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ABSTRACT. In this paper we provide an extension of the theory of descent of Ginzburg-Rallis-
Soudry to the context of “almost orthogonal” representations, that is representations 7 with the
property that the symmetric square L-function, twisted by some Hecke character w has a pole.
Our theory supplements the recent work of Asgari-Shahidi on the functorial lift from (split and
quasisplit forms of) GSpina, to GLan.
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1. INTRODUCTION

The theory of descent for symplectic cuspidal representations of the general linear group G Lo, (A)
was developed in a sequence of remarkable works [GRSI]-[GRS5]. In these works the authors
constructed in an explicit way a space o () of cuspidal automorphic functions on SOg),+1(A) which
weakly lifts to a cuspidal self-dual representation 7 of G Lo, (A) with the property that L(m, A%, s)
has a pole at s = 1. In [C-K-PS-S2] the method the of converse theorem is used to show the existence
of a weak functorial lift from generic cuspidal automorphic representations of classical groups to
automorphic representations of the general linear group. The combination of these methods allows
the authors of [GRS4] to describe the image of the functorial lift of [C-K-PS-STJ.

Thus, the conjunction of the descent method with the method of the converse theorem provides
a very detailed description of the image of functoriality corresponding to the standard embedding
of G — GLy(C) with G a classical group. For an excellent survey we refer the reader to [Sol].

Recently, Asgari and Shahidi proved in [Asg-Shal] the existence of weak functorial lift from
GSpin groups to the general linear group. Later, in the special case of GSp(4) they were able to
show in [Asg-Sha2| that this weak functorial lift is in fact strong in an appropriate sense.

In this paper we extend the descent method of Ginzburg, Rallis, and Soudry to GSpin groups.
As a bonus,for n > 2 we can provide a “lower bound” on the image of the functorial lift from any
quasisplit form of GSpinsg, to G L, constructed by Asgari and Shahidi.

Let us briefly review the method. For simplicity of the exposition we assume that we are trying
to construct a descent for a cuspidal representation, 7.

We first relate the property of essential self-duality to the existence of a pole of an L-function of 7,
and then construct an Eisenstein series with the L-function appearing in the constant term. In fact
there are two possibilities for what the L-function is, and hence two possibilities for the structure
of the Eisenstein series, and we only consider one in these notes. Our Eisenstein series will be
defined on the group GSping,+1 induced from a Levi M isomorphic to GLy, X GL;. Now a pole of
the relevant L-function allows us to construct a residue representation £_1(7,w) of GSpinan41(A).
Next, we give an embedding of each quasisplit form of GSping, into GSping,+1, and construct,
using formation of a Fourier coefficient, a space of functions on this subgroup of GSping,11.

Now, quasisplit forms of GSpinsg, are in natural one-to-one correspondence with quadratic char-
acters x : A*/F* — +£1. To discern the form of GSping, to which a given representation 7 will

descend, we observe that 7 & 7 ® w implies w? = w?™. Here w, denotes the central character of 7.

z
Hence w; /w" is some quadratic character .

Let DCX(7) denote the space of functions constructed on the quasisplit form of GSping, cor-
responding to the character x, which we denote GSpiny,. Then we prove that DCZ(7) is zero,
except when y is the quadratic character obtained from 7 and w, in which case it is nonzero, and
all of the functions in it are cuspidal. It follows that it decomposes as a direct sum of irreducible
automorphic cuspidal representations of GSpinj,. We then show that each of these irreducible

constituents lifts weakly to 7 by the functorial lifting associated to the map
L(GSpind, . 1) = GSO2,(C) x Gal(E/F) — GL2y(C) = “GLa,.
sending the nontrivial element of Gal(E/F) to
I

In—l

(Here E is the quadratic extension of F' corresponding to x.) In fact in these notes the representation
T may be an isobaric sum of several cuspidal representations 71, ...,7.. The main differences are
that the residue is a multi-residue, and the notation is more complicated.
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2. THE MAIN RESULT

Let G = GSpinsg, and let H = G Lo,. Consider the inclusion
LG =L (GSping,) = GSO2,(C) — GL2n(C) = “GLy, =L H.

We denote this map r. Also, if 7 & ®/ m, is an automorphic representation of a group G'(A), where
A is the ring of adeles of a number field F, then the semisimple conjugacy class in the L-group
LG" associated to the local representation , at an unramified place v will be denoted t,,. We say
that an automorphic representation o of G(A) is a weak lift of the automorphic representation 7
of H(A) if for almost all places, r(ty,) C tr,.

To formulate our main result we introduce the notion of n-orthogonal representations. Let 7 be
an irreducible automorphic cuspidal representation of GLo,. Suppose that 7 is essentially self-dual,
i.e. that the contragredient 7 of 7 is isomorphic to 7 ® n for some Hecke character 7. It follows
from [Ja-Sh2] (see remark (4.11) pp. 553-54) that L(s,7 x 7 ® 1) has a simple pole at s = 1. Now,
L(s,7 x 7 ®n) is the Langlands L function of the representation 7 X7 (exterior tensor product) of
the group G Lo, (A) x GL1(A) associated to the representation of the L group GLa,(C) x GL1(C)
(finite Galois form) on Ma,x2,(C) in which GL,(C) acts by g+ X = gX 'g and GL;(C) acts
by scalar multiplication. But this representation is reducible, decomposing into the subspaces of
skew-symmetric and symmetric matrices. We denote the associated L functions L(s, 7, A% x 7)
and L(s,T,sym? x n) respectively. The local factors at finite ramified places may be defined using
the local Langlands classification ([L2],[H-T],[Hennl]) and the definition of an Artin L function
attached to a finite dimensional representation of the Weil group [Tatel], or they may be defined
as in [Sha2]. By [Henn2| these two definitions agree. Then we have

L(s,7 x T®mn) = L(s,, A2 x n)L(s,T, sym? x n).

As both of the L functions on the right-hand side are obtainable via the Langlands-Shahidi method,

neither may vanish at s = 1 (see [Gel-Sha)] §2.6 p. 84). Thus, exactly one of these two L functions

has a simple pole at s = 1 while the other is holomorphic and nonvanishing. Similarly, if 7 is

not isomorphic to 7 ® n then they are both holomorphic at s = 1. (This requires the extension

of [Ja-Sh2] remark (4.11) to completed L functions- i.e., the statement that none of the local L

functions has a pole at s = 1. The requisite facts about local L functions are well-known and a
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proof is reviewed at the end of Theorem ) One may prove the second assertion using results
of Langlands via the method explained on p. 840 of [Kim1].

We will say that 7 is n-symplectic in case L(s,7,A? x 1) has a pole at s = 1 and n-orthogonal
otherwise. We also define “almost symplectic” to mean “np-symplectic for some n,” and “almost
orthogonal” similarly.

Remarks 2.0.1. (1) There is another natural notion of “orthogonal/symplectic representa-
tion.” Specifically, one could say that an automorphic representation is orthogonal/symplectic
if the space it acts on supports an invariant symmetric/skew-symmetric form. The two no-
tions appear to be related, but do not coincide. See [PraRaml.

(2) There is a third approach to defining a local factor for L(s, 7, A\* x 1), which is to apply the
“ged” construction described in |Gel-Shal section 1.1.6, p. 17, to the integrals in |[Ja-Shl].
As far as we know this is not written down anywhere.

(3) An integral representation for L(s,T,sym?) was given in [BG]. The problem of extending
this to L(s, T, sym?xn) has been considered by Banks [Banks1, Banks2]. Nontrivial technical
difficulties arise, particularly in the case we consider, when T is defined on G La, [Banks3].

(4) Let AS denote the functorial lift constructed in [Asg-Shal]. It is shown in [Asg-Shal] that

AS () is nearly equivalent to AS(m) @ wr, where wy denotes the central character of the
representation w. (Of course, this means that they are the same space of functions when
AS(m) is cuspidal.) Thus, in practice it turns out to make sense to use n = w1 (= ).

By proposition 2 of [L3], every irreducible automorphic representation of GL,(A) is isomorphic

to a subquotient of Indgfg)(mﬁ\ det; |¥! ® -+ ® 7| det, |°" for some real numbers si,...s, and

irreducible unitary automorphic cuspidal representations 7i,...,7, of GLy,(A),...,GLy,,. (A) re-
spectively, such that ny + -+ -+ n, = n. Here P is the standard parabolic of GL,, corresponding to
the ordered partition (ng,...,n,) of n. In the case when s; = 0 for all ¢, this induced representation

is irreducible. (This follows from the irreducibility of all the local induced representations, which
is Theorem 3.2 of [Ja].) Also, the representations obtained by numbering a given set of cuspidal
representations in different ways are isomorphic. (This follows from the fact that the standard
intertwining operator between them does not vanish, which follows from [MW1], I1.1.8 (meromor-
phically continued in IV.1.9(e)), and IV.1.10(b). In IV.3.12 these elements are combined to prove
that the intertwining operator does not have a pole. The proof that it does not have a zero is
an easy adaptation.) Furthermore, if two such induced representations are isomorphic, then they
are obtained from two numberings of the same set of cuspidal representations ([Ja-Sh3|, Theorem
4.4, p.809). An irreducible unitary representation 7 of GL,(A) which is obtained from irreducible
unitary cuspidal representations 7i,...,7, in this manner is sometimes called the isobaric sum of
the cuspidals, and denoted 71 B - -- B 7. (A more general notion of “isobaric representation” was
introduced in [L4], but we don’t need it.)

Theorem 2.1. Forr € N, take 11,...,7, to be irreducible unitary automorphic cuspidal represen-
tations of GLap, (A),...,GLay, (A), respectively, and let T =71 B---B7.. Let n =n1 + -+ n,,
and assume that n > 2. Let w denote a Hecke character, which is not the square of another Hecke
character. Suppose that

o 7; is w™-orthogonal for each i, and

o T; = Tj = 1=7.
For each i, let xi = wy,/w" (which is quadratic), and let x = [[;_, xi- Then there exists an
irreducible generic cuspidal automorphic representation o of GSpiny, (A) such that

e o weakly lifts to T, and
e the central character wy of o is w.



Remark 2.0.2. As was helpfully explained to us by H. Jacquet, the n = 1 case of our theorem
follows from earlier work of Labesse-Langlands [L-L|]. See also [Kaz]. Indeed, when n = 1, the
function L(s,T,sym? xw™1) has a pole iff x is nontrivial, because L(s,7,A? x w™') = L(s,%)).
In this case the representation T that we consider is a cuspidal automorphic representation of
GL(2,A). It is known that in this case T = T @ w1 (see, e.g., [?], Theorem 3.3.5, p. 305). It
follows that our original L-function on T is, in this case, equivalent to requiring that T =17 ® x for
some nontrivial quadratic character 7. The automorphic representation obtained from the descent
construction in this case is simply a character of Res® GL1(A), where E is the quadratic extension
of F corresponding to x. Thus, we have recovered proposition 6.5, p. 771 of [L-1].

Corollary 2.2. The image of the functorial lift AS described in Theorem 1.1 (p. 140) of |[Asg-Shal]
contains the set of all representations T B --- B 7. such that

o T, =T =1 =],

e there is a Hecke character w such that 7; is w™'- orthogonal for each i.

3. NOTATION

3.1. General. Throughout most of the paper, F' will denote a number field. In Appendix II, it
will be a non-Archimedean local field of characteristic zero.

We denote by J the matrix, of any size, with ones on the diagonal running from upper right
to lower left, and by J’ the matrix (7 J J ) of any even size. We also employ the notation ‘g for
the transpose of g and g for the “other transpose” J ‘gJ. We employ the shorthand G(F\A) =
G(F)\G(A), where G is any F-group.

We denote the Weyl group of the reductive group G by Wg or by W, when the meaning is clear
from context.

If 7 is an automorphic or local representation, then 7 is the contragredient, and w, the central
character.

3.2. Various Products. Most tensor products will be denoted ®. However X will sometimes be
used to distinguish the “outer” tensor product from the “inner” tensor products and “twisting.”
Let us recall these notions.

If (m1,V1) and (g, V) are representations of groups G; and Gs, then one may consider the
representation of G; X Go on V3 ® V5 given on pure tensors by

(m1 ® m2)(g1, g2)v1 @ v2 = T1(g1)v1 ® T2(g2)V2.

If (m1, V1) and (me, Vo) happen to be two representations of the same group G, then this construction
yields a representation of G x G. The space V) ® V5 also supports a natural “tensor product
representation” of the group G itself with the action given on pure tensors by

(m ® m2)(g)v1 @ v2 = m1(g)v1 @ m2(g)va.

The representation of G x G on V; ® Vs is sometimes called the outer tensor product and denoted
X to avoid ambiguity.

Adding to the mix, the twist of a representation 7 of GL,(A) by a Hecke character y is often
denoted m ® x. In terms of the constructions above, it is the inner tensor product of m and the
representation of GL,(A) obtained by composing y with det. We shall keep to this notation. We
shall also need to consider the (outer) tensor product representation of GLy,(A)x GL1(A), for which
we employ X.

Let us mention that X will not be used in the sense of [L4].

In addition to ® and X, we use H for “isobaric sum” as described above. We use x for Cartesian
product of sets, groups, etc., and in the notation for various L functions (e.g., sym? x w™1).
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3.3. Notions of “genericity”. Let G be a quasisplit reductive group over the number field F,
and Upax a maximal unipotent subgroup. First let v, be a generic character (cf. [Kim2], p. 147,
and also [Shal], p.304) of Upax(Fy) for some place v of F, and (m,, V) a representation of G(Fy).
We say that m, is 1,-generic if it supports a nontrivial 1,-Whittaker functional (i.e., a Upax(F)-
equivariant linear map V' — C,,, which is continuous in an appropriate topology, see [Shall, p.
304. Here C,, denotes the one-dimensional Upax(Fy)-module with action via the character v,. )
Now let ¢ =[], ¥ and ™ = ®,/m, be a character of Unax(F\A) and an automorphic representation
of G(A) respectively.

Ignoring topological considerations, it is easy to see that the space Homy,,, (a)(Vx, Cy) is nontriv-
ial iff each of the spaces Homy;, . (5, )(Va,, Cy,) is. However, it turns out that the more important
issue is not whether there exists some nontrivial ¥-Whittaker functional, but whether the specific
1-Whittaker functional given by

o P(u)P(u) du
Umax (F\A)

is nonvanishing. We refer to this Whittaker functional as the )-Whittaker integral. (See [Gel-Sol
for an example where the Whittaker integral vanishes, but a nonzero Whittaker functional exists.)

We would like to take this opportunity to draw attention to the subtle fact that there are two
slightly different notions of global genericity for automorphic representations in common usage.
The first states that a representation is globally t-generic if it supports a nonzero -Whittaker
integral. The second— which was the notion originally introduced in [PS]- requires that a cusp-
idal representation be orthogonal to the kernel of the ¢-Whittaker integral in L2, (G(F\A)), in
order to be called “generic.” Clearly, the latter condition implies the former (except for the zero
representation).

A nice feature of the stronger formulation is that the condition defines a subspace of L2 (G(F\A)),

cusp
which one may term the 1-generic spectrum. Furthermore, this subspace satisfies multiplicity one,

even if L2, (G(F\A)) does not. (Cf. [PS]) A nice feature of the weaker formulation is that it does

cusp

7

not rely on the L?-pairing, and hence no technicalities arise in applying the notion to non-cuspidal
forms and representations.

Throughout most of this paper, we shall say that a representation “is -generic” if it supports
a nonzero ¥-Whittaker integral, and “is generic” if it satisfies this condition for some ¥. We shall
say that a cuspidal representation is “in the -generic spectrum” if it is orthogonal to the kernel
of the ¢)-Whittaker integral.

Let Py = NG(Umax)- If Po(F,) permutes the characters of U(F),) transitively, then we may refer
to a representation as “generic” or “non-generic” without reference to a specific v, and without
ambiguity. The same applies to both notions of global genericity, in the case when Py(F) permutes
the characters of Upax(F\A) transitively. This condition is satisfied by GL,, and GSping,+1, but
not by GSping,.

3.4. Similitude groups and GSpin groups. We first define the similitude orthogonal and sym-
plectic groups to be

GOy ={g € GLy, : gJ 'g = X(g)J for some \(g) € G,,},

GSpon = {9 € GLay, : gJ' 'g = \(g)J' for some A(g) € G,,}.
For each of these groups the map g — A(g) is a rational character called the similitude factor. If
m is odd then GO,, is in fact isomorphic to SO,, x GL;. This case will play no further role. The
group GOy, is disconnected; indeed the subgroup generated by SOa, and {(Mn In) tAE Gm} is

a connected index two subgroup, which we denote GSOa,,.
6



We shall now define GSpin groups as the groups whose duals are the similitude classical groups
GSpan(C),GSO2,(C). Thus we write down the based root data, but employ notation appropriate
to the application in which what we write down will arise as the dual of something.

The groups GSpa, and GSO,, share a maximal torus, consisting of matrices of the form

diag(t1, ... o, Myt M.

The coordinates used just above correspond to a choice of Z-bases for the lattices of characters and
cocharacters. For i = 1 to n, let e; denote the character that sends this torus element to ¢; for ¢ = 1
to n and e being the map that sends it to the similitude factor, A. Let {e; : i = 0 to n} denote the
dual basis for the cocharacter lattice. Let XV denote the character lattice and X the cocharacter
lattice. Each similitude classical group has a Borel subgroup equal to the set of upper triangular
matrices which are in it. In each case we employ this choice of Borel, and let AV denote the set of
simple roots and A the set of simple coroots. Then we easily compute that for GSpa,

AV ={ef —efq, i=1ton—1}U{2 —ei}.
A={ei—ei+1,i=1ton—1}U{ey}.
and for GSOsp,
AV ={ef—ef,i=1ton—1}U{es_ +¢ — e}
A={e;—eir1,i=1ton—1}U{e,—1+en}-

We now define GSping,t1 to be the F—split connected reductive algebraic group having based
root datum dual to that of GSpa,, and GSping, to be the one having based root datum dual to
that of GSO2,. We have here used the fact that F-split connected reductive algebraic groups are
classified by based root data, for which see p.274 of [Spr].

By the classification results in Chapter 16 of [Spr] (especially 16.3.2, 16.3.3 16.4.2), one finds that
G Spinan1 is in fact the unique quasisplit F-group having based root datum dual to that of GSpay,,
and that there is a 1-1 correspondence between quasisplit /' groups G such that LGY = GS04,(C)
and homomorphisms from Gal(F'/F) to the group of automorphisms of the lattice X (7") which
preserve the set A of simple roots. This group has two elements: the identity and and element

which reverses the roots e,,_1 — e, and e,_1 + e, while fixing the other simple roots. The effect of
this automorphism on the Z-bases {e; : 0 <i < n}, and {e : 0 < i < n} is as follows:

€; 1#0,n
! 70, N {e;k 1#n
e; —

e — § —eén, 1=n N .
. eg—€n, t=n
eo+e, =0

It follows that the lattices of F-rational characters and cocharacters are spanned by
{e;: 0 <i<n}U{2e + e,}, and {e; : 0 < i< n},

respectively.

By class field theory homomorphisms from Gal(F/F) to a group with two elements are in one-
to-one correspondence with quadratic characters x : Ax/F* — {+1}. We denote the F-group
corresponding to the character x by GSpinJ,. The F-group corresponding to the trivial character
is the unique split F-group having the specified root datum, and is also denoted simply by G Spinay,.

To save space, the group GSpin,, will usually be denoted by G,,, and GSpin3, by G3,,.

Observe that in either the odd or even case e is a generator for the lattice of cocharacters of
the center of G,,.

Because we define GG;,, in the manner we do, it comes equipped with a choice of Borel subgroup
and maximal torus, as do various reductive subgroups we shall consider below. In each case, we
denote the Borel subgroup of the reductive group G by B(G), and the maximal torus by T(G).

7



A straightforward adaptation of the proof of Theorem 16.3.2 of [Spr] shows that there exist
surjections G,, — SOy, defined over F. We fix one such and denote it pr. We require that pr is
such that pr(B(G,,)) consists of upper triangular matrices.

An alternative description of the same group as a quotient of Spin,, x GL; is given in [Asg].
Proposition 2.4 on p. 678 of [Asg] shows that the two definitions are equivalent.

For those familiar with the construction of Spin,, as a subgroup of the multiplicative group of
a Clifford algebra, we remark that there is a third construction of GSpin,, as the slightly larger
group obtained by including the nonzero scalars in the Clifford algebra as well. In this guise, it is
sometimes referred to as the “Clifford group.” (See, e.g., [I] p.999.) This description will not play
a role for us.

We will construct an FEisenstein series on Gaop,y1 induced from a standard parabolic P = MU
such that M is isomorphic to GL,, x GLj. There is a unique such parabolic. We shall refer to this
parabolic as the “Siegel.”

Remark 3.4.1. o We can identify the based root datum of the Levi M with that of G L, x GLy
in such a fashion that ey corresponds to GLy and does not appear at all in GL,,. We can then
identify M itself with G L, Xx GL1 via a particular choice of isomorphism which is compatible
this and with the usual usage of e;, e} for characters, cocharacters of the standard torus of
GLy,.

e Having made this identification, a Levi M’ which is contained in M will be identified with
GL1 X GLyy, X ...GLy,,, (for some my,...,my € N that add up to m) in the natural way:
GL; is identified with the GLy factor of M, and then GLy,, X ...GLy, is identified with
the subgroup of M corresponding to block diagonal elements with the specified block sizes,
in the specified order.

e The lattice of rational characters of M is spanned by the maps (g, «) — « and (g, ) — det g.
Restriction defines an embedding X (M) — X (T(Gam+1)), which sends these maps to eg and
(e1 + -+ + em), respectively. By abuse of notation, we shall refer to the rational character
of M corresponding to ey as ey as well.

e The modulus of P is (g,a) — det g™.

We also fix a maximal compact subgroup K, of G,,(A). Any which satisfies the conditions
required in [MWI] (see pages 1 and 4) will do.

3.5. Weyl group of GSpinsn,11; it’s action on standard Levis and their representations.
Lemma 3.5.1. The Weyl group of G, is canonically identified with that of SO,,.

Proof. For this lemma only, let T denote the torus of SO,, and T that of G,,. Then the following
diagram commutes:

ZG,,(T) Ng,, (T)

-

Zgom (T) —_— Nsom (T)

Both horizontal arrows are inclusions and both vertical arrows are pr. O

One easily checks that every element of the Weyl group of SOs, 11 is represented by a matrix of
the form w = det wowy, where wg is a permutation matrix. We denote the permutation associated
to wg also by wg. The set of permutations wg obtained is precisely the set of permutations wg € Sa,
satisfying, wo(2n + 2 — i) = 2n 4+ 2 — wp(z) It is well known that the Weyl group of SOg,11 (or

8



Gon+1) is isomorphic to &, x {£1}". To fix a concrete isomorphism, we identify p € &,, with an
n X n matrix in the usual way, and then with

p

1 € SO9,.
it

We identify € = (e1,...,€,) € {£1}"™ with the permutation p of {1,...,2n + 1} such that

. Z 1f €, = 1,
p(i) = {

n+2—1 ife=—1.

We then identify (p,e) € &,, x {£1}" (direct product of sets) with p- e € Wso,,,,-
With this identification made,

(3.5.2)

£

t p~ (1)

€p=1(n)
tp-1(n)

-1 t—ep%(n)
p~1(n)

—1 :
ty G
p~1(1)

Lemma 3.5.3. Let (p,¢) € &, x{£1}"~! be idenified with an element of Wso,,, = Wa,,, as above.
Then the action on the character and cocharacter lattices of Gom, is given as follows:

€p(s) 0> 0,60 = L,
(p,€) e = ~Cp(i) 0> 0,60 = —1,
e + Zep(z-):*l epiy =0,
e;‘,(i) i > 0,6 =1,
(p€)-€f = qeg—enpy >0, =—1,
€5 1= 0.

Remark 3.5.4. Much of this can be deduced from (3.5.2), keeping in mind that w € Wg acts on
cocharacters by (w - p)(t) = wp(t)w™" and on characters by (w - x)(t) = x(w™ tw). However, it is
more convenient to give a different proof.

Proof. Let a; = e; —e€;41,i =1 ton—1 and a,, = €,. Let s; denote the elementary reflection in
Wg,, corresponding to ;. Then it is easily verified that sq,...,s,—1 generate a group isomorphic
to &,, which acts on {e1,...,e,} € X(T) and {e,...,e:} € XV(T) by permuting the indices and
acts trivially on ey and ejj. Also

€; i#n,0
Sp € = eg+e, 1=0
—ep i1=n
. .
« e i#En
Sn‘ei = * " .
eg—e€, 1=n




If € € {1}"! is such that #{i : ¢ = —1} = 1, then € is conjugate to s, by an element of the
subgroup isomorphic to &,, generated by s1, ..., s,_1. An arbitrary element of {41}"~! is a product
of elements of this form, so one is able to deduce the assertion for general (p, €). O

Observe that the &,, factor in the semidirect product is precisely the Weyl group of the Siegel
Levi.

In the study of intertwining operators and Eisenstein series (e.g., sectionbelow), one encounters
a certain subset of the Weyl group associated to a standard Levi, M. Specifically,

W(M) := {w € Wasnia wMw™! is a standard Levi of Gon+t1

w is of minimal length in w - Wy, }

For our purposes, it is enough to consider the case when M is a subgroup of the Siegel Levi. In
this case it is isomorphic to GL,,, X --- X GLy,, X GL; for some integers mq,..., m, which add
up to n, and we shall only need to consider the case when m; is even for each i. (This, of course,
forces n to be even as well.)

Lemma 3.5.5. For each w € W (M) with M as above, there exist a permutation p € &, and and
element € € {£1}" such that, if m € M = (g, ) with o € GLy and

g1
g: GGLTL)

gr
then

/

g1
wmw ™ = (¢, a- H detg;)) ¢ = ,
Ei:—l g’!’

where
P d e =1
g; ~ —1 f =1

tgp—l(i) U ep-1() = .
Here =~ has been used to denote equality up to an inner automorphism. The map (p,€) — w is
a bijection between W (M) and &, x {£1}". (Direct product of sets: W (M) is not, in general, a
group.)

Proof. Since wMw™"! is a standard Levi which does not contain any short roots, it is again contained
in the Siegel Levi.

The Levi M determines an equivalence relation ~ on the set of indices, {1,...,n} defined by the
condition that ¢ ~ ¢4 1 iff e; — e; 41 is an root of M. When viewed as elements of &,, x {:tl}”*l, the
elements of W (M) are those pairs (p, €) such that i ~i4+1 = p(i+1) =p(i)+1,and i ~ j = € = €.
This gives the identification with &, x {£1}".

It is clear that the precise value of g¢; is determined only up to conjugacy by an element of
the torus (because we do not specify a particular representative for our Weyl group element). By
Theorem 16.3.2 of [Spr], it may be discerned, to this level of precision, by looking at the effect of
w on the based root datum of M. The result now follows from Lemma [3.5.3 O

Corollary 3.5.6. Let w € W (M) be associated to (p,e) € &, x {£1}" as above. Let Ti,...,7, be

irreducible cuspidal representations of GLy, (A),...,GLy,, (A), respectively, and let w be a Hecke

character. Then our identification of M with G Ly, X---XGLy, X GLy determines an identification

of i, 7i W w with a representation of M(A). Let M' = wMw™. Then M’ is also identified, via
10



W with Gmeﬂ(l) X - X Gmeflm x GL1, and we have

®TZ’ Xwo Ad(w™!) = ®T{ Xw,
i=1

=1
where
/ {Tp—lm if epry = 1,

TZ' = - i
Tp=1(4) X w Zf €p—1(i) = —1.

Proof. The contragredient 7; of 7; may be realized as an action on the same space of functions as 7;
via g - ¢(g91) = ©(g1 ¢g~ ). This follows from strong multiplicity one and the analogous statement
for local representations, for which see [GK75] page 96, or [BZ1] page 57. Combining this fact with
the Lemma, we obtain the Corollary. g

3.6. Unramified Correspondence.

~Y

Lemma 3.6.1. Suppose that T = ® 7, is an w~'-orthogonal irreducible cuspidal automorphic
representation of GLay(A). Let v be a place such that T, is unramified. Lett,, denote the semisimple
conjugacy class in G Lap(C) associated to 1,. Let r : GO2,(C) — G L2, (C) be the natural inclusion.
Then t,, contains elements of the image of 7.

Proof. For convenience in the application, we take G Lo, to be identified with a subgroup of the Levi
of the Siegel parabolic as in section Since 7, is both unramified and generic, it is isomorphic

to Indgfé’igi”)z ) P for some unramified character p of the maximal torus T'(GLay,)(F,) such that
this induced representation is irreducible. (See [Car|, section 4, [Z] Theorem 8.1, p. 195.) Let
Wi = poe;.

Since 7 & T @ w, it follows that 7, = 7, ® w, and from this we deduce that {p; : 1 <i < 2n} and
{,ui_lw :1 <4 < 2n} are the same set. Hence Hfﬁl i = xw™, where y is quadratic.

Now, what we need to prove is the following: if S is a set of 2n unramified characters of F},, such
that for each i there exists j such that p; = ,u;lw, then there is a permutation o : {1,...,2n} —

{1,...,2n} such that g, = w,u;nl_a(i) for ¢ = 1 to n — 1. This we prove by induction on n. If
n = 1, there is nothing to be proved.
If n > 1 it is sufficient to show that there exist ¢ # j such that u; = uj_lw. If there exists ¢ such

that p; # p; & then this is clear. On the other hand, there are exactly two unramified characters
w such that g = p~tw.

Now, suppose that i, ..., u, have been renumbered according to o as above. Then fip4+14n =
wy. If x is trivial, it follows that u; = qu_T}_i for all 4, and hence that the conjugacy class t;,
contains elements of the maximal torus of GSOa,(C).

On the other hand, if x is nontrivial, then u, # w,u;}rl, from which it follows that u2p, 11 = w
and ftp4+1 = Xfin. It follows that ¢, contains a diagonal element which is conjugate, in G Lo, (C),

to an element of the connected component of GOs2,(C) which does not contain the identity. O

Corollary 3.6.2. Suppose 7 = 71 B --- B 7, with 7; an w™'-orthogonal irreducible cuspidal auto-
morphic representation of GLay,(A), for each i. Then the same conclusion holds.

Corollary-to-the-Proof 3.6.3. Let 7 be as in corollary[3.6.3, and let v be a place at which T and

w are unramified. Let n be one of the two unramified characters such that n? = w,. Let Xun denote
GLan (Fy)

B(GLay)(Fy
induction), for an unramified character p of the torus of G Loy (F,) which satisfies either

the unique nontrivial unramified quadratic character of F,. Then 1, = Ind )1 (normalized

O €31 =wy - (WO ef)_l Vi=1 ton,
11



or
,uoegnﬂ_izwv-(,uoe;k)_l Vi=1lton—1, poe,=mn, [oe, 1= Xunl-

3.7. Unipotent subgroups and their characters. The kernel of pr consists of semisimple el-
ements. In particular, the number of unipotent elements of a fiber is zero or one, and it’s one if
and only if the element of SO,, is unipotent. In other words, pr yields a bijection of unipotent ele-
ments (indeed, an isomorphism of unipotent subvarieties), and we may specify unipotent elements
or subgroups by their images under pr. This also defines coordinates for any unipotent element or
subgroup, which we use when defining characters. Thus, we write u;; for the 7, j entry of pr(u).

Above we fixed a specific isomorphism of a subgroup of Go,, with GL,,. If u is a unipotent
element of of this subgroup this identification with an m x m matrix gives a second definition of
u;; This is not a problem, however, as the two definitions agree.

Most of the unipotent groups we consider are subgroups of the maximal unipotent of G,, con-
sisting of elements v with pr(u) upper triangular. We denote this group Upax. A complete set of
coordinates is {u;; : 1 < i < j < m —i}. We denote the opposite maximal unipotent by Umax. It
consists of all unipotent elements of G, such that pr(u) is lower triangular.

We fix once and for all a character ¢y of A/F. We use this character together with the coordinates
just above to specify characters of our unipotent subgroups.

When specifying subgroups of Upax and their characters, the restriction to {(7,7) : 1 <i < j <
m — i} is implicit.

It will also sometimes be necessary to describe unipotent subgroups such that only a few of
the entries in the corresponding elements of SO,, are nonzero. For this purpose we introduce the
notation e;j = €ij — em+1—jm+1—i- One may check that for all i # j and a € F, the matrix I + ae;-j
is an element of SO, (F).

3.8. “Unipotent periods”. We now introduce the framework within which, we believe, certain
of the computations involved in the descent construction can be most easily understood.

Let G be a reductive algebraic group defined over a number field F. If U is a unipotent subgroup
of G and 9y is a character of U(F\A), we define the unipotent period (U, ) associated to this
pair to be given by the formula

) (g) = / p(ug)yy (u)du
U(F\A)

Clearly, ¢ must be restricted to a space of left U(F)-invariant functions such that the integral is
defined (for example, because ¢ is smooth).
Let U denote the set of unipotent periods. For V' a space of functions defined on G(A), put

U(V) ={(U, ) el : V¥ =0Vp e V1.

When V is the space of a representation 7 we will employ also the notation 2 (7). We also employ
the notation (U,¢) L V for (U,v) € U(V) and similarly (U,v) L .

We also require a vocabulary to express relationships among unipotent periods. We shall say
that

(U wU € <(U1;¢U1>7 (UnawUn) >

) :
if Vo L (Uz,wUZ)VZ =V 1L (U wU) Clearly, if (U17¢U1 <(UQ,¢2 (U3,1/)3)>, and (UQ,wg) S
((Us,v4), (Us, ¥5)) then (U, 1) € ((Us, ¥3), (Us, ¥4), (Us, 5)).

We also use notation (Uy,1)1)|(Usz,12), or the language “(Uy, 1) divides (U, v2),” “ (Ua,1)2) is
divisible by (U1, %1) " for (Uz,v2) € ((U1,1)). Finally, (U1, 1) ~ (U2, 2) means (Uz,91)|(Uz,92)
and (U, ¥2)|(U1,1). This is an equivalence relation and we shall refer to unipotent periods which
are related in this way as “equivalent.”

12



It is sometimes possible to compose unipotent periods. Specifically, if f(U:¥1) is left-invariant
by Us(F), then one may consider (f(U1:%1))(U2:¥2) We denote the composite by (Us,1)2) o (Ut,1).

Now, suppose that U is the unipotent radical of a parabolic P of G with Levi M. The choice
of Y gives rise to an identification of the space of characters of U(F)\U(A) with the F' points of
U/(U,U) which is compatible with the action of M(F). Here U denotes the unipotent radical of
the parabolic P of G opposite to P. For 9 a character, let M denote the stabilizer of ¥ (regarded
as a point in U/(U,U)(F)) in M. So M? is an algebraic subgroup of M defined over F.

Definition 3.8.1. Then we define FC? : C*®(G(F\A)) — C®°(MY(F\A)) by

FC(p)(m) = ¢ P m) = [ plum)d(u)du
U(F\A)

This is certainly an MY (A)-equivariant map.
4. EISENSTEIN SERIES

The main purpose of this section is to construct, for each integer n > 2 and Hecke character w,
a map from the set of all isobaric representations 7 satisfying the hypotheses of theorem into
the residual spectrum of G4,41. We use the same notation £_1(7,w) for all n. The construction
is given by a multi-residue of an Kisenstein series in several complex variables, induced from the
cuspidal representations 71, ..., 7, used to form 7. (Note that by [Ja-Sh3], Theorem 4.4, p.809, this
data is recoverable from 7.)

Let w be a Hecke character. Let 7,..., 7 be a irreducible cuspidal automorphic representations
of GLyy,,...,GLa,,, respectively.

For each ¢, let V;, denote the space of cuspforms on which 7; acts. Then pointwise multipication

-
901®'--®<Pr'—>H80i
i=1
extends to an isomorphism between the abstract tensor product );_; Vi, and the space of all
functions

N r
(I)(glv cee 797’) = Zci H SDZ,j(gJ) ¢ € (Cv Yij € V’rj VZ?]
i=1  j=1
(This is an elementary exercise.) We consider the representation 71 ®- - - @7, of GLgy, X -+ X GLay,.,
realized on this latter space, which we denote Vig,.

Let n=n1+ -+ n,.

We will construct an Eisenstein series on G4y,41 induced from the subgroup P = MU of the
Siegel parabolic such that M = GLay, X -+ X GLay,, X GLy. Let s1,...s, be a complex variables.
Using the identification of M with GLay,, X - - X GLay,, X GL; fixed in section above, we define
an action of M (A) on the space of 71 ® --- ® 7, by

(4.0.2) (91, gm ) - [[oi (i) = | ] #(Rjg;)| det g;| | w(a).
j=1 j=1

We denote this representation of M(A), by (Q;_; 7 ® | det ;%) K w.
To shorten the notation, we write g = (g1,...,9,). Then (4.0.2) may be shortened to

g-®(h) =®(h-g) | []|detg;l* | w(e).
j=1

We shall also employ the shorthand s = (s1,...,s.), and 7 = (71,..., 7).
13



For each s we have the induced representation IndIGD‘(*gl(A)((@::l 7; @ | det ;%) K w, (normalized
induction) of G4n+1(A). The standard realization of this representation is action by right translation

on the space VI (s, ®!_, 7; K w) given by

{F : Gany1(A) — V., smooth

F((g, )h)(g') = F(h)(g'g)w() [ I det g+ Eimen mim s } .
=1
(The factor

T .
H | det g; |"+Z§=i+1 ni=32500
i=1
1
is equal to |0p|2, and makes the induction normalized.) A second useful realization is action by
right translation on

VO(s, @ mBw) = {: Gins1(h) = C. | f(h) = Fh)(id), F € VD (s,7,w) } .
=1

(Here id denotes the identity element of GLay(A).)

These representations fit together into a fiber bundle over C". So a section of this bundle is a
function f defined on C” such that f(s) € V¥ (s, ®)_; 7sRw) (i = 1 or 2) for each 5. We shall only
require the use of flat, K-finite sections, which are defined as follows. Take fo € V¥ (0, ®I_, 7 Xw)
K-finite, and define f(s)(h) by

f(s)(u(g, )k) = fo(u(g, @)k) [ ] | det gif*
=1

for u e U(A),g € GLap, (A) X -+ X GLay, (A),c € A*, k € K. This is well defined. (Le., although
g; is not uniquely determined in the decomposition, |det g;| is. Cf. the definition of mp on p.7 of
[MWT].)

We begin with a flat K finite section of the bundle of representations realized on the spaces
VO (s, Q_, 7 Hw).

Remark 4.0.3. Clearly, the function f is determined by f(s*) for any choice of base point s*.
In particular, any function of f may be regarded as a function of fg € V(2)(§*,®§:1 7; X w), for
any particular value of s*. We have exploited this fact with s* = 0 to streamline the definitions. A
posteriori it will become clear that the point s* = % = (%, e %) is of particular importance, and
we shall then switch to s* = %

For such f the sum
Ef)9)s)= > f(s)(9)
YEP(F)\G(F)

converges for all s such that Re(s,),Re(s; — si+1),7 = 1 to r — 1 are all sufficiently large. ([MW1],
§I1.1.5, pp.85-86). It has meromorphic continuation to C" ([MWI] §IV.1.8(a), IV.1.9(c),p.140).
These are our Eisenstein series. We collect some of their well-known properties in the following
theorem.

Theorem 4.0.4. (1) The function
(4.0.5) TTGsi + 55— DTG~ HBE6)s)
i#] i=1
14



s holomorphic at s = % (More precisely, while E(f)(g) may have singularities, there is a
holomorphic function defined on an open neighborhood of s = 5 which agrees with -

on the complement of the hyperplanes s; = , and s; +s;=1.)

(2) The function remains holomorphic (m the same sense) when s; + s; — 1 is omitted,
provided 7; 2 w ® T;. It remains holomorphic when s; — % is omitted, provided T; is not
w™l- orthogonal. Furthermore, each of these sufficient conditions is also necessary, in that
the holomorphicity conclusion will fail, for some f and g, if any of the factors is omitted
without the corresponding condition on T being satisfied. From this we deduce that if

(4.0.6) the representations 11, ..., T, are all distinct and w™*-orthogonal,

then the function
(4.0.7) [T6s: - BN

s holomorphic at s = 2 L for all f,g and nonvanishing at s = 2 L for some f,g.
(3) Let us mnow assume condition - holds, and regard f as a function of
f% c V@ )( Q.7 ¥w). Let E_ (f1)(g) denote the value of the function (4.0.7) at

s = (deﬁned by analytic contmuatzon) Then E_1(f) is an L* function for all f1 €
2
V(Q)( Qi i Ww).
(4) The function E_q is an intertwining operator from IndG‘(l”)“(A)((gl 1 Ti @] det ;|2 )@w into

the space of L? automorphic forms.

(5) If £- ( w) is the image of E_1, and yrw is the character of Unax given by Yrw(u) =
Yo7 i), then (Umaxs Yrw) € UH(E-1 (T, w)).

(6) The space of functions E_1(T,w) does not depend on the order chosen on the cuspidal rep-
resentations Ty, ...,T.. Thus it is well-defined as a function of the isobaric representation
T.

Remark 4.0.8. By induction in stages, the induced representation IndszgA)((gZ 1 Ti®| det ;|2 )

which comes up in part (4) of the theorem can also be written as IndG“"(?) T ® |det |2 X w, where

T=7 B B as before, and Ps;ey is the Siegel parabolic. (Cf. sectzon@) Here, we also exploit
the identzﬁcatzon of the Levi Mgiey of Psicy with G Loy X GLy fived in[3.4.1]

Proof. We first review the standard arguments by which the presence or absence of a singularity
of an KEisenstein series reduces to the presence or absence of a singularity of a relative rank one
intertwining operator. To do so, we recall the set

W(M) := {w € Wania wMw™! is a standard Levi of Gan+1

w is of minimal length in w - Wy }

It will be convenient and harmless to treat the elements of W (M) as though they were elements
of Gynt1(F), rather than repeatedly choose representatives and remark the independence of the
choice. For each w € W (M), s € C", we define P* to be the standard parabolic with Levi wMw™!
For s such that s, and s; — s;41,7 = 1 to r — 1 are all sufficiently large, the integral

M= [ ) do
15



converges ([MWI], I1.1.6), defining an operator M (w,s) from V3 (s, Q_, 7 M w) to a space of
functions which is easily verified to afford a realization of

T

Ind i) ((@ 7 ® | det ;|*) & w) o Ad(w™).
i=1

Here, ((Q!_; 7 ® | det;|*) K w)o Ad(w™'), denotes the representation of wMw ™! obtained by com-

posing the representation (Q);_, 7 ® | det ;|*) KM w) of M with conjugation by w™!. We denote this

latter space of functions by 143 (5,Q;_; 7 ®w). Then M(w, s)f(g) has meromorphic continuation
to C". (IV.1.8(b).)

It may be helpful also to review the sorts of singularities which Eisenstein series and intertwining
operators have— lying along so-called “root hyperplanes.” (cf. IV.1.6) We defer the notion of “root
hyperplane” until later. For now, we allow arbitrary hyperplanes in C", defined by equations of
the form I(s) = ¢, with [ a linear functional C" — C and ¢ a constant. Then for any bounded
open set U C C", there exist a finite number of distinct hyperplanes Hy, ..., Hy, which “carry”
the singularities of the Eisenstein series and intertwining operators in U, in the following sense. For
each i fix l;, ¢; such that H; = {s € C" | [;(s) = ¢;}. Then for each i there is a non-negative integer
v(H;) such that

N
(4.0.9) [Tts) = )" MIE(f)(9)(s)

i=1
continues to a function holomorphic on all of U. Covering C" with bounded open sets and taking a
union, we obtain an infinite, but locally finite, set of hyperplanes which carry all the singularities
of the Eisenstein series and intertwining operators. The same hyperplane H will of course occur
more than once. It is easily verified that the minimal exponent v(H) appearing in is the
same each time. Thus we may speak of whether an Eisenstein series or intertwining operator does
or does not have a pole along H, and of the order of the pole.

One may define “analytic/meromorphic continuation” for functions taking values in Fréchet
spaces of locally L? functions and the like ([MWT] 1.4.9, IV.1.3) of functions and operators. In this
case, outside of the domain of convergence, one’s functions are defined only up to L? equivalence.
However, in view of 1.4.10, one has a unique smooth representative for the class. For us it will be
more convenient simply to adopt the convention that when we say the Eisenstein series has a pole
along H, we mean for some f,g.

Now let us state the relationship between poles of Eisenstein series and intertwining operators,
which we prove in an appendix.

Proposition 4.0.10. For f € V) (s, Q|_, 7 K w), there evists g € Gan+1(A) such that E(f)(g)
has a pole along H if and only if there exist w € W (M), g € Gani1(A) such that M(w,s)f(g') has
a pole along H.

The same construction can be performed with the Levi M replaced by wMw™!, yielding an
operator

My (w',w-s) : VD (s, ®TZ’ Mw) — Vu(}i)u(g, ®TZ‘ X w),
i=1 i=1

for each w’ € W(wMw™!). Furthermore, one has for all f, g, the equality of meromorphic functions
My(w',w - s) o M(w,s)f(g) = M(w'w,s)f(g)

(IMW1], I1.1.6, IV.4.1). (For now, the reader may think of “w-s” simply as a notational contrivance.
We shall give it a precise meaning below.)
16



Next we wish to describe the decomposition of w € W (M) as a product of elementary symmetries,
as in [MWI] I1.1.8. The lattice X (Zys) of rational characters of the center of M has a unique basis
{eo,€1,...,&r}, with the property that for each i = 1,...m, there exists j € {1,...,r} such that
the restriction of e; as in to Zys is €. The set of restrictions of positive roots of G, q1 to Zps is

{0bU{ei—¢gj:1<i<ji<riUu{eg:1<i<r}U{e+e:1<i<j<r}uU{2eg:1<i<r}

We denote the set obtained by excluding zero by ®*(Zys). For a € ®*(Z)s), and w € W (M), one
may say “wa > 0" or “wa < 07 without ambiguity. We say an element of ®*(Z);) is indivisible if
it is not of the form 2¢;.

Each element w € W(M) can be decomposed as a product g, ...Sq, of elementary symmetries
as in [MWI] 1.1.8. The element so, will be in W (M), while sq, , will be in W (sq,Ms,}) and so
on. Each is labeled with the unique indivisible restricted root (for the operative Levi) which it
reverses. That is {a € ®T(Zy) : sq,a < 0} = {ay}, or {ay,2ay} and in the latter case oy = &,.
(Cf. [MWT] 1.1.8.)

Let w = 54, ...84, be a minimal-length decomposition into elementary symmetries, and put
Wi = Sq;y; - -+ Sa,- Then

{a € ®T(Zyy), indivisible | wa < 0} = {w; ;| 1 <i < 0}

and / is the cardinality of this set (i.e., there is no repetition). Combining this discussion with
that of the previous paragraphs, we obtain a decomposition of M (w,s) as a composite of inter-
twining operators My, (Sq,, w; - s), each corresponding naturally to one of the elements of {a €
®t(Zy), indivisible | wa < 0}.

Let det; denote the rational character (g, «) + det g; of M. Then {eg,detq,...,det,} is a basis
for the lattice X (M) of rational characters of M. Here, the character eg of T introduced in has
been identified with a character of M as in F Let {ef,det],...,det*} be the dual basis of the
dual lattice. Again, ef is the same as in Elements of X (M) may be paired with elements of
XVY(T) defining a projection from X (T') onto the dual lattice. For each i = 1,...m, there exists
unique j € {1,...,r} such that e maps to det . If o is a root, then the projection of the coroot o
to the dual lattice of X (M) depends only on the restriction of « to Zps, and the correspondence is
as follows:

0«0,

gi —€j <> dety —det}‘,
i +&j <> det +det] — e,
gi < 2det] — e
2e; > 2det ] — ep.

We denote the element corresponding to o € ®1(Zy) by ¥ (in agreement with [MWT], 1.1.11).
We may identify s € C" with

,

Zdeti X 8; € X(M) ®7z C.

i=1
This is compatible with [MWI], I1.1.4. Restriction of functions gives a natural injective map
X(M) — X(T), and hence X (M) ®z C — X(T) ®@z C, which we use to identify the first space
with a subspace of the second. This gives the notation w - s a precise meaning, as an element of
X(wMw™1) ®z C, which is compatible with the usage above. In addition, it gives a “meaning” to
the set

{Si — Sj} U {Si + Sj} U {QSi},
of linear functionals on C", identifying each with an element of ®*(Z,;). Formally,
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Definition 4.0.11. A root hyperplane (relative to the Levi M ) is a hyperplane of the form
H={seC |{a"s)=c}

for some a € ®1(Zyr) which is indivisible, and some ¢ € C. We say that the hyperplane H is
associated to the root a, which is uniquely determined.

The next main statement is

Lemma 4.0.12. Let w = 54, ...5q, be any decomposition of minimal length, and for each i let
W; = Sa;yy -+ Say- Then the set of poles of M(w, s) is the disjoint union of the sets of poles of the
operators My, (Sa,, w;-s). A pole of M(w, s) comes from My, (Sq,,w;-s) if and only if it is associated
to w; tay. Purthermore, if {s € C"|{a", s) = ¢} is a pole of M(w,s), then c # 0.

We now prove . A root hyperplane passing through % is defined by an equation of one of

three forms: s; = %, s; +s; =1, or s; — s; = 0. The third kind can not support singularities of the
Eisenstein series. The first two can, but by [MWI]IV.1.11 (c), they will be without multiplicity,

and so the factor of
I8

1
H(Sz‘ +55—1) H(Si —35)
i#] i=1
will take care of them.

The operators corresponding to elementary symmetries are called relative rank one because they
could be defined without reference Gy,41, considering M instead as a maximal Levi of another
Levi subgroup M, of G4y+1, having semisimple rank one greater than that of M. Furthermore, in
a suitable sense, the relative rank one operator only “lives on one component of M,,” which will
allow us to deduce the general case of from the case r = 1 and a similar fact about intertwining
operators on GL,. Let us make this more precise.

Fix a € ®1(Zyy). There is a minimal Levi subgroup M,, of G4,+1 containing M such that « is the
restriction of a root of M. (It is standard iff « is the restriction of a simple root.) Fix w € W (M)
such that wa < 0, and a decomposition w = s4, ... Sq, of w as into elementary symmetries, which
is of minimal length. For some unique 4, we have oo = w;” Lo, where w; is as above. Then w; Mow;” !
is a standard Levi of Gy4y4+1. Different choices of decomposition give different (even conjugate)
embeddings of the same reductive group into G4, 11 as a standard Levi.

If « =¢j — e, Or €5 + £, then Mg, is isomorphic to GLy(p; 1 p,) X Hl;éj,k G Loy, x GLy. while if
a = g, it is isomorphic to G4nj+1 X Hk# G Loy, . Let G’ denote GLZ(n].Jrnk) or G4nj+1 as appropriate
and let ¢ be a choice of isomorphism with the “new” factor. Then :~1(¢(G’) N P¥#) is a maximal
parabolic subgroup P’ = M'U’ of G’, and 0 := (Q);_; T ® w) 0 Ad(w;) o ¢, is an irreducible unitary
cuspidal automorphic representation of M’(A). The map ¢ also induces a linear projection

Lt X (w;Mw] ) ®z C — X (M') @7 C.
(Recall that we have agreed to think of w; - s as an element of the former space.)

Following, [MWT1] 1.1.4, define m* for m € M'(A) and p in X(M') ®z C, by stipulating that
mt = |x(m)|* if p = x ® s and mM1TH2 = mPrmP2,

The set W[, (M'), defined analogously to W (M) above, contains a unique nontrivial element. It
is the elementary symmetry sg associated to the restriction to Z); of any of the unique simple root
of G’ which is not a root of M’. The map ¢ identifies sg with s,,.

For € X(M') ®7 C, let V) (u, o) denote

{h:G'(A) — V,, smooth | h(mg')(m') = K (g )(m'm)m'TPr  m,m' € M'(A),d € G'(A)},

V@ (u,0) = {h: G'(A) — C, smooth|h(g')(e) € VIV (1,0)}.
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There is a standard intertwining operator M(sg,n) : VP (u,0) — V;(;)(M,U). One has the
identity

Mo,y (Sa;, wi - 5) f(u(h)g) = M(sg, p) f(e(h)g)-
That is, if p, denotes the map

Vi (s, @7 Rw) — VP (u,0)

i=1
corresponding to evaluation at ¢(h)g for a fixed g, then, for all g, the following diagram commutes:

Mwi (Sai SW;*S)
_ 5

VU()?) (§7 ®;:1 7; X w) Vu(le (§7 ®Z:1 7 X w)

| |

M(sg,tx(wivs+pPpy,))

VO (1,(w; - s+ pp,.),0) VD (tu(w; - s+ pp,. ), ).

Hence My, (8q,,w; - s) has a pole along a root hyperplane associated to o iff M (¢, (w; - s+ pp,.),0)
does.

Since the set of poles of My, (sq,,w; - s) is equal to the set of poles of M (w, s) along hyperplanes
associated to «, it is independent of the choice of decomposition w = 34, ...sq,. Hence, for each
a € ®1(Zy), we may use a decomposition tailored to that «.

First suppose a = ¢; — €. One may choose a decomposition so that w; corresponds to the
permutation matrix in GLg, (identified with a subgroup of the Siegel Levi) which moves the jth
block of M up so that it is immediately after the ith, and otherwise preserves order. It is then
easily verified that 0 = 7; ® 7; and

h L (w1'8)+PPai
( ! h) = | det hy [*F| det hy|%H",
2

where k=3 ) ;i — D gy s + 1

Next suppose a = 2¢;. Then we choose a decomposition so that wj; is in the Weyl group of G' Lo,
and moves the jth block to be last, otherwise preserving order. Then one easily verifies that o is
the representation 7; Mw of the Siegel Levi of G4y,;, and that, for (¢',«) in the Siegel Levi of Gy,

(g, ) 0re) = [ det g/

Finally, suppose a = ¢; + €. Then we choose a decomposition so that w; that projects to a
permutation matrix in SOyy,11 of the form

I

with the off-diagonal blocks being 2n; x 2n;, and the first block being 22:1 2ny. We deduce from
Corollary that 0 = 7; ® (7 ® w), and from Lemma that

h La(Wi8)+PPy,
( ! L ) = | det hy|*+"| det hg| 75T,
2
where k is as before.

Thus follows from
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Proposition 4.0.13. Let w denote the unique nontrivial element of W(M), in the case when M
is the Levi of the Siegel parabolic of Gom+1. Let T be a cuspidal representation of GLy,. Then

M(w, s)f(g) has a pole at s = § for some f € Indgfg)“(m (1@ |det|®) Kw, and g € Goms1(A) if

and only if T is w™-orthogonal

Remarks 4.0.14. Of course we are only interested in the case m = 2n. Furthermore, since we
assume w is not the square of another Hecke character, it follows that T can be w™-orthogonal only
if m is even. However, the proof of this proposition is “blind to” the parity of m.

Proposition 4.0.15. Let P = MU be a maximal standard parabolic of GL, such that M =

GLg X GLy_y. Let f be an element of IndG{J”)( (11 @ | det |*1) Q (2 @ | det |%2). Let w be the unique
nontrivial element of W (M). Then M(w,s)f(g) is singular along the hyperplane s1 — sa = 1 for

some f,q iff n =2k and 19 = 1.

We defer the proofs to the appendix.

Now, we assume (4.0.6]) holds and prove the remaining part of the theorem. Let N(s) = []}_;(si—
).

Item follows from [MWT] I.4.11. The constant term of E(f) along a parabolic P' = M'U’
has nontrivial cuspidal component iff M’ is conjugate to M. (IV.1.9 (b)(ii)). For such P’ it is equal

to
> M(w,s)f(g).
weW (M), wMw=—1=M'
Take w € W (M), such that wMw™! = M’. If w-&; > 0 for some i, then M (w, s) f(g) does not have
a pole at s; — 1, and hence N (s)M(w, s) f(g) vanishes at 2. On the other hand, if w-e; < 0 for all

i, then M (w, s)f(g) satisfies the criterion of 1.4.11.

It follows from [MWT] IV.1.9 (b)(i) applied to N(s)E(f) (which is valid by IV.1.9 (d)) that the
residue is an automorphic form. To complete the proof of , let p(g) denote right translation. It
is clear that for values of s in the domain of convergence, N(s)E(p(g)f)(s) = N(s)p(9)(E(f)(s)).

By uniqueness of analytic continuation, the equality also holds at values of s where both sides are
defined by analytic continuation, including % The action of the Lie algebra at the infinite places

N[

is handled similarly.

Next we consider the constant term of E(f) along the Siegel parabolic. By [MWI] II.1.7(ii)
it may be expressed in terms of GLsg, Eisenstein series, formed using the functions M (w,s)f,
correbponding to those w E W (M) such that w=t(e; — e;41) > 0 for all i. (Note: we proved in
Lemma [3.5.3| that wMw™" is contained in the Siegel Levi for every w € W(M).) When we pass
to E_q( f), the term corresponding to w only survives if w - g; < 0 for all 4. This condition picks
out a unique element, wy. It is the shortest element of Wqr,, - we - War,, , where wy is the longest
element of Wg,, ,,, and we have identified G L2, with a subgroup of the Siegel Levi as usual. Via
corollary [3.5.6) one finds that

T T
(®T,;&w)oAd(wo) = (®(Tr+1 i Qw)Rw) ®7’7«+1 i Xw).
i=1 i=1
For f € VA(Q!_, 78w, 1), M (wp, %)f|GL2n(A) is an element of the analogue of V?)(®!_, 7;Rw, s),
for the induced representation n

Id o™ (@) 711 ® | deti"77) = |det "2 @ 7

of GLs,. Here P° = GLy, N P*, and 7 = 7 B - - - B 7,. Furthermore, since this representation is
irreducible, it may be regarded as an arbitrary elefnent. Also, we may regard this representation
as induced from 7q,...,7, in the usual order. Let P denote the relevant parabolic of GLs,,.
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The representation 7 sits inside a fiber bundle of induced representations Indg(Lg;(A)(@f:l T ®

| det;|*!). For a flat, K-finite section f let E“L2n(f)(g)(s) be the G Lo, Eisenstein series defined by

> f®09)

P(F)\GLan(F)

when s; — s;41 is sufficiently large for each ¢, and by meromorphic continuation elsewhere.
Let Ugaﬁfn denote the usual maximal unipotent subgroup of G Loy, consisting of all upper trian-
gular unipotent matrices. Let ¢y (u) = ¢o(u1,2 + - - - + wm—1,m) be the usual generic character.
To complete the proof of , we must prove that

(4.0.16) ECT2n (f)(ug)(0)w (u) du # 0

/Uﬁix?"(F\A)
for some f € Indg&zg‘m) Ry Tr+1-is9 € GLay(A), i.e., that the space of GLg, Eisenstein series
EGL2n( f) is globally ¢y-generic. Granted this, follows from [MWTJII.1.7(ii) and the discussion
just above.
The following proposition follows from work of Shahidi.

Proposition 4.0.17.

/GL ECRn(f)(ug)(s)dw (u) du = [ Wolgw) - [] Wolgo) - [T L7 (si =55+ 1,m x )7,
UnmaiZ™ (F\A) ves vgs i<j

where, for each v, W, is a Whittaker function in the Y- Whittaker model ofIndg(L;")(Fv) (i Tip®
| det ;|57), S is a finite set of places, depending on f, outside of which T, is unramified and W) is the

normalized spherical vector in the the vy - Whittaker model of Indg(L;:)(Fv)((ggzl Tivn @ | det;|5). A
flat, K-finite section f may be chosen so that, for all v € S, the function W, is not identically zero

at s = 0.

We briefly review the steps of the proof in the appendix.

It follows from [Ja-Sh3] Propositions 3.3 and 3.6 that the product of partial L functions appearing
in Proposition does not have a pole at s = 0 provided the representations 71,..., 7, are
distinct. This completes the proof of .

Finally, (6) follows from the functional equation of the Eisenstein series ([MWIJIV.1.10(a)), and
the fact that 7 is equal to an irreducible full induced representation (as opposed to a constituent
of a reducible one). O

5. MAIN RESULTS

5.1. Descent Construction. In this section, we shall make use of remark and regard
E_1(1,w) as affording an automorphic realization of the representation induced from the repre-
sentation 7 ® | det |% X w of the Siegel Levi. Thus we may dispense with the smaller Levi denoted
by P in the previous section, and in this section we denote the Siegel parabolic more briefly by
P=MU.

Next we describe certain unipotent periods of Ga,, which play a key role in the argument. For
1 < ¢ < m, let N; be the subgroup of Unyax defined by u;; = 0 for i > ¢. (Recall that according
to the convention above, this refers only to those i, j with ¢ < j < m — 4.) This is the unipotent
radical of a standard parabolic (), having Levi L, isomorphic to GL{ X Gom—_op.

Let ¥ be a character of Ny then we may define

DC*(1,w, V) = FC’E_1(1,w).
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Theorem 5.1.1. Let w be a Hecke character. Let 7 = 7y B ---B 7, be an isobaric sum of w™ -
orthogonal irreducible cuspidal automorphic representations 1, ..., Ty, of GLap, (A),...GLay, (A),
respectively. If £ > n, and 9 is in general position, then

DCY(r,w,0) = {0}.
Proof. By Theoremu . ) the representation £_1(7,w) decomposes discretely. Let m = ®! m, be
one of the irreducible components, and p, : £_1(7,w) — 7 the natural projection.

Fix a place vg such which 7,, and 7, are unramified. For any " € ®U¢U OI dG‘(‘"( Ty ®| det |3 X
wy we define a map

igvo IndG?"(F;JO) Ty ® | det \vo X wy, — InalG‘(‘”(A T®|det|z Rw
by igvo (&n) = (& @ £°), where ¢ is an isomorphism of the restricted product & IndG‘(l"() )TU ®

Gan(A)

P(A) T®|det|2 X w. Clearly

1
| det |¢ M w, with the global induced representation Ind

E_1(r,w) =E_10(®) IndG‘(‘"u;” Ty ® | det \v X wy).

For any decomposable vector £ = &,, ® £,

proklk_qo0 L(f) =proFE 10 iévo (évo)‘

Gian(Fy 3 .
PELF( )O)TUO ® | det |5, B wy,, and hence (since we took vy such that
Y0

. . L . . : Gan(Fy 3
Ty, is unramified) it is isomorphic to the unramified constituent “"*Ind P?FEO)O)TUO ® | det |3, B wyyg-

Thus, m,, is a quotient of Ind

Denote the isomorphism of 7 with ®}m, by the same symbol ¢. This time, fix (" € ®! 2000

1
and define i¢vo " In dG‘(l”(F;’ o) Ty @ | det |3, K wy, — 7. It follows easily from the definitions that

F’C’19 o icvo

factors through the Jacquet module Jn, 9( “"1 ndG?"(F;’ O)Tvo ® | det ]UO X wyy, ). Propositions [7.0.16

and [7.0.18| below each show that this Jacquet module vanishes at approximately half of all places.
Inasmuch as vanishing at a single place would suffice to prove global vanishing, the result follows. [J

A general character of Ny is of the form

(5.1.2) Yol(crurg + -+ cp—1up—10 + ditigepr + - - - + dapr1—20U0 ant1—1)-

As described in section the Levi Ly acts on the space of characters of Ny(F\A). In order to
define embeddings of the various forms of Ga,, into G4,+1, we need to make this more explicit.
First, we fix a specific isomorphism of GL{ X Gyp—9ey1 with L, as follows. As in section
let eq,...,e2, and €f,...,e5 denote the Z-bases of X(T(Gant1)) and XY (T(Gant1)), re-
spectively. Let ég,...é2,—¢, and &,...,€5 , denote the analogues for G4,—_2¢41. We identify
(s [T €5 () € GLE X T(Ganaern) with TTi_ ef (i) - T ‘€4 (t:) € T(Gansr). Tn
addition, we require that g € G4n,25+1 be identified with an element of G4,+1 which projects to

I
pr(g) € SOu4n+1.
I,

Together, these requirements determine a unique identification.
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Let d denote the column vector ¢(dy, . .., d4,11_2¢). Suppose ¥(u) is the character of Ny given by
(5.1.2)), and, for h € Ly, let
(5.1.3) h-ﬂ(u) = ﬁ(hiluh) = 1/Jo(h61ul72+‘ . '+th_1uz_1,g+hd1u@,g+1 +-- '+hd4n+1_24u£’4n+1_3).

This is an action of L, on the space of characters, and it is easily verified that for h identified with
(a1,...,ap,9), with ai,...,ap € GL1(F) and g € Gy4y—2¢41(F'), we have
he, = 06;4-1 e, i=1,...,0—1, and hd:az_l -pr(g) - d.
(]

The above discussion amounts to an identification of the action of Ly(F') on the space of characters
of Ny(F\A) with a certain rational representation of Ly defined over F, consisting of the direct sum
of £ — 1 one dimensional representations and a (4n — 2¢ 4+ 1)-dimensional representation on which
the Gg,—2¢11 factor in Ly acts via its “standard” representation. We may consider this rational
representation over any field. Over an algebraically closed field there is an open orbit, which consists
of all those elements such that ¢; # 0 for all i and ‘dJd # 0. Here, .J is defined as in Over a
general field two such elements are in the same F-orbit iff the two values of ‘dJd are in the same
square class. Thus, this square class is an important invariant of the character 9.

Definition 5.1.4. Let 9 be the character of Ny(F\A) given by

P(u) = o(crurg + -+ + comrtg—10 + divg o1 + - - + dant1—20U¢,an41—0)-

We denote the square class of ‘dJd by Invt(d). We say that 9 is in general position if c; # 0 for
1<i</l—1 and Invt(¥) # 0. We denote the square class consisting of the nonzero squares by .

Clearly, a nonzero square class in F' may also be used to determine a quasi-split form of Ga,.
Indeed, the natural datum for determining a quasi-split group with G such that *G® = G'SO,,(C)
is a homomorphism Gal(F/F) — Aut(GS02,(C))/Inn(GSO2,(C)), which has two elements. Such
homomorphisms are in one-to-one correspondence with quadratic characters by class field theory,
and this has been exploited in defining G, above. But they are also in natural one-to-one cor-
respondence with square classes in F'*, and this parametrization will be more convenient for the
next part of the discussion.

Definition 5.1.5. Let a be a square class in F*. Let F(\/a) denote the smallest extension of F in
which the elements of a are squares, and for a € F*, let F(y/a) = F(\/{a}). Let G5, denote the
quasi-split form of Gay, such that the associated map Gal(F/F) — Aut(GSOs,(C))/Inn(G S04, (C))
factors through Gal(F(y/a)/F).

Remark 5.1.6. Of course, if a =0, then F(y/a) = F and G, is just the split group Ga,.

Lemma 5.1.7. (1) If ¥ is a character of Ny in general position, then the stabilizer L? (cf. MY
in definition has two connected components

(2) The identity component (LY)° is isomorphic over F' to Gi?lv_tgi).
Proof. Identify (ay,...,ar g) € GL{ X G4p_2041 with an element of L, as above.
The identity component of L}? consists of those (aq,...,ay, g) such that a; = 1 for all 7 and ¢
fixes the vector in the standard representation obtained from . The other consists of those such
that a; = —1 for all 7, and g maps the vector in the standard representation obtained from 9 to its

negative (which is the only scalar multiple of the same length). This proves .
We turn to . First suppose Invt(¢) = 0. It suffices to consider the specific character v, defined
by
Ye(u) = ourg + - + w—10 + up2n+1)-
For this character, the column vector d is vy :=* (0,...,0,1,0,...,0). It is easily checked that the
stabilizer of this point in SOg4,_9¢41 is isomorphic to the split form of SOy, _o. In addition, the
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stabilizer in Gy, 2011 contains a split torus of rank 2n — ¢ + 1, and hence is a split group. An
element of Upax fixes vy, if and only if it satisfies u; 95,—¢41 = 0 for ¢ = 1 to 2n — £. From this we
easily compute the based root datum of the stabilizer of v; and find that it is the same as that of
Gan—2-

To complete the proof of , let a be a non-square in F*, and let v, = (0,...,0,1,0, £,0,...,0) €
Fin=2t+1 (nongero entries in positions 2n — ¢ and 2n — ¢ + 2 only). Let 1§ be the character of
N¢(F\A) corresponding to ¢; = 1Vi and d = v,. The stabilizers of ¢§ and 1), are conjugate over the
quadratic extension E of F obtained by adjoining a square root of a. Indeed, let y/a be an element

of F such that (y/a)? = a. Suppose

_ -1 —
\/& 1I2n_1 —2\1/5 \/5 \/& !

pr(hg) = M s ,  where M 5= : 0 1
Valz-1 I

Then h, -1y = 9¢. For each a, fix an element h, as above for use throughout.

Clearly (Lﬁ )0 = ha(Lg’é)Oh;l. The image of this group under pr is isomorphic over F' to the
non-split quasisplit form of SOy, _9¢ corresponding the square class of a. It follows that (LgZ )0 is
isomorphic over F' to the non-split quasisplit form of G4, _9¢ associated to the square class of a. [

In the course of the preceding proof, we have seen that it is enough to consider one conveniently
chosen representative from each F-orbit of characters in general position. However, it is generally
more convenient to make definitions for general a € F'* than it is to choose representatives for the
square classes in F'*.

Definition 5.1.8. Take a € F*, and let 1} be the character of Ny defined by
a
Y (u) = Yo(urz + -+ wp—10 + ugon + §U£,2n+2).
We also keep the notation

Yo(u) = o(urg + -+ + w10 + Ur2nt1)-

Then the orbit of 1§ is determined by the square class of a. The character 1, is in the same orbit
as @Dl}

Note that for any given square class a we have many conjugate embeddings of G35, into Gap1:
one for each element a of a.

Definition 5.1.9. For each element a of F*, we let G, denote (sz)o. It is a subgroup of Gan1,

which is isomorphic over F to Géz}, where {a} is the square class of a.

Lemma 5.1.10. Assume {a} # O. Then,

(1) An element u of Umax is in G, iff it satisfies u; = 0 for i < n ori = 2n, and u;2, =
—SUiony2 for n < i < 2n. The set of such elements u is equal to hq(Umax N (LZ")O)hgl,
and is a mazimal unipotent subgroup of GS,,.

(2) And element t = H?Zo ef(ti) of T(Gan+1) is in GS,, iff it satisfies t; =1 for 0 <i <n, and
i = 2n. The set of such t is a mazimal F-split torus of GS,,.

(3) There is a mazximal torus of G, which contains the above maximal F-split torus and is
contained in the standard Levi of Gan+1 whose unique positive root is the short simple root
en. Its set of F' points is equal to

n—1
{hathal it = H s i(ti)es,(x -2 Nes(T), try. .. tno1 € FX, € F(\/&)X} ,
=1
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where ~ denotes the action of the nontrivial element of Gal(F(y/a)/F).
If {a} =0, then remains true, while

n
{hathgl =] e;‘Hi(ti)} :
i=0
18 @ maximal torus, and is F-split, since h, has entries in F.

Remark 5.1.11. We may write an element of our maximal torus as
n—1

{ha I ehvit) - €5, (2 + yv/a) - (& — yv/a) ') eolw — yVa)h, 't € F, 2,y € Fra® — ay® # 0} ,
i=1

regardless of {a}.

Proof. Ttem is easily checked. (Recall that pr is an isomorphism on Upax.) Similarly, it is easily
checked that an element ¢ of T'(G4y,+1) stabilizes the specified character iff t| = - - - = t,, = o, = +1.
As noted in the proof of Lemma [5.1.7} if they are all minus 1, then this element is in the other
connected component of Lfg.

Recall that (Lf”)o, with v, as in Definition is isomorphic to Ga,. There is an “obvious”

choice of isomorphism inc : Ga, — (L&")°, such that

. . 0 1<n,orj=2n+1,
—% e0 1= 07 . . .
incoef =4 , and inc(u)ij = § Wi—n j—n i>n, j<2n+1,
€nri 1 <1<,

Ui—n,j—n—1 1>mn, j>2n+ 1.

Here, we have used €] for elements of the Z-basis of the cocharacter lattice of G4,41 and €] for
elements of that of Gay,. It follows from the definitions that conjugation by h, is an isomorphism of
4, with (L¥™)9, which is defined over F(y/a). This yields an identification of the maximal F-split

torus of Géz} as computed in section with the F-split torus in item .

Clearly h, - inc(T(G2n)) - hy ' is a maximal torus of G3,. The fact that an element is of the form
specified in item of the present lemma follows from the action of Gal(F'/F') on the lattice of
cocharacters computed in section [l

Definition 5.1.12. Let

DCY(1) = FC¥n&_y(1,w).
It is a space of smooth functions GS,(F\A) — C, and affords a representation of the group G, (A)
acting by right translation, where we have identified GS,, with the identity component of L}fz.

Definition 5.1.13. We say that a square class a in F* and a character x are compatible if they
correspond to the same homomorphism from Gal(F/F) to the group with two elements. We say
that an element a of F* and a character x are compatible if x is compatible with the square class

of a.

Theorem 5.1.14. Let w be a Hecke character. Let 7 = 1 H --- H 7. be the isobaric sum of
distinct w™t-orthogonal unitary cuspidal automorphic representations of GLap, (A), ..., GLay, (A),
respectively. For i =1 tor let w;, denote the central character of ; and let x; = wr, /W™, which is
quadratic. Let x = []i_; xi- Suppose that x and a are not compatible. Then DC%(7) = {0}.

Proof. As in Theorem [5.1.1] it suffices to prove the vanishing of the corresponding twisted Jacquet
G4n+1 (F'v)
P(F,

Proposition [7.0.16] if there is an unramified place v such that y, is trivial and a is not a square,
and from Proposition if there is an unramified place v such that x, is nontrivial and a is a
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square. If y and a are incompatible, then there is at least one unramified place at which one of
these cases occurs. O

Theorem 5.1.15. Let w be a Hecke character. Let 7 = 7 B --- H 7, be the isobaric sum of
distinct w™-orthogonal unitary cuspidal automorphic representations of GLan, (A), ..., GLay, (A),
respectively. For i =1 to r let w,, denote the central character of 7; and let x; = w, /W™, which is
quadratic. Let x = []i_y xi- Then DCS(1) is nontrivial if and only if x and a are compatible, in
which case the space DC2(T) is a nonzero, cuspidal representation of GS, (A), with central character
w, which supports a nonzero Whittaker integral for the generic character of Umax(A)NGS,, (A) given

by

2n—2
u — Yo g Ui i+1 + U2p—12n+2 | -

i=1
If o is any irreducible automorphic representation contained in DCZ(T), then o lifts weakly to T
under the map r.

Remark 5.1.16. Since DC,,(7) is nonzero and cuspidal, there exists at least one irreducible com-
ponent o. In the case of special orthogonal groups, one may show ([Soll, pp. 8-9, item 4) that
the descent module is in the -generic spectrum for a suitable choice of v (cf. section . It
that all of the irreducible components are globally 1-generic. This is done using the Rankin-Selberg
integrals of [Gi-PS-R],[So2]. In the odd case, one may also show ([GRS4], Theorem 8, p. 757, or
[Sol] page 9, item 6) using the results of [Ji-So| that the descent module is irreducible. This does
not extend to the even case, even for special orthogonal groups, because the construction actually
yields a representation of the full stabilizer— which is isomorphic to the full orthogonal group. (CY.
Proposition 7.0.20.)

Proof. The statements are proved by combining relationships between unipotent periods and knowl-
edge about £_1(7,w).

For a € F*, we let (U, 9{) denote the unipotent period obtained by composing the period
(Np,¥%), used in defining the descent to G%,,, (embedded into Gap4+1 as the stabilizer of %) with
a period which defines a Whittaker integral on this group. Specifically, U; is the subgroup of the
standard maximal unipotent defined by the relations u; 2, = —§u;2n12 for i =n+1to 2n —1, as
well as uop 2,41 = 0, and
a
2
The definitions of Uf* and v{ make sense also in the case when a = 0, although in that case there
is no interpretation in terms of a descent. We use this period in that case also.

Next, let Us denote the subgroup of the standard maximal unipotent defined by uop 2,41 = 0,
and w2 = ug4 = -+ = Uzp—1,2,. For all a € F, we may define a character of this group by the
formula

Pr(u) = Yo(ure + -+ Un—2n—1 + Un—12n + SUn—1,2n+1 + Unnt1 + - + U2p—1,2n)-

2n—2
a
Y3 (u) = 1o ( g Uji+2 + U2p—1,2n42 + 2u2n1,2n> .
i=1

Finally, let Us denote the maximal unipotent, and 3 denote

P3(u) = P(ure + -+ uzn—1,2n)-
Thus (Us, 13) is the composite of the unipotent period defining the constant term along the Siegel
parabolic, and one which defines a Whittaker integral on the Levi of this parabolic. By Theorem

this period is not in U+ (E_1(7,w)).

In the appendices, we show

(1) (U, 94) ~ (Ua, 43), for all a € F, in Lemma [8.3.1]
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(2) (Uz,49) € ({(Ug,9$) : a € F*}), in Lemma and
(3) (Us,ab3) € (U2, 49), {(Ng,9) : n < £ < 2n and ¥ in general position.}) in Lemma
By Theorem (Ng,9) € UH(E-1(,w)) for all n < £ < 2n and ¥ in general position. It follows
that at least one of the periods (Uf,v¢) is not in U+ (E_1(7,w)). This establishes genericity (and
hence nontriviality) of the corresponding descent module DCY (7).
Turning to cuspidality, we prove in the appendices an identity relating:

Constant terms on G9,,,

Descent periods in Gyy11,

Constant terms on Gypy1,

Descent periods on G4,—ok+1, embedded in Gy, as a subgroup of a Levi.

To formulate the exact relationship we introduce some notation for the maximal parabolics of GSpin
groups.

The group G4y+1 has one standard maximal parabolic having Levi GL; X G4y,—2;+1 for each value
of ¢ from 1 to 2n. Let us denote the unipotent radical of this parabolic by V;. We denote the trivial
character of any unipotent group by 1.

For any square class a, the group G3%,, has one standard maximal parabolic having Levi GLj, x
G%,,_o for each value of k from 1 to n — 2. We denote the unipotent radical of this parabolic by
Vk2". The split group Ga, = G2Dn also has two parabolics with Levi isomorphic to GL,, X GL1. One
has the property that e,_1 — e, is a root of the Levi, and the other does not. Let us denote the
unipotent radical of this first parabolic by V,?". Then the unipotent radical of the other is JfVHQ",
where T is the outer automorphism of Ga,, which reverses the last two simple roots while fixing the
others. In a nonsplit quasisplit form of G, there is a parabolic subgroup with Levi isomorphic to
the product of GL,_1 and a nonsplit torus which is maximal. (The corresponding parabolic in the
split case is not maximal.) We denote its unipotent radical by V?".

We prove in Lemma that, for 1 <k <n—1, (V;*",1) o (N,,4?) is contained in

<(Nn+k71/}n+k)7 {(Nn+j7¢g+j)(4n72k+2j+l) o (Vk—j7 1) : 1 S ] < k}>7

where (Np4j, 0% +j)(4”*2k+2j+1) denotes the descent period, defined as above, but on the group
Guan—2k+2j+1, embedded into G4,11 as a component of the Levi with unipotent radical Vj,_;.

Now suppose that a is a square. Then both (V,2",1) o (N,,%%) and (V2" 1) o (N,,,%2) are in
((Na, o) { (N 050420 0 (Vo 1) 2 1< <),

Indeed, the two periods are actually conjugate in G441, so it suffices to consider only one of them.
By Theorem (Nnyks ¥ ip) € U(E_1(T,w)) for k =1 to n. Furthermore, for k, j such that

1 < j < k < n the function E(f)(s)(V+~1) may be expressed in terms of Eisenstein series on G Lj,_;
and Gup—ok+2;5, using Proposition I1.1.7 (ii) of [MW1]. What we require is the following:

Lemma 5.1.17. For all f € VP (s, @/_, 7 K w)

E_ (Vi—j>1) € E_1(1s,w),
1(f) Gan—2k+2j+1(A) @ 1( 5 )

where the sum is over subsets S of {1,...,r} such that ), ¢2n; = 2n — k + j, and, for each such

S, E_1(1s,w) is the space of functions on Gun—ok12j+1(A) obtained by applying the construction of

E_1(r,w) to {m; :i € S}, instead of {1;: 1 <i <r}.

Once again, this is immediate from [MWT] Proposition II.1.7 (ii).
Applying Theorem with 7 replaced by 75 and 2n by 2n — k + j, we deduce

(Nn—i-ja wn+j)(4n_2k+2j+1) € UL (5—1 (TS? w)) VS’
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and hence (Nptj—1,%ntj—1) 422 o (V4_;,1) € UH(E-1(7,w)). This shows that any nonzero
function appearing in any of the spaces DC%(7) must be cuspidal. Such a function is also easily
seen to be of uniformly moderate growth, being the integral of an automorphic form over a compact
domain. In addition, such a function is easily seen to have central character w, and any function
with these properties is necessarily square integrable modulo the center ([MWI] 1.2.12). It follows
that each of the spaces DC%(7) decomposes discretely.

Now, suppose o & ®! 0, is an irreducible representation which is contained in DC?(7). Let
po denote the natural projection DC%(7) — o. Once again, by Theorem , the repre-
sentation £_1(7,w) decomposes discretely. Let m be an irreducible component of £_1(7,w) such
that the restriction of p, o FC¥% to 7 is nontrivial. As discussed previously in the proof of
Theorem [5.1.1} at all but finitely many v, 7 is unramlﬁed at v and furthermore, m, 1s the un-

ramified constituent “"I ndG‘(*":’)l(F”) Ty M w, ® |det |U of T ndG‘(*”Jr)l(F”)TU X w, ® |det \v. If vy is

such a place, the map p, o FC¥n o i¢vo, With i¢vo defined as in Theorem factors through

Giant1(Fy 1
TN, oz (“”I ndP?F:’:)( O)TU ® |det |2 @wv> , and gives rise to a G$,,(Fy,)-equivariant map from

this Jacquet-module onto o, .

To pin things down precisely, assume that 7, is the unramified component of I ndG(Lé’i(;:))( Py

and let pq, ..., uon be defined as in the proof of Lemma By Lemma [3.6.1], we may assume
without loss of generality that po,41-; = w,u;l for i = 1 to n — 1, and that either u, = w,u;}rl,
or pu2 = :“31 41 = HnbniiXun = w (With Xy, defined as in the lemma). Furthermore, suppose
that x, is the local component at v of the global quadratic character obtained from 7 and w as
in the statement of the theorem. Then either y, is trivial and u, = w,u,;}rl, Or Xy = Xun and

2 _ 2 _ —
My = Bpr1 = Bnlnt1Xun = W.
Recall that a basis for the lattice of F-rational cocharacters of the maximal torus of G, fixed

in Lemma is given by
{enii:1<i<n}U{es}U{ey, if ais a square}.

Observe that when a is not a square in F, it is a square in F; for many unramified v, and that the
cocharacter e} is Fj-rational at such v.
In the appendices, we show that in the nonsplit case

1
T (IG5 s 0, |

is isomorphic as a G,,(F},)-module to a subquotient of a principal series representation m, of G, (F})
such that the correspondmg parameter tr, maps to the parameter ¢, under r. In the split case,
we obtain instead a direct sum of two principal series representations, but both have parameters
which map to ¢,,. It follows that 7 is the weak lift of o associated to the map 7. O

6. APPENDIX I: EISENSTEIN SERIES

In this appendix we complete the proofs of several intermediate statements used in the proof of
Theorem As far as we know, all of these results are well-known to the experts, but do not
appear in the literature in the precise form we need.

6.1. Proof of Proposition First, suppose that a set D of hyperplanes carries all the
singularities of all the intertwining operators M (w, s)f. Then it follows from [MWTI] I1.1.7, IV.1.9
(b) that it carries all the singularities of the cuspidal components of all the constant terms of
E(f)(g9)(s). By 1.4.10, it therefore carries the singularities of the Eisenstein series itself.
On the other hand, it is clear that a set which carries the singularities of the Eisenstein series
carries those of all of its constant terms. Thus, what we need to prove is:
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Lemma 6.1.1. Fiz M’ a standard Levi which is conjugate to M and o € ®+(Zpy). Let H be the root
hyperplane given by (aV,s) = ¢, ¢ # 0. Consider the family of functions M(w,s)f corresponding
to {w € W(M)lwMw~ = M'}. If any one or them has a pole along H, then the constant term of
the Eisenstein series along P’ does as well. In other words, it is not possible for two poles to cancel
one another.

Proof. Clearly, it is enough to prove this under the additional hypothesis that M’ = M.

Let AX/[ denote the group isomorphic to (Ri)"“, embedded diagonally at the infinite places,
which is inside the center of M.

The Lie algebra of A}, is naturally identified with the real dual of X (M)®zR. Recall that above
we identified s with an element of X (M) ®yz C. So, there is a natural pairing (X, s), X € a&, given
as follows. Write det; for the determinant of the ith block of an element of M, regarded as a 2n x 2n
matrix via the identification with GL,, x GL1 fixed above. Then we have

,
H | det ; exp(logy - X)|*" = yi X,
i=1

It follows that
_ 1
|M (w, 5) f(exp(logy - X)g)| =y X 52 (1w~ exp(log y - X)w) - |M(w, 5)f(g)].

Here dp is the modular quasicharacter of P.
Let
Weing(M, H) = {w € W(M),wMw™ = M, M(w, s) has a pole along H}.
Suppose that this set is nonzero. Choose wy € Wiing(M, H) such that the order of the pole of
M (wy, s) is of maximal order. Let v(H) denote the order. Choose X € a}, such that the points
w - X,we Wing(M, H) are all distinct. Consider the family of functions

(<Oé\/,§> - C)V(H)M(wvﬁ)f(exp(logy : X)g)v w e Wsing(Mv H)

They have singularities carried by a locally finite set of root hyperplanes not containing H. Assume
g has been chosen so that ((a",s) — ¢)H) M (wy, s) f(g) # 0. For s restricted to an open subset of
H not intersecting any of the singular hyperplanes we obtain a family of holomorphic functions, at
least one of which is nonzero. If we further exclude the intersection of H with the hyperplanes

(wi'X —wy'X,s) =0, wi,wy € Waing(M, H),

(which can not coincide with H because ¢ # 0), then at every point s, those functions which are
nonzero all have distinct orders of magnitude as functions of y. Hence they can not possibly cancel
one another. g

6.2. Proof of Lemma |4.0.12, Regarding w; - s + pp,, as an element of X(wiMwi_l) ®z C, we
may decompose it as p; + (o, w; - s)&;, where @&; is defined by the property that

(0¥, &) = Sais  for a € @(Z,, 1, 1)

Then it follows easily from the definitions that p; is in the image of the natural projection
X (M,,)®zC — X (w;Mw; ')®zC corresponding to restriction of characters of My, (A) to w; Mw; (A).

Take f a K-finite flat section of IndIGijZJ(XgA) (1 7@ | det j|* Mw) o Ad(w;'). Then My, (sa,, w;-

s)f resides in a finite dimensional subspace of Indﬁi’jf}%ﬁ%(@%l 7 @ |det ;| M w) o Ad(w; ),

corresponding to a finite set of K-types determined by f. Write My, (Sq,,w; - s)f in terms of a

basis of flat K-finite sections. The coefficients are functions of s, but it follows easily from the

integral definition where this is valid, and by meromorphic continuation elsewhere, that in fact
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they are independent of p; (which corresponds to a character of M, (A) and may be pulled out of
the integration). Thus, they depend only on (w; - 5,a)) = (s, w; 'a)).
The first two assertions are now clear. A proof that ¢ # 0 is obtained by a straightforward

modification of the opening paragraph of [MWI], IV.3.12.

6.3. Proof of Proposition [4.0.13 In this section, we denote by V(i)(s, T,w), i = 1,2, the spaces
of functions previously introduced in section {4 as 142 (s,@;_; i ®w), in the special case when
r=1.

Let M(s) denote the analogue of M (w,s) defined using V(I (s, 7,w). It maps into the space
VO (=s,7 ® w,w) given by

{F : Gom+1(A) — V5, smooth }F((g,a)h)(gl) = w(adet g)|det g| =2 F(h)(g1 197 ") }

Fix realizations of the local induced representations 7, and an isomorphism ¢ : ®/ 7, — 7. Define,
for each v, V(Y (s,7,,w,) to be

{Fv : G2m+1(F ) — Vi,

and V(3)(s, To ® wy,wy) to be

Fy((g a)h) = wo(a)| det gy > m(g) Fu(h) }

{Fv : G2m+1(Fv) — Vz,, smooth

(g, c)h) = wy(adet )| det gl (o9~ Fulh) }
Then the formula

H(®u)(g) = L&, Fu(gv))
defines maps
@ VW (s, 7, wp) — VW (s, 7,w),
®;}V(3)(S, Fo @ Wy, wy) — VO (5,7 @ wy, w),
both of which we denote by .

It is known that each map is, in fact, an isomorphism. For the benefit of the reader we sketch an
argument. On pp. 307 of [Shal] certain explicit elements of (a generalization of) V(1 (s, ,w) are
constructed as integrals involving matrix coefficients. Using Schur orthogonality, one may check
that F is expressible in this form iff both the K-module it generates and the K N M (A)-module it
generates are irreducible. It is clear that such vectors span the space of all K-finite vectors. On the
other hand the (finite dimensional) space of matrix coefficients of this irreducible representation of
K is spanned by those that factor as a product of matrix coefficients of local representations, and

these are clearly in the image of Z.
For F, € VW (s,7,,w,), let

Av(s)ﬁv(g) :/U (F)Fv(wug)du.

Then the following diagram commutes

®;)V(1) (8, Tv,wy) ﬂ’ ®;V(l) (=8, Tv,wy)

V(s rw) % VO (s )
with A(s) := ®@,A4,(s).
Now, M(w,s)f(s) has a pole (i.e., there exists g € Gam11(A) such that M(w,s)f(s)(g) has a
pole) if and only if M (s)F(s) has a pole (i.e., there exist g € Gam41(A) and m € M(A) such that

)
M (s)F(s)(g)(m) has a pole), where F is the element of VD (s, 7,w) such that f(g) = F(g)(id).
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We wish to show that there exists I such that this is the case iff 7 is w™!-orthogonal. Clearly,
we may restrict attention to F of the form i(®,F,).

Recall that for all but finitely many non-archimedean v, the space V;, comes equipped with a
choice of G Ly, (0y)-fixed vector & used to define the restricted tensor product.

If F =i(®,F,) e V(s ,7,w), then there is a finite set S of places, such that if v ¢ S then v
is non-archimedean, 7, is unramified, and Fv(s) =F? is the unique element of V1 (s, 7, w,)

N (SvTvvw”)
satisfying F(s -, o) (k) = & for all k € Gapp1(0y).
Now
<Lv(2377b73y7n2 X uﬁjl) 10
1) (*&ﬂ)@wvywv)'

Ay(s)F? =
o) ) Ly(2s + 1,70, sym? x wy

(A proof of this appears in [L1], albeit not in this precise language. See especially pp. 25-27.)
Thus,

~ S(2s, 7, sym? x w1 ~ ~
A(s)i(@,Fy) = . SL(222+’1,’T?szm2 - wzl)z ((@ Av(s)Fv(s)> ® <® F_va@w,U,wU)) .

veS vgS

To complete the proof we must show:

(i): Ay(s) is holomorphic and nonvanishing (i.e., not the zero operator) on Indgix)(A)T ®

|det|* Kw at s = 1, for all 7.
(ii): Ly(s, 7, sym? x w;!) is holomorphic and nonvanishing at s = 1, for all 7.
(iii): L°(s, T, sym? x w™') is holomorphic and nonvanishing at s = 2.

Item (iii) is covered by Proposition 7.3 of [Kim-Sh|. Items (i) and (ii) are essentially contained
in Proposition 3.6, p. 153 of [Asg-Shal]. Since what we need is part of the same information,
presented differently, we repeat the part of the arguments we are using.

The nonvanishing part of (i) is a completely general fact (i.e., holds at least for any Levi of any
split reductive group). For example, the only element of the arguments made on p. 813 of |[GRS3]|
which is particular to the situation they consider there (the Siegel of Spy,) is the precise ratio of
L functions appearing in the constant term.

Similarly, local L functions never vanish. At a finite prime the local L function is P(q, %)~ for
some polynomial P, while at an infinite prime it is given in terms of the I' function and functions
of exponential type.

We turn to holomorphicity.

Lemma 6.3.1. Let m, be any representation of G Ly, (F,), which is irreducible, generic, and unitary.
Then there exist

e integers ki, ..., k. of such that k1 + --- + k, = m,

e real numbers aq,...,q, € (—%, %),
o discrete series representations 0; of GLy, (F,) fori=1 tor
such that

~J GLm(F'u) . (677
Ty & Indp(k)(Fv) @i(& ® | det ;|*).
Here P, denotes the standard parabolic of G Ly, with Levi consisting of block diagonal matrices
with the block sizes ki, ..., k, (in that order), and det; denotes the determinant of the ith block.

Remark 6.3.2. In fact, one may prove a much more precise statement, but the above is what is
needed for our purposes.

Proof. This follows from the main theorem of [Tad2] (see p. 3) together with the fact that the
representation denoted u (9, m) in that paper is only generic if m = 1. For this latter statement see
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the “Proof of (a)=(f)” on p. 93 of [Vog] in the Archimedean case (see also the very last remark of
the paper, on p. 98) and Theorem 8.1 on p. 195 of [Z] in the non-Archimedean case. (For the notion
of “highest derivative” see p. 452 of [BZ2]: a representation is generic iff its “highest derivative” is
the trivial representation of the trivial group, which corresponds to the empty multiset under the
Zelevinsky classification.) O

Continuing with the proof of Proposition 4.0.13| let (k) = (ki,...,kr), 6 = (01,...,6,) and
a = (ai,...,q,) be obtained from 7, as just above, and let Py denote the standard parabolic of
G2, which is contained in the Siegel parabolic P such that P(k) NM = Py.

Then

T
G m Fy ~ G m F’U i
IndP?Fv() )7, ® | det |5 X w; = Indﬁ'fk)((Fv)) ®(5Z ® | det i]57) K w,.
i=1

This family (as s varies) of representations lies inside the larger family,

Gom(F2) (15, _ ,
IndP(M(Fv) @(52®|detl| ) K w, s=(s1,...,8)€C",

and our intertwining operator A,(s) is the restriction, to the line s; = s 4+ «; of the standard
intertwining operator for this induced representation, which we denote A,(s). This operator is
defined, for all Re(s;) sufficiently large, by the same integral as A,(s).

A result of Harish-Chandra says that “Re(s;) sufficiently large” can be sharpened to “Re(s;) > 0.”
(This is because all §; are discrete series, although tempered would be enough.) This result is given
in the p-adic case as [Sil] Theorem 5.3.5.4, and in the Archimedean case, [Kn| Theorem 7.22; p.
196.

Hence, the integral defining A, (s) converges for s > max;(—a;), and in particular converges at

N[

From the relationship between the local L functions and the so-called local coefficients, it follows
that the local L functions are also holomorphic in the same region. For this relationship see [Sha3]|
for the Archimedean case and [Sha2|, p. 289 and p. 308 for the non-Archimedean case.

This completes the proof of (i) and (ii).

6.4. Proof of Proposition The proof is the same as the previous proposition, except that
the ratio of partial L function which emerges from the intertwining operators at the unramified
places is
LS(Sl — 89,71 X %2)
LS(Sl —so+ 1,7 X %2)

Convergence of local L functions and intertwining operators at s; — so = 1 follows again from
Lemma m The only difference is the reference for (iii), which in this case is Theorem 5.3 on p.
555 of [Ja-Sh2].

6.5. Proof of [4.0.17} As noted, this material is mostly due to Shahidi.

Since the statement is true (with the same proof) for general m, not only m = 2n, we prove it
in that setting.

In this subsection only, we write 7 for the irreducible unitary cuspidal representation );_, 7; of
M (A) (as opposed to the isobaric representation 7 B --- B 7).

First, observe that the integral in question is clearly absolutely and uniformly convergent, and
as such defines a meromorphic function of s for each g with poles contained in the set of poles of
the Eisenstein series itself.
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For s in the domain of convergence

(6.5.1) /UGLm ECLm () (ug)(s)pw (u) du = / F(8)(wy ug)Yw (u) du,

max (F\A) U1U1 (A)'le (F\A)
where w is the longest element of Wgy, (M) (deﬁned analogously to W(M) above), Uy, = USEmN
wlUmaxGmel and U"" = Ugal,/xm N wlUgaLXm 1 :
Indeed,

P(F)\GLy,( Hw’lU

where the union is over w of minimal length in wWM Telescoping, we obtain a sum of terms similar

to the right hand side of for these w. Let Unj\l/gx M NUpax. Observe that wUé\l/[an_1 C Umax
for all such w. The restriction of 1y to wUM_w™! is a generic character iff wMw™! is a standard
Levi. If it is not, the term corresponding to w vanishes by cuspidality of 7.

On the other hand, f(w~'ug) vanishes if w™lU,w is contained in the unipotent radical of P
(which we denote Up) for any simple root «. Here U, denotes the one-dimensional unipotent
subgroup corresponding to the root a. The element w; is the only element of Wy, (M) such that
this does not hold for any «.

Let A denote the Whittaker functional on V; given by
QY — / ww(wluwl 1) du.
max F\A
Then (6.5.1)) equals
(652) [ G du
Uy (A)

Jun

where f : GLy,(A) — Vi, is given by f(g)(m) = f(mg)ss2. (Le., f is the element of the analogue
of V(l)(®;:1 7; K w, s), corresponding to f.)
For each place v there exists a Whittaker functional A, on the local representation 7, such that

AM®v&v) = [, Ao(&w). (A finite product because A,(§;) = 1 for almost all v. Cf. [Shall, §1.2.)
GLm(A)
P(A)

of local induced representations ®,’ IndG(ngF”)(®: 1 Tiw|det ;|57 (Cf. section ) Consider an

element f which corresponds to a pure tensor ®v fv in this factorization. So fv( ) is a smooth
function GLy,(F,) — Vigr,, for each s.) Then 2) equals

(6.5.3) Il /U o AT ) ) du

The induced representation Ind (Q);_ 7| det ;|* is isomorphic to a restricted tensor product

whenever each of the local integrals is convergent, and the infinite product is convergent (cf [Tate2]
Theorem 3.3.1). By Propositions 3.1 and 3.2 of [Shad], all of the local integrals are always conver-
gent. (See also Lemma 2.3 and the remark at the end of section 2 of [Shad].)

It is an application of T heorem 5.4 of [C-S] that the term corresponding to an unramified nonar-
chimedean place v in is equal to W, (gy,) - HK]- Ly(si—sj+1,7,® 7:]-71,)_1. The convergence
of the infinite product is then an elementary exercise, as is the main equation in the statement of
our present theorem.

The fact that f may be chosen so that the local Whittaker functions at the places in .S do not
vanish follows again from Propositions 3.1 and 3.2 of [Shad] (see also the remark at the end of
section 2 of [Shad]).
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7. APPENDIX II: LOCAL RESULTS ON JACQUET FUNCTORS

In this appendix, F' is a non-archimedean local field of characteristic zero We denote the ring of
integers and its unique maximal ideal by o, and p, respectively, and let ¢ := #0/p. The absolute
value on F is normalized so that its image is {¢} : j € Z}. Also, w is an unramified character of
F*, 7 is an irreducible unramified principal series representation of G Lo, (F’) such that 7 2 7 ® w,
and v is a nontrivial additive character of F.

For simplicity, we assume that the characteristic of the residue field o/p is not equal to two.
Hence there are four square classes in F, of which two contain units. If ¢ is a character of Ny(F')
for 1 < ¢ < 2n, then we may define the square class Invt(d) as in Definition and it is
an invariant which separates orbits of characters in general position. Where convenient, we may
restrict attention to those ¢ such that Invt(?) contains units, as this condition is satisfied at almost
all places by any global character. We also define abstract F-groups

5. A€ F/(FX)
and concrete subgroups
G(Zln C G4n+1 a < FX,

such that G5, = G%, Va € a, as in Definitions and The latter is defined using a
character ¢¢ given by the same formula as in Definition
We require the additional technical hypothesis

(7.0.4) (B(Gant1) N G3,) (F) G, (0) = G, (F),

which is known (see [Tits|, 3.9, and 3.3.2) to hold at all but finitely many non-Archimedean com-
pletions of a number field.

Throughout this section we shall express certain characters of reductive F-groups as complex
linear combinations of rational characters. The identification is such that

(Z 5iXi> (h) = H Ixi(h)[*.
=1 i—1

Clearly, the coefficients si,...s, appearing in this expression are determined by the character at
most up to (27i)/loggr. If M is a Levi, then restriction gives an injective map X (M) — X (7).
We shall frequently abuse notation and denote an element of X (M) by the same symbol as its

restriction to 7. Finally, we let Q denote a complex number such that w(z) = |z|%.

Lemma|3.6.1|may be reformulated as stating that 7 == Indg(Léz(QFg( Py M for an unramified character

1, which is of one of the the following two forms:

(7.0.5) prer + -+ ppen + (2 — pp)entr + -+ (Q — p1)ean

Q Q i
(7.0.6) prer+---+pp_1en1+—en+ | = + ent1 + (= pin_1)enyo 4+ (Q — p1)ean.
2 2 logqr

In either case, by induction in stages,

1
un Indg‘(*%l(F) T ® | det |% Rwx= v Indg?ggigﬂ(m o+ 5(61 + -+ ean) + Qeo.

(Here “" indicates the unramified constituent, and P the Siegel parabolic of Gap1.)
Remark 7.0.7. Because every unramified character is the square of another unramified character,
it is possible to express T as a twist of a self-dual representation, and deduce essentially all the

results of this section from the “classical,” self-dual case.
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Lemma 7.0.8. If p is of the form (7.0.5)), then

Gan1 (F 1 ~ Gani1(F
" Ind il D ey i+ gler - +ea) +Qeg = ™ Indpyt " i

where Py is the standard parabolic with Levi isomorphic to GLS x G L1, such that the roots of the
Levi are eg;_1 — e9;, i = 1 to n, and p’ is the rational character of this Levi given by

W= pydety + - 4 py, det,, + Qeg.
Here det; denotes the determinant of the G Lo-factor with unique root es;—1 — e9;.

Proof. Let

n

_ 1 1 = 1
M:M+2(€1+"'+€2n)+Q€OZZ(Hi+2> €i+;<ﬂ_ﬂi+2>en+i+960-
1=

=1

Using the description of the Weyl action in Lemma [3.5.3|it is easily verified that this is in the same

orbit as
i 1 1
i=) Kuz + 2) e2i-1 + (Hz’ - 2) e%] + Qep.

i=1
By the definition of the unramified constituent, then,

un Gany1(F) ~ _ un Gany1(F) ~1
Indp Gy A= " Idp, ) B

The lemma now follows from the well known (and easily verified) fact that

GLo(F 1 1 GLo(F 1 1
(7.0.9)  ““Ind5 2" o (n+ et (1= 5)eh ="" IndG ") (- )er+ (p+ 5)eh = pdet,
where €] and €}, are the usual basis for the lattice of rational characters of the torus of diagonal
elements of GLs. O

The next lemma is similar, but slightly more complicated. It makes use of alternative Z-bases of
the lattices of characters and cocharacters. Specifically, {e1,...ean—2, f1, f2, fo}. {€],. .. €5,_o, f1. f5, o}
where

eo = —f1 eo=—2f—f1—f3
eon—1=—fo+ fi+ fo -1 =10
62n:f1_f2 ezn:_f(ak_f;‘

The key feature of these Z-bases is as follows. Recall that the group G4,+1 has a unique standard
Levi isomorphic to GLQ“1 x G5, with the based root datum of the G5 component lying in the
sublattices spanned by {ean—1,€2n, €0}, {€5,,_1,€5,, €4} Now, G5 and GSpy are the same F-group.
When we write the based root datum of this Levi with respect to the new basis, the expression for
the G5 component matches the “standard form” for the based root datum of GSp4 as in section
In particular, the character fj is the restriction to the torus of G:Sp4 of the similitude factor (which
is a generator for the rank-one lattice of rational characters of GSpy), and there is a standard Levi,
isomorphic to GLs such that its unique root is f1 — fs.

Remarks 7.0.10. To avoid confusion, let us draw attention the following tricky point: we have
defined a notion of “Siegel parabolic” and “Siegel Levi” for Gop+1, any n. There is also a well
known notion of “Siegel parabolic” and “Siegel Levi” for GSpay, any n, which is very widespread
in the literature. The two groups Gs and GSpy happen to coincide, and the two notions of “Siegel
parabolic” and “Siegel Levi” do not.
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Lemma 7.0.11. If p is of the form (7.0.6)), and fi is defined in terms of u as in the proof of Lemma
then

un Gint1(F)  ~ ~ un Gant1(F) 1
IndB(GMH)(F) = IndPQ(F)

where

nd 0—1 1 m
"= pidet; — — —= det
% Huz et; 5 fo+< 2+10gqF> et o

i, Q-1 Q
= Zui det; + €mt+1 — | o + det g
P 2 2 logqr

where the notation is as follows: Py is the standard parabolic with Levi isomorphic to GLy x GL,
such that the roots of the Levi are eg;—1 — €2, i = 1 to n — 1, and ea,. (One might also describe
this Levi as GLg“1 x GL1 x GSpins.) As in Lemma det; denotes the determinant of the
G Lo-factor with unique root es; 1 — eo;, for i =1 to n — 1, while dety denotes the determinant of
the G Lo with unique Toot esy, = f1 — fo.

Proof. This time [i is in the same Weyl orbit as

n—1 .
- 1 1 Q-1 Q-1 e
o= E [(Mz + 2) €2i—1 1 <Ni - 2> 6’21] + < 5 > €2n—1 1 (2 + log qF> ean + Qe

=1

n—1 ; ;

1 1 -1 i e
= Z [<M¢+2> €21+ <Mi_2> €2z] - <2> fo+ <—1+1 >f1— fa.
— 0g qF log qr

Using (7.0.9)) again, in conjunction with the fact that —log;F f2 and log;F f2 are the same char-

acter, we obtain the lemma. O

Next, we need a slight extension of this. Let Ps; be the standard parabolic of G4,+1 with Levi
isomorphic to GLS_1 X G Spy. Identify GSp4 with the component of this Levi, and let R = GSpsNPs.
This is the subgroup known in the literature as the “Siegel” parabolic of GSps. When regarded
as a parabolic of GSping, it is the one for which we have introduced the notation (1 = L1NNj.

Its lattice of rational characters is spanned by fy and det, defined as in Lemma Let

m = Un Indgf}??(m (% + logf]F) det g. Extend mq trivially to a representation of the Levi of Ps.

Corollary 7.0.12.

Giant1(F) ~ 11~ Gant1(F)  m
un IndB(Gan)(F) o un IndPS(Pf) w® mo,
where .
ne
Q-1
H/// = <Z j2%; deti — B fg) .
=1
Proof. Induction in stages and the definition of the unramified constituent. O

An important fact about mg is the following:

Lemma 7.0.13. The representation wy may be realized as a subrepresentation of

aspu(p) (1 !
IndR(F) < 5 + logqF> det (.

Proof. In fact, it is one of the spaces Ry(V') introduced on p. 223 of [K-R]. This can be checked by

direct computation. It also follows from Proposition 5.5 of [K-R], in that the intertwining operator

is easily seen not to vanish on the spherical vector. ([l
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Gant1(F) "

Py(F) ® mg may be realized as a subrepresentation

Corollary 7.0.14. The representation Ind
of

Gant1(F) m 1 i
I —— .
ndp ey +< +logqF>deto

A second important fact about the representation 7 is the following;:

Lemma 7.0.15. Let 9 be a character of the unipotent radical of R in general position. Regarding
R as the parabolic Q1 of G5, the square class Invt(d) is defined. A sufficient condition for the
vanishing of the twisted Jacquet module Jn, 9(mo) is that the Hilbert symbol (-,Invt(1))) not equal
the unique nontrivial unramified quadratic character.

Proof. This follows from [K-R], Lemma 3.5 (b), p. 226. (Here, we again use the fact that the

unramified constituent of IndG(Sp SL(F) ( + Iog qF) det ¢ is one of the spaces Ry(V') introduced on p.

293 of [K=R].) O

Proposition 7.0.16. Let 7 = In dG(LQ"(Fg(F)/,L, with p of the form , and let P denote

the Siegel parabolic subgroup. Then for £ > n and ¥ in general postwn the Jacquet module

IN,.9 (“”Indg‘(lgl(F)T ® | det |% X w) is trivial. The same is true if £ =n and Invt(¥) # O.

Proof. By Lemmal|7.0.8] it suffices to prove that the corresponding Jacquet module of Ind]GDf(";)l(F) !

vanishes. The space T ndgle;)l(F) @' has a filtration as a Q(F)-module, in terms of Q;(F)-modules

indexed by the elements of (W N P)\W/(W N Q). For any element = of P;(F)wQ¢F') the module

corresponding to w is isomorphic to c—ind fﬁpl(F)er(F) (' +pp,)oAd(x). Here Ad(x) denotes the

map given by conjugation by . It sends 2~ Py (F)xNQ(F) into P;(F). Also, here and throughout
¢ — ind denotes non-normalized compact induction. (See [Cass|, section 6.3.)

Recall from that the elements of the Weyl group of Ga,y1 are (after the choice of pr) in
natural one-to-one correspondence with the set of permutations w € G4,41 satisfying,

(1) wdn+1—1i) =4n+1 —w(i)

As representatives for the double cosets (W N P)\W/(W NQy) we choose the element of minimal
length in each. The permutations corresponding to these elements satisfy

(2) w™(2i) > w1(2i — 1) for i = 1 to 2n, and

(3 )€<z<j<4n+2 14 :>w()<w(])

Let I, be the Q(F)-module obtained as

c—ind® —(113)1(F)wﬂQg(F) (' + pp,) o Ad(w)

using any element w of pr=!(detw - w). (Cf. section )
A function f in I, will map to zero under the natural projection to Jn,¢(ly) iff there exists a
compact subgroup N} of N;(F) such that

/NO f(hn)d(n)dn =0  VYh € Qu(F).

(See [Cass], section 3.2.) Let h-9(n) = 9(h~tnh). It is easy to see that the integral above vanishes
for suitable N) whenever

(7.0.17) h - 9| N, (Fyw—1 Py (F)w 1S NONtTiVial.

Furthermore, the function h — h -1 is continuous in h, (the topology on the space of characters of
N¢(F) being defined by identifying it with a finite dimensional F-vector space, cf. section [3.8]) so
if this condition holds for all A in a compact set, then IV, g can be made uniform in A.
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Now, 1 is in general position. Hence, so is h - ¢ for every h. So, if we write
h-9(u) = o(crur + -+ + co—1up—1,0 + diug g1 + - - + dan—2041Up.an—041),

we have that ¢; # 0 for all i and ‘dwd # 0.

Clearly, the condition holds for all A unless

(4) w(l) >w(2) >--- > w().

Furthermore, because ‘dwd # 0, there exists some ig with £ 4+ 1 < 49 < 2n such that d;,_y # 0
and dypyo40—i, # 0. From this we deduce that the condition holds for all h unless w has
the additional property

(5) There exists ig such that w(¢) > w(ip) and w(¥f) > w(dn + 2 — ip).

However, if ¢ > n it is easy to check that no permutations with properties (1),(2), (4) and (5)
exist.

Thus Jn, ¢(1w) = {0} for all w and hence Jn, 9(*"Ind
of the Jacquet functor.

If ¢ = n, there is exactly one permutation w which satisfies (1)-(4). For this permutation,
condition (4) is satisfied only with iy = 4n + 2 — iy = 2n + 1. The orbit of ¥ contains characters
such that d; = 0 for all i # 2n + 1 iff Invt(¥) = O. O

Gan(F)

pr) T® | det |% Kw) = {0} by exactness

Proposition 7.0.18. Let 7 = Indg(Lé'i(ng(F)u, with p of the form (7.0.6), and let P denote

the Siegel parabolic subgroup. Then for £ > n and ¥ in general postion, the Jacquet module

jNé,g(“”Indg‘(‘;T(F)T ® |det |2 Rw) is trivial. The same is true if £ = n and Invt(9) = O.

Proof. For £ > n, the proof is similar to that of Proposition Using Lemma in place
of Lemma, [7.0.8] we consider a representation induced from a character of P, rather than P;. The
effect is that in place of condition (2) from the proof of Proposition we have the condition

2w 2 —1) <w H2i), 1<i<n, wl(2n)<wl@2n+1).

The set of permutations satisfying (1),(2),(3),(4) is again empty.

The proof of vanishing when ¢ = n and Invt(¥) = O is more nuanced. In this case we use both

Lemma and Corollary obtaining two filtrations of

Gant1(F) Gant1(F)
Ind P;( ;5)1 " @ m C Ind P;( ;E)l w,

indexed by (W N P)\W/(W N Q) and (W N P)\W/(W N Q). The latter is a refinement of the
former, in a manner which is compatible with the natural projection

(WP \W/(W N Q) — (WNEB)\W/(WNQy).

Let us denote the elements of the first filtration by I,, w € (WNP3)\W/(WNQy), and the elements
of the second by I, w € (W N P)\W/(W N Qy).

Now, when ¢ = n there is a unique permuation wy satisfying (1)(2'),(3), (4),(5). It is the shortest
element of the double coset containing the longest element of W. It follows that Jn,, 4([,) vanishes
for every w # wyp, and hence that Jn,, ¢(I,,) vanishes for every w other than the shortest element
of (WNPs)- wy- (W NQy), which we denote wy,.

The permutation w;, can be described explicitly as follows:

In+2-21 1<1<n-—1,

2n—1 1=n,
/. 20—2n—1 n4+1<1<2n -1, 2n4+3 <1 < 3n+1,
woli) =4 M < i< 42,

2n+3 1=3n+2,

Sn+4—-2i n+3<i<4n+1.
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Furthermore, the space I, is equal to the subspace of “" Ind]Gj;(";)l(F) 1" @mo consisting of smooth

functions having support in the open double coset P3(F') - wy(, - Q,(F'). Take such a function f and
take NO C N, (F), compact. Consider the integral

Flgn)d(n) dn.
NY

We may assume g = wjq for some g € Qp(F'). Then we get
[ fwona)g ) dn
qNpq~!

where ¢ - 9(n) = 9(¢~'nq). Hence, we consider

(7.0.19) I/ (won)¥' (n) dn,
NQ’

for ¥ a character of N,, such that Invt(¢') = O, f’ € I, and N © N,(F) compact. Observe
that woNpwy ! contains the unipotent radical Ug of the parabolic R of GSps used to define .
Indeed, if N, = {u € N, : upon = up2n+1 = 0}, then N, is a normal subgroup of N, and
N, = walURwo "N,. IfU C Umax, write U(p™) for {u € U : Ui € pNVi, 5.

For each h € Gy4p+1(F), the function g — f'(gh), g € GSp4(F) is an element of my. By Lemma
for each h there exists N such that

/ I (wouh)V' (uv) du = 0.
walUR(pN)wo

Clearly, N depends on f" and ¢, and hence, if f'(g) = f(g-q) and ¥ = ¢ -9, on ¢q. However, f
is smooth and has support which is compact modulo P3(F'), so f’ takes only finitely many values.
Furthermore, the ¢ - ¥ is a continuous function of ¢ in the sense discussed above. Thus, N may be
made uniform in q. O

Define a character 1, of N,,(F') by the same formula as in Definition In the proof of Lemma

5.1.10, we fixed a specific isomorphism inc : Ga, — (Lf”)o. For the next proposition only, we let
B denote the image under inc of the Borel B(Ga,) corresponding to our choices of maximal torus

and simple roots for Gs,. It is equal to (L%”)O N B(Gap+1). The corresponding maximal torus 7' is

the subtorus (ef : i =0, or n + 1 < i < 2n). Because of this Z?’;O cie; makes sense as a character
of T(F). (But depends only on ¢;, i =0, or n+ 1 <1i < 2n.)

(2
Proposition 7.0.20. Let Py, and p' be defined as in Lemma . Then we have isomorphisms

Pn Yn
INow b (Indng;)I(F) u') = IndSBL(’Ig))(F) = IndSBL(}))(F) W ( of Lﬁ" — modules),
(L™ (F)

(LE)O(F) s
B(F) H

B(F) (of (an)o — modules),

TNy, (Ind Gt ) 1y = Ingd * @ Ind

Py (F)
where

n n—1
pr= Z Mienti + e, = Z pinti + (2 — pn)ean + Qeo.
i=1 i=1

Proof. As before, we filter IndIGDfF;)l (F) ) in terms of Q,,(F)-modules I,,. This time, .7, Ny o (L) =
{0} for all w except possibly for one. This one Weyl element, which we denote wy, corresponds to
the unique permutation satisfying (1) and (2) of Proposition|7.0.16, together with wg (i) = 4n—2i+2

for i = 1 to n. Exactness yields

T (" IndGe5s 7 | det 2 Rw) = T, , (Tuy):
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(This is an isomorphism of Qﬁ" (F)-modules, where QZD” =N, -L¥" C Qn, is the stabilizer of 1,
in Q, (cf. LV above).)

Now, recall that for each h € Q,(F) the character h - 1, (u) = v, (h~'uh) is a character of N,
in general position, and as such determines coefficients hcl, .. ,h Cn—1 and hdl, . ,h don+1 as in

(-L3). Clearly,
Qo = {h € Qn(F)|dl # 0 for some i 7én+1,}
is open. Moreover, one may see from the description of wg that for h in this set the condition
(7.0.17)), which assures vanishing, is satisfied.
We have an exact sequence of Q4" (F)-modules

0— I — Ly — L, — 0,
where I’ consists of those functions in I,, whose compact support happens to be contained in ¢,
and the third arrow is restriction to the complement of (2. This complement is slightly larger than
QU™ (F) in that it contains the full torus of Q,(F), but restriction of functions is an isomorphism
of Qi (F)-modules,

7 Qi (F)

. /
Ly, — c— mdQ%”(F)mwglPl(F)wo (1 + pp,) o Ad(wy).

Clearly Jn, .y, (I5,) = {0}, and hence we have the isomorphism

Gang1(F ~ . QY (F
INntbn (I”dpf(;)l( ),U/> = TN b <c — anQ%nEF§ﬂw61P1(F)w0 (' +pp,) o Ad(w0)>

of Q%"—modules.

Let us denote

w(F)

wn ) s Py (F)wo
by V. A straightforward computation shows that the functions in V satisfy

flbg) = b4 f(q) Vb e B(F), ¢ € Qp(F),

c— indg (1 + pp,) o Ad(wo)

where
J = Z(z —n—1)enti.
i=1
For f eV, let
W(f)(q) = / — fug)in(w)du.
Np (F)Nwg  Unmax (F)wo

Then the character J computed above matches exactly the Jacobian of Ad(b), b € B(F'), acting on
N,(F)n wo_lUmaX(F)wo. It follows that

W (f)(bg) =b*"P2f(g)  Vbe B(F), g€ Q(F).
Now let W denote

{f:czm ~c

F(uq) = ta(u)f(q) ¥ u € No(F), q € Qi" (F),
f(bm) = bW 8 f(m)V b e B(F), m e L (F) [~
Then W maps V into W.

Denote by V(Ny,1n) the kernel of the linear map V. — Jn,, 4, (V). It is easy to show that
V(Np,y) is contained in the kernel of W. In the Lemma [7.0.22| below, we show that in fact, they
Ly (F) |

are equal. Restriction from Q4" (F) to LY (F) is clearly an isomorphism W — Ind B(F)
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The proof that this is isomorphic to Tnd” B( Fg ) p** and decomposes into (L%")O—modules in the

manner described is straightforward. ]

The next proposition is similar. However, there is an interesting difference between the two. In
the previous proposition, we let B denote the Borel subgroup B(Guny1) N (LE™)0 of (L4™)° = Gl
For the next, we use it to denote QQ2,,—1 N GY,,, which is a Borel subgroup of G§,,. The corresponding
maximal torus, G, N Lo, _1, is given by

n—1
{haH ehi(ti) - es, (x+yva) - (. —yva) ") eolz —yva)h,' i t; € F, wvyGF,xz—ayQ#O},

i=1

as in Lemma [5.1.10(3). Here \/a may be taken to be either of the solutions to ¢? = a in the
algebraic closure of F. We assume y/a ¢ F. The lattice of F-rational characters of this torus is
(enti: 1 <i<m—1, eay + 2e0). The character ea, + 2¢y is the restriction of a rational character

of the Lo, 1 = GL%"*]L x GSping. To be precise, it is the inverse of the character dety introduced
earlier. (Cf. Lemma 7.0.11]) Thus, a general rational character of this torus may be expressed as

n—1

E Cienyi + codet g,
=1

with ¢; € Z. In particular map, the restriction map from X (Lg,_1) is surjective. A general unram-
ified character of this torus may be expressed in the same form with ¢; € C. Then ¢;

Observe that for any ¢ in this torus det(¢) is a norm from F(y/a). When a is in the square
class which contains the non-square units (i.e., when F(y/a) is the unique unramified quadratic
extension of F) the absolute value of a norm is always an even power of ¢p, and so ¢ is defined

only up to log;F. (whereas the others are defined up to IOQJZ;F for1<i<n-1.)

We also let B denote Qon_1 N Li". (Recall that G, = (Lx%)o.) It is not difficult to see that
Lop_1 N L%" is properly larger that Lo, 1 N (Lf”)o, i.e., contains elements of the non-identity

component of L,l/{%. A character of B may be extended trivially to B. And any character of B which
is obtained as the restriction of a character of (J9,_1 is such a trivial extension.

Proposition 7.0.21. Let Py, and p" be defined as in Lemma|7.0.11. Then we have isomorphisms

va .
TN b (IndGALF}«t)l(F) = Indg&;))(m w ( of LY" — modules),

T (15 ) = (" Cof (L)° — modules),

where

i
N = Zﬂzen-i-z - < + ) det .

log g

Proof. We use Lemma and filter by @,-modules. As in Proposition [7.0.20, there is a unique
permutation w; such that the corresponding @),,-module I,,, does not vanish. This permutation is
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given by

An+2-2 1<i<n-—1,

2n+ 3 i=n,

21 —2n—1 n+1<i<2n-—1,
wy (i) = { i o <i<2n+2,

2t —2n—1 2n+3<i<3n+1,

2n —1 i=3n+2,

24n+2—-1i) 3n+3<i<4n+1.

The group @, N w; ! Pyw; contains Loy,_1. Since Loy - Qr" = @, restriction of functions is an

a
isomorphism of ();,"-modules,

le — C— indgz%ﬂw_ngwl (/LH + PPQ) o Ad(wl)
n 1

This time, let V' denote

¢ —ind?", (0" + pp,) o Ad(wn).

a
Qﬁ:"ﬂwl_ngwl

Once again the functions in V satisfy

flbg) =P~ f(q)  Vbe B(F), g € Q4" (F),
with J as before. We define

W(f)(a) =

[ fuadd,
Np(F)Nwy  Umax (F)w1

and find that W maps V to

— .ot (F)
W._{f.Qn () —cC F(bm) = b5 fm) ¥ b € B(F), m € L8 (F)

F(ug) = Y (u)f(q) ¥ u € No(F), q € QL™ (F), },

which is easily seen to be isomorphic to each of the induced representations specified. As before,
the kernel of the linear map V' — Jn,, 4, (V') is contained in the kernel of W. In Lemma [7.0.22] we
show that in fact, they are equal to complete the proof. ]

Lemma 7.0.22. Let ¢ be a character of N, in general position, H its stabilizer in L,, Uy and Us
two subgroups of N, such that Uy NUs =1 and U Uy = UsUy = N,,. Let B denote a Borel subgroup
of the identity component of H and x a character of B. Assume

(7.0.23) B(F)H (o) = H(F).

Let V' denote a space of functions on N, (F) - H(F') which are compactly supported modulo U;(F)
on the left and satisfy

f(uibg) = x(0)f(q)  Yur € Ur(F), b € B(F), q € H(F)Ny(F).

Let V (N, ) denote the kernel of the usual projection from V' to its twisted Jacquet module.
Let

WUW@‘Z*@ﬂM@MmMm.

Then Ker(W) C V(Np, V).
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Proof. We assume that
| tgitudu=o
UQ(F)

for all ¢ € H(F)N,(F). What must be shown is that there is a compact subset C' of N, (F') such
that

/ F(gu)d(u)du = 0,
C

for all ¢ € H(F)N,(F).
Consider first m € H (o). Let p denote the unique maximal ideal in 0. If U is a unipotent subgroup
and M an integer, we define

Up™) = {u € U(F) : ui; € p™ Vi # j}.

Observe that for each M € N, N, (pM) is a subgroup of N, (F) which is preserved by conjugation
by elements of H (o). We may choose M sufficiently large that supp(f) C U (F)Us(p~™)H(F).
Then we prove the desired assertion with C' = N,,(p~). Indeed, for m € H(0), we have

mu)d(u)du = um)d(u)du,
[ S = [ i

N(p—M)

because Ad(m) preserves the subgroup N, (p~™), and has Jacobian 1. Let ¢ = Vol(Ui(p~™)),
which is finite. Then by Uj-invariance of f, the above equals

= c/ f(um)d(u)du.
Uz(p~M)

This, in turn, is equal to

= c/ f(um)d(u)du,
Us(F)

since none of the points we have added to the domain of integration are in the support of f, and
this last integral is equal to zero by hypothesis.

Next, suppose ¢ = ugm with ug € Us(F) and m € H(0). If ug € Ua(F) — Ua(p~™) then qu is not
in the support of f for any u € Us(p~™). On the other hand, if ug € Uz (p~), then

/ fugmu)d(u)du = / f(ugum)9(u)du
N (p=) Nn(p~M)

= o) [ fam)Bd

and now we continue as in the case u; = 1.
The result for general ¢ now follows from the left-equivariance properties of f and (7.0.23). O

8. APPENDIX III: IDENTITIES OF UNIPOTENT PERIODS

8.1. A Lemma Regarding Unipotent Periods. We begin with a few remarks which are valid
in the setting of section There is a natural action of G(F) on the space of unipotent periods
U given by - (U,¥) = (YUy~,~v - 1) where v - p(u) = (v uy). We shall refer to this action as
“conjugation.” Obviously, unipotent periods which are conjugate are equivalent.

Lemma 8.1.1. Suppose Uy D Uy D (Uy,Uy) are unipotent subgroups of a reductive algebraic group
G. Suppose H is a subgroup of G and let f be a smooth left H(F')-invariant function on G(A).
Suppose ¥y is a character of Us such that w2\(U17U1) = 0. Then the set resfl(TﬂQ) of characters of Uy
such that the restriction to Uy is 1o is nontrivial. (Here “res” is for “restriction” not “residue”.)

The elements of res™!(1)2) are permuted by the action of Ny (Up)(F). The following are equivalent.
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(1) f(Uzﬂl)z) =0
(2) fWUL¥1) =0 Vepy € res™(ahy)
(3) For each Ny (Uy)(F)-orbit O in res— (1py) Ipy € O with fUL¥1) =0

Proof. 1t is obvious that 1 implies 2 and 3, and that 2 and 3 are equivalent. Consider

f(UW/’?)(ulg) = / f(ugu19)a(uz)dus,

Usx(F\A)
regarded as a function of u;. It is left uo invariant and hence gives rise to a function of the compact
abelian group Uz(A)U;(F)\U;i(A). Denote this function by ¢(u1). Then

0) = duq,
#0) g/UQ(A)UI(F)\Ul(A) Pl

where “0” denotes the identity in Us(A)U; (F)\U1(A), and the sum is over characters of Ua(A)Uy (F)\U1(A).
This, in turn, is equal to

Z/D/U(F\A)f(wmg)@bz(ug)dUQX(ul)dul7
X 2

for D a fundamental domain for the above quotient in U;(A). The group U, /(Uy,U;p)(F) is an
F-vector space (cf. section which can be decomposed into Uz /(Uy,U;)(F') and a complement.
The F-dual of this vector space is identified, via the choice of v, with the space of characters of
U1(A) which are trivial on Uy (F). It follows that the sum above is equal to

= .
Z (b2) /Ul(F\A) f<ulg)1/]1(u1) Uy

11 Eres—1

The matter of replacing the sum over y by one over 1; € res (1) is clear from regarding
U1/(Uy,Uyp)(F) as a vector space which can be decomposed into Us/(U;,Up) and a complement.
Now 2 = 1 is immediate. U]

Corollary 8.1.2. If Ng(H) permutes the elements of res™'(1)o) transitively, then (Usa,t)a) ~
(Uz, 41) for every iy € res™ ().

Definition 8.1.3. Many of the applications of the above corollary are of a special type, and it
will be convenient to introduce a term for them. The special situation is the following: one has
three unipotent periods (U;, ;) for i = 1,2,3, such that Uy = Uy N Us and 1|y, = ¥sly, = ve.
Furthermore, Uy normalizes Us and permutes transitively, the set of characters v} such that ¥4|u,,
and the same is true with the roles of 1 and 3 reversed. In this situation, the identity

(Ulvwl) ~ (U27¢2) ~ (U3>¢3)7
(which follows from Corollary will be called a swap, and we say that (Uy,11) “may be
swapped for” (Us,1s), and vice versa.
8.2. A lemma regarding the projection, and a remark.

Lemma 8.2.1. The action of Gy, on itself by conjugation factors through pr.

Proof. One has only to check that the kernel of pr is in the center of G,,. When we regard G,,
as a quotient of Spin,, x GLi, the quotient of pr is precisely the image of the GL; factor in the
quotient. 0

Corollary 8.2.2. Let u be a unipotent element of Gp,(A) and g any element of Gy, (A). Then
pr(gug™') is a unipotent element of SO, (A) and gug™' is the unique unipotent element of its
preimage in Gy, (A).
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Remark 8.2.3. This fact, combined with the fact that pr is an isomorphism of varieties when
restricted to the subvariety of unipotent elements of G.,, means that many statements may be proved
for GSpin groups simply by taking the proof of the corresponding statement for special orthogonal
groups and inserting the words “any preimage of” here and there.

8.3. Relations among Unipotent Periods used in Theorem [5.1.15

Lemma 8.3.1. Let (U, ¢{) and (Uz,¢§) be defined as in Theorem |5.1.15 Then (U{,¢f) ~
(Ua,05), for all a € F.

Proof. We regard a as fixed and omit it from the notation. We define some additional unipotent
periods which appear at intermediate stages in the argument. Let Uy be the subgroup defined by
Up,; = 0 for j =n to 2n — 1 and ug, 2,41 = 0. We define a character 14 of Uy by the same formula

as 1. Then (U1, 1) may be swapped for (Us,14). (See definition )
Now, for each k from 1 to n, define (Uék),d)ék)) as follows. First, for each k, the group Uék) is
contained in the subgroup of Uyax defined by, ugy, 2,41 = 0. In addition, u,4r—1; = 0 for j < 2n,

and u; ;41 =0ifn—-k+1<i<n+k—-landi=n—-k+1 mod 2, andq/)ék)(u) equals

n—k n+k—2 a 2n—2
o E Ui i+l + Z Uji4+2 + Untk—1,2n T §un+k71,2n+1 + Z Uji+1 + U2n—12n+2 | -
i=1 i=n—k+1 i=n+k

(Note that one or more of the sums here may be empty.)

Next, let Uék) be the subgroup of Upax defined by the conditions ug, 2,41 = 0, tyyp—1,; = 0 for
Jj<2n,and uji41 =0ifn—-k+1<i<n+k—1andi=n—k mod 2. The same formula which

defines @bék) also defines a character of Uék). We denote this character by Q,Z)ék).
We make the following observations:

. (Uél),wél)) is precisely (Uy,14).

e For each k, (Uék),¢ék)) is conjugate to (Uékﬂ)7 ékﬂ)). The conjugation is accomplished by
any preimage of the permutation matrix which transposes ¢ and ¢ +1 forn—k <i<n+4+k
and i =n —k mod 2.

. (Uék),i/}ék)) may be swapped for (Uék),i/}ék)).

Thus (Us, 1) ~ (U, 4" Y),
Now, let U} = U™, and let

a
vo(u) = P(urs + - + U2n—2,2n + U2n—22n+1 + SU2n—12n + Uon—1,2n+42)-

Then (Uénil), wgnfl) is conjugate to (U}, 15), which may be swapped for (U, 12). O
Lemma 8.3.2. Let (Us,1)3) and (Ua, 1Y) be defined as in Theorem|5.1.15. Then
(Us, 3) € ((Uz,¥9), {(Ng,9) : n < £ < 2n and 9 in general position.}).

Proof. To prove this assertion we introduce some additional unipotent periods. For k = n to 2n—1

let U7(k) denote the subgroup of Unax defined by ug, 2,41 = 0, and uj0, =0 for k+1 <7 <2n—1,
and let

k—1 2n—2

k

P (w) = 9o (Z Wiit1 + Ukan + Y Uiit1 u2n—1,2n+2> :
i=1 i=k-+1

Let Uék) denote the subgroup defined by by u2,—12,41 = 0, ug; = 0 for k +1 < j < 2n, and let

Uék) denote the subgroup defined by the additional condition w2, = 0. The same formula which
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defines wgk) may be used to specify a character of Uék), which we denote 1/J§k). In addition, let

2n—1
(z b+ e+ 3 )

i=k+1

be denoted by w( for u € Uy’ or wg for u € U(k).
Now, we need the followmg observations:

. (U7n),¢$n)) is just the period (UY,4?) from theorem [5.1.15 and so is equivalent to (Us, 19)
by the previous result.

e For each k, (Uén),wgn)) is conjugate to (Uékﬂ),zpékﬂ)). (One conjugates by a preimage of
a permutation matrix and then by a toral element to fix a minus sign which is introduced.)
(k+1) 7(k+1) - (k+1) , (k+1) . o
o (Ug "7, 4pg ") is spanned by (Ug ' /,vg ') and {(NNk, ) : ¥ in general position}. More
precisely, if 9 is any extension of @Dékﬂ) which is not in general position, then the restriction
of 19 to Us is ¢8k+1 ). (Cf. Corollary )

( 8 ﬂzg ) is conjugate to (Uék),wsk ).
o (U ) may be swapped for (U ),

We deduce that (Us, 19) divides (Ug uZn=b ,w(% 1) ) a period which differs from (Us, ¢3) only in that
integration over ugy, 2,41 is omltted Thus (Us,3) is the constant term in the Fourier expansion

of (U82" 2 ,w;n 2 ), in the variable wugy 2,41, while all of the nonconstant terms are Whittaker
integrals with respect to various generic characters of Upax. As E_1(7,w) is non-generic, they all
vanish. The result follows. O

Lemma 8.3.3. Take a € F*. We regard a as fized throughout and, for the most part we suppress
it from the notation. As in Theorem [5.1.13, let V; denote the unipotent radical of the standard
parabolic of Gany1 having Levi isomorphic to GL; X Gan—2i41 (for 1 <i <2n). For 1 < j < 2n,
let V;m_zj denote the unipotent radical of the standard mazimal parabolic of G§,_o; having Levi
isomorphic to GL; x GZn—Qj—% (for 1 < i < 2n — j — 2 in the split case and 1 < i < 2n —j —2
in the nonsplit cases). Let (Ng, 1)) be the period used to define the descent, as usual, and let
(Ng,w?)(‘m*%*l) denote the analogue for Gap_opi1, embedded into Gypy1 inside the Levi of a

maximal parabolic.
Then, (V2" 1) o (Ny, 1) is an element of

(Nt )y A Nty o) 245 0 (Ve 1) 2 1< G < ).

Proof. In this proof, we shall not need to refer to any of the unipotent periods defined previously.
On the other hand we will need to consider several new unipotent periods.

Let m = (mj,ma2,m3) be a triple of integers satisfying: 0 < m; < mg < m3+ 1 < 2n. We
associate to this data a unipotent group U,, and two characters v,,, ! as follows:

e Up, is defined by the condition that u;; = 0 whenever m; < i < mg — 1 and j < mg, or
ms < 1,

-1
* Ym(u) =10 (Z;@l Ui i1 + Umy+1,my + Z?fm Uji+1 + Umg,2n + %um3,2n+2> )
—1 —1
® r,(u) = o (22111 Uji+1 + Umy,ma—1 T E?fm:l Ui it1 + Umg,2n + %um3,2n+2> .

Then (U, ¥,) is conjugate to (Up, V) and may be swapped for (U, ¥ ), where (mq, ma, ms)’ =

(m1—1,my—1,mg3). Furthermore, for any k < n, (V?",1)o(Ny, ;) is an integral over the subgroup

of Upnykt1,ntk defined by the conditions, u; 0, = —Fu;2n 2, for n <i < n+k. It may be swapped
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for the period (U, ") corresponding to m = (n — 1,n+ k + 1,n+ k), and

n—1
a
P (u) = o (Z Ui i+l + Un,2n + 2un,2n+2> ;

=1

and this period is conjugate to (Up,1,,) for this value of m. It follows that (V;>",1) o (N, 1y, is
equivalent to (Uy,,),) for the triple m = (0,k + 2,n + k).
Now, it’s easy to see that (U(071,m3),w201m3)) = (Nms, Y, ), and that for ma > 2 there are

two orbits of extensions of (0, m,,ms) 10 U(0,my—1,ms), namely, the one containing wz ) and

0,m2—1,m3
the trivial extension, which yields the period (Npg—my+2, Y%, —mys2) 7 2"25) o (Vi,—2,1). This
proves the assertions regarding all cases except for the two parabolics with Levi isomorphic to
GL, x GL,, in the split case.

As noted previously, it is enough to consider one of them, because they are conjugate in Gay41.
Furthermore, we may conjugate by h,, and use the more convenient embedding of GQDn into Gyp+1
as (L¥™)O.

For this case we take m € Z with 0 < m < n, and define U,,, to be the subgroup of Uy,.x defined
by u; ; = 0 whenever m <i < j <m+n+ 1. Take

2n
U (1) = 1o (ZZ = 1" i1+ Ut + Y Ui,i+1> ;

i=m+n+2

2n
m (1) = Yo (Z@ = 1™ + Utttz ) Ui,z‘ﬂ) :
i=m+n+3
Then (V,?",1) o (Np, ) = (Up, ). Furthermore (U,,,v,) is conjugate to (Up,, ") and may be
swapped for (Uy,—1,%¢), ). Furthermore, (U, 1) is easily seen to be in the span of the periods

(U4n—2k+1’ 19) o (Vk, 1)

max

for 0 < k < n and ¥ a generic character of the maximal unipotent subgroup of Gy4,,—2x+1 (embedded
into G4n+1) as a component of a standard Levi as usual. This completes the proof. O

8.4. Relation of periods on U, via theta functions. The next relation of unipotent periods
differs from all the others, both in the nature of the statement and in the nature of the proof. We
described in section how a character of U(F\A), where U is a unipotent subgroup of a reductive
group G, may be thought of as an element of an F-vector space equipped with an algebraic action
of Ng(U). For purposes of this discussion it is more useful to identify this character with an element
of a space having an action of all of G, which is compatible with the action of G(F') on unipotent
periods by conjugation (as in , and this may be done using the coadjoint representation of G
on the F-dual, g7, of its Lie algebra.

Observe that if an equivalence between (Uj, 1) and (Us,12) can be proved using conjugation
and swapping, then ¢; and 2 correspond to points in the same orbit of G(F') acting on g}.. The
manner in which U; and Us will be related is not as easy to describe, but one may note for example
that they will have the same dimension.

So far, we have proved relations of two forms

e Equivalencies, in which the unipotent subgroup U is replaced by another of the same di-
mension, and the character v by another in the same orbit.
e Relations where one replaces U by a group of properly larger dimension, and considers all
orbits of extensions of .
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The statement that (Us,19) is spanned by {(Us,9$) : a € F*} is of a different nature, and it is
proved by a different method, which was shown to us by David Ginzburg.
Let V' denote the subgroup of Upax defined by ug;—12; = 0 for 1 < i < n. We begin by defining
a certain representation of V/(A). It will be convenient to introduce explicitly the isomorphisms of
various root subgroups of Unax with G, corresponding to our coordinates wu;;. Thus, let ;; : G —
Umax be defined by the condition that
(:L'ij(T))kj:éi’k(Sk’g?“, for1<i<j<dn+1-—i, 1<k<il<4n+1-—k.

Let U;; denote its image.

The main thing is to define the action of the subgroup of Uy of V' consisting of those elements
such that u;; = 0 whenever i < 2n — 1. This subgroup is the product of Us,—1,2n41, U2n—1,2n+2 and
Uan 2n+1- It is a Heisenberg group in three variables, with center Uz, —2 2,+42.

As is well known, Ug(A) has a unique isomorphism of class of representations 7 satisfying

T(Ton—12n+2(r))v = Yo(r)v,
and there is a representation wy, in this class given by action on the space S(A) of Schwartz
functions on A such that

Wypo (T2n-1,2041(r))P(x) = Yo(rz)d(z), and

Wy (T2n,2n41(r))p(x) = ¢z + 7).
This may then be extended to an action of all of V(A) by decreeing u acts by the character

2n—2
vy (u) == tho (Z Uiiv2 + u2n—1,2n+2>

i=1
whenever u is in the subgroup V2(A) of V(A) defined by ugp—1.2n+1 = u2n2n+1 = 0. Observe that
this character is the common restriction of all the characters 5.

The group V is the unipotent radical of a certain parabolic R. Let L denote its Levi factor.
It acts on the space of characters of V5. The stabilizer is isomorphic to SLy. Its image under pr
consists of matrices of the form

diag(g,...,9,1, g, -, t9), g € SLs.
Denote this stabilizer Sy. Then wy, extends to a projective representation of V(A) x Sy (A) or a
genuine representation of V(A) x §¢ (A), where  denotes the metaplectic double cover. It is known
that Sy (F) lifts to a subgroup of §¢(A). The representation wy, has an automorphic realization

given by theta functions
05°(9) = > wyy(9)8(€)-
(eF

For ¢ € S(A) and ¢ € C®°(Gap+1(F\A)) we may now define
O5(1) : Sy(F)\Sy(A) — C
by
Oue)R) = [ plup(R)s(uh) do
V(F\A)
where pr denotes the projection §¢(A) — Sy (A). Observe that the subgroup Us is the product of a

codimension one subgroup of V' and Uriﬁx := Sy N Unax, which is a maximal unipotent of Sy. The
group Uriﬁx(A) lifts to a subgroup of 51/, (A). For a € F let

04(p) = /U o oy QP )
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Lemma 8.4.1. Fora € F, and p € C®(Gan11(F\A)),
P2 =0 = O%(p(g)p) =0 VoeSA).
Proof.

HOIOE N

max

(F\&) /V(F\A) Zg: p(vuh)yy (vuh)g(E)dvyo(aus 2) du

/S / Z ©(T2n,2n4+1 (&) vuh)wyy (20,2041 (§)vuh)d(0)dvipg(aui2) du.
Unax(F\A) JV(F\&) 2
We may rewrite U{f{f{x -V as Us - Uz 2n+1, Obtaining

2/ / O(x2n 2n+1 (&) U2 2n 2n41(7) ) wasy (T2n,2n+1(§) U2Zon 241 (1) ) P(0)dus dr.
= S Ju )

= [ s €+ PR, (uaanan €00 dus
= Jiw) Juaria

= / / P(u2m2n,2041(r)h)wy, (U2T2n,20+1(1)R)P(0)dus dr.
A JU(F\A)
But from the description of the action wy,, given above we see at once that
Wapg (u2x2n,2n+1(r)h)¢(0) = 1/}3(“2)“1110 ($2n,2n+1(r)h)¢(0)7
so we have

/‘P(UQ’%)(wzn,an(T)h)wzpo(332n,2"+1(r)h)¢(0) dr.
A

Our assertion now follows, for a smooth function whose integral against every Schwartz function is
the zero function (and vice versa). O

Corollary 8.4.2. Let the group Us, and the character 1§ for each a € F' be defined as in the main
theorem. Then (U, ) € ({(Ua,1§) : a € F*}).

Proof. In light of lemma this now follows from the fact that a genuine function on 5L (A)
can not be equal to its constant term. O
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