Lemma 7.1.1. Suppose U1 ⊃ U2 ⊃ (U1, U1) are unipotent subgroups of a reductive algebraic group
G. Suppose H is a subgroup of G and let f be a smooth left H(F )-invariant function on G(A).
Suppose ψ2 is a character of U2 such that ψ2|(U1,U1) ≡ 0. Then the set res−1(ψ2) of characters of U1

such that the restriction to U2 is ψ2 is nontrivial. (Here “res” is for “restriction” not “residue”.)
The elements of res−1(ψ2) are permuted by the action of NH(U1)(F ). The following are equivalent.

(1) f (U2,ψ2) ≡ 0
(2) f (U1,ψ1) ≡ 0 ∀ψ1 ∈ res−1(ψ2)
(3) For each NH(U1)(F )-orbit O in res−1(ψ2) ∃ψ1 ∈ O with f (U1,ψ1) ≡ 0

Proof. It is obvious that 1 implies 2 and 3, and that 2 and 3 are equivalent. Consider

f (U2,ψ2)(u1g) =
∫
U2(F\A)

f(u2u1g)ψ2(u2)du2,
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regarded as a function of u1. It is left u2 invariant and hence gives rise to a function of the compact
abelian group U2(A)U1(F )\U1(A). Denote this function by φ(u1). Then

φ(0) =
∑
χ

∫
U2(A)U1(F )\U1(A)

φ(u1)χ(u1)du1,

where “0” denotes the identity in U2(A)U1(F )\U1(A), and the sum is over characters of U2(A)U1(F )\U1(A).
This, in turn, is equal to ∑

χ

∫
D

∫
U2(F\A)

f(u2u1g)ψ2(u2)du2χ(u1)du1,

for D a fundamental domain for the above quotient in U1(A). The group U1/(U1, U1)(F ) is an
F -vector space (cf. section 3.5) which can be decomposed into U2/(U1, U1)(F ) and a complement.
The F -dual of this vector space is identified, via the choice of ψ0, with the space of characters of
U1(A) which are trivial on U1(F ). It follows that the sum above is equal to

=
∑

ψ1∈res−1(ψ2)

∫
U1(F\A)

f(u1g)ψ1(u1)du1.

The matter of replacing the sum over χ by one over ψ1 ∈ res−1(ψ2) is clear from regarding
U1/(U1, U1)(F ) as a vector space which can be decomposed into U2/(U1, U1) and a complement.
Now 2 ⇒ 1 is immediate. �

Corollary 7.1.2. If NG(H) permutes the elements of res−1(ψ2) transitively, then (U2, ψ2) ∼
(U2, ψ1) for every ψ1 ∈ res−1(ψ2).

Definition 7.1.3. Many of the applications of the above corollary are of a special type, and it
will be convenient to introduce a term for them. The special situation is the following: one has
three unipotent periods (Ui, ψi) for i = 1, 2, 3, such that U2 = U1 ∩ U3 and ψ1|U2 = ψ3|U2 = ψ2.
Furthermore, U1 normalizes U3 and permutes transitively, the set of characters ψ′3 such that ψ′3|U2 ,
and the same is true with the roles of 1 and 3 reversed. In this situation, the identity

(U1, ψ1) ∼ (U2, ψ2) ∼ (U3, ψ3),

(which follows from Corollary 7.1.2) will be called a swap, and we say that (U1, ψ1) “may be
swapped for” (U3, ψ3), and vice versa.

7.2. A lemma regarding the projection, and a remark.

Lemma 7.2.1. The action of Gm on itself by conjugation factors through pr .

Proof. One has only to check that the kernel of pr is in the center of Gm. When we regard Gm
as a quotient of Spinm × GL1, the quotient of pr is precisely the image of the GL1 factor in the
quotient. �

Corollary 7.2.2. Let u be a unipotent element of Gm(A) and g any element of Gm(A). Then
pr(gug−1) is a unipotent element of SOm(A) and gug−1 is the unique unipotent element of its
preimage in Gm(A).

Remark 7.2.3. This fact, combined with the fact that pr is an isomorphism of varieties when
restricted to the subvariety of unipotent elements of Gm, means that many statements may be proved
for GSpin groups simply by taking the proof of the corresponding statement for special orthogonal
groups and inserting the words “any preimage of” here and there.
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7.3. Relations among Unipotent Periods used in Theorem 5.1.4. Before we proceed with
the proofs it will be convenient to formulate the statements in a slightly different way, making use
of the involution †.

We shall let (U1, ψ1) and (U3, ψ3) be defined as in the proof of 5.1.4. We also keep the definition
of the group U2. However, we now define the character ψ2 by the formula

ψ2(u) = ψ(u13 + · · ·+ u2n−1,2n+1),

regardless of the parity of n. (This agrees with the previous definition if n is even; if n is odd they
differ by an application of †.)

Lemma 7.3.1. Let (U1, ψ1) be defined as in Theorem 5.1.4, and (U2, ψ2) defined as just above.
Then (U1, ψ1)|(U2, ψ2) and (U1, ψ1)| †(U2, ψ2).

Proof. We define some additional unipotent periods which appear at intermediate stages in the
argument. Let U4 be the subgroup defined by un−1,j = 0 for j = n to 2n − 2 and u2n−1,2n =
u2n−1,2n+1. We define a character ψ4 of U4 by the same formula as ψ1. Then (U1, ψ1) may be
swapped for (U4, ψ4). (See definition 7.1.3.)

Now, for each k from 1 to n, define (U (k)
5 , ψ

(k)
5 ) as follows. First, for each k, the group U

(k)
5 is

contained in the the subgroup of Umax defined by, u2n−1,2n = u2n−1,2n+1. In addition, un+k−2,j = 0
for j < 2n− 1, and ui,i+1 = 0 if n− k ≤ i < n+ k and i ≡ n− k mod 2, and ψ(k)

5 (u) equals

ψ0

(
n−k−1∑
i=1

ui,i+1 +
n+k−3∑
i=n−k

ui,i+2 + un+k−2,2n + un+k−2,2n+1 +
2n−1∑

i=n+k−1

ui,i+1

)
.

(Note that one or more of the sums here may be empty.)
Next, let U (k)

6 be the subgroup of Umax defined by the conditions u2n−1,2n = u2n−1,2n+1, un+k−2,j =
0 for j < 2n − 1, and ui,i+1 = 0 if n − k ≤ i < n + k − 2 and i ≡ n − k + 1 mod 2. The same
formula which defines ψ(k)

5 also defines a character of U (k)
6 . We denote this character by ψ(k)

6 .
We make the following observations:

• (U (1)
5 , ψ

(1)
5 ) is precisely (U4, ψ4).

• For each k, (U (k)
5 , ψ

(k)
5 ) is conjugate to (U (k+1)

6 , ψ
(k+1)
6 ). The conjugation is accomplished by

any preimage of the permutation matrix which transposes i and i+ 1 for n− k ≤ i < n+ k
and i ≡ n− k mod 2.

• (U (k)
6 , ψ

(k)
6 ) may be swapped for (U (k)

5 , ψ
(k)
5 ).

Thus (U4, ψ4) ∼ (U (n)
5 , ψ

(n)
5 ).

Now, let ψ′2 be the character of U2 which is defined by

ψ′2(u) = ψ(u1,3 + · · ·+ u2n−2,2n − u2n−2,2n+1 + u2n−1,2n+1).

Then U (n)
5 is the subgroup of U2 defined by u2n−1,2n = u2n−1,2n+1 and ψ(n)

5 is the restriction of ψ′2
to this group. Thus (U (n)

5 , ψ
(n)
5 )|(U2, ψ

′
2). (It is because of this step that (U1, ψ1) 6∼ (U2, ψ2).)

Finally, (U2, ψ2) and (U2, ψ
′
2) are conjugate by the unipotent element which projects to I4n −∑n

i=2 e
′
2i−1,2i−2

To obtain †(U2, ψ2), we use

ψ′′2(u) := ψ(u1,3 + · · ·+ u2n−2,2n − u2n−2,2n+1 + u2n−1,2n)

instead of ψ′2. �
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Lemma 7.3.2. Let (U3, ψ3) be defined as in Theorem 5.1.4, and let (U2, ψ2) be defined as in the
previous lemma. Then

(U3, ψ3) ∈ 〈 †
n
(U2, ψ2), {(N`, ϑ) : n ≤ ` < 2n and ϑ in general position.}〉.

Here †n indicates that we apply † a total of n times, with the effect being † if n is odd and trivial
if n is even.

Proof. To prove this assertion we introduce some additional unipotent periods. For k = 1 to 2n−1
let U (k)

7 denote the subgroup of Umax defined by ui,i+1 = 0 for i > k and i ≡ k + 1 mod 2. We use
two characters of this group:

ψ̃
(k)
7 = ψ0

 ∑
1≤i≤k−1

ui,i+1 +
∑

k≤i≤2n−1

ui,i+2

 ,

ψ
(k)
7 = ψ0

 ∑
1≤i≤k

ui,i+1 +
∑

k+1≤i≤2n−1

ui,i+2

 ,

Then (U7, ψ
(k)
7 ) is conjugate to (U7, ψ̃

(k)
7 ) by any preimage of the permutation matrix which trans-

poses i and i+ 1 for k < i < 4n− k and i ≡ k+ 1 mod 2. This matrix has determinant −1 iff k is
odd.

If k is odd then (U (k)
7 , ψ

(k)
7 ) may be swapped for (U (k+1)

7 , ψ̃
(k+1)
7 ), while if k is even, it may be

swapped for (U (k+1)
8 , ψ̃

(k+1)
8 ), where U (k+1)

8 is the subgroup of U (k+1)
7 defined by u2n−1,2n = 0, and

ψ̃
(k+1)
8 is the restriction of ψ̃(k+1)

7 to this group.
Now, for a ∈ F× define a character ψ̃(k+1,a)

7 of U (k+1)
7 by

ψ̃
(k+1,a)
7 = ψ(u1,2 + · · ·+ uk−1,k + uk,k+2 + · · ·+ u2n−1,2n+1 + au2n−1,2n).

Then a Fourier expansion along U2n−1,2n shows that

(U (k+1)
8 , ψ̃

(k+1)
8 ) ∈ 〈(U (k+1)

7 , ψ̃
(k+1)
7 ), {(U (k+1)

7 , ψ̃
(k+1,a)
7 ) : a ∈ F×}〉.

Here Uij = {u ∈ Umax : uk,` = 0, ∀ (k, `) 6= (i, j)}.
In Lemma 7.3.3 below we prove that for k even and a ∈ F×,

(Nn+ k
2
, ψn+ k

2
,a)|(U

(k+1)
7 , ψ̃

(k+1,a)
7 ),

where
ψ`,a(u) = ψ(u1,2 + · · ·+ u`−1,` + au`,2n + u`,2n+1).

The present lemma then follows from the following observations:

• (U (1)
7 , ψ̃

(1)
7 ) = (U2, ψ2), (with ψ2 defined as at the beginning of this section).

• (U (2n−1)
7 , ψ

(2n−1)
7 ) = (U3, ψ3)

• If one applies † to both sides of a relation among unipotent periods, it remains valid.
• The character ψn+ k

2
,a of Nn+ k

2
is in general position. (Cf. remarks 5.1.2)

• The set {(N`, ϑ) : n ≤ ` < 2n and ϑ in general position.} is stable under †.
• The number of times we conjugate by the preimage of an element of determinant minus 1

in passing from (U (k)
7 , ψ̃

(k)
7 ) back to (U (k)

7 , ψ
(k)
7 ) is precisely n.

�
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Lemma 7.3.3. Let (Nn+ k
2
, ψn+ k

2
,a) and (U (k+1)

7 , ψ̃
(k+1,a)
7 ) be defined as in the previous lemma.

Then
(Nn+ k

2
, ψn+ k

2
,a)|(U

(k+1)
7 , ψ̃

(k+1,a)
7 ).

Proof. We regard a as fixed for the duration of this argument, and omit it from the notation. We
need still more unipotent periods. Specifically, for each k, ` define U (k,`)

9 to be the subgroup of Umax

defined by requiring that uij = 0 under any of the following conditions:

k < i ≤ k + 2`, i ≡ k + 1 mod 2 and j = i+ 1

i > k + 2`

i = k + 2`− 1, and j 6= 4n+ 1− k − 2`,

i = k + 2` and j < 2n.
The formula

ψ(u1,2 + · · ·+ uk−1,k + uk,k+2 + uk+1,k+3 + · · ·+ uk+2`−2,kk+2`
+ auk+2`,2n + uk+2`,2n+1)

defines a character of this group which we denote ψ(k,`)
9 (u). Also, let U (k,`)

10 denote the subgroup of
Umax defined by requiring that uij = 0 under any of the following conditions:

k < i ≤ k + 2`, i ≡ k + 1 mod 2 and j = i+ 1

i > k + 2`− 1

i = k + 2`− 1 and j > 2n, 2n+ 1.
The formula

ψ(u1,2 + · · ·+ uk,k+1 + uk+1,k+3 + · · ·+ uk+2`−2,kk+2`
+ auk+2`−1,2n + uk+2`−1,2n+1)

defines a character of this group which we denote ψ(k,`)
10 (u). The period (U9, ψ

(k,`)
9 ) is conjugate to

(U10, ψ
(k,`)
10 ).

Let U (k,`)
11 denote the subgroup of Umax defined by requiring that uij = 0 under any of the

following conditions:
k < i ≤ k + 2`, i ≡ k mod 2 and j = i+ 1

i > k + 2`− 1

i = k + 2`− 1 and j > 2n, 2n+ 1.

Then (U10, ψ
(k,`)
10 ) may be swapped for (U11, ψ

(k,`)
11 ), where ψ(k,`)

11 is defined by the same formula
as ψ(k,`)

10 .

Also, (U11, ψ
(k,`)
11 ), is clearly divisible by (U9, ψ

(k+1,`−1)
9 ): to pass from the former to the latter

one simply drops the integration over uk+2`−2,j , for j 6= 4n− k − 2`+ 2.

To complete the argument: for k even the period (U
(k+1,n− k

2
−1)

9 , ψ
(k+1,n− k

2
−1)

9 ) divides the pe-
riod (U (k+1)

7 , ψ̃
(k+1,a)
7 ). Indeed the only difference between the two is that in the former, we omit

integration over u2n−2,2n.

It follows that (U
(k+1,n− k

2
−1)

9 , ψ
(k+1,n− k

2
−1)

9 ) is divisible by (U
n+ k

2
−1,1

10 , ψ
n+ k

2
−1,1

10 ). Finally, every

extension of ψ
n+ k

2
−1,1

10 to a character of Nn+ k
2

is in the same orbit as ψn+ k
2
,a. (See Remarks 5.1.2.)

Hence
(U

n+ k
2
−1,1

10 , ψ
n+ k

2
−1,1

10 ) ∼ (Nn+ k
2
, ψn+ k

2
,a).

The result follows. �
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Lemma 7.3.4. As in Theorem 5.1.4, let Vi denote the unipotent radical of the standard parabolic
of G4n having Levi isomorphic to GLi × G4n−2i (for 1 ≤ i ≤ 2n − 2). Let V 4n−2m−1

i denote the
unipotent radical of the standard maximal parabolic of G2n+1 (embedded into G4n as Lψn−1

n−1 ) having
Levi isomorphic to GLi × G2n−2i+1 (for 1 ≤ i ≤ n). Let (N`, ψ`) be the period used to define the
descent, as usual, and let (N`, ψ`)(4n−2k) denote the analogue for G4n−2k, embedded into G4n inside
the Levi of a maximal parabolic.

Then, (V 2n+1
k ,1) ◦ (Nn−1, ψn−1) is an element of

〈(Nn+k−1, ψn+k−1), {(Nn+j−1, ψn+j−1)(4n−2k+2j) ◦ (Vk−j ,1) : 1 ≤ j < k}〉.

Proof. In this proof, we shall not need to refer to any of the unipotent periods defined previously.
On the other hand we will need to consider several new unipotent periods. For convenience, we
start the numbering over from one.

Thus, let (U1, ψ1) = (V 2n+1
k ,1)◦ (Nn−1, ψn−1). To describe this group and character in detail, U1

is the subgroup defined by uij = 0 if n− 1 < i ≤ n− 1 + k < j, or n− 1 + k < i and ui,2n = ui,2n+1

if n− 1 < i ≤ n− 1 + k, and ψ1 is given by

ψ1(u) = ψ0(u1,2 + · · ·+ un−2,n−1 + un−1,2n − un−1,2n+1).

Next, let U2 denote the subgroup of U1 defined by the additional conditions uij = 0 for 1 ≤ i ≤
n− 1 < j ≤ n− 1 + k. Let ψ2 denote the restriction of ψ1 to this subgroup.

Next, let U3 denote the subgroup defined by uij = 0 for i ≤ k, j ≤ n− 1 + k, and i > n− 1 + k,
and ui,2n = ui,2n+1 for i ≤ k. Let

ψ3(u) = ψ(uk+1,k+2 + · · ·+ uk+n−2,k+n−1 + uk+n−1,2n − uk+n−1,2n+1).

Then (U2, ψ2) is conjugate to (U3, ψ3), by any element of G4n(F ) which projects to
Ik

In−1

I4n−2m−2k

In−1

Ik


(cf. subsection 7.2).

Finally, let U4 ⊃ U3 denote the subgroup of Umax given by uij = 0 if j ≤ k + 1, or i ≥ n + k.
Then take ψ4 defined by the same formula as ψ3

Certainly (U2, ψ2)|(U1, ψ1), and (U2, ψ2) ∼ (U3, ψ3). In Lemma 7.3.5 we prove that (U3, ψ3) ∼
(U4, ψ4). It follows that (U4, ψ4)|(U1, ψ1). In fact, one may prove by an argument similar to the
proof of Lemma 7.3.5 that in fact (U2, ψ2) ∼ (U1, ψ1) and hence (U4, ψ4) ∼ (U1, ψ1). But this is not
needed for our purposes.

Next, let U (r) denote the subgroup of Umax defined by uij = 0 for j ≤ r, or i ≥ n + k. So,
U4 = U (k+1), and Nn+k−1 = U (1).

Let ψ(r) denote the character of U (r) defined by

ψ(r)(u) = ψ0

(
n−2+k∑
i=r

ui,i+1 + un−1+k,2n + un−1+k,2n+1

)
.

Then (U4, ψ4) = (U (k+1), ψ(k+1)), and (Nn+k−1, ψn+k−1) = (U (1), ψ(1)). It is an easy consequence
of Lemma 7.1.1 that

(U (r), ψ(r)) ∈ 〈(U (r−1), ψ(r−1)), (Nn+k−r, ψn+k−r)(4n−2r+2) ◦ (Vr−1,1)〉.

The result follows. �
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Lemma 7.3.5. Let (U3, ψ3) and (U4, ψ4) be defined as in the previous lemma. Then (U4, ψ4) ∼
(U3, ψ3).

Proof. It’s clear that (U3, ψ3)|(U4, ψ4), so we only need to prove that
(U4, ψ4)|(U3, ψ3). The proof involves a family of groups defining intermediate stages. For ` such
that 1 ≤ ` ≤ n− 1 we define U (`)

4 to be the subgroup of U4 defined by the condition that for i ≤ k

the coordinate uij must be zero for j ≤ k + `. Thus U4 = U
(1)
4 ⊃ U

(2)
4 ⊃ · · · ⊃ U

(n−1)
4 ⊃ U3. For

each of these groups we consider the period defined using the restriction of ψ4.

We must show that (U (n−1)
4 , ψ4)|(U3, ψ3) and that (U (i)

4 , ψ4)|(U (i−1)
4 , ψ4). In each case, all that is

involved is an invocation of Lemma 7.1.1. For the first application, what must be checked is that the
the normalizer of U4(F ) in G(F ) permutes {ψ′4 : ψ′4|U3 = ψ3} transitively. Let y(r) = y(r1, . . . , rk)
denote the unipotent element in G4n(F ) which projects to I + r1e

′
1,2n + · · · + rke

′
k,2n. Then every

element of U (m)
4 is uniquely expressible as u3y(r), for u3 ∈ U3 and r ∈ Gk

a. Hence a map ψ′4 as
above is determined by its composition with y, which defines a character of (F\A)k, and hence is
of the form

(r1, . . . , rk) 7→ ψ(a1r1 + · · ·+ akrk)

for some a1, . . . , ak ∈ F. Consider the unipotent element z(a1, . . . , ak) of G4n which projects to
I + a1e

′
k+n−1,1 + · · · + ake

′
k+n−1,k. We claim first that it normalizes U

(n−1)
4 , and second that

ψ4(z(a)y(r)z(a)−1) = ψ(a1r1 + · · · + akrk). As noted in 7.2 this may be checked by a matrix
multiplication in SO4n.

The proof that (U (i)
4 , ψ4)|(U (i−1)

4 , ψ4) is entirely similar, with the role of y(r) played by y(i)(r)
which projects to I + r1e

′
1,k+i+1 + · · ·+ rke

′
k,k+i+1 and that of z(a) played by z(i)(a) which projects

to I + a1e
′
k+i,1 + · · ·+ ake

′
k+i,k. �
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[BZ2] I. N. Bernštĕın and A. V. Zelevinskĭı, Induced representations of reductive p-adic groups. I. Ann. Sci. École
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[Z] A. V. Zelevinskĭı, Induced representations of reductive p-adic groups. II. On irreducible representations of
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