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Abstract. In this paper we provide an extension of the theory of descent of Ginzburg-Rallis-
Soudry to the context of “almost orthogonal” representations, that is representations τ with the
property that the symmetric square L-function, twisted by some Hecke character ω has a pole.
Our theory supplements the recent work of Asgari-Shahidi on the functorial lift from (split and
quasisplit forms of) GSpin2n to GL2n.
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1. Introduction

The theory of descent for symplectic cuspidal representations of the general linear group GL2n(A)
was developed in a sequence of remarkable works [GRS1]-[GRS5]. In these works the authors
constructed in an explicit way a space σ(π) of cuspidal automorphic functions on SO2n+1(A) which
weakly lifts to a cuspidal self-dual representation π of GL2n(A) with the property that L(π,∧2, s)
has a pole at s = 1. In [C-K-PS-S2] the method the of converse theorem is used to show the existence
of a weak functorial lift from generic cuspidal automorphic representations of classical groups to
automorphic representations of the general linear group. The combination of these methods allows
the authors of [GRS4] to describe the image of the functorial lift of [C-K-PS-S1].

Thus, the conjunction of the descent method with the method of the converse theorem provides
a very detailed description of the image of functoriality corresponding to the standard embedding
of LG→ GLN (C) with G a classical group. For an excellent survey we refer the reader to [So1].

Recently, Asgari and Shahidi proved in [Asg-Sha1] the existence of weak functorial lift from
GSpin groups to the general linear group. Later, in the special case of GSp(4) they were able to
show in [Asg-Sha2] that this weak functorial lift is in fact strong in an appropriate sense.

In this paper we extend the descent method of Ginzburg, Rallis, and Soudry to GSpin groups.
As a bonus,for n ≥ 2 we can provide a “lower bound” on the image of the functorial lift from any
quasisplit form of GSpin2n to GL2n constructed by Asgari and Shahidi.

Let us briefly review the method. For simplicity of the exposition we assume that we are trying
to construct a descent for a cuspidal representation, τ.

We first relate the property of essential self-duality to the existence of a pole of an L-function of τ ,
and then construct an Eisenstein series with the L-function appearing in the constant term. In fact
there are two possibilities for what the L-function is, and hence two possibilities for the structure
of the Eisenstein series, and we only consider one in these notes. Our Eisenstein series will be
defined on the group GSpin4n+1 induced from a Levi M isomorphic to GL2n×GL1. Now a pole of
the relevant L-function allows us to construct a residue representation E−1(τ, ω) of GSpin4n+1(A).
Next, we give an embedding of each quasisplit form of GSpin2n into GSpin4n+1, and construct,
using formation of a Fourier coefficient, a space of functions on this subgroup of GSpin4n+1.

Now, quasisplit forms of GSpin2n are in natural one-to-one correspondence with quadratic char-
acters χ : A×/F× → ±1. To discern the form of GSpin2n to which a given representation τ will
descend, we observe that τ ∼= τ̃ ⊗ ω implies ω2

τ = ω2n. Here ωτ denotes the central character of τ.
Hence ωτ/ωn is some quadratic character χ.

Let DCχω(τ) denote the space of functions constructed on the quasisplit form of GSpin2n cor-
responding to the character χ, which we denote GSpinχ2n. Then we prove that DCχω(τ) is zero,
except when χ is the quadratic character obtained from τ and ω, in which case it is nonzero, and
all of the functions in it are cuspidal. It follows that it decomposes as a direct sum of irreducible
automorphic cuspidal representations of GSpinχ2n. We then show that each of these irreducible
constituents lifts weakly to τ by the functorial lifting associated to the map

L(GSpinχ2n+1) = GSO2n(C) o Gal(E/F ) → GL2n(C) = LGL2n.

sending the nontrivial element of Gal(E/F ) to
In−1

1
1

In−1

 .

(Here E is the quadratic extension of F corresponding to χ.) In fact in these notes the representation
τ may be an isobaric sum of several cuspidal representations τ1, . . . , τr. The main differences are
that the residue is a multi-residue, and the notation is more complicated.
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2. The main result

Let G = GSpin2n and let H = GL2n. Consider the inclusion
LG =L (GSpin2n) = GSO2n(C) ↪→ GL2n(C) = LGL2n =L H.

We denote this map r. Also, if π ∼= ⊗′
vπv is an automorphic representation of a group G′(A), where

A is the ring of adeles of a number field F, then the semisimple conjugacy class in the L-group
LG′ associated to the local representation πv at an unramified place v will be denoted tπv . We say
that an automorphic representation σ of G(A) is a weak lift of the automorphic representation τ
of H(A) if for almost all places, r(tσv) ⊂ tτv .

To formulate our main result we introduce the notion of η-orthogonal representations. Let τ be
an irreducible automorphic cuspidal representation of GL2n. Suppose that τ is essentially self-dual,
i.e. that the contragredient τ̃ of τ is isomorphic to τ ⊗ η for some Hecke character η. It follows
from [Ja-Sh2] (see remark (4.11) pp. 553-54) that L(s, τ × τ ⊗ η) has a simple pole at s = 1. Now,
L(s, τ × τ ⊗ η) is the Langlands L function of the representation τ � η (exterior tensor product) of
the group GL2n(A)×GL1(A) associated to the representation of the L group GL2n(C)×GL1(C)
(finite Galois form) on M2n×2n(C) in which GL2n(C) acts by g · X = gX tg and GL1(C) acts
by scalar multiplication. But this representation is reducible, decomposing into the subspaces of
skew-symmetric and symmetric matrices. We denote the associated L functions L(s, τ,∧2 × η)
and L(s, τ, sym2 × η) respectively. The local factors at finite ramified places may be defined using
the local Langlands classification ([L2],[H-T],[Henn1]) and the definition of an Artin L function
attached to a finite dimensional representation of the Weil group [Tate1], or they may be defined
as in [Sha2]. By [Henn2] these two definitions agree. Then we have

L(s, τ × τ ⊗ η) = L(s, τ,∧2 × η)L(s, τ, sym2 × η).

As both of the L functions on the right-hand side are obtainable via the Langlands-Shahidi method,
neither may vanish at s = 1 (see [Gel-Sha] §2.6 p. 84). Thus, exactly one of these two L functions
has a simple pole at s = 1 while the other is holomorphic and nonvanishing. Similarly, if τ̃ is
not isomorphic to τ ⊗ η then they are both holomorphic at s = 1. (This requires the extension
of [Ja-Sh2] remark (4.11) to completed L functions– i.e., the statement that none of the local L
functions has a pole at s = 1. The requisite facts about local L functions are well-known and a
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proof is reviewed at the end of Theorem 4.0.4.) One may prove the second assertion using results
of Langlands via the method explained on p. 840 of [Kim1].

We will say that τ is η-symplectic in case L(s, τ,∧2 × η) has a pole at s = 1 and η-orthogonal
otherwise. We also define “almost symplectic” to mean “η-symplectic for some η,” and “almost
orthogonal” similarly.

Remarks 2.0.1. (1) There is another natural notion of “orthogonal/symplectic representa-
tion.” Specifically, one could say that an automorphic representation is orthogonal/symplectic
if the space it acts on supports an invariant symmetric/skew-symmetric form. The two no-
tions appear to be related, but do not coincide. See [PraRam].

(2) There is a third approach to defining a local factor for L(s, τ,∧2 × η), which is to apply the
“gcd” construction described in [Gel-Sha] section I.1.6, p. 17, to the integrals in [Ja-Sh1].
As far as we know this is not written down anywhere.

(3) An integral representation for L(s, τ, sym2) was given in [BG]. The problem of extending
this to L(s, τ, sym2×η) has been considered by Banks [Banks1, Banks2]. Nontrivial technical
difficulties arise, particularly in the case we consider, when τ is defined on GL2n [Banks3].

(4) Let AS denote the functorial lift constructed in [Asg-Sha1]. It is shown in [Asg-Sha1] that

AS(π) is nearly equivalent to ÃS(π) ⊗ ωπ, where ωπ denotes the central character of the
representation π. (Of course, this means that they are the same space of functions when
AS(π) is cuspidal.) Thus, in practice it turns out to make sense to use η = ω−1(= ω̄).

By proposition 2 of [L3], every irreducible automorphic representation of GLn(A) is isomorphic
to a subquotient of IndGLn(A)

P (A) τ1|det1 |s1 ⊗ · · · ⊗ τr|detr |sr for some real numbers s1, . . . sr and
irreducible unitary automorphic cuspidal representations τ1, . . . , τr of GLn1(A), . . . , GLnr(A) re-
spectively, such that n1 + · · ·+ nr = n. Here P is the standard parabolic of GLn corresponding to
the ordered partition (n1, . . . , nr) of n. In the case when si = 0 for all i, this induced representation
is irreducible. (This follows from the irreducibility of all the local induced representations, which
is Theorem 3.2 of [Ja].) Also, the representations obtained by numbering a given set of cuspidal
representations in different ways are isomorphic. (This follows from the fact that the standard
intertwining operator between them does not vanish, which follows from [MW1], II.1.8 (meromor-
phically continued in IV.1.9(e)), and IV.1.10(b). In IV.3.12 these elements are combined to prove
that the intertwining operator does not have a pole. The proof that it does not have a zero is
an easy adaptation.) Furthermore, if two such induced representations are isomorphic, then they
are obtained from two numberings of the same set of cuspidal representations ([Ja-Sh3], Theorem
4.4, p.809). An irreducible unitary representation τ of GLn(A) which is obtained from irreducible
unitary cuspidal representations τ1, . . . , τr in this manner is sometimes called the isobaric sum of
the cuspidals, and denoted τ1 � · · · � τr. (A more general notion of “isobaric representation” was
introduced in [L4], but we don’t need it.)

Theorem 2.1. For r ∈ N, take τ1, . . . , τr to be irreducible unitary automorphic cuspidal represen-
tations of GL2n1(A), . . . , GL2nr(A), respectively, and let τ = τ1 � · · · � τr. Let n = n1 + · · · + nr,
and assume that n ≥ 2. Let ω denote a Hecke character, which is not the square of another Hecke
character. Suppose that

• τi is ω−1-orthogonal for each i, and
• τi ∼= τj ⇒ i = j.

For each i, let χi = ωτi/ω
ni (which is quadratic), and let χ =

∏r
i=1 χi. Then there exists an

irreducible generic cuspidal automorphic representation σ of GSpinχ2n(A) such that
• σ weakly lifts to τ, and
• the central character ωσ of σ is ω.
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Remark 2.0.2. As was helpfully explained to us by H. Jacquet, the n = 1 case of our theorem
follows from earlier work of Labesse-Langlands [L-L]. See also [Kaz]. Indeed, when n = 1, the
function L(s, τ, sym2×ω−1) has a pole iff χ is nontrivial, because L(s, τ,∧2 × ω−1) = L(s, χ)).
In this case the representation τ that we consider is a cuspidal automorphic representation of
GL(2,A). It is known that in this case τ̃ = τ ⊗ ω−1

τ (see, e.g., [?], Theorem 3.3.5, p. 305). It
follows that our original L-function on τ is, in this case, equivalent to requiring that τ = τ ⊗ χ for
some nontrivial quadratic character τ. The automorphic representation obtained from the descent
construction in this case is simply a character of ResEF GL1(A), where E is the quadratic extension
of F corresponding to χ. Thus, we have recovered proposition 6.5, p. 771 of [L-L].

Corollary 2.2. The image of the functorial lift AS described in Theorem 1.1 (p. 140) of [Asg-Sha1]
contains the set of all representations τ1 � · · ·� τr such that

• τi ∼= τj ⇒ i = j,
• there is a Hecke character ω such that τi is ω−1- orthogonal for each i.

3. Notation

3.1. General. Throughout most of the paper, F will denote a number field. In Appendix II, it
will be a non-Archimedean local field of characteristic zero.

We denote by J the matrix, of any size, with ones on the diagonal running from upper right
to lower left, and by J ′ the matrix

(
J

−J
)

of any even size. We also employ the notation tg for
the transpose of g and tg for the “other transpose” J tgJ. We employ the shorthand G(F\A) =
G(F )\G(A), where G is any F -group.

We denote the Weyl group of the reductive group G by WG or by W, when the meaning is clear
from context.

If π is an automorphic or local representation, then π̃ is the contragredient, and ωπ the central
character.

3.2. Various Products. Most tensor products will be denoted ⊗. However � will sometimes be
used to distinguish the “outer” tensor product from the “inner” tensor products and “twisting.”
Let us recall these notions.

If (π1, V1) and (π2, V2) are representations of groups G1 and G2, then one may consider the
representation of G1 ×G2 on V1 ⊗ V2 given on pure tensors by

(π1 ⊗ π2)(g1, g2)v1 ⊗ v2 = π1(g1)v1 ⊗ π2(g2)v2.

If (π1, V1) and (π2, V2) happen to be two representations of the same group G, then this construction
yields a representation of G × G. The space V1 ⊗ V2 also supports a natural “tensor product
representation” of the group G itself with the action given on pure tensors by

(π1 ⊗ π2)(g)v1 ⊗ v2 = π1(g)v1 ⊗ π2(g)v2.

The representation of G×G on V1 ⊗ V2 is sometimes called the outer tensor product and denoted
� to avoid ambiguity.

Adding to the mix, the twist of a representation π of GLn(A) by a Hecke character χ is often
denoted π ⊗ χ. In terms of the constructions above, it is the inner tensor product of π and the
representation of GLn(A) obtained by composing χ with det . We shall keep to this notation. We
shall also need to consider the (outer) tensor product representation of GLn(A)×GL1(A), for which
we employ �.

Let us mention that � will not be used in the sense of [L4].
In addition to ⊗ and �, we use � for “isobaric sum” as described above. We use × for Cartesian

product of sets, groups, etc., and in the notation for various L functions (e.g., sym2 × ω−1).
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3.3. Notions of “genericity”. Let G be a quasisplit reductive group over the number field F,
and Umax a maximal unipotent subgroup. First let ψv be a generic character (cf. [Kim2], p. 147,
and also [Sha1], p.304) of Umax(Fv) for some place v of F, and (πv, V ) a representation of G(Fv).
We say that πv is ψv-generic if it supports a nontrivial ψv-Whittaker functional (i.e., a Umax(Fv)-
equivariant linear map V → Cψv , which is continuous in an appropriate topology, see [Sha1], p.
304. Here Cψv denotes the one-dimensional Umax(Fv)-module with action via the character ψv. )
Now let ψ =

∏
v ψv and π ∼= ⊗v ′πv be a character of Umax(F\A) and an automorphic representation

of G(A) respectively.
Ignoring topological considerations, it is easy to see that the space HomUmax(A)(Vπ,Cψ) is nontriv-

ial iff each of the spaces HomUmax(Fv)(Vπv ,Cψv) is. However, it turns out that the more important
issue is not whether there exists some nontrivial ψ-Whittaker functional, but whether the specific
ψ-Whittaker functional given by

ϕ 7→
∫
Umax(F\A)

ϕ(u)ψ̄(u) du

is nonvanishing. We refer to this Whittaker functional as the ψ-Whittaker integral. (See [Gel-So]
for an example where the Whittaker integral vanishes, but a nonzero Whittaker functional exists.)

We would like to take this opportunity to draw attention to the subtle fact that there are two
slightly different notions of global genericity for automorphic representations in common usage.
The first states that a representation is globally ψ-generic if it supports a nonzero ψ-Whittaker
integral. The second– which was the notion originally introduced in [PS]– requires that a cusp-
idal representation be orthogonal to the kernel of the ψ-Whittaker integral in L2

cusp(G(F\A)), in
order to be called “generic.” Clearly, the latter condition implies the former (except for the zero
representation).

A nice feature of the stronger formulation is that the condition defines a subspace of L2
cusp(G(F\A)),

which one may term the ψ-generic spectrum. Furthermore, this subspace satisfies multiplicity one,
even if L2

cusp(G(F\A)) does not. (Cf. [PS]) A nice feature of the weaker formulation is that it does
not rely on the L2-pairing, and hence no technicalities arise in applying the notion to non-cuspidal
forms and representations.

Throughout most of this paper, we shall say that a representation “is ψ-generic” if it supports
a nonzero ψ-Whittaker integral, and “is generic” if it satisfies this condition for some ψ. We shall
say that a cuspidal representation is “in the ψ-generic spectrum” if it is orthogonal to the kernel
of the ψ-Whittaker integral.

Let P0 = NG(Umax). If P0(Fv) permutes the characters of U(Fv) transitively, then we may refer
to a representation as “generic” or “non-generic” without reference to a specific ψv, and without
ambiguity. The same applies to both notions of global genericity, in the case when P0(F ) permutes
the characters of Umax(F\A) transitively. This condition is satisfied by GLn and GSpin2n+1, but
not by GSpin2n.

3.4. Similitude groups and GSpin groups. We first define the similitude orthogonal and sym-
plectic groups to be

GOm = {g ∈ GLm : gJ tg = λ(g)J for some λ(g) ∈ Gm},

GSp2n = {g ∈ GL2n : gJ ′ tg = λ(g)J ′ for some λ(g) ∈ Gm}.
For each of these groups the map g 7→ λ(g) is a rational character called the similitude factor. If
m is odd then GOm is in fact isomorphic to SOm ×GL1. This case will play no further role. The
group GO2n is disconnected; indeed the subgroup generated by SO2n and

{(
λIn

In

)
: λ ∈ Gm

}
is

a connected index two subgroup, which we denote GSO2n.
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We shall now define GSpin groups as the groups whose duals are the similitude classical groups
GSp2n(C), GSO2n(C). Thus we write down the based root data, but employ notation appropriate
to the application in which what we write down will arise as the dual of something.

The groups GSp2n and GSO2n share a maximal torus, consisting of matrices of the form

diag(t1, . . . , tn, λt−1
n , . . . , λt−1

1 ).

The coordinates used just above correspond to a choice of Z-bases for the lattices of characters and
cocharacters. For i = 1 to n, let e∗i denote the character that sends this torus element to ti for i = 1
to n and e∗0 being the map that sends it to the similitude factor, λ. Let {ei : i = 0 to n} denote the
dual basis for the cocharacter lattice. Let X∨ denote the character lattice and X the cocharacter
lattice. Each similitude classical group has a Borel subgroup equal to the set of upper triangular
matrices which are in it. In each case we employ this choice of Borel, and let ∆∨ denote the set of
simple roots and ∆ the set of simple coroots. Then we easily compute that for GSp2n

∆∨ = {e∗i − e∗i+1, i = 1 to n− 1} ∪ {2e∗n − e∗0}.

∆ = {ei − ei+1, i = 1 to n− 1} ∪ {en}.
and for GSO2n

∆∨ = {e∗i − e∗i+1, i = 1 to n− 1} ∪ {e∗n−1 + e∗n − e∗0}.
∆ = {ei − ei+1, i = 1 to n− 1} ∪ {en−1 + en}.

We now define GSpin2n+1 to be the F−split connected reductive algebraic group having based
root datum dual to that of GSp2n, and GSpin2n to be the one having based root datum dual to
that of GSO2n. We have here used the fact that F -split connected reductive algebraic groups are
classified by based root data, for which see p.274 of [Spr].

By the classification results in Chapter 16 of [Spr] (especially 16.3.2, 16.3.3 16.4.2), one finds that
GSpin2n+1 is in fact the unique quasisplit F -group having based root datum dual to that of GSp2n,
and that there is a 1-1 correspondence between quasisplit F groups G such that LG0 = GSO2n(C)
and homomorphisms from Gal(F̄ /F ) to the group of automorphisms of the lattice X(T ) which
preserve the set ∆ of simple roots. This group has two elements: the identity and and element
which reverses the roots en−1 − en and en−1 + en while fixing the other simple roots. The effect of
this automorphism on the Z-bases {ei : 0 ≤ i ≤ n}, and {e∗i : 0 ≤ i ≤ n} is as follows:

ei 7→


ei i 6= 0, n
−en i = n

e0 + en i = 0
e∗i 7→

{
e∗i i 6= n

e∗0 − e∗n i = n

It follows that the lattices of F -rational characters and cocharacters are spanned by

{ei : 0 < i < n} ∪ {2e0 + en}, and {ei : 0 ≤ i < n},

respectively.
By class field theory homomorphisms from Gal(F̄ /F ) to a group with two elements are in one-

to-one correspondence with quadratic characters χ : A×
F /F

× → {±1}. We denote the F -group
corresponding to the character χ by GSpinχ2n. The F -group corresponding to the trivial character
is the unique split F -group having the specified root datum, and is also denoted simply by GSpin2n.

To save space, the group GSpinm will usually be denoted by Gm, and GSpinχ2n by Gχ2n.
Observe that in either the odd or even case e∗0 is a generator for the lattice of cocharacters of

the center of Gm.
Because we define Gm in the manner we do, it comes equipped with a choice of Borel subgroup

and maximal torus, as do various reductive subgroups we shall consider below. In each case, we
denote the Borel subgroup of the reductive group G by B(G), and the maximal torus by T (G).
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A straightforward adaptation of the proof of Theorem 16.3.2 of [Spr] shows that there exist
surjections Gm → SOm defined over F. We fix one such and denote it pr . We require that pr is
such that pr(B(Gm)) consists of upper triangular matrices.

An alternative description of the same group as a quotient of Spinm × GL1 is given in [Asg].
Proposition 2.4 on p. 678 of [Asg] shows that the two definitions are equivalent.

For those familiar with the construction of Spinm as a subgroup of the multiplicative group of
a Clifford algebra, we remark that there is a third construction of GSpinm as the slightly larger
group obtained by including the nonzero scalars in the Clifford algebra as well. In this guise, it is
sometimes referred to as the “Clifford group.” (See, e.g., [I] p.999.) This description will not play
a role for us.

We will construct an Eisenstein series on G2m+1 induced from a standard parabolic P = MU
such that M is isomorphic to GLm×GL1. There is a unique such parabolic. We shall refer to this
parabolic as the “Siegel.”

Remark 3.4.1. • We can identify the based root datum of the Levi M with that of GLm×GL1

in such a fashion that e0 corresponds to GL1 and does not appear at all in GLm. We can then
identify M itself with GLm×GL1 via a particular choice of isomorphism which is compatible
this and with the usual usage of ei, e∗i for characters, cocharacters of the standard torus of
GLm.

• Having made this identification, a Levi M ′ which is contained in M will be identified with
GL1 ×GLm1 × . . . GLmk , (for some m1, . . . ,mk ∈ N that add up to m) in the natural way:
GL1 is identified with the GL1 factor of M, and then GLm1 × . . . GLmk is identified with
the subgroup of M corresponding to block diagonal elements with the specified block sizes,
in the specified order.

• The lattice of rational characters of M is spanned by the maps (g, α) 7→ α and (g, α) 7→ det g.
Restriction defines an embedding X(M) → X(T (G2m+1)), which sends these maps to e0 and
(e1 + · · ·+ em), respectively. By abuse of notation, we shall refer to the rational character
of M corresponding to e0 as e0 as well.

• The modulus of P is (g, α) → det gm.

We also fix a maximal compact subgroup Km of Gm(A). Any which satisfies the conditions
required in [MW1] (see pages 1 and 4) will do.

3.5. Weyl group of GSpin2m+1; it’s action on standard Levis and their representations.

Lemma 3.5.1. The Weyl group of Gm is canonically identified with that of SOm.

Proof. For this lemma only, let T denote the torus of SOm and T̃ that of Gm. Then the following
diagram commutes:

ZGm(T̃ ) NGm(T̃ )

ZSOm(T ) NSOm(T ).

-

? ?
-

Both horizontal arrows are inclusions and both vertical arrows are pr . �

One easily checks that every element of the Weyl group of SO2n+1 is represented by a matrix of
the form w = detw0w0, where w0 is a permutation matrix. We denote the permutation associated
to w0 also by w0. The set of permutations w0 obtained is precisely the set of permutations w0 ∈ S2n

satisfying, w0(2n + 2 − i) = 2n + 2 − w0(i) It is well known that the Weyl group of SO2n+1 (or
8



G2n+1) is isomorphic to Sn o {±1}n. To fix a concrete isomorphism, we identify p ∈ Sn with an
n× n matrix in the usual way, and then withp 1

tp
−1

 ∈ SO2n.

We identify ε = (ε1, . . . , εn) ∈ {±1}n with the permutation p of {1, . . . , 2n+ 1} such that

p(i) =

{
i if εi = 1,
2n+ 2− i if εi = −1.

We then identify (p, ε) ∈ Sn × {±1}n (direct product of sets) with p · ε ∈WSO2n+1 .
With this identification made,

(3.5.2)

(p, ε)·



t1
. . .

tn
1

t−1
n

. . .
t−1
1


·(p, ε)−1 =



t
εp−1(1)

p−1(1)

. . .
t
εp−1(n)

p−1(n)

1

t
−εp−1(n)

p−1(n)

. . .

t
−εp−1(1)

p−1(1)


.

Lemma 3.5.3. Let (p, ε) ∈ Sno{±1}n−1 be idenified with an element of WSO2m = WG2m as above.
Then the action on the character and cocharacter lattices of G2m is given as follows:

(p, ε) · ei =


ep(i) i > 0, εp(i) = 1,
−ep(i) i > 0, εp(i) = −1,
e0 +

∑
εp(i)=−1 ep(i) i = 0.

(p, ε) · e∗i =


e∗p(i) i > 0, εp(i) = 1,

e∗0 − e∗p(i) i > 0, εp(i) = −1,

e∗0 i = 0.

Remark 3.5.4. Much of this can be deduced from (3.5.2), keeping in mind that w ∈ WG acts on
cocharacters by (w · ϕ)(t) = wϕ(t)w−1 and on characters by (w · χ)(t) = χ(w−1tw). However, it is
more convenient to give a different proof.

Proof. Let αi = ei − ei+1, i = 1 to n − 1 and αn = en. Let si denote the elementary reflection in
WG2n corresponding to αi. Then it is easily verified that s1, . . . , sn−1 generate a group isomorphic
to Sn which acts on {e1, . . . , en} ∈ X(T ) and {e∗1, . . . , e∗n} ∈ X∨(T ) by permuting the indices and
acts trivially on e0 and e∗0. Also

sn · ei =


ei i 6= n, 0
e0 + en i = 0
−en i = n

sn · e∗i =

{
e∗i i 6= n

e∗0 − e∗n i = n
9



If ε ∈ {±1}n−1 is such that #{i : εi = −1} = 1, then ε is conjugate to sn by an element of the
subgroup isomorphic to Sn generated by s1, . . . , sn−1. An arbitrary element of {±1}n−1 is a product
of elements of this form, so one is able to deduce the assertion for general (p, ε). �

Observe that the Sn factor in the semidirect product is precisely the Weyl group of the Siegel
Levi.

In the study of intertwining operators and Eisenstein series (e.g., section 4 below), one encounters
a certain subset of the Weyl group associated to a standard Levi, M. Specifically,

W (M) :=
{
w ∈WG2n+1

∣∣∣∣ w is of minimal length in w ·WM

wMw−1 is a standard Levi of G2n+1

}
.

For our purposes, it is enough to consider the case when M is a subgroup of the Siegel Levi. In
this case it is isomorphic to GLm1 × · · · × GLmr × GL1 for some integers m1, . . . ,mr which add
up to n, and we shall only need to consider the case when mi is even for each i. (This, of course,
forces n to be even as well.)

Lemma 3.5.5. For each w ∈ W (M) with M as above, there exist a permutation p ∈ Sr and and
element ε ∈ {±1}r such that, if m ∈M = (g, α) with α ∈ GL1 and

g =

g1 . . .
gr

 ∈ GLn,

then

wmw−1 = (g′, α ·
∏
εi=−1

det gi) g′ =

g
′
1

. . .
g′r

 ,

where

g′i ≈

{
gp−1(i) if εp−1(i) = 1,

tg
−1
p−1(i)

if εp−1(i) = −1.

Here ≈ has been used to denote equality up to an inner automorphism. The map (p, ε) 7→ w is
a bijection between W (M) and Sr × {±1}r. (Direct product of sets: W (M) is not, in general, a
group.)

Proof. Since wMw−1 is a standard Levi which does not contain any short roots, it is again contained
in the Siegel Levi.

The Levi M determines an equivalence relation ∼ on the set of indices, {1, . . . , n} defined by the
condition that i ∼ i+1 iff ei−ei+1 is an root of M. When viewed as elements of Sno{±1}n−1, the
elements of W (M) are those pairs (p, ε) such that i ∼ i+1 ⇒ p(i+1) = p(i)+1, and i ∼ j ⇒ εi = εj .
This gives the identification with Sr × {±1}r.

It is clear that the precise value of g′i is determined only up to conjugacy by an element of
the torus (because we do not specify a particular representative for our Weyl group element). By
Theorem 16.3.2 of [Spr], it may be discerned, to this level of precision, by looking at the effect of
w on the based root datum of M. The result now follows from Lemma 3.5.3. �

Corollary 3.5.6. Let w ∈ W (M) be associated to (p, ε) ∈ Sr × {±1}r as above. Let τ1, . . . , τr be
irreducible cuspidal representations of GLm1(A), . . . , GLmr(A), respectively, and let ω be a Hecke
character. Then our identification of M with GLm1×· · ·×GLmr×GL1 determines an identification
of
⊗r

i=1 τi � ω with a representation of M(A). Let M ′ = wMw−1. Then M ′ is also identified, via
10



3.4.1 with GLmp−1(1)
× · · · ×GLmp−1(r)

×GL1, and we have

r⊗
i=1

τi � ω ◦Ad(w−1) =
r⊗
i=1

τ ′i � ω,

where

τ ′i =

{
τp−1(i) if εp−1(i) = 1,
τ̃p−1(i) ⊗ ω if εp−1(i) = −1.

Proof. The contragredient τ̃i of τi may be realized as an action on the same space of functions as τi
via g · ϕ(g1) = ϕ(g1 tg

−1). This follows from strong multiplicity one and the analogous statement
for local representations, for which see [GK75] page 96, or [BZ1] page 57. Combining this fact with
the Lemma, we obtain the Corollary. �

3.6. Unramified Correspondence.

Lemma 3.6.1. Suppose that τ ∼= ⊗′
vτv is an ω−1-orthogonal irreducible cuspidal automorphic

representation of GL2n(A). Let v be a place such that τv is unramified. Let tτ,v denote the semisimple
conjugacy class in GL2n(C) associated to τv. Let r : GO2n(C) → GL2n(C) be the natural inclusion.
Then tτ,v contains elements of the image of r.

Proof. For convenience in the application, we take GL2n to be identified with a subgroup of the Levi
of the Siegel parabolic as in section 3.4. Since τv is both unramified and generic, it is isomorphic
to IndGL2n(Fv)

B(GL2n)(Fv)
µ for some unramified character µ of the maximal torus T (GL2n)(Fv) such that

this induced representation is irreducible. (See [Car], section 4, [Z] Theorem 8.1, p. 195.) Let
µi = µ ◦ e∗i .

Since τ ∼= τ̃ ⊗ω, it follows that τv ∼= τ̃v ⊗ωv and from this we deduce that {µi : 1 ≤ i ≤ 2n} and
{µ−1

i ω : 1 ≤ i ≤ 2n} are the same set. Hence
∏2n
i=1 µi = χωn, where χ is quadratic.

Now, what we need to prove is the following: if S is a set of 2n unramified characters of Fv, such
that for each i there exists j such that µi = µ−1

j ω, then there is a permutation σ : {1, . . . , 2n} →
{1, . . . , 2n} such that µσ(i) = ωµ−1

2n−σ(i) for i = 1 to n − 1. This we prove by induction on n. If
n = 1, there is nothing to be proved.

If n > 1 it is sufficient to show that there exist i 6= j such that µi = µ−1
j ω. If there exists i such

that µi 6= µ−1
i ω then this is clear. On the other hand, there are exactly two unramified characters

µ such that µ = µ−1ω.
Now, suppose that µ1, . . . , µ2n have been renumbered according to σ as above. Then µn+1µn =

ωχ. If χ is trivial, it follows that µi = ωµ−1
2n−i for all i, and hence that the conjugacy class tτ,v

contains elements of the maximal torus of GSO2n(C).
On the other hand, if χ is nontrivial, then µn 6= ωµ−1

n+1, from which it follows that µ2
nµn+1 = ω

and µn+1 = χµn. It follows that tτ,v contains a diagonal element which is conjugate, in GL2n(C),
to an element of the connected component of GO2n(C) which does not contain the identity. �

Corollary 3.6.2. Suppose τ = τ1 � · · · � τr with τi an ω−1-orthogonal irreducible cuspidal auto-
morphic representation of GL2ni(A), for each i. Then the same conclusion holds.

Corollary-to-the-Proof 3.6.3. Let τ be as in corollary 3.6.2, and let v be a place at which τ and
ω are unramified. Let η be one of the two unramified characters such that η2 = ωv. Let χun denote
the unique nontrivial unramified quadratic character of F×

v . Then τv ∼= IndGL2n(Fv)
B(GL2n)(Fv)

µ (normalized
induction), for an unramified character µ of the torus of GL2n(Fv) which satisfies either

µ ◦ e∗2n+1−i = ωv · (µ ◦ e∗i )−1 ∀i = 1 to n,
11



or
µ ◦ e∗2n+1−i = ωv · (µ ◦ e∗i )−1 ∀i = 1 to n− 1, µ ◦ e∗n = η, µ ◦ e∗n+1 = χunη.

3.7. Unipotent subgroups and their characters. The kernel of pr consists of semisimple el-
ements. In particular, the number of unipotent elements of a fiber is zero or one, and it’s one if
and only if the element of SOm is unipotent. In other words, pr yields a bijection of unipotent ele-
ments (indeed, an isomorphism of unipotent subvarieties), and we may specify unipotent elements
or subgroups by their images under pr . This also defines coordinates for any unipotent element or
subgroup, which we use when defining characters. Thus, we write uij for the i, j entry of pr(u).

Above we fixed a specific isomorphism of a subgroup of G2m with GLm. If u is a unipotent
element of of this subgroup this identification with an m ×m matrix gives a second definition of
uij This is not a problem, however, as the two definitions agree.

Most of the unipotent groups we consider are subgroups of the maximal unipotent of Gm con-
sisting of elements u with pr(u) upper triangular. We denote this group Umax. A complete set of
coordinates is {uij : 1 ≤ i < j ≤ m − i}. We denote the opposite maximal unipotent by Umax. It
consists of all unipotent elements of Gm such that pr(u) is lower triangular.

We fix once and for all a character ψ0 of A/F. We use this character together with the coordinates
just above to specify characters of our unipotent subgroups.

When specifying subgroups of Umax and their characters, the restriction to {(i, j) : 1 ≤ i < j ≤
m− i} is implicit.

It will also sometimes be necessary to describe unipotent subgroups such that only a few of
the entries in the corresponding elements of SOm are nonzero. For this purpose we introduce the
notation e′ij = eij − em+1−j,m+1−i. One may check that for all i 6= j and a ∈ F, the matrix I + ae′ij
is an element of SOm(F ).

3.8. “Unipotent periods”. We now introduce the framework within which, we believe, certain
of the computations involved in the descent construction can be most easily understood.

Let G be a reductive algebraic group defined over a number field F . If U is a unipotent subgroup
of G and ψU is a character of U(F\A), we define the unipotent period (U,ψU ) associated to this
pair to be given by the formula

ϕ(U,ψU )(g) :=
∫
U(F\A)

ϕ(ug)ψU (u)du.

Clearly, ϕ must be restricted to a space of left U(F )-invariant functions such that the integral is
defined (for example, because ϕ is smooth).

Let U denote the set of unipotent periods. For V a space of functions defined on G(A), put

U⊥(V ) = {(U,ψ) ∈ U : ϕ(U,ψ) ≡ 0 ∀ϕ ∈ V }.

When V is the space of a representation π we will employ also the notation U⊥(π). We also employ
the notation (U,ψ) ⊥ V for (U,ψ) ∈ U⊥(V ) and similarly (U,ψ) ⊥ π.

We also require a vocabulary to express relationships among unipotent periods. We shall say
that

(U,ψU ) ∈ 〈(U1, ψU1), . . . , (Un, ψUn), . . . 〉
if V ⊥ (Ui, ψUi)∀i ⇒ V ⊥ (U,ψU ). Clearly, if (U1, ψU1) ∈ 〈(U2, ψ2), (U3, ψ3)〉, and (U2, ψ2) ∈
〈(U4, ψ4), (U5, ψ5)〉 then (U1, ψ1) ∈ 〈(U3, ψ3), (U4, ψ4), (U5, ψ5)〉.

We also use notation (U1, ψ1)|(U2, ψ2), or the language “(U1, ψ1) divides (U2, ψ2),” “ (U2, ψ2) is
divisible by (U1, ψ1) ” for (U2, ψ2) ∈ 〈(U1, ψ1)〉. Finally, (U1, ψ1) ∼ (U2, ψ2) means (U1, ψ1)|(U2, ψ2)
and (U2, ψ2)|(U1, ψ1). This is an equivalence relation and we shall refer to unipotent periods which
are related in this way as “equivalent.”
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It is sometimes possible to compose unipotent periods. Specifically, if f (U1,ψ1) is left-invariant
by U2(F ), then one may consider (f (U1,ψ1))(U2,ψ2). We denote the composite by (U2, ψ2) ◦ (U1, ψ1).

Now, suppose that U is the unipotent radical of a parabolic P of G with Levi M. The choice
of ψ0 gives rise to an identification of the space of characters of U(F )\U(A) with the F points of
U/(U,U) which is compatible with the action of M(F ). Here U denotes the unipotent radical of
the parabolic P of G opposite to P. For ϑ a character, let Mϑ denote the stabilizer of ϑ (regarded
as a point in U/(U,U)(F )) in M. So Mϑ is an algebraic subgroup of M defined over F.

Definition 3.8.1. Then we define FCϑ : C∞(G(F\A)) → C∞(Mϑ(F\A)) by

FCϑ(ϕ)(m) = ϕ(U,ϑ)(m) =
∫
U(F\A)

ϕ(um)ϑ(u)du.

This is certainly an Mϑ(A)-equivariant map.

4. Eisenstein series

The main purpose of this section is to construct, for each integer n ≥ 2 and Hecke character ω,
a map from the set of all isobaric representations τ satisfying the hypotheses of theorem 2.1 into
the residual spectrum of G4n+1. We use the same notation E−1(τ, ω) for all n. The construction
is given by a multi-residue of an Eisenstein series in several complex variables, induced from the
cuspidal representations τ1, . . . , τr used to form τ. (Note that by [Ja-Sh3], Theorem 4.4, p.809, this
data is recoverable from τ.)

Let ω be a Hecke character. Let τ1, . . . , τr be a irreducible cuspidal automorphic representations
of GL2n1 , . . . , GL2nr , respectively.

For each i, let Vτi denote the space of cuspforms on which τi acts. Then pointwise multipication

ϕ1 ⊗ · · · ⊗ ϕr 7→
r∏
i=1

ϕi

extends to an isomorphism between the abstract tensor product
⊗r

i=1 Vτi and the space of all
functions

Φ(g1, . . . , gr) =
N∑
i=1

ci

r∏
j=1

ϕi,j(gj) ci ∈ C, ϕi,j ∈ Vτj ∀i, j.

(This is an elementary exercise.) We consider the representation τ1⊗· · ·⊗τr of GL2n1×· · ·×GL2nr ,
realized on this latter space, which we denote V⊗τi .

Let n = n1 + · · ·+ nr.
We will construct an Eisenstein series on G4n+1 induced from the subgroup P = MU of the

Siegel parabolic such that M ∼= GL2n1 × · · · ×GL2nr ×GL1. Let s1, . . . sr be a complex variables.
Using the identification of M with GL2n1 × · · ·×GL2nr ×GL1 fixed in section 3.4 above, we define
an action of M(A) on the space of τ1 ⊗ · · · ⊗ τr by

(4.0.2) (g1, . . . , gr, α) ·
r∏
j=1

ϕj(hj) =

 r∏
j=1

ϕ(hjgj)|det gj |sj

ω(α).

We denote this representation of M(A), by (
⊗r

i=1 τi ⊗ |det i|si) � ω.
To shorten the notation, we write g = (g1, . . . , gr). Then (4.0.2) may be shortened to

g · Φ(h) = Φ(h · g)

 r∏
j=1

|det gj |sj

ω(α).

We shall also employ the shorthand s = (s1, . . . , sr), and τ = (τ1, . . . , τr).
13



For each s we have the induced representation IndG4n+1(A)
P (A) (

⊗r
i=1 τi ⊗ |det i|si) � ω, (normalized

induction) of G4n+1(A). The standard realization of this representation is action by right translation
on the space V (1)(s,

⊗r
i=1 τi � ω) given by{

F̃ : G4n+1(A) → Vτ , smooth

∣∣∣∣∣F̃ ((g, α)h)(g′) = F̃ (h)(g′g)ω(α)
r∏
i=1

|det gi|si+n+
Pr
j=i+1 ni−

Pi−1
j=1 ni

}
.

(The factor
r∏
i=1

|det gi|n+
Pr
j=i+1 ni−

Pi−1
j=1 ni

is equal to |δP |
1
2 , and makes the induction normalized.) A second useful realization is action by

right translation on

V (2)(s,
r⊗
i=1

τi � ω) =
{
f : G4n+1(A) → C,

∣∣∣f(h) = F̃ (h)(id), F̃ ∈ V (1)(s, τ , ω)
}
.

(Here id denotes the identity element of GL2n(A).)
These representations fit together into a fiber bundle over Cr. So a section of this bundle is a

function f defined on Cr such that f(s) ∈ V (i)(s,
⊗r

i=1 τi�ω) (i = 1 or 2) for each s. We shall only
require the use of flat, K-finite sections, which are defined as follows. Take f0 ∈ V (i)(0,

⊗r
i=1 τi�ω)

K-finite, and define f(s)(h) by

f(s)(u(g, α)k) = f0(u(g, α)k)
r∏
i=1

|det gi|si

for u ∈ U(A), g ∈ GL2n1(A)× · · · ×GL2nr(A), α ∈ A×, k ∈ K. This is well defined. (I.e., although
gi is not uniquely determined in the decomposition, |det gi| is. Cf. the definition of mP on p.7 of
[MW1].)

We begin with a flat K finite section of the bundle of representations realized on the spaces
V (2)(s,

⊗r
i=1 τi � ω).

Remark 4.0.3. Clearly, the function f is determined by f(s∗) for any choice of base point s∗.
In particular, any function of f may be regarded as a function of fs∗ ∈ V (2)(s∗,

⊗r
i=1 τi � ω), for

any particular value of s∗. We have exploited this fact with s∗ = 0 to streamline the definitions. A
posteriori it will become clear that the point s∗ = 1

2 := (1
2 , . . . ,

1
2) is of particular importance, and

we shall then switch to s∗ = 1
2 .

For such f the sum
E(f)(g)(s) :=

∑
γ∈P (F )\G(F )

f(s)(γg)

converges for all s such that Re(sr),Re(si − si+1), i = 1 to r − 1 are all sufficiently large. ([MW1],
§II.1.5, pp.85-86). It has meromorphic continuation to Cr ([MW1] §IV.1.8(a), IV.1.9(c),p.140).
These are our Eisenstein series. We collect some of their well-known properties in the following
theorem.

Theorem 4.0.4. (1) The function

(4.0.5)
∏
i6=j

(si + sj − 1)
r∏
i=1

(si −
1
2
)E(f)(g)(s)

14



is holomorphic at s = 1
2 . (More precisely, while E(f)(g) may have singularities, there is a

holomorphic function defined on an open neighborhood of s = 1
2 which agrees with (4.0.7)

on the complement of the hyperplanes si = 1
2 , and si + sj = 1.)

(2) The function (4.0.5) remains holomorphic (in the same sense) when si + sj − 1 is omitted,
provided τi 6∼= ω ⊗ τ̃j . It remains holomorphic when si − 1

2 is omitted, provided τi is not
ω−1- orthogonal. Furthermore, each of these sufficient conditions is also necessary, in that
the holomorphicity conclusion will fail, for some f and g, if any of the factors is omitted
without the corresponding condition on τ being satisfied. From this we deduce that if

(4.0.6) the representations τ1, . . . , τr are all distinct and ω−1-orthogonal,

then the function

(4.0.7)
r∏
i=1

(si −
1
2
)E(f)(g)(s)

is holomorphic at s = 1
2 for all f, g and nonvanishing at s = 1

2 for some f, g.
(3) Let us now assume condition (4.0.6) holds, and regard f as a function of

f1
2
∈ V (2)(1

2 ,
⊗r

i=1 τi � ω). Let E−1(f1
2
)(g) denote the value of the function (4.0.7) at

s = 1
2 (defined by analytic continuation). Then E−1(f) is an L2 function for all f1

2
∈

V (2)(1
2 ,
⊗r

i=1 τi � ω).

(4) The function E−1 is an intertwining operator from IndG4n+1(A)
P (A) (

⊗r
i=1 τi⊗ |det i|

1
2 ) �ω into

the space of L2 automorphic forms.
(5) If E−1(τ, ω) is the image of E−1, and ψLW is the character of Umax given by ψLW (u) =

ψ0(
∑2n−1

i=1 ui,i+1), then (Umax, ψLW ) /∈ U⊥(E−1(τ, ω)).
(6) The space of functions E−1(τ, ω) does not depend on the order chosen on the cuspidal rep-

resentations τ1, . . . , τr. Thus it is well-defined as a function of the isobaric representation
τ.

Remark 4.0.8. By induction in stages, the induced representation IndG4n(A)
P (A) (

⊗r
i=1 τi⊗| det i|

1
2 )�ω,

which comes up in part (4) of the theorem can also be written as IndG4n(A)
PSieg(A) τ ⊗ | det |

1
2 � ω, where

τ = τ1 � · · ·� τr as before, and PSieg is the Siegel parabolic. (Cf. section 2.) Here, we also exploit
the identification of the Levi MSieg of PSieg with GL2n ×GL1 fixed in 3.4.1.

Proof. We first review the standard arguments by which the presence or absence of a singularity
of an Eisenstein series reduces to the presence or absence of a singularity of a relative rank one
intertwining operator. To do so, we recall the set

W (M) :=
{
w ∈WG4n+1

∣∣∣∣ w is of minimal length in w ·WM

wMw−1 is a standard Levi of G4n+1

}
.

It will be convenient and harmless to treat the elements of W (M) as though they were elements
of G4n+1(F ), rather than repeatedly choose representatives and remark the independence of the
choice. For each w ∈W (M), s ∈ Cr, we define Pw to be the standard parabolic with Levi wMw−1.
For s such that sr and si − si+1, i = 1 to r − 1 are all sufficiently large, the integral

M(w, s)f(g) :=
∫
Umax∩wUmaxw−1(F\A)

f(s)(w−1ug) du
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converges ([MW1], II.1.6), defining an operator M(w, s) from V (2)(s,
⊗r

i=1 τi � ω) to a space of
functions which is easily verified to afford a realization of

IndG4n+1(A)
Pw(A)

(
(
r⊗
i=1

τi ⊗ |det i|si) � ω

)
◦Ad(w−1).

Here, ((
⊗r

i=1 τi ⊗ |det i|si) � ω)◦Ad(w−1), denotes the representation of wMw−1 obtained by com-
posing the representation (

⊗r
i=1 τi ⊗ |det i|si) � ω) of M with conjugation by w−1. We denote this

latter space of functions by V (2)
w (s,

⊗r
i=1 τi �ω). Then M(w, s)f(g) has meromorphic continuation

to Cr. (IV.1.8(b).)
It may be helpful also to review the sorts of singularities which Eisenstein series and intertwining

operators have– lying along so-called “root hyperplanes.” (cf. IV.1.6) We defer the notion of “root
hyperplane” until later. For now, we allow arbitrary hyperplanes in Cr, defined by equations of
the form l(s) = c, with l a linear functional Cr → C and c a constant. Then for any bounded
open set U ⊂ Cr, there exist a finite number of distinct hyperplanes H1, . . . ,HN , which “carry”
the singularities of the Eisenstein series and intertwining operators in U, in the following sense. For
each i fix li, ci such that Hi = {s ∈ Cr | li(s) = ci}. Then for each i there is a non-negative integer
ν(Hi) such that

(4.0.9)
N∏
i=1

(li(s)− ci)ν(Hi)E(f)(g)(s)

continues to a function holomorphic on all of U. Covering Cr with bounded open sets and taking a
union, we obtain an infinite, but locally finite, set of hyperplanes which carry all the singularities
of the Eisenstein series and intertwining operators. The same hyperplane H will of course occur
more than once. It is easily verified that the minimal exponent ν(H) appearing in (4.0.9) is the
same each time. Thus we may speak of whether an Eisenstein series or intertwining operator does
or does not have a pole along H, and of the order of the pole.

One may define “analytic/meromorphic continuation” for functions taking values in Fréchet
spaces of locally L2 functions and the like ([MW1] I.4.9, IV.1.3) of functions and operators. In this
case, outside of the domain of convergence, one’s functions are defined only up to L2 equivalence.
However, in view of I.4.10, one has a unique smooth representative for the class. For us it will be
more convenient simply to adopt the convention that when we say the Eisenstein series has a pole
along H, we mean for some f, g.

Now let us state the relationship between poles of Eisenstein series and intertwining operators,
which we prove in an appendix.

Proposition 4.0.10. For f ∈ V (2)(s,
⊗r

i=1 τi � ω), there exists g ∈ G4n+1(A) such that E(f)(g)
has a pole along H if and only if there exist w ∈W (M), g′ ∈ G4n+1(A) such that M(w, s)f(g′) has
a pole along H.

The same construction can be performed with the Levi M replaced by wMw−1, yielding an
operator

Mw(w′, w · s) : V (2)
w (s,

r⊗
i=1

τi � ω) → V
(2)
w′w(s,

r⊗
i=1

τi � ω),

for each w′ ∈W (wMw−1). Furthermore, one has for all f, g, the equality of meromorphic functions

Mw(w′, w · s) ◦M(w, s)f(g) = M(w′w, s)f(g)

([MW1], II.1.6, IV.4.1). (For now, the reader may think of “w·s” simply as a notational contrivance.
We shall give it a precise meaning below.)
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Next we wish to describe the decomposition of w ∈W (M) as a product of elementary symmetries,
as in [MW1] I.1.8. The lattice X(ZM ) of rational characters of the center of M has a unique basis
{e0, ε1, . . . , εr}, with the property that for each i = 1, . . .m, there exists j ∈ {1, . . . , r} such that
the restriction of ei as in 3.4 to ZM is εj . The set of restrictions of positive roots of G4n+1 to ZM is

{0} ∪ {εi − εj : 1 ≤ i < j ≤ r} ∪ {εi : 1 ≤ i ≤ r} ∪ {εi + εj : 1 ≤ i < j ≤ r} ∪ {2εi : 1 ≤ i ≤ r}.
We denote the set obtained by excluding zero by Φ+(ZM ). For α ∈ Φ+(ZM ), and w ∈W (M), one
may say “wα > 0” or “wα < 0” without ambiguity. We say an element of Φ+(ZM ) is indivisible if
it is not of the form 2εi.

Each element w ∈W (M) can be decomposed as a product sα1 . . . sα` of elementary symmetries
as in [MW1] I.1.8. The element sα` will be in W (M), while sα`−1

will be in W (sα`Ms−1
α`

) and so
on. Each is labeled with the unique indivisible restricted root (for the operative Levi) which it
reverses. That is {α ∈ Φ+(ZM ) : sα`α < 0} = {α`}, or {α`, 2α`} and in the latter case α` = εr.
(Cf. [MW1] I.1.8.)

Let w = sα1 . . . sα` be a minimal-length decomposition into elementary symmetries, and put
wi = sαi+1 . . . sα` . Then

{α ∈ Φ+(ZM ), indivisible | wα < 0} = {w−1
i αi| 1 ≤ i ≤ `}

and ` is the cardinality of this set (i.e., there is no repetition). Combining this discussion with
that of the previous paragraphs, we obtain a decomposition of M(w, s) as a composite of inter-
twining operators Mwi(sαi , wi · s), each corresponding naturally to one of the elements of {α ∈
Φ+(ZM ), indivisible | wα < 0}.

Let det i denote the rational character (g, α) 7→ det gi of M. Then {e0,det 1, . . . ,det r} is a basis
for the lattice X(M) of rational characters of M. Here, the character e0 of T introduced in 3.4 has
been identified with a character of M as in 3.4.1. Let {e∗0,det ∗1, . . . ,det ∗r} be the dual basis of the
dual lattice. Again, e∗0 is the same as in 3.4. Elements of X(M) may be paired with elements of
X∨(T ) defining a projection from X∨(T ) onto the dual lattice. For each i = 1, . . .m, there exists
unique j ∈ {1, . . . , r} such that e∗i maps to det ∗j . If α is a root, then the projection of the coroot α∨

to the dual lattice of X(M) depends only on the restriction of α to ZM , and the correspondence is
as follows:

0 ↔ 0,

εi − εj ↔ det ∗i − det ∗j ,

εi + εj ↔ det ∗i + det ∗j − e∗0,

εi ↔ 2 det ∗i − e∗0

2εi ↔ 2 det ∗i − e∗0.

We denote the element corresponding to α ∈ Φ+(ZM ) by α∨ (in agreement with [MW1], I.1.11).
We may identify s ∈ Cr with

r∑
i=1

det i ⊗ si ∈ X(M)⊗Z C.

This is compatible with [MW1], I.1.4. Restriction of functions gives a natural injective map
X(M) → X(T ), and hence X(M) ⊗Z C → X(T ) ⊗Z C, which we use to identify the first space
with a subspace of the second. This gives the notation w · s a precise meaning, as an element of
X(wMw−1)⊗Z C, which is compatible with the usage above. In addition, it gives a “meaning” to
the set

{si − sj} ∪ {si + sj} ∪ {2si},
of linear functionals on Cr, identifying each with an element of Φ+(ZM ). Formally,
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Definition 4.0.11. A root hyperplane (relative to the Levi M) is a hyperplane of the form

H = {s ∈ Cr | 〈α∨, s〉 = c}

for some α ∈ Φ+(ZM ) which is indivisible, and some c ∈ C. We say that the hyperplane H is
associated to the root α, which is uniquely determined.

The next main statement is

Lemma 4.0.12. Let w = sα1 . . . sα` be any decomposition of minimal length, and for each i let
wi = sαi+1 . . . sα` . Then the set of poles of M(w, s) is the disjoint union of the sets of poles of the
operators Mwi(sαi , wi ·s). A pole of M(w, s) comes from Mwi(sαi , wi ·s) if and only if it is associated
to w−1

i αi. Furthermore, if {s ∈ Cr|〈α∨, s〉 = c} is a pole of M(w, s), then c 6= 0.

We now prove (1). A root hyperplane passing through 1
2 is defined by an equation of one of

three forms: si = 1
2 , si + sj = 1, or si − sj = 0. The third kind can not support singularities of the

Eisenstein series. The first two can, but by [MW1]IV.1.11 (c), they will be without multiplicity,
and so the factor of ∏

i6=j
(si + sj − 1)

r∏
i=1

(si −
1
2
)

will take care of them.
The operators corresponding to elementary symmetries are called relative rank one because they

could be defined without reference G4n+1, considering M instead as a maximal Levi of another
Levi subgroup Mα of G4n+1, having semisimple rank one greater than that of M. Furthermore, in
a suitable sense, the relative rank one operator only “lives on one component of Mα,” which will
allow us to deduce the general case of (2) from the case r = 1 and a similar fact about intertwining
operators on GLn. Let us make this more precise.

Fix α ∈ Φ+(ZM ). There is a minimal Levi subgroup Mα of G4n+1 containing M such that α is the
restriction of a root of Mα. (It is standard iff α is the restriction of a simple root.) Fix w ∈W (M)
such that wα < 0, and a decomposition w = sα1 . . . sα` of w as into elementary symmetries, which
is of minimal length. For some unique i, we have α = w−1

i αi, where wi is as above. Then wiMαw
−1
i

is a standard Levi of G4n+1. Different choices of decomposition give different (even conjugate)
embeddings of the same reductive group into G4n+1 as a standard Levi.

If α = εj − εk, or εj + εk, then Mαi is isomorphic to GL2(nj+nk) ×
∏
l 6=j,kGL2nl ×GL1. while if

α = εj , it is isomorphic to G4nj+1×
∏
k 6=j GL2nk . Let G′ denote GL2(nj+nk) or G4nj+1 as appropriate

and let ι be a choice of isomorphism with the “new” factor. Then ι−1(ι(G′) ∩ Pwi) is a maximal
parabolic subgroup P ′ = M ′U ′ of G′, and σ := (

⊗r
i=1 τ ⊗ ω) ◦Ad(wi) ◦ ι, is an irreducible unitary

cuspidal automorphic representation of M ′(A). The map ι also induces a linear projection

ι∗ : X(wiMw−1
i )⊗Z C → X(M ′)⊗Z C.

(Recall that we have agreed to think of wi · s as an element of the former space.)
Following, [MW1] I.1.4, define mµ for m ∈ M ′(A) and µ in X(M ′) ⊗Z C, by stipulating that

mµ = |χ(m)|s if µ = χ⊗ s and mµ1+µ2 = mµ1mµ2 .
The set W ′

G(M ′), defined analogously to W (M) above, contains a unique nontrivial element. It
is the elementary symmetry sβ associated to the restriction to Z ′

M of any of the unique simple root
of G′ which is not a root of M ′. The map ι identifies sβ with sαi .

For µ ∈ X(M ′)⊗Z C, let V (1)(µ, σ) denote

{h : G′(A) → Vσ, smooth | h(mg′)(m′) = h′(g′)(m′m)mµ+ρP ′ m,m′ ∈M ′(A), g′ ∈ G′(A)},

V (2)(µ, σ) = {h : G′(A) → C, smooth|h(g′)(e) ∈ V (1)(µ, σ)}.
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There is a standard intertwining operator M(sβ , µ) : V (2)(µ, σ) → V
(2)
sβ (µ, σ). One has the

identity
Mwi−1(sαi , wi · s)f(ι(h)g) = M(sβ , µ)f(ι(h)g).

That is, if pg denotes the map

V (2)
wi (s,

r⊗
i=1

τi � ω) → V (2)(µ, σ)

corresponding to evaluation at ι(h)g for a fixed g, then, for all g, the following diagram commutes:

V
(2)
wi (s,

⊗r
i=1 τi � ω)

Mwi (sαi ,wi·s)−−−−−−−−−→ V
(2)
wi−1(s,

⊗r
i=1 τi � ω)

pg

y pg

y
V (2)(ι∗(wi · s+ ρPαi ), σ)

M(sβ ,ι∗(wi·s+ρPαi ))−−−−−−−−−−−−−→ V
(2)
sβ (ι∗(wi · s+ ρPαi ), σ).

Hence Mwi(sαi , wi · s) has a pole along a root hyperplane associated to α iff M(ι∗(wi · s+ ρPαi ), σ)
does.

Since the set of poles of Mwi(sαi , wi · s) is equal to the set of poles of M(w, s) along hyperplanes
associated to α, it is independent of the choice of decomposition w = sα1 . . . sα` . Hence, for each
α ∈ Φ+(ZM ), we may use a decomposition tailored to that α.

First suppose α = εj − εk. One may choose a decomposition so that wi corresponds to the
permutation matrix in GL2n (identified with a subgroup of the Siegel Levi) which moves the jth
block of M up so that it is immediately after the ith, and otherwise preserves order. It is then
easily verified that σ = τi ⊗ τj and(

h1

h2

)ι∗(wi·s)+ρPαi
= |deth1|si+κ|deth2|sj+κ,

where κ =
∑

k>i,k 6=j nk −
∑

k<i nk + n.
Next suppose α = 2εj . Then we choose a decomposition so that wi is in the Weyl group of GL2n,

and moves the jth block to be last, otherwise preserving order. Then one easily verifies that σ is
the representation τj �ω of the Siegel Levi of G4nj , and that, for (g′, α) in the Siegel Levi of G4nj ,

(g′, α)ι∗(wi·s+ρPαi ) = |det g′|sj .

Finally, suppose α = εj + εk. Then we choose a decomposition so that wi that projects to a
permutation matrix in SO4n+1 of the form

I
I

I
I

1

 ,

with the off-diagonal blocks being 2nj × 2nj , and the first block being
∑i

k=1 2nk. We deduce from
Corollary 3.5.6 that σ = τi ⊗ (τ̃j ⊗ ω), and from Lemma 3.5.5 that(

h1

h2

)ι∗(wi·s)+ρPαi
= |deth1|si+κ|deth2|−sj+κ,

where κ is as before.
Thus (2) follows from

19



Proposition 4.0.13. Let w denote the unique nontrivial element of W (M), in the case when M
is the Levi of the Siegel parabolic of G2m+1. Let τ be a cuspidal representation of GLm. Then
M(w, s)f(g) has a pole at s = 1

2 for some f ∈ IndG2m+1(A)
P (A) (τ ⊗ |det |s) � ω, and g ∈ G2m+1(A) if

and only if τ is ω−1-orthogonal

Remarks 4.0.14. Of course we are only interested in the case m = 2n. Furthermore, since we
assume ω is not the square of another Hecke character, it follows that τ can be ω−1-orthogonal only
if m is even. However, the proof of this proposition is “blind to” the parity of m.

Proposition 4.0.15. Let P = MU be a maximal standard parabolic of GLn such that M ∼=
GLk×GLn−k. Let f be an element of IndGLn(A)

P (A) (τ1⊗| det |s1)
⊗

(τ2⊗ |det |s2). Let w be the unique
nontrivial element of W (M). Then M(w, s)f(g) is singular along the hyperplane s1 − s2 = 1 for
some f, g iff n = 2k and τ2 ∼= τ1.

We defer the proofs to the appendix.
Now, we assume (4.0.6) holds and prove the remaining part of the theorem. LetN(s) =

∏r
i=1(si−

1
2).

Item (3) follows from [MW1] I.4.11. The constant term of E(f) along a parabolic P ′ = M ′U ′

has nontrivial cuspidal component iff M ′ is conjugate to M. (IV.1.9 (b)(ii)). For such P ′ it is equal
to ∑

w∈W (M), wMw−1=M ′

M(w, s)f(g).

Take w ∈W (M), such that wMw−1 = M ′. If w ·εi > 0 for some i, then M(w, s)f(g) does not have
a pole at si − 1

2 , and hence N(s)M(w, s)f(g) vanishes at 1
2 . On the other hand, if w · εi < 0 for all

i, then M(w, s)f(g) satisfies the criterion of I.4.11.
It follows from [MW1] IV.1.9 (b)(i) applied to N(s)E(f) (which is valid by IV.1.9 (d)) that the

residue is an automorphic form. To complete the proof of (4), let ρ(g) denote right translation. It
is clear that for values of s in the domain of convergence, N(s)E(ρ(g)f)(s) = N(s)ρ(g)(E(f)(s)).
By uniqueness of analytic continuation, the equality also holds at values of s where both sides are
defined by analytic continuation, including 1

2 . The action of the Lie algebra at the infinite places
is handled similarly.

Next we consider the constant term of E(f) along the Siegel parabolic. By [MW1] II.1.7(ii)
it may be expressed in terms of GL2n Eisenstein series, formed using the functions M(w, s)f,
corresponding to those w ∈ W (M) such that w−1(ei − ei+1) > 0 for all i. (Note: we proved in
Lemma 3.5.3 that wMw−1 is contained in the Siegel Levi for every w ∈ W (M).) When we pass
to E−1(f), the term corresponding to w only survives if w · εi < 0 for all i. This condition picks
out a unique element, w0. It is the shortest element of WGL2n ·w` ·WGL2n , where w` is the longest
element of WG4n+1 , and we have identified GL2n with a subgroup of the Siegel Levi as usual. Via
corollary 3.5.6 one finds that

(
r⊗
i=1

τi � ω) ◦Ad(w0) = (
r⊗
i=1

(τ̃r+1−i ⊗ ω) � ω) = (
r⊗
i=1

τr+1−i � ω).

For f ∈ V (2)(
⊗r

i=1 τi�ω,
1
2), M(w0,

1
2)f |GL2n(A) is an element of the analogue of V (2)(

⊗r
i=1 τi�ω, s),

for the induced representation

IndGL2n(A)

P̄ 0(A)
(
⊗

τr+1−i ⊗ |det i|n−
1
2 ) = |det |n−

1
2 ⊗ τ

of GL2n. Here P̄ 0 = GL2n ∩ Pw0 , and τ = τ1 � · · · � τr. Furthermore, since this representation is
irreducible, it may be regarded as an arbitrary element. Also, we may regard this representation
as induced from τ1, . . . , τr in the usual order. Let P̄ denote the relevant parabolic of GL2n.
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The representation τ sits inside a fiber bundle of induced representations IndGL2n(A)

P̄ (A)
(
⊗r

i=1 τi ⊗
|det i|si). For a flat, K-finite section f let EGL2n(f)(g)(s) be the GL2n Eisenstein series defined by∑

P̄ (F )\GL2n(F )

f(s)(γg)

when si − si+1 is sufficiently large for each i, and by meromorphic continuation elsewhere.
Let UGL2n

max denote the usual maximal unipotent subgroup of GL2n, consisting of all upper trian-
gular unipotent matrices. Let ψW (u) = ψ0(u1,2 + · · ·+ um−1,m) be the usual generic character.

To complete the proof of (5), we must prove that

(4.0.16)
∫
U
GL2n
max (F\A)

EGL2n(f)(ug)(0)ψW (u) du 6= 0

for some f ∈ IndGL2n(A)

P̄ (A)

⊗r
i=1 τr+1−i, g ∈ GL2n(A), i.e., that the space of GL2n Eisenstein series

EGL2n(f) is globally ψW -generic. Granted this, (5) follows from [MW1]II.1.7(ii) and the discussion
just above.

The following proposition follows from work of Shahidi.

Proposition 4.0.17.∫
U
GL2n
max (F\A)

EGL2n(f)(ug)(s)ψW (u) du =
∏
v∈S

Wv(gv) ·
∏
v/∈S

W ◦
v (gv) ·

∏
i<j

LS(si − sj + 1, τi × τ̃j)−1,

where, for each v, Wv is a Whittaker function in the ψW,v-Whittaker model of IndGL2n(Fv)

P̄ (Fv)
(
⊗r

i=1 τi,v⊗
|det i|siv ), S is a finite set of places, depending on f, outside of which τv is unramified and W ◦

v is the
normalized spherical vector in the the ψW,v-Whittaker model of IndGL2n(Fv)

P̄ (Fv)
(
⊗r

i=1 τi,v⊗|det i|siv ). A
flat, K-finite section f may be chosen so that, for all v ∈ S, the function Wv is not identically zero
at s = 0.

We briefly review the steps of the proof in the appendix.
It follows from [Ja-Sh3] Propositions 3.3 and 3.6 that the product of partial L functions appearing

in Proposition 4.0.17 does not have a pole at s = 0 provided the representations τ1, . . . , τr are
distinct. This completes the proof of (5).

Finally, (6) follows from the functional equation of the Eisenstein series ([MW1]IV.1.10(a)), and
the fact that τ is equal to an irreducible full induced representation (as opposed to a constituent
of a reducible one). �

5. Main Results

5.1. Descent Construction. In this section, we shall make use of remark 4.0.8, and regard
E−1(τ, ω) as affording an automorphic realization of the representation induced from the repre-
sentation τ ⊗ |det |

1
2 � ω of the Siegel Levi. Thus we may dispense with the smaller Levi denoted

by P in the previous section, and in this section we denote the Siegel parabolic more briefly by
P = MU.

Next we describe certain unipotent periods of G2m which play a key role in the argument. For
1 ≤ ` < m, let N` be the subgroup of Umax defined by uij = 0 for i > `. (Recall that according
to the convention above, this refers only to those i, j with i < j ≤ m − i.) This is the unipotent
radical of a standard parabolic Q` having Levi L` isomorphic to GL`1 ×G2m−2`.

Let ϑ be a character of N` then we may define

DC`(τ, ω, ϑ) = FCϑE−1(τ, ω).
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Theorem 5.1.1. Let ω be a Hecke character. Let τ = τ1 � · · · � τr be an isobaric sum of ω−1-
orthogonal irreducible cuspidal automorphic representations τ1, . . . , τr, of GL2n1(A), . . . GL2nr(A),
respectively. If ` > n, and ϑ is in general position, then

DC`(τ, ω, ϑ) = {0}.

Proof. By Theorem 4.0.4, (3) the representation E−1(τ, ω) decomposes discretely. Let π ∼= ⊗′
vπv be

one of the irreducible components, and pπ : E−1(τ, ω) → π the natural projection.

Fix a place v0 such which τv0 and πv0 are unramified. For any ξv0 ∈ ⊗′
v 6=v0Ind

G4n(Fv)
P (Fv)

τv⊗|det |
1
2
v �

ωv we define a map

iξv0 : IndG4n(Fv0 )

P (Fv0 ) τv0 ⊗ |det |
1
2
v0 � ωv0 → Ind

G4n(A)
P (A) τ ⊗ |det |

1
2 � ω

by iξv0 (ξv) = ι(ξv0 ⊗ ξv0), where ι is an isomorphism of the restricted product ⊗′
vInd

G4n(Fv)
P (Fv)

τv ⊗

|det |
1
2
v � ωv with the global induced representation IndG4n(A)

P (A) τ ⊗ |det |
1
2 � ω. Clearly

E−1(τ, ω) = E−1 ◦ ι(⊗′
vInd

G4n(Fv)
P (Fv)

τv ⊗ |det |
1
2
v � ωv).

For any decomposable vector ξ = ξv0 ⊗ ξv0 ,

pπ ◦ E−1 ◦ ι(ξ) = pπ ◦ E−1 ◦ iξv0 (ξv0).

Thus, πv0 is a quotient of IndG4n(Fv0 )

P (Fv0 ) τv0 ⊗ | det |
1
2
v0 � ωv0 , and hence (since we took v0 such that

πv0 is unramified) it is isomorphic to the unramified constituent unInd
G4n(Fv0 )

P (Fv0 ) τv0 ⊗ |det |
1
2
v0 � ωv0 .

Denote the isomorphism of π with ⊗′
vπv by the same symbol ι. This time, fix ζv0 ∈ ⊗′

v 6=v0πv,

and define iζv0 :un IndG4n(Fv0 )

P (Fv0 ) τv0 ⊗ |det |
1
2
v0 � ωv0 → π. It follows easily from the definitions that

FCϑ ◦ iζv0

factors through the Jacquet module JN`,ϑ( unInd
G4n(Fv0 )

P (Fv0 ) τv0 ⊗ |det |
1
2
v0 � ωv0). Propositions 7.0.16

and 7.0.18 below each show that this Jacquet module vanishes at approximately half of all places.
Inasmuch as vanishing at a single place would suffice to prove global vanishing, the result follows. �

A general character of N` is of the form

(5.1.2) ψ0(c1u1,2 + · · ·+ c`−1u`−1,` + d1u`,`+1 + · · ·+ d4n+1−2`u`,4n+1−`).

As described in section 3.8, the Levi L` acts on the space of characters of N`(F\A). In order to
define embeddings of the various forms of G2n into G4n+1, we need to make this more explicit.

First, we fix a specific isomorphism of GL`1 × G4n−2`+1 with L` as follows. As in section
3.4, let e0, . . . , e2n and e∗0, . . . , e

∗
2n denote the Z-bases of X(T (G4n+1)) and X∨(T (G4n+1)), re-

spectively. Let ê0, . . . ê2n−`, and ê∗0, . . . , ê
∗
2n−` denote the analogues for G4n−2`+1. We identify

(α1, . . . , α`,
∏2n−`
i=1 ê∗i (ti)) ∈ GL`1 × T (G4n−2`+1) with

∏`
i=1 e

∗
i (αi) ·

∏2n−`
i=1 e∗i+`(ti) ∈ T (G4n+1). In

addition, we require that g ∈ G4n−2`+1 be identified with an element of G4n+1 which projects toI` pr(g)
I`

 ∈ SO4n+1.

Together, these requirements determine a unique identification.
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Let d denote the column vector t(d1, . . . , d4n+1−2`). Suppose ϑ(u) is the character of N` given by
(5.1.2), and, for h ∈ L`, let

(5.1.3) h ·ϑ(u) = ϑ(h−1uh) = ψ0(hc1u1,2 + · · ·+hc`−1u`−1,`+hd1u`,`+1 + · · ·+hd4n+1−2`u`,4n+1−`).

This is an action of L` on the space of characters, and it is easily verified that for h identified with
(α1, . . . , α`, g), with α1, . . . , α` ∈ GL1(F ) and g ∈ G4n−2`+1(F ), we have

hci =
αi+1

αi
· ci, i = 1, . . . , `− 1, and hd = α−1

` · pr(g) · d.

The above discussion amounts to an identification of the action of L`(F ) on the space of characters
of N`(F\A) with a certain rational representation of L` defined over F, consisting of the direct sum
of `− 1 one dimensional representations and a (4n− 2`+ 1)-dimensional representation on which
the G4n−2`+1 factor in L` acts via its “standard” representation. We may consider this rational
representation over any field. Over an algebraically closed field there is an open orbit, which consists
of all those elements such that ci 6= 0 for all i and tdJd 6= 0. Here, J is defined as in 3.1. Over a
general field two such elements are in the same F -orbit iff the two values of tdJd are in the same
square class. Thus, this square class is an important invariant of the character ϑ.

Definition 5.1.4. Let ϑ be the character of N`(F\A) given by

ϑ(u) = ψ0(c1u1,2 + · · ·+ c`−1u`−1,` + d1u`,`+1 + · · ·+ d4n+1−2`u`,4n+1−`).

We denote the square class of tdJd by Invt(ϑ). We say that ϑ is in general position if ci 6= 0 for
1 ≤ i ≤ `− 1 and Invt(ϑ) 6= 0. We denote the square class consisting of the nonzero squares by �.

Clearly, a nonzero square class in F may also be used to determine a quasi-split form of G2n.
Indeed, the natural datum for determining a quasi-split group with G such that LG0 = GSO2n(C)
is a homomorphism Gal(F̄ /F ) → Aut(GSO2n(C))/ Inn(GSO2n(C)), which has two elements. Such
homomorphisms are in one-to-one correspondence with quadratic characters by class field theory,
and this has been exploited in defining Gχ2n above. But they are also in natural one-to-one cor-
respondence with square classes in F×, and this parametrization will be more convenient for the
next part of the discussion.

Definition 5.1.5. Let a be a square class in F×. Let F (
√

a) denote the smallest extension of F in
which the elements of a are squares, and for a ∈ F×, let F (

√
a) = F (

√
{a}). Let Ga

2n denote the
quasi-split form of G2n such that the associated map Gal(F̄ /F ) → Aut(GSO2n(C))/ Inn(GSO2n(C))
factors through Gal(F (

√
a)/F ).

Remark 5.1.6. Of course, if a = �, then F (
√

a) = F and Ga
2n is just the split group G2n.

Lemma 5.1.7. (1) If ϑ is a character of N` in general position, then the stabilizer Lϑ` (cf. Mϑ

in definition 3.8.1) has two connected components
(2) The identity component (Lϑ` )

0 is isomorphic over F to GInvt(ϑ)
4n−2` .

Proof. Identify (α1, . . . , α`, g) ∈ GL`1 ×G4n−2`+1 with an element of L` as above.
The identity component of Lϑ` consists of those (α1, . . . , α`, g) such that αi = 1 for all i and g

fixes the vector in the standard representation obtained from ϑ. The other consists of those such
that αi = −1 for all i, and g maps the vector in the standard representation obtained from ϑ to its
negative (which is the only scalar multiple of the same length). This proves (1).

We turn to (2). First suppose Invt(ϑ) = �. It suffices to consider the specific character ψ` defined
by

ψ`(u) = ψ0(u12 + · · ·+ u`−1,` + u`,2n+1).
For this character, the column vector d is v1 :=t (0, . . . , 0, 1, 0, . . . , 0). It is easily checked that the
stabilizer of this point in SO4n−2`+1 is isomorphic to the split form of SO4n−2`. In addition, the
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stabilizer in G4n−2`+1 contains a split torus of rank 2n − ` + 1, and hence is a split group. An
element of Umax fixes v1, if and only if it satisfies ui,2n−`+1 = 0 for i = 1 to 2n − `. From this we
easily compute the based root datum of the stabilizer of v1 and find that it is the same as that of
G4n−2`.

To complete the proof of (2), let a be a non-square in F×, and let va =t (0, . . . , 0, 1, 0, a2 , 0, . . . , 0) ∈
F 4n−2`+1 (nonzero entries in positions 2n − ` and 2n − ` + 2 only). Let ψa` be the character of
N`(F\A) corresponding to ci = 1∀i and d = va. The stabilizers of ψa` and ψ` are conjugate over the
quadratic extension E of F obtained by adjoining a square root of a. Indeed, let

√
a be an element

of E such that (
√
a)2 = a. Suppose

pr(ha) =

√a−1
I2n−1

M√
a √

aI2n−1

 , where M√
a =

− 1
2
√
a

√
a
−1 √

a
−1

1
2 0 1√
a

4

√
a

2 −
√
a

2

 .

Then ha · ψ` = ψa` . For each a, fix an element ha as above for use throughout.
Clearly (Lψ

a
`

` )0 = ha(L
ψ`
` )0h−1

a . The image of this group under pr is isomorphic over F to the
non-split quasisplit form of SO4n−2` corresponding the square class of a. It follows that (Lψ

a
`

n )0 is
isomorphic over F to the non-split quasisplit form of G4n−2` associated to the square class of a. �

In the course of the preceding proof, we have seen that it is enough to consider one conveniently
chosen representative from each F -orbit of characters in general position. However, it is generally
more convenient to make definitions for general a ∈ F× than it is to choose representatives for the
square classes in F×.

Definition 5.1.8. Take a ∈ F×, and let ψa` be the character of N` defined by

ψa` (u) = ψ0(u12 + · · ·+ u`−1,` + u`,2n +
a

2
u`,2n+2).

We also keep the notation

ψ`(u) = ψ0(u12 + · · ·+ u`−1,` + u`,2n+1).

Then the orbit of ψa` is determined by the square class of a. The character ψ` is in the same orbit
as ψ1

` .

Note that for any given square class a we have many conjugate embeddings of Ga
2n into G4n+1:

one for each element a of a.

Definition 5.1.9. For each element a of F×, we let Ga2n denote (Lψ
a
n

n )0. It is a subgroup of G4n+1,

which is isomorphic over F to G{a}
2n , where {a} is the square class of a.

Lemma 5.1.10. Assume {a} 6= �. Then,
(1) An element u of Umax is in Ga2n iff it satisfies uij = 0 for i ≤ n or i = 2n, and ui,2n =

−a
2ui,2n+2 for n < i < 2n. The set of such elements u is equal to ha(Umax ∩ (Lψnn )0)h−1

a ,
and is a maximal unipotent subgroup of Ga2n.

(2) And element t =
∏2n
i=0 e

∗
i (ti) of T (G4n+1) is in Ga2n iff it satisfies ti = 1 for 0 < i ≤ n, and

i = 2n. The set of such t is a maximal F -split torus of Ga2n.
(3) There is a maximal torus of Ga2n which contains the above maximal F -split torus and is

contained in the standard Levi of G4n+1 whose unique positive root is the short simple root
en. Its set of F points is equal to{

hath
−1
a : t =

n−1∏
i=1

e∗n+i(ti)e
∗
2n(x · x̄−1)e∗0(x̄), t1, . . . , tn−1 ∈ F×, x ∈ F (

√
a)×
}
,
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where denotes the action of the nontrivial element of Gal(F (
√
a)/F ).

If {a} = �, then (1) remains true, while{
hath

−1
a : t =

n∏
i=0

e∗n+i(ti)

}
,

is a maximal torus, and is F -split, since ha has entries in F.

Remark 5.1.11. We may write an element of our maximal torus as{
ha

n−1∏
i=1

e∗n+i(ti) · e∗2n
(
(x+ y

√
a) · (x− y

√
a)−1

)
e0(x− y

√
a)h−1

a : ti ∈ F, x, y ∈ F, x2 − ay2 6= 0

}
,

regardless of {a}.

Proof. Item (1) is easily checked. (Recall that pr is an isomorphism on Umax.) Similarly, it is easily
checked that an element t of T (G4n+1) stabilizes the specified character iff t1 = · · · = tn = t2n = ±1.
As noted in the proof of Lemma 5.1.7, if they are all minus 1, then this element is in the other
connected component of Lψ

a
n

n .

Recall that (Lψnn )0, with ψn as in Definition 5.1.8 is isomorphic to G2n. There is an “obvious”
choice of isomorphism inc : G2n → (Lψnn )0, such that

inc ◦ē∗i =

{
e∗0 i = 0,
e∗n+i 1 ≤ i ≤ n,

and inc(u)ij =


0 i ≤ n, or j = 2n+ 1,
ui−n,j−n i > n, j < 2n+ 1,
ui−n,j−n−1 i > n, j > 2n+ 1.

Here, we have used e∗i for elements of the Z-basis of the cocharacter lattice of G4n+1 and ē∗i for
elements of that of G2n. It follows from the definitions that conjugation by ha is an isomorphism of
Ga2n with (Lψnn )0, which is defined over F (

√
a). This yields an identification of the maximal F -split

torus of G{a}
2n as computed in section 3.4 with the F -split torus in item (2).

Clearly ha · inc(T (G2n)) · h−1
a is a maximal torus of Ga2n. The fact that an element is of the form

specified in item (3) of the present lemma follows from the action of Gal(F̄ /F ) on the lattice of
cocharacters computed in section 3.4. �

Definition 5.1.12. Let
DCaω(τ) = FCψ

a
nE−1(τ, ω).

It is a space of smooth functions Ga2n(F\A) → C, and affords a representation of the group Ga2n(A)
acting by right translation, where we have identified Ga2n with the identity component of Lψ

a
n

n .

Definition 5.1.13. We say that a square class a in F× and a character χ are compatible if they
correspond to the same homomorphism from Gal(F̄ /F ) to the group with two elements. We say
that an element a of F× and a character χ are compatible if χ is compatible with the square class
of a.

Theorem 5.1.14. Let ω be a Hecke character. Let τ = τ1 � · · · � τr be the isobaric sum of
distinct ω−1-orthogonal unitary cuspidal automorphic representations of GL2n1(A), . . . , GL2nr(A),
respectively. For i = 1 to r let ωτi denote the central character of τi and let χi = ωτi/ω

ni , which is
quadratic. Let χ =

∏r
i=1 χi. Suppose that χ and a are not compatible. Then DCaω(τ) = {0}.

Proof. As in Theorem 5.1.1, it suffices to prove the vanishing of the corresponding twisted Jacquet
module of IndG4n+1(Fv)

P (Fv)
τv ⊗ |det |

1
2 � ωv at a single unramified place v. The vanishing follows from

Proposition 7.0.16, if there is an unramified place v such that χv is trivial and a is not a square,
and from Proposition 7.0.18 if there is an unramified place v such that χv is nontrivial and a is a
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square. If χ and a are incompatible, then there is at least one unramified place at which one of
these cases occurs. �

Theorem 5.1.15. Let ω be a Hecke character. Let τ = τ1 � · · · � τr be the isobaric sum of
distinct ω−1-orthogonal unitary cuspidal automorphic representations of GL2n1(A), . . . , GL2nr(A),
respectively. For i = 1 to r let ωτi denote the central character of τi and let χi = ωτi/ω

ni , which is
quadratic. Let χ =

∏r
i=1 χi. Then DCaω(τ) is nontrivial if and only if χ and a are compatible, in

which case the space DCaω(τ) is a nonzero, cuspidal representation of Ga2n(A), with central character
ω, which supports a nonzero Whittaker integral for the generic character of Umax(A)∩Ga2n(A) given
by

u 7→ ψ0

(
2n−2∑
i=1

ui,i+1 + u2n−1,2n+2

)
.

If σ is any irreducible automorphic representation contained in DCaω(τ), then σ lifts weakly to τ
under the map r.

Remark 5.1.16. Since DCω(τ) is nonzero and cuspidal, there exists at least one irreducible com-
ponent σ. In the case of special orthogonal groups, one may show ([So1], pp. 8-9, item 4) that
the descent module is in the ψ-generic spectrum for a suitable choice of ψ (cf. section 3.3). It
that all of the irreducible components are globally ψ-generic. This is done using the Rankin-Selberg
integrals of [Gi-PS-R],[So2]. In the odd case, one may also show ([GRS4], Theorem 8, p. 757, or
[So1] page 9, item 6) using the results of [Ji-So] that the descent module is irreducible. This does
not extend to the even case, even for special orthogonal groups, because the construction actually
yields a representation of the full stabilizer– which is isomorphic to the full orthogonal group. (Cf.
Proposition 7.0.20.)

Proof. The statements are proved by combining relationships between unipotent periods and knowl-
edge about E−1(τ, ω).

For a ∈ F×, we let (Ua1 , ψ
a
1) denote the unipotent period obtained by composing the period

(Nn, ψ
a
n), used in defining the descent to Ga2n, (embedded into G4n+1 as the stabilizer of ψan) with

a period which defines a Whittaker integral on this group. Specifically, U1 is the subgroup of the
standard maximal unipotent defined by the relations ui,2n = −a

2ui,2n+2 for i = n+ 1 to 2n− 1, as
well as u2n,2n+1 = 0, and

ψ1(u) = ψ0(u1,2 + · · ·+ un−2,n−1 + un−1,2n +
a

2
un−1,2n+1 + un,n+1 + · · ·+ u2n−1,2n).

The definitions of Ua1 and ψa1 make sense also in the case when a = 0, although in that case there
is no interpretation in terms of a descent. We use this period in that case also.

Next, let U2 denote the subgroup of the standard maximal unipotent defined by u2n,2n+1 = 0,
and u12 = u34 = · · · = u2n−1,2n. For all a ∈ F, we may define a character of this group by the
formula

ψa2(u) = ψ0

(
2n−2∑
i=1

ui,i+2 + u2n−1,2n+2 +
a

2
u2n−1,2n

)
.

Finally, let U3 denote the maximal unipotent, and ψ3 denote

ψ3(u) = ψ(u1,2 + · · ·+ u2n−1,2n).

Thus (U3, ψ3) is the composite of the unipotent period defining the constant term along the Siegel
parabolic, and one which defines a Whittaker integral on the Levi of this parabolic. By Theorem
4.0.4 (5) this period is not in U⊥(E−1(τ, ω)).

In the appendices, we show
(1) (Ua1 , ψ

a
1) ∼ (U2, ψ

a
2), for all a ∈ F, in Lemma 8.3.1,
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(2) (U2, ψ
0
2) ∈ 〈{(U2, ψ

a
2) : a ∈ F×}〉, in Lemma 8.4.2, and

(3) (U3, ψ3) ∈ 〈(U2, ψ
0
2), {(N`, ϑ) : n < ` < 2n and ϑ in general position.}〉 in Lemma 8.3.2.

By Theorem 5.1.1 (N`, ϑ) ∈ U⊥(E−1(τ, ω)) for all n < ` < 2n and ϑ in general position. It follows
that at least one of the periods (Ua1 , ψ

a
1) is not in U⊥(E−1(τ, ω)). This establishes genericity (and

hence nontriviality) of the corresponding descent module DCaω(τ).
Turning to cuspidality, we prove in the appendices an identity relating:
• Constant terms on Ga2n,
• Descent periods in G4n+1,
• Constant terms on G4n+1,
• Descent periods on G4n−2k+1, embedded in G4n as a subgroup of a Levi.

To formulate the exact relationship we introduce some notation for the maximal parabolics of GSpin
groups.

The group G4n+1 has one standard maximal parabolic having Levi GLi×G4n−2i+1 for each value
of i from 1 to 2n. Let us denote the unipotent radical of this parabolic by Vi. We denote the trivial
character of any unipotent group by 1.

For any square class a, the group Ga
2n has one standard maximal parabolic having Levi GLk ×

Ga
2n−2k for each value of k from 1 to n − 2. We denote the unipotent radical of this parabolic by

V 2n
k . The split group G2n = G�

2n also has two parabolics with Levi isomorphic to GLn ×GL1. One
has the property that en−1 − en is a root of the Levi, and the other does not. Let us denote the
unipotent radical of this first parabolic by V 2n

n . Then the unipotent radical of the other is †V 2n
n ,

where † is the outer automorphism of G2n which reverses the last two simple roots while fixing the
others. In a nonsplit quasisplit form of G2n, there is a parabolic subgroup with Levi isomorphic to
the product of GLn−1 and a nonsplit torus which is maximal. (The corresponding parabolic in the
split case is not maximal.) We denote its unipotent radical by V 2n

n−1.

We prove in Lemma 8.3.3 that, for 1 ≤ k ≤ n− 1, (V 2n
k ,1) ◦ (Nn, ψ

a
n) is contained in

〈(Nn+k, ψn+k), {(Nn+j , ψ
a
n+j)

(4n−2k+2j+1) ◦ (Vk−j ,1) : 1 ≤ j < k}〉,

where (Nn+j , ψ
a
n+j)

(4n−2k+2j+1) denotes the descent period, defined as above, but on the group
G4n−2k+2j+1, embedded into G4n+1 as a component of the Levi with unipotent radical Vk−j .

Now suppose that a is a square. Then both (V 2n
n ,1) ◦ (Nn, ψ

a
n) and (†V 2n

n ,1) ◦ (Nn, ψ
a
n) are in

〈(N2n, ψ2n), {(Nn+j , ψ
a
n+j)

(2n+2j+1) ◦ (Vn−j ,1) : 1 ≤ j < n}〉.

Indeed, the two periods are actually conjugate in G4n+1, so it suffices to consider only one of them.
By Theorem 5.1.1 (Nn+k, ψ

a
n+k) ∈ U⊥(E−1(τ, ω)) for k = 1 to n. Furthermore, for k, j such that

1 ≤ j < k ≤ n the function E(f)(s)(Vk−j ,1) may be expressed in terms of Eisenstein series on GLk−j
and G4n−2k+2j , using Proposition II.1.7 (ii) of [MW1]. What we require is the following:

Lemma 5.1.17. For all f ∈ V (2)(s,
⊗r

i=1 τ � ω)

E−1(f)(Vk−j ,1)
∣∣∣
G4n−2k+2j+1(A)

∈
⊕
S

E−1(τS , ω),

where the sum is over subsets S of {1, . . . , r} such that
∑

i∈S 2ni = 2n− k + j, and, for each such
S, E−1(τS , ω) is the space of functions on G4n−2k+2j+1(A) obtained by applying the construction of
E−1(τ, ω) to {τi : i ∈ S}, instead of {τi : 1 ≤ i ≤ r}.

Once again, this is immediate from [MW1] Proposition II.1.7 (ii).
Applying Theorem 5.1.1, with τ replaced by τS and 2n by 2n− k + j, we deduce

(Nn+j , ψn+j)(4n−2k+2j+1) ∈ U⊥ (E−1(τS , ω)) ∀S,
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and hence (Nn+j−1, ψn+j−1)(4n−2k+2j) ◦ (Vk−j ,1) ∈ U⊥(E−1(τ, ω)). This shows that any nonzero
function appearing in any of the spaces DCaω(τ) must be cuspidal. Such a function is also easily
seen to be of uniformly moderate growth, being the integral of an automorphic form over a compact
domain. In addition, such a function is easily seen to have central character ω, and any function
with these properties is necessarily square integrable modulo the center ([MW1] I.2.12). It follows
that each of the spaces DCaω(τ) decomposes discretely.

Now, suppose σ ∼= ⊗′
vσv is an irreducible representation which is contained in DCaω(τ). Let

pσ denote the natural projection DCaω(τ) → σ. Once again, by Theorem 4.0.4 (3), the repre-
sentation E−1(τ, ω) decomposes discretely. Let π be an irreducible component of E−1(τ, ω) such
that the restriction of pσ ◦ FCψ

a
n to π is nontrivial. As discussed previously in the proof of

Theorem 5.1.1, at all but finitely many v, τ is unramified at v and furthermore, πv is the un-

ramified constituent unInd
G4n+1(Fv)
P (Fv)

τv � ωv ⊗ |det |
1
2
v of IndG4n+1(Fv)

P (Fv)
τv � ωv ⊗ |det |

1
2
v . If v0 is

such a place, the map pσ ◦ FCψ
a
n ◦ iζv0 , with iζv0 defined as in Theorem 5.1.1, factors through

JNn,ψan

(
unInd

G4n+1(Fv0 )

P (Fv0 ) τv ⊗ |det |
1
2
v � ωv

)
, and gives rise to a Ga2n(Fv0)-equivariant map from

this Jacquet-module onto σv0 .
To pin things down precisely, assume that τv is the unramified component of IndGL2n(Fv)

B(GL2n)(Fv)
µ,

and let µ1, . . . , µ2n be defined as in the proof of Lemma 3.6.1. By Lemma 3.6.1, we may assume
without loss of generality that µ2n+1−i = ωµ−1

i for i = 1 to n − 1, and that either µn = ωµ−1
n+1,

or µ2
n = µ2

n+1 = µnµn+1χun = ω (with χun defined as in the lemma). Furthermore, suppose
that χv is the local component at v of the global quadratic character obtained from τ and ω as
in the statement of the theorem. Then either χv is trivial and µn = ωµ−1

n+1, or χv = χun and
µ2
n = µ2

n+1 = µnµn+1χun = ω.
Recall that a basis for the lattice of F -rational cocharacters of the maximal torus of Ga2n fixed

in Lemma 5.1.10 is given by

{e∗n+i : 1 ≤ i < n} ∪ {e∗0} ∪ {e∗n, if a is a square}.
Observe that when a is not a square in F, it is a square in Fv for many unramified v, and that the
cocharacter e∗n is Fv-rational at such v.

In the appendices, we show that in the nonsplit case

JNn,ψn
(
unInd

G4n+1(Fv)
P (Fv)

τv � ωv ⊗ |det |
1
2
v

)
is isomorphic as aGa2n(Fv)-module to a subquotient of a principal series representation πv ofGa2n(Fv)
such that the corresponding parameter tπ,v maps to the parameter tτ,v under r. In the split case,
we obtain instead a direct sum of two principal series representations, but both have parameters
which map to tτ,v. It follows that τ is the weak lift of σ associated to the map r. �

6. Appendix I: Eisenstein series

In this appendix we complete the proofs of several intermediate statements used in the proof of
Theorem 4.0.4. As far as we know, all of these results are well-known to the experts, but do not
appear in the literature in the precise form we need.

6.1. Proof of Proposition 4.0.10. First, suppose that a set D of hyperplanes carries all the
singularities of all the intertwining operators M(w, s)f. Then it follows from [MW1] II.1.7, IV.1.9
(b) that it carries all the singularities of the cuspidal components of all the constant terms of
E(f)(g)(s). By I.4.10, it therefore carries the singularities of the Eisenstein series itself.

On the other hand, it is clear that a set which carries the singularities of the Eisenstein series
carries those of all of its constant terms. Thus, what we need to prove is:
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Lemma 6.1.1. Fix M ′ a standard Levi which is conjugate to M and α ∈ Φ+(ZM ). Let H be the root
hyperplane given by 〈α∨, s〉 = c, c 6= 0. Consider the family of functions M(w, s)f corresponding
to {w ∈W (M)|wMw−1 = M ′}. If any one or them has a pole along H, then the constant term of
the Eisenstein series along P ′ does as well. In other words, it is not possible for two poles to cancel
one another.

Proof. Clearly, it is enough to prove this under the additional hypothesis that M ′ = M.
Let A+

M denote the group isomorphic to (R×
+)r+1, embedded diagonally at the infinite places,

which is inside the center of M.
The Lie algebra of A+

M is naturally identified with the real dual of X(M)⊗Z R. Recall that above
we identified s with an element of X(M)⊗Z C. So, there is a natural pairing 〈X, s〉, X ∈ a+

M , given
as follows. Write deti for the determinant of the ith block of an element of M, regarded as a 2n×2n
matrix via the identification with GLm ×GL1 fixed above. Then we have

r∏
i=1

|det i exp(log y ·X)|si = y〈X,s〉.

It follows that

|M(w, s)f(exp(log y ·X)g)| = yRe(〈w−1X,s〉) · δ
1
2
P (w−1 exp(log y ·X)w) · |M(w, s)f(g)|.

Here δP is the modular quasicharacter of P.
Let

Wsing(M,H) = {w ∈W (M), wMw−1 = M,M(w, s) has a pole along H}.
Suppose that this set is nonzero. Choose w0 ∈ Wsing(M,H) such that the order of the pole of
M(w0, s) is of maximal order. Let ν(H) denote the order. Choose X ∈ a+

M such that the points
w−1 ·X,w ∈Wsing(M,H) are all distinct. Consider the family of functions

(〈α∨, s〉 − c)ν(H)M(w, s)f(exp(log y ·X)g), w ∈Wsing(M,H).

They have singularities carried by a locally finite set of root hyperplanes not containing H. Assume
g has been chosen so that (〈α∨, s〉 − c)ν(H)M(w0, s)f(g) 6= 0. For s restricted to an open subset of
H not intersecting any of the singular hyperplanes we obtain a family of holomorphic functions, at
least one of which is nonzero. If we further exclude the intersection of H with the hyperplanes

〈w−1
1 X − w−1

2 X, s〉 = 0, w1, w2 ∈Wsing(M,H),

(which can not coincide with H because c 6= 0), then at every point s, those functions which are
nonzero all have distinct orders of magnitude as functions of y. Hence they can not possibly cancel
one another. �

6.2. Proof of Lemma 4.0.12. Regarding wi · s + ρPαi as an element of X(wiMw−1
i ) ⊗Z C, we

may decompose it as µ1 + 〈α∨i , wi · s〉α̃i, where α̃i is defined by the property that

〈α∨, α̃i〉 = δα,αi , for α ∈ Φ+(ZwiMw−1
i

).

Then it follows easily from the definitions that µ1 is in the image of the natural projection
X(Mαi)⊗ZC → X(wiMw−1

i )⊗ZC corresponding to restriction of characters ofMαi(A) to wiMw−1
i (A).

Take f a K-finite flat section of IndG4n+1(A)
Pwi (A) (

⊗r
j=1 τj⊗|det j |sj �ω)◦Ad(w−1

i ). Then Mwi(sαi , wi ·

s)f resides in a finite dimensional subspace of IndG4n+1(A)
Pwi−1 (A)

(
⊗r

j=1 τj ⊗ |det j |sj � ω) ◦ Ad(w−1
i−1),

corresponding to a finite set of K-types determined by f. Write Mwi(sαi , wi · s)f in terms of a
basis of flat K-finite sections. The coefficients are functions of s, but it follows easily from the
integral definition where this is valid, and by meromorphic continuation elsewhere, that in fact
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they are independent of µ1 (which corresponds to a character of Mα1(A) and may be pulled out of
the integration). Thus, they depend only on 〈wi · s, α∨i 〉 = 〈s, w−1

i α∨i 〉.
The first two assertions are now clear. A proof that c 6= 0 is obtained by a straightforward

modification of the opening paragraph of [MW1], IV.3.12.

6.3. Proof of Proposition 4.0.13. In this section, we denote by V (i)(s, τ, ω), i = 1, 2, the spaces
of functions previously introduced in section 4 as V (i)(s,

⊗r
i=1 τi � ω), in the special case when

r = 1.
Let M̃(s) denote the analogue of M(w, s) defined using V (1)(s, τ, ω). It maps into the space

V (3)(−s, τ̃ ⊗ ω, ω) given by{
F̃ : G2m+1(A) → Vτ , smooth

∣∣∣F̃ ((g, α)h)(g1) = ω(α det g)|det g|−s+
m
2 F̃ (h)(g1 tg

−1)
}
.

Fix realizations of the local induced representations τv and an isomorphism ι : ⊗′
vτv → τ. Define,

for each v, V (1)(s, τv, ωv) to be{
F̃v : G2m+1(Fv) → Vτv , smooth

∣∣∣F̃v((g, α)h) = ωv(α)|det g|s+
m
2

v τv(g)F̃v(h)
}
,

and V (3)(s, τ̃v ⊗ ωv, ωv) to be{
F̃v : G2m+1(Fv) → Vτv , smooth

∣∣∣F̃v((g, α)h) = ωv(α det g)|det g|s+
m
2

v τv(tg−1)F̃v(h)
}
.

Then the formula
ι̃(⊗vF̃v)(g) = ι(⊗′

vF̃v(gv))
defines maps

⊗′
vV

(1)(s, τv, ωv) → V (1)(s, τ, ω),

⊗′
vV

(3)(s, τ̃v ⊗ ωv, ωv) → V (3)(s, τ̃ ⊗ ωv, ω),
both of which we denote by ι̃.

It is known that each map is, in fact, an isomorphism. For the benefit of the reader we sketch an
argument. On pp. 307 of [Sha1] certain explicit elements of (a generalization of) V (1)(s, τ, ω) are
constructed as integrals involving matrix coefficients. Using Schur orthogonality, one may check
that F̃ is expressible in this form iff both the K-module it generates and the K ∩M(A)-module it
generates are irreducible. It is clear that such vectors span the space of all K-finite vectors. On the
other hand the (finite dimensional) space of matrix coefficients of this irreducible representation of
K is spanned by those that factor as a product of matrix coefficients of local representations, and
these are clearly in the image of ι̃.

For F̃v ∈ V (1)(s, τv, ωv), let

Av(s)F̃v(g) =
∫
Uw(Fv)

F̃v(ẇug)du.

Then the following diagram commutes

⊗′
vV

(1)(s, τv, ωv)
A(s)−−−−→ ⊗′

vV
(1)(−s, τv, ωv)

ι̃

y ι̃

y
V (1)(s, τ, ω)

M̃(s)−−−−→ V (1)(−s, τ, ω)

with A(s) := ⊗vAv(s).
Now, M(w, s)f(s) has a pole (i.e., there exists g ∈ G2m+1(A) such that M(w, s)f(s)(g) has a

pole) if and only if M̃(s)F̃ (s) has a pole (i.e., there exist g ∈ G2m+1(A) and m ∈ M(A) such that
M̃(s)F̃ (s)(g)(m) has a pole), where F̃ is the element of V (1)(s, τ, ω) such that f(g) = F̃ (g)(id).
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We wish to show that there exists F̃ such that this is the case iff τ is ω−1-orthogonal. Clearly,
we may restrict attention to F̃ of the form ι̃(⊗vF̃v).

Recall that for all but finitely many non-archimedean v, the space Vτv comes equipped with a
choice of GLm(ov)-fixed vector ξ◦v used to define the restricted tensor product.

If F̃ = ι̃(⊗vF̃v) ∈ V (1)(s, τ, ω), then there is a finite set S of places, such that if v /∈ S then v

is non-archimedean, τv is unramified, and F̃v(s) = F̃ ◦
(s,τv ,ωv)

is the unique element of V (1)(s, τv, ωv)

satisfying F̃(s,τv ,ωv)(k) = ξ◦v for all k ∈ G2m+1(ov).
Now

Av(s)F̃ ◦
(s,τv ,ωv)

=
Lv(2s, τv, sym2 × ω−1

v )
Lv(2s+ 1, τv, sym2 × ω−1

v )
F̃ ◦

(−s,τ̃v⊗ωv ,ωv).

(A proof of this appears in [L1], albeit not in this precise language. See especially pp. 25-27.)
Thus,

A(s)ι̃(⊗vF̃v) =
LS(2s, τ, sym2 × ω−1)

LS(2s+ 1, τ, sym2 × ω−1)
ι̃

((⊗
v∈S

Av(s)F̃v(s)

)
⊗

(⊗
v/∈S

F̃−s,τ̃v⊗ωv ,ωv

))
.

To complete the proof we must show:

(i): Av(s) is holomorphic and nonvanishing (i.e., not the zero operator) on Ind
G2m(A)
P (A) τ ⊗

|det |s � ω at s = 1
2 , for all τ.

(ii): Lv(s, τv, sym2 × ω−1
v ) is holomorphic and nonvanishing at s = 1, for all τv.

(iii): LS(s, τ, sym2 × ω−1) is holomorphic and nonvanishing at s = 2.
Item (iii) is covered by Proposition 7.3 of [Kim-Sh]. Items (i) and (ii) are essentially contained

in Proposition 3.6, p. 153 of [Asg-Sha1]. Since what we need is part of the same information,
presented differently, we repeat the part of the arguments we are using.

The nonvanishing part of (i) is a completely general fact (i.e., holds at least for any Levi of any
split reductive group). For example, the only element of the arguments made on p. 813 of [GRS3]
which is particular to the situation they consider there (the Siegel of Sp4n) is the precise ratio of
L functions appearing in the constant term.

Similarly, local L functions never vanish. At a finite prime the local L function is P (q−sv )−1 for
some polynomial P, while at an infinite prime it is given in terms of the Γ function and functions
of exponential type.

We turn to holomorphicity.

Lemma 6.3.1. Let πv be any representation of GLm(Fv), which is irreducible, generic, and unitary.
Then there exist

• integers k1, . . . , kr of such that k1 + · · ·+ kr = m,
• real numbers α1, . . . , αr ∈ (−1

2 ,
1
2),

• discrete series representations δi of GLki(Fv) for i = 1 to r
such that

πv ∼= Ind
GLm(Fv)
P(k)(Fv)

r⊗
i=1

(δi ⊗ |det i|αi).

Here P(k) denotes the standard parabolic of GLm with Levi consisting of block diagonal matrices
with the block sizes k1, . . . , kr (in that order), and deti denotes the determinant of the ith block.

Remark 6.3.2. In fact, one may prove a much more precise statement, but the above is what is
needed for our purposes.

Proof. This follows from the main theorem of [Tad2] (see p. 3) together with the fact that the
representation denoted u(δ,m) in that paper is only generic if m = 1. For this latter statement see
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the “Proof of (a)⇒(f)” on p. 93 of [Vog] in the Archimedean case (see also the very last remark of
the paper, on p. 98) and Theorem 8.1 on p. 195 of [Z] in the non-Archimedean case. (For the notion
of “highest derivative” see p. 452 of [BZ2]: a representation is generic iff its “highest derivative” is
the trivial representation of the trivial group, which corresponds to the empty multiset under the
Zelevinsky classification.) �

Continuing with the proof of Proposition 4.0.13, let (k) = (k1, . . . , kr), δ = (δ1, . . . , δr) and
α = (α1, . . . , αr) be obtained from τv as just above, and let P̃(k) denote the standard parabolic of
G2m which is contained in the Siegel parabolic P such that P̃(k) ∩M = P(k).

Then

Ind
G2m(Fv)
P (Fv)

τv ⊗ |det |sv � ωsv
∼= Ind

G2m(Fv)

P̃(k)(Fv)

r⊗
i=1

(δi ⊗ |det i|s+αiv ) � ωv.

This family (as s varies) of representations lies inside the larger family,

Ind
G2m(Fv)

P̃(k)(Fv)

r⊗
i=1

(δi ⊗ |det i|si) � ωv s = (s1, . . . , sr) ∈ Cr,

and our intertwining operator Av(s) is the restriction, to the line si = s + αi of the standard
intertwining operator for this induced representation, which we denote Av(s). This operator is
defined, for all Re(si) sufficiently large, by the same integral as Av(s).

A result of Harish-Chandra says that “Re(si) sufficiently large” can be sharpened to “Re(si) > 0.”
(This is because all δi are discrete series, although tempered would be enough.) This result is given
in the p-adic case as [Sil] Theorem 5.3.5.4, and in the Archimedean case, [Kn] Theorem 7.22, p.
196.

Hence, the integral defining Av(s) converges for s > maxi(−αi), and in particular converges at
1
2 .

From the relationship between the local L functions and the so-called local coefficients, it follows
that the local L functions are also holomorphic in the same region. For this relationship see [Sha3]
for the Archimedean case and [Sha2], p. 289 and p. 308 for the non-Archimedean case.

This completes the proof of (i) and (ii).

6.4. Proof of Proposition 4.0.15. The proof is the same as the previous proposition, except that
the ratio of partial L function which emerges from the intertwining operators at the unramified
places is

LS(s1 − s2, τ1 × τ̃2)
LS(s1 − s2 + 1, τ1 × τ̃2)

.

Convergence of local L functions and intertwining operators at s1 − s2 = 1 follows again from
Lemma 6.3.1. The only difference is the reference for (iii), which in this case is Theorem 5.3 on p.
555 of [Ja-Sh2].

6.5. Proof of 4.0.17. As noted, this material is mostly due to Shahidi.
Since the statement is true (with the same proof) for general m, not only m = 2n, we prove it

in that setting.
In this subsection only, we write τ for the irreducible unitary cuspidal representation

⊗r
i=1 τi of

M(A) (as opposed to the isobaric representation τ1 � · · ·� τr).
First, observe that the integral in question is clearly absolutely and uniformly convergent, and

as such defines a meromorphic function of s for each g with poles contained in the set of poles of
the Eisenstein series itself.
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For s in the domain of convergence

(6.5.1)
∫
UGLmmax (F\A)

EGLm(f)(ug)(s)ψW (u) du =
∫
Uw1 (A)·Uw1 (F\A)

f(s)(w−1
1 ug)ψW (u) du,

where w1 is the longest element of WGLm(M̄) (defined analogously to W (M) above), Uw1 = UGLmmax ∩
w1Umax

GLm
w−1

1 and Uw1 = UGLmmax ∩ w1U
GLm
max w−1

1 .
Indeed,

P̄ (F )\GLm(F ) =
∐
w

w−1Uw(F ),

where the union is over w of minimal length in wWM̄ . Telescoping, we obtain a sum of terms similar
to the right hand side of (6.5.1) for these w. Let UMmax = M∩Umax. Observe that wUMmaxw

−1 ⊂ Umax

for all such w. The restriction of ψW to wUMmaxw
−1 is a generic character iff wMw−1 is a standard

Levi. If it is not, the term corresponding to w vanishes by cuspidality of τ.
On the other hand, f(w−1ug) vanishes if w−1Uαw is contained in the unipotent radical of P̄

(which we denote UP̄ ) for any simple root α. Here Uα denotes the one-dimensional unipotent
subgroup corresponding to the root α. The element w1 is the only element of WGLm(M̄) such that
this does not hold for any α.

Let λ denote the Whittaker functional on Vτ given by

ϕ 7→
∫
UMmax(F\A)

ϕ(u) ψW (w1uw
−1
1 ) du.

Then (6.5.1) equals

(6.5.2)
∫
Uw1 (A)

λ(f̃(s)(ug))ψW (u) du,

where f̃ : GLm(A) → V⊗τi is given by f̃(g)(m) = f(mg)δ
− 1

2

P̄
. (I.e., f̃ is the element of the analogue

of V (1)(
⊗r

i=1 τi � ω, s), corresponding to f.)
For each place v there exists a Whittaker functional λv on the local representation τv such that

λ(⊗vξv) =
∏
v λv(ξv). (A finite product because λv(ξ◦v) = 1 for almost all v. Cf. [Sha1], §1.2.)

The induced representation IndGLm(A)

P̄ (A)
(
⊗r

i=1 τi|det i|si is isomorphic to a restricted tensor product

of local induced representations ⊗v ′ IndGLm(Fv)

P̄ (Fv)
(
⊗r

i=1 τi,v|det i|siv . (Cf. section 6.3.) Consider an

element f̃ which corresponds to a pure tensor ⊗vf̃v in this factorization. So f̃v(s) is a smooth
function GLm(Fv) → V⊗τi,v for each s.) Then (6.5.2) equals

(6.5.3)
∏
v

∫
Uw1 (Fv)

λv(f̃(s)(uvgv))ψW (uv) duv,

whenever each of the local integrals is convergent, and the infinite product is convergent (cf [Tate2]
Theorem 3.3.1). By Propositions 3.1 and 3.2 of [Sha4], all of the local integrals are always conver-
gent. (See also Lemma 2.3 and the remark at the end of section 2 of [Sha3].)

It is an application of Theorem 5.4 of [C-S] that the term corresponding to an unramified nonar-
chimedean place v in (6.5.2) is equal to W ◦

v (gv) ·
∏
i<j Lv(si− sj +1, τi,v⊗ τ̃j,v)−1. The convergence

of the infinite product is then an elementary exercise, as is the main equation in the statement of
our present theorem.

The fact that f may be chosen so that the local Whittaker functions at the places in S do not
vanish follows again from Propositions 3.1 and 3.2 of [Sha4] (see also the remark at the end of
section 2 of [Sha3]).
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7. Appendix II: Local results on Jacquet Functors

In this appendix, F is a non-archimedean local field of characteristic zero We denote the ring of
integers and its unique maximal ideal by o, and p, respectively, and let qF := #o/p. The absolute
value on F is normalized so that its image is {qjF : j ∈ Z}. Also, ω is an unramified character of
F×, τ is an irreducible unramified principal series representation of GL2n(F ) such that τ ∼= τ̃ ⊗ ω,
and ψ0 is a nontrivial additive character of F.

For simplicity, we assume that the characteristic of the residue field o/p is not equal to two.
Hence there are four square classes in F, of which two contain units. If ϑ is a character of N`(F )
for 1 ≤ ` ≤ 2n, then we may define the square class Invt(ϑ) as in Definition 5.1.4 and it is
an invariant which separates orbits of characters in general position. Where convenient, we may
restrict attention to those ϑ such that Invt(ϑ) contains units, as this condition is satisfied at almost
all places by any global character. We also define abstract F -groups

Ga
2n a ∈ F×/(F×)2,

and concrete subgroups
Ga2n ⊂ G4n+1 a ∈ F×,

such that Ga2n ∼= Ga
2n ∀a ∈ a, as in Definitions 5.1.5, and 5.1.9. The latter is defined using a

character ψan given by the same formula as in Definition 5.1.8.
We require the additional technical hypothesis

(7.0.4) (B(G4n+1) ∩Ga2n)(F )Ga2n(o) = Ga2n(F ),

which is known (see [Tits], 3.9, and 3.3.2) to hold at all but finitely many non-Archimedean com-
pletions of a number field.

Throughout this section we shall express certain characters of reductive F -groups as complex
linear combinations of rational characters. The identification is such that(

r∑
i=1

siχi

)
(h) :=

r∏
i=1

|χi(h)|si .

Clearly, the coefficients s1, . . . sr appearing in this expression are determined by the character at
most up to (2πi)/ log qF . If M is a Levi, then restriction gives an injective map X(M) → X(T ).
We shall frequently abuse notation and denote an element of X(M) by the same symbol as its
restriction to T. Finally, we let Ω denote a complex number such that ω(x) = |x|Ω.

Lemma 3.6.1 may be reformulated as stating that τ ∼= IndGL2n(F )
B(GL2n)(F ) µ for an unramified character

µ, which is of one of the the following two forms:

(7.0.5) µ1e1 + · · ·+ µnen + (Ω− µn)en+1 + · · ·+ (Ω− µ1)e2n

(7.0.6) µ1e1 + · · ·+ µn−1en−1 +
Ω
2
en +

(
Ω
2

+
πi

log qF

)
en+1 + (Ω− µn−1)en+2 + · · ·+ (Ω− µ1)e2n.

In either case, by induction in stages,

un IndG4n+1(F )
P (F ) τ ⊗ |det |

1
2 � ω ∼= un IndG4n+1(F )

B(G4n+1)(F ) µ+
1
2
(e1 + · · ·+ e2n) + Ωe0.

(Here un indicates the unramified constituent, and P the Siegel parabolic of G4n+1.)

Remark 7.0.7. Because every unramified character is the square of another unramified character,
it is possible to express τ as a twist of a self-dual representation, and deduce essentially all the
results of this section from the “classical,” self-dual case.
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Lemma 7.0.8. If µ is of the form (7.0.5), then

un IndG4n+1(F )
B(G4n+1)(F ) µ+

1
2
(e1 + · · ·+ e2n) + Ωe0 ∼= un IndG4n+1(F )

P1(F ) µ′

where P1 is the standard parabolic with Levi isomorphic to GLn2 × GL1, such that the roots of the
Levi are e2i−1 − e2i, i = 1 to n, and µ′ is the rational character of this Levi given by

µ′ := µ1 det 1 + · · ·+ µn det n + Ωe0.

Here det i denotes the determinant of the GL2-factor with unique root e2i−1 − e2i.

Proof. Let

µ̃ = µ+
1
2
(e1 + · · ·+ e2n) + Ωe0 =

n∑
i=1

(
µi +

1
2

)
ei +

n∑
i=1

(
Ω− µi +

1
2

)
en+i + Ωe0.

Using the description of the Weyl action in Lemma 3.5.3 it is easily verified that this is in the same
orbit as

µ̃′ :=
n∑
i=1

[(
µi +

1
2

)
e2i−1 +

(
µi −

1
2

)
e2i

]
+ Ωe0.

By the definition of the unramified constituent, then,

un IndG4n+1(F )
B(G4n+1)(F ) µ̃ = un IndG4n+1(F )

B(G4n+1)(F ) µ̃
′.

The lemma now follows from the well known (and easily verified) fact that

(7.0.9) unInd
GL2(F )
B(GL2)(F )(µ+

1
2
)e′1 + (µ− 1

2
)e′2 =un Ind

GL2(F )
B(GL2)(F )(µ−

1
2
)e′1 + (µ+

1
2
)e′2 = µdet,

where e′1 and e′2 are the usual basis for the lattice of rational characters of the torus of diagonal
elements of GL2. �

The next lemma is similar, but slightly more complicated. It makes use of alternative Z-bases of
the lattices of characters and cocharacters. Specifically, {e1, . . . e2n−2, f1, f2, f0}, {e∗1, . . . e∗2n−2, f

∗
1 , f

∗
2 , f

∗
0 },

where

e0 = −f1 e∗0 = −2f∗0 − f∗1 − f∗2
e2n−1 = −f0 + f1 + f2 e∗2n−1 = −f∗0

e2n = f1 − f2 e∗2n = −f∗0 − f∗2 .

The key feature of these Z-bases is as follows. Recall that the group G4n+1 has a unique standard
Levi isomorphic to GLn−1

2 × G5, with the based root datum of the G5 component lying in the
sublattices spanned by {e2n−1, e2n, e0}, {e∗2n−1, e

∗
2n, e

∗
0}. Now, G5 and GSp4 are the same F -group.

When we write the based root datum of this Levi with respect to the new basis, the expression for
the G5 component matches the “standard form” for the based root datum of GSp4 as in section 3.4.
In particular, the character f0 is the restriction to the torus of GSp4 of the similitude factor (which
is a generator for the rank-one lattice of rational characters of GSp4), and there is a standard Levi,
isomorphic to GL2 such that its unique root is f1 − f2.

Remarks 7.0.10. To avoid confusion, let us draw attention the following tricky point: we have
defined a notion of “Siegel parabolic” and “Siegel Levi” for G2n+1, any n. There is also a well
known notion of “Siegel parabolic” and “Siegel Levi” for GSp2n, any n, which is very widespread
in the literature. The two groups G5 and GSp4 happen to coincide, and the two notions of “Siegel
parabolic” and “Siegel Levi” do not.
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Lemma 7.0.11. If µ is of the form (7.0.6), and µ̃ is defined in terms of µ as in the proof of Lemma
7.0.8, then

un IndG4n+1(F )
B(G4n+1)(F ) µ̃

∼= un IndG4n+1(F )
P2(F ) µ′′

where

µ′′ =
n−1∑
i=1

µi det i −
Ω− 1

2
f0 +

(
−1

2
+

πi

log qF

)
det 0

=
n−1∑
i=1

µi det i +
Ω− 1

2
e2n+1 −

(
Ω
2

+
πi

log qF

)
det 0

where the notation is as follows: P2 is the standard parabolic with Levi isomorphic to GLn2 ×GL1,
such that the roots of the Levi are e2i−1 − e2i, i = 1 to n − 1, and e2n. (One might also describe
this Levi as GLn−1

2 × GL1 × GSpin3.) As in Lemma 7.0.8 det i denotes the determinant of the
GL2-factor with unique root e2i−1 − e2i, for i = 1 to n− 1, while det 0 denotes the determinant of
the GL2 with unique root e2n = f1 − f2.

Proof. This time µ̃ is in the same Weyl orbit as

µ̃′′ :=
n−1∑
i=1

[(
µi +

1
2

)
e2i−1 +

(
µi −

1
2

)
e2i

]
+
(

Ω− 1
2

)
e2n−1 +

(
Ω− 1

2
+

πi

log qF

)
e2n + Ωe0

=
n−1∑
i=1

[(
µi +

1
2

)
e2i−1 +

(
µi −

1
2

)
e2i

]
−
(

Ω− 1
2

)
f0 +

(
−1 +

πi

log qF

)
f1 −

πi

log qF
f2.

Using (7.0.9) again, in conjunction with the fact that − πi
log qF

f2 and πi
log qF

f2 are the same char-
acter, we obtain the lemma. �

Next, we need a slight extension of this. Let P3 be the standard parabolic of G4n+1 with Levi
isomorphic toGLn−1

2 ×GSp4. IdentifyGSp4 with the component of this Levi, and let R = GSp4∩P2.
This is the subgroup known in the literature as the “Siegel” parabolic of GSp4. When regarded
as a parabolic of GSpin5, it is the one for which we have introduced the notation Q1 = L1N1.
Its lattice of rational characters is spanned by f0 and det 0, defined as in Lemma 7.0.11. Let
π0 = un IndGSp4(F )

R(F )

(
1
2 + πi

log qF

)
det 0. Extend π0 trivially to a representation of the Levi of P3.

Corollary 7.0.12.
un IndG4n+1(F )

B(G4n+1)(F ) µ̃
′′ ∼= un IndG4n+1(F )

P3(F ) µ′′′ ⊗ π0,

where

µ′′′ :=

(
n−1∑
i=1

µi det i −
Ω− 1

2
f0

)
.

Proof. Induction in stages and the definition of the unramified constituent. �

An important fact about π0 is the following:

Lemma 7.0.13. The representation π0 may be realized as a subrepresentation of

IndGSp4(F )
R(F )

(
−1

2
+

πi

log qF

)
det 0.

Proof. In fact, it is one of the spaces R2(V ) introduced on p. 223 of [K-R]. This can be checked by
direct computation. It also follows from Proposition 5.5 of [K-R], in that the intertwining operator
is easily seen not to vanish on the spherical vector. �
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Corollary 7.0.14. The representation IndG4n+1(F )
P3(F ) µ′′′ ⊗ π0 may be realized as a subrepresentation

of

IndG4n+1(F )
P2(F ) µ′′′ +

(
−1

2
+

πi

log qF

)
det 0.

A second important fact about the representation π0 is the following:

Lemma 7.0.15. Let ϑ be a character of the unipotent radical of R in general position. Regarding
R as the parabolic Q1 of G5, the square class Invt(ϑ) is defined. A sufficient condition for the
vanishing of the twisted Jacquet module JN1,ϑ(π0) is that the Hilbert symbol (·, Invt(ϑ)) not equal
the unique nontrivial unramified quadratic character.

Proof. This follows from [K-R], Lemma 3.5 (b), p. 226. (Here, we again use the fact that the
unramified constituent of IndGSp4(F )

R(F )

(
1
2 + πi

log qF

)
det 0 is one of the spaces R2(V ) introduced on p.

223 of [K-R].) �

Proposition 7.0.16. Let τ = Ind
GL2n(F )
B(GL2n)(F )µ, with µ of the form (7.0.5), and let P denote

the Siegel parabolic subgroup. Then for ` > n and ϑ in general postion, the Jacquet module
JN`,ϑ(unInd

G4n+1(F )
P (F ) τ ⊗ |det |

1
2 � ω) is trivial. The same is true if ` = n and Invt(ϑ) 6= �.

Proof. By Lemma 7.0.8, it suffices to prove that the corresponding Jacquet module of IndG4n+1(F )
P1(F ) µ′

vanishes. The space IndG4n+1(F )
P1(F ) µ′ has a filtration as a Q`(F )-module, in terms of Q`(F )-modules

indexed by the elements of (W ∩ P1)\W/(W ∩Q`). For any element x of P1(F )wQ`F ) the module
corresponding to w is isomorphic to c−indQ`(F )

x−1P1(F )x∩Q`(F )
(µ′+ρP1)◦Ad(x). Here Ad(x) denotes the

map given by conjugation by x. It sends x−1P1(F )x∩Q`(F ) into P1(F ). Also, here and throughout
c− ind denotes non-normalized compact induction. (See [Cass], section 6.3.)

Recall from 3.5 that the elements of the Weyl group of G4n+1 are (after the choice of pr) in
natural one-to-one correspondence with the set of permutations w ∈ S4n+1 satisfying,

(1) w(4n+ 1− i) = 4n+ 1− w(i)
As representatives for the double cosets (W ∩P1)\W/(W ∩Q`) we choose the element of minimal

length in each. The permutations corresponding to these elements satisfy
(2) w−1(2i) > w−1(2i− 1) for i = 1 to 2n, and
(3) ` < i < j < 4n+ 2− ` =⇒ w(i) < w(j).
Let Iw be the Q`(F )-module obtained as

c− ind
Q`(F )
ẇ−1P1(F )ẇ∩Q`(F )

(
µ′ + ρP1

)
◦Ad(ẇ)

using any element ẇ of pr−1(detw · w). (Cf. section 3.5.)
A function f in Iw will map to zero under the natural projection to JN`,ϑ(Iw) iff there exists a

compact subgroup N0
` of N`(F ) such that∫

N0
`

f(hn)ϑ(n)dn = 0 ∀h ∈ Q`(F ).

(See [Cass], section 3.2.) Let h ·ϑ(n) = ϑ(h−1nh). It is easy to see that the integral above vanishes
for suitable N0

` whenever

(7.0.17) h · ϑ|N`(F )∩w−1P1(F )w is nontrivial.

Furthermore, the function h 7→ h · ϑ is continuous in h, (the topology on the space of characters of
N`(F ) being defined by identifying it with a finite dimensional F -vector space, cf. section 3.8) so
if this condition holds for all h in a compact set, then N0

` can be made uniform in h.
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Now, ϑ is in general position. Hence, so is h · ϑ for every h. So, if we write

h · ϑ(u) = ψ0(c1u1,2 + · · ·+ c`−1u`−1,` + d1u`,`+1 + · · ·+ d4n−2`+1u`,4n−`+1),

we have that ci 6= 0 for all i and tdwd 6= 0.
Clearly, the condition (7.0.17) holds for all h unless
(4) w(1) > w(2) > · · · > w(`).
Furthermore, because tdwd 6= 0, there exists some i0 with ` + 1 ≤ i0 ≤ 2n such that di0−` 6= 0

and d4n+2+`−i0 6= 0. From this we deduce that the condition (7.0.17) holds for all h unless w has
the additional property

(5) There exists i0 such that w(`) > w(i0) and w(`) > w(4n+ 2− i0).
However, if ` > n it is easy to check that no permutations with properties (1),(2), (4) and (5)

exist.
Thus JN`,ϑ(Iw) = {0} for all w and hence JN`,ϑ(unInd

G4n(F )
P (F ) τ ⊗ |det |

1
2 �ω) = {0} by exactness

of the Jacquet functor.
If ` = n, there is exactly one permutation w which satisfies (1)-(4). For this permutation,

condition (4) is satisfied only with i0 = 4n + 2 − i0 = 2n + 1. The orbit of ϑ contains characters
such that di = 0 for all i 6= 2n+ 1 iff Invt(ϑ) = �. �

Proposition 7.0.18. Let τ = Ind
GL2n(F )
B(GL2n)(F )µ, with µ of the form (7.0.6), and let P denote

the Siegel parabolic subgroup. Then for ` > n and ϑ in general postion, the Jacquet module
JN`,ϑ(unInd

G4n+1(F )
P (F ) τ ⊗ |det |

1
2 � ω) is trivial. The same is true if ` = n and Invt(ϑ) = �.

Proof. For ` > n, the proof is similar to that of Proposition 7.0.16. Using Lemma 7.0.11 in place
of Lemma 7.0.8, we consider a representation induced from a character of P2 rather than P1. The
effect is that in place of condition (2) from the proof of Proposition 7.0.16, we have the condition

(2′) w−1(2i− 1) < w−1(2i), 1 ≤ i < n, w−1(2n) < w−1(2n+ 1).
The set of permutations satisfying (1),(2′),(3),(4) is again empty.
The proof of vanishing when ` = n and Invt(ϑ) = � is more nuanced. In this case we use both

Lemma 7.0.11 and Corollary 7.0.12, obtaining two filtrations of

IndG4n+1(F )
P3(F ) µ′′′ ⊗ π0 ⊂ IndG4n+1(F )

P2(F ) µ′′,

indexed by (W ∩ P3)\W/(W ∩ Q`) and (W ∩ P2)\W/(W ∩ Q`). The latter is a refinement of the
former, in a manner which is compatible with the natural projection

(W ∩ P2)\W/(W ∩Q`) → (W ∩ P3)\W/(W ∩Q`).
Let us denote the elements of the first filtration by Iw, w ∈ (W ∩P3)\W/(W ∩Q`), and the elements
of the second by I ′w, w ∈ (W ∩ P2)\W/(W ∩Q`).

Now, when ` = n there is a unique permuation w0 satisfying (1)(2′),(3), (4),(5). It is the shortest
element of the double coset containing the longest element of W. It follows that JNn,ϑ(I ′w) vanishes
for every w 6= w0, and hence that JNn,ϑ(Iw) vanishes for every w other than the shortest element
of (W ∩ P3) · w0 · (W ∩Qn), which we denote w′

0.
The permutation w′

0 can be described explicitly as follows:

w′
0(i) =



4n+ 2− 2i 1 ≤ i ≤ n− 1,
2n− 1 i = n,

2i− 2n− 1 n+ 1 ≤ i ≤ 2n− 1, 2n+ 3 ≤ i ≤ 3n+ 1,
i 2n ≤ i ≤ 2n+ 2,
2n+ 3 i = 3n+ 2,
8n+ 4− 2i 3n+ 3 ≤ i ≤ 4n+ 1.
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Furthermore, the space Iw′
0

is equal to the subspace of un IndG4n+1(F )
P3(F ) µ′′′⊗π0 consisting of smooth

functions having support in the open double coset P3(F ) · w′
0 ·Qn(F ). Take such a function f and

take N0
n ⊂ Nn(F ), compact. Consider the integral∫

N0
n

f(gn)ϑ(n) dn.

We may assume g = w′
0q for some q ∈ Qn(F ). Then we get∫

qN0
nq

−1

f(w0nq)q · ϑ(n) dn,

where q · ϑ(n) = ϑ(q−1nq). Hence, we consider

(7.0.19)
∫
N0
n
′
f ′(w0n)ϑ′(n) dn,

for ϑ′ a character of Nn such that Invt(ϑ′) = �, f ′ ∈ Iw′
0
, and N0

n
′ ⊂ Nn(F ) compact. Observe

that w0Nnw
−1
0 contains the unipotent radical UR of the parabolic R of GSp4 used to define π0.

Indeed, if N̂n = {u ∈ Nn : un,2n = un,2n+1 = 0}, then N̂n is a normal subgroup of Nn and
Nn = w−1

0 URw0 · N̂n. If U ⊂ Umax, write U(pN ) for {u ∈ U : uij ∈ pN∀i, j}.
For each h ∈ G4n+1(F ), the function g 7→ f ′(gh), g ∈ GSp4(F ) is an element of π0. By Lemma

7.0.15, for each h there exists N such that∫
w−1

0 UR(pN )w0

f ′(w0uh)ϑ′(u) du = 0.

Clearly, N depends on f ′ and ϑ′, and hence, if f ′(g) = f(g · q) and ϑ′ = q · ϑ, on q. However, f
is smooth and has support which is compact modulo P3(F ), so f ′ takes only finitely many values.
Furthermore, the q · ϑ is a continuous function of q in the sense discussed above. Thus, N may be
made uniform in q. �

Define a character ψn of Nn(F ) by the same formula as in Definition 5.1.8. In the proof of Lemma
5.1.10, we fixed a specific isomorphism inc : G2n → (Lψnn )0. For the next proposition only, we let
B denote the image under inc of the Borel B(G2n) corresponding to our choices of maximal torus
and simple roots for G2n. It is equal to (Lψnn )0 ∩B(G4n+1). The corresponding maximal torus T is
the subtorus 〈e∗i : i = 0, or n+ 1 ≤ i ≤ 2n〉. Because of this

∑2n
i=0 ciei makes sense as a character

of T (F ). (But depends only on ci, i = 0, or n+ 1 ≤ i ≤ 2n.)

Proposition 7.0.20. Let P1, and µ′ be defined as in Lemma 7.0.8. Then we have isomorphisms

JNn,ψn(IndG4n+1(F )
P1(F ) µ′) ∼= Ind(Lψnn )(F )

B(F ) µ∗ ∼= Ind(Lψnn )(F )
B(F ) µ∗∗ ( of Lψnn −modules),

JNn,ψn(IndG4n+1(F )
P1(F ) µ′) ∼= Ind(Lψnn )0(F )

B(F ) µ∗ ⊕ Ind(Lψnn )0(F )
B(F ) µ∗∗ ( of (Lψnn )0 −modules),

where

µ∗ =
n∑
i=1

µien+i + Ωe0, µ∗∗ =
n−1∑
i=1

µien+i + (Ω− µn)e2n + Ωe0.

Proof. As before, we filter IndG4n+1(F )
P1(F ) µ′ in terms of Qn(F )-modules Iw. This time, JNn,ψn(Iw) =

{0} for all w except possibly for one. This one Weyl element, which we denote w0, corresponds to
the unique permutation satisfying (1) and (2) of Proposition 7.0.16, together with w0(i) = 4n−2i+2
for i = 1 to n. Exactness yields

JNn,ψn
(
unInd

G4n+1(F )
P (F ) τ ⊗ |det |

1
2 � ω

)
∼= JNn,ψn(Iw0).
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(This is an isomorphism of Qψnn (F )-modules, where Qψnn = Nn · Lψnn ⊂ Qn, is the stabilizer of ψn
in Qn (cf. Lϑ above).)

Now, recall that for each h ∈ Qn(F ) the character h · ψn(u) = ψn(h−1uh) is a character of Nn

in general position, and as such determines coefficients hc1, . . . ,
h cn−1 and hd1, . . . ,

h d2n+1 as in
(5.1.3). Clearly,

Qon :=
{
h ∈ Qn(F )| dhi 6= 0 for some i 6= n+ 1,

}
is open. Moreover, one may see from the description of w0 that for h in this set the condition
(7.0.17), which assures vanishing, is satisfied.

We have an exact sequence of Qψnn (F )-modules

0 → I∗w0
→ Iw0 → Īw0 → 0,

where I∗w consists of those functions in Iw whose compact support happens to be contained in Qon,
and the third arrow is restriction to the complement of Qon. This complement is slightly larger than
Qψnn (F ) in that it contains the full torus of Qn(F ), but restriction of functions is an isomorphism
of Qψnn (F )-modules,

Īw0 → c− ind
Qψnn (F )

Qψnn (F )∩w−1
0 P1(F )w0

(
µ′ + ρP1

)
◦Ad(w0).

Clearly JNn,ψn
(
I∗w0

)
= {0}, and hence we have the isomorphism

JNn,ψn
(
Ind

G4n+1(F )
P1(F ) µ′

)
∼= JNn,ψn

(
c− ind

Qψnn (F )

Qψnn (F )∩w−1
0 P1(F )w0

(
µ′ + ρP1

)
◦Ad(w0)

)
of Qψnn -modules.

Let us denote
c− ind

Qψnn (F )

Q
ψn(F )
n ∩w−1

0 P1(F )w0

(
µ′ + ρP1

)
◦Ad(w0)

by V. A straightforward computation shows that the functions in V satisfy

f(bq) = bµ
∗+ρB−Jf(q) ∀b ∈ B(F ), q ∈ Qψnn (F ),

where

J =
n∑
i=1

(i− n− 1)en+i.

For f ∈ V, let

W (f)(q) =
∫
Nn(F )∩w−1

0 Umax(F )w0

f(uq)ψ̄n(u)du.

Then the character J computed above matches exactly the Jacobian of Ad(b), b ∈ B(F ), acting on
Nn(F ) ∩ w−1

0 Umax(F )w0. It follows that

W (f)(bq) = bµ
∗+ρBf(g) ∀ b ∈ B(F ), q ∈ Q(F ).

Now let W denote{
f : Qψnn (F ) → C

∣∣∣∣∣ f(uq) = ψn(u)f(q) ∀ u ∈ Nn(F ), q ∈ Qψnn (F ),
f(bm) = bµ

∗+ρBf(m) ∀ b ∈ B(F ), m ∈ Lψnn (F )

}
.

Then W maps V into W.
Denote by V (Nn, ψn) the kernel of the linear map V → JNn,ψn(V ). It is easy to show that

V (Nn, ψn) is contained in the kernel of W. In the Lemma 7.0.22 below, we show that in fact, they

are equal. Restriction from Qψnn (F ) to Lψnn (F ) is clearly an isomorphism W → IndL
ψn
n (F )

B(F ) µ∗.
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The proof that this is isomorphic to IndL
ψn
n (F )

B(F ) µ∗∗ and decomposes into (Lψnn )0-modules in the
manner described is straightforward. �

The next proposition is similar. However, there is an interesting difference between the two. In
the previous proposition, we let B denote the Borel subgroup B(G4n+1)∩ (Lψnn )0 of (Lψnn )0 ∼= G1

2n.
For the next, we use it to denote Q2n−1∩Ga2n, which is a Borel subgroup of Ga2n. The corresponding
maximal torus, Ga2n ∩ L2n−1, is given by{
ha

n−1∏
i=1

e∗n+i(ti) · e∗2n
(
(x+ y

√
a) · (x− y

√
a)−1

)
e0(x− y

√
a)h−1

a : ti ∈ F, x, y ∈ F, x2 − ay2 6= 0

}
,

as in Lemma 5.1.10(3). Here
√
a may be taken to be either of the solutions to ζ2 = a in the

algebraic closure of F. We assume
√
a /∈ F. The lattice of F -rational characters of this torus is

〈en+i : 1 ≤ i ≤ n− 1, e2n + 2e0〉. The character e2n + 2e0 is the restriction of a rational character
of the L2n−1

∼= GL2n−1
1 ×GSpin3. To be precise, it is the inverse of the character det0 introduced

earlier. (Cf. Lemma 7.0.11.) Thus, a general rational character of this torus may be expressed as

n−1∑
i=1

cien+i + c0 det 0,

with ci ∈ Z. In particular map, the restriction map from X(L2n−1) is surjective. A general unram-
ified character of this torus may be expressed in the same form with ci ∈ C. Then ci

Observe that for any t in this torus det 0(t) is a norm from F (
√
a). When a is in the square

class which contains the non-square units (i.e., when F (
√
a) is the unique unramified quadratic

extension of F,) the absolute value of a norm is always an even power of qF , and so c0 is defined
only up to πi

log qF
. (whereas the others are defined up to 2πi

log qF
for 1 ≤ i ≤ n− 1.)

We also let B̃ denote Q2n−1 ∩ Lψ
a
n

n . (Recall that Ga2n := (Lψ
a
n

n )0.) It is not difficult to see that
L2n−1 ∩ Lψ

a
n

n is properly larger that L2n−1 ∩ (Lψ
a
n

n )0, i.e., contains elements of the non-identity
component of Lψ

a
n

n . A character of B may be extended trivially to B̃. And any character of B̃ which
is obtained as the restriction of a character of Q2n−1 is such a trivial extension.

Proposition 7.0.21. Let P2, and µ′′ be defined as in Lemma 7.0.11. Then we have isomorphisms

JNn,ψn(IndG4n+1(F )
P2(F ) µ′′) ∼= Ind(L

ψan
n )(F )

B̃(F )
µ∗ ( of Lψ

a
n

n −modules),

JNn,ψn(IndG4n+1(F )
P2(F ) µ′′) ∼= IndG

a
2n(F )

B(F ) µ∗ ( of (Lψnn )0 −modules),

where

µ∗ =
n−1∑
i=1

µien+i −
(

Ω
2

+
πi

log qF

)
det 0.

Proof. We use Lemma 7.0.11, and filter by Qn-modules. As in Proposition 7.0.20, there is a unique
permutation w1 such that the corresponding Qn-module Iw1 does not vanish. This permutation is
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given by

w1(i) =



4n+ 2− 2i 1 ≤ i ≤ n− 1,
2n+ 3 i = n,

2i− 2n− 1 n+ 1 ≤ i ≤ 2n− 1,
i 2n ≤ i ≤ 2n+ 2,
2i− 2n− 1 2n+ 3 ≤ i ≤ 3n+ 1,
2n− 1 i = 3n+ 2,
2(4n+ 2− i) 3n+ 3 ≤ i ≤ 4n+ 1.

The group Qn ∩ w−1
1 P2w1 contains L2n−1. Since L2n−1 · Qψ

a
n

n = Qn, restriction of functions is an
isomorphism of Qψ

a
n

n -modules,

Iw1 → c− indQ
ψan
n

Q
ψan
n ∩w−1

1 P2w1

(µ′′ + ρP2) ◦Ad(w1).

This time, let V denote

c− indQ
ψan
n

Q
ψan
n ∩w−1

1 P2w1

(µ′′ + ρP2) ◦Ad(w1).

Once again the functions in V satisfy

f(bq) = bµ
∗+ρB−Jf(q) ∀b ∈ B(F ), q ∈ Qψnn (F ),

with J as before. We define

W (f)(q) =
∫
Nn(F )∩w−1

1 Umax(F )w1

f(uq)ψ̄n(u)du,

and find that W maps V to

W :=

{
f : Qψnn (F ) → C

∣∣∣∣∣ f(uq) = ψn(u)f(q) ∀ u ∈ Nn(F ), q ∈ Qψnn (F ),
f(bm) = bµ

∗+ρBf(m) ∀ b ∈ B(F ), m ∈ Lψnn (F )

}
,

which is easily seen to be isomorphic to each of the induced representations specified. As before,
the kernel of the linear map V → JNn,ψn(V ) is contained in the kernel of W. In Lemma 7.0.22, we
show that in fact, they are equal to complete the proof. �

Lemma 7.0.22. Let ϑ be a character of Nn in general position, H its stabilizer in Ln, U1 and U2

two subgroups of Nn such that U1 ∩U2 = 1 and U1U2 = U2U1 = Nn. Let B denote a Borel subgroup
of the identity component of H and χ a character of B. Assume

(7.0.23) B(F )H(o) = H(F ).

Let V denote a space of functions on Nn(F ) ·H(F ) which are compactly supported modulo U1(F )
on the left and satisfy

f(u1bq) = χ(b)f(q) ∀u1 ∈ U1(F ), b ∈ B(F ), q ∈ H(F )Nn(F ).

Let V (Nn, ϑ) denote the kernel of the usual projection from V to its twisted Jacquet module.
Let

W (f)(q) =
∫
U2(F )

f(u2q)ϑ̄(u2)du2.

Then Ker(W ) ⊂ V (Nn, ϑ).
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Proof. We assume that ∫
U2(F )

f(uq)ϑ̄(u)du = 0,

for all q ∈ H(F )Nn(F ). What must be shown is that there is a compact subset C of Nn(F ) such
that ∫

C
f(gu)ϑ̄(u)du = 0,

for all q ∈ H(F )Nn(F ).
Consider first m ∈ H(o). Let p denote the unique maximal ideal in o. If U is a unipotent subgroup

and M an integer, we define

U(pM ) = {u ∈ U(F ) : uij ∈ pM ∀i 6= j}.

Observe that for each M ∈ N, Nn(pM ) is a subgroup of Nn(F ) which is preserved by conjugation
by elements of H(o). We may choose M sufficiently large that supp(f) ⊂ U1(F )U2(p−M )H(F ).
Then we prove the desired assertion with C = Nn(p−M ). Indeed, for m ∈ H(o), we have∫

Nn(p−M )
f(mu)ϑ̄(u)du =

∫
N(p−M )

f(um)ϑ̄(u)du,

because Ad(m) preserves the subgroup Nn(p−M ), and has Jacobian 1. Let c = Vol(U1(p−M )),
which is finite. Then by U1-invariance of f, the above equals

= c

∫
U2(p−M )

f(um)ϑ̄(u)du.

This, in turn, is equal to

= c

∫
U2(F )

f(um)ϑ̄(u)du,

since none of the points we have added to the domain of integration are in the support of f, and
this last integral is equal to zero by hypothesis.

Next, suppose q = u2m with u2 ∈ U2(F ) and m ∈ H(o). If u2 ∈ U2(F )−U2(p−M ) then qu is not
in the support of f for any u ∈ U2(p−M ). On the other hand, if u2 ∈ U2(p−M ), then∫

Nn(p−M )
f(u2mu)ϑ̄(u)du =

∫
Nn(p−M )

f(u2um)ϑ̄(u)du

= ϑ(u2)
∫
Nn(p−M )

f(um)ϑ̄(u)du,

and now we continue as in the case u1 = 1.
The result for general q now follows from the left-equivariance properties of f and (7.0.23). �

8. Appendix III: Identities of Unipotent Periods

8.1. A Lemma Regarding Unipotent Periods. We begin with a few remarks which are valid
in the setting of section 3.8. There is a natural action of G(F ) on the space of unipotent periods
U given by γ · (U,ψ) = (γUγ−1, γ · ψ) where γ · ψ(u) = ψ(γ−1uγ). We shall refer to this action as
“conjugation.” Obviously, unipotent periods which are conjugate are equivalent.

Lemma 8.1.1. Suppose U1 ⊃ U2 ⊃ (U1, U1) are unipotent subgroups of a reductive algebraic group
G. Suppose H is a subgroup of G and let f be a smooth left H(F )-invariant function on G(A).
Suppose ψ2 is a character of U2 such that ψ2|(U1,U1) ≡ 0. Then the set res−1(ψ2) of characters of U1

such that the restriction to U2 is ψ2 is nontrivial. (Here “res” is for “restriction” not “residue”.)
The elements of res−1(ψ2) are permuted by the action of NH(U1)(F ). The following are equivalent.
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(1) f (U2,ψ2) ≡ 0
(2) f (U1,ψ1) ≡ 0 ∀ψ1 ∈ res−1(ψ2)
(3) For each NH(U1)(F )-orbit O in res−1(ψ2) ∃ψ1 ∈ O with f (U1,ψ1) ≡ 0

Proof. It is obvious that 1 implies 2 and 3, and that 2 and 3 are equivalent. Consider

f (U2,ψ2)(u1g) =
∫
U2(F\A)

f(u2u1g)ψ2(u2)du2,

regarded as a function of u1. It is left u2 invariant and hence gives rise to a function of the compact
abelian group U2(A)U1(F )\U1(A). Denote this function by φ(u1). Then

φ(0) =
∑
χ

∫
U2(A)U1(F )\U1(A)

φ(u1)χ(u1)du1,

where “0” denotes the identity in U2(A)U1(F )\U1(A), and the sum is over characters of U2(A)U1(F )\U1(A).
This, in turn, is equal to ∑

χ

∫
D

∫
U2(F\A)

f(u2u1g)ψ2(u2)du2χ(u1)du1,

for D a fundamental domain for the above quotient in U1(A). The group U1/(U1, U1)(F ) is an
F -vector space (cf. section 3.8) which can be decomposed into U2/(U1, U1)(F ) and a complement.
The F -dual of this vector space is identified, via the choice of ψ0, with the space of characters of
U1(A) which are trivial on U1(F ). It follows that the sum above is equal to

=
∑

ψ1∈res−1(ψ2)

∫
U1(F\A)

f(u1g)ψ1(u1)du1.

The matter of replacing the sum over χ by one over ψ1 ∈ res−1(ψ2) is clear from regarding
U1/(U1, U1)(F ) as a vector space which can be decomposed into U2/(U1, U1) and a complement.
Now 2 ⇒ 1 is immediate. �

Corollary 8.1.2. If NG(H) permutes the elements of res−1(ψ2) transitively, then (U2, ψ2) ∼
(U2, ψ1) for every ψ1 ∈ res−1(ψ2).

Definition 8.1.3. Many of the applications of the above corollary are of a special type, and it
will be convenient to introduce a term for them. The special situation is the following: one has
three unipotent periods (Ui, ψi) for i = 1, 2, 3, such that U2 = U1 ∩ U3 and ψ1|U2 = ψ3|U2 = ψ2.
Furthermore, U1 normalizes U3 and permutes transitively, the set of characters ψ′3 such that ψ′3|U2 ,
and the same is true with the roles of 1 and 3 reversed. In this situation, the identity

(U1, ψ1) ∼ (U2, ψ2) ∼ (U3, ψ3),

(which follows from Corollary 8.1.2) will be called a swap, and we say that (U1, ψ1) “may be
swapped for” (U3, ψ3), and vice versa.

8.2. A lemma regarding the projection, and a remark.

Lemma 8.2.1. The action of Gm on itself by conjugation factors through pr .

Proof. One has only to check that the kernel of pr is in the center of Gm. When we regard Gm
as a quotient of Spinm × GL1, the quotient of pr is precisely the image of the GL1 factor in the
quotient. �

Corollary 8.2.2. Let u be a unipotent element of Gm(A) and g any element of Gm(A). Then
pr(gug−1) is a unipotent element of SOm(A) and gug−1 is the unique unipotent element of its
preimage in Gm(A).
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Remark 8.2.3. This fact, combined with the fact that pr is an isomorphism of varieties when
restricted to the subvariety of unipotent elements of Gm, means that many statements may be proved
for GSpin groups simply by taking the proof of the corresponding statement for special orthogonal
groups and inserting the words “any preimage of” here and there.

8.3. Relations among Unipotent Periods used in Theorem 5.1.15.

Lemma 8.3.1. Let (Ua1 , ψ
a
1) and (U2, ψ

a
2) be defined as in Theorem 5.1.15. Then (Ua1 , ψ

a
1) ∼

(U2, ψ
a
2), for all a ∈ F.

Proof. We regard a as fixed and omit it from the notation. We define some additional unipotent
periods which appear at intermediate stages in the argument. Let U4 be the subgroup defined by
un,j = 0 for j = n to 2n− 1 and u2n,2n+1 = 0. We define a character ψ4 of U4 by the same formula
as ψ1. Then (U1, ψ1) may be swapped for (U4, ψ4). (See definition 8.1.3.)

Now, for each k from 1 to n, define (U (k)
5 , ψ

(k)
5 ) as follows. First, for each k, the group U

(k)
5 is

contained in the subgroup of Umax defined by, u2n,2n+1 = 0. In addition, un+k−1,j = 0 for j < 2n,
and ui,i+1 = 0 if n− k + 1 ≤ i < n+ k − 1 and i ≡ n− k + 1 mod 2, and ψ(k)

5 (u) equals

ψ0

(
n−k∑
i=1

ui,i+1 +
n+k−2∑
i=n−k+1

ui,i+2 + un+k−1,2n +
a

2
un+k−1,2n+1 +

2n−2∑
i=n+k

ui,i+1 + u2n−1,2n+2

)
.

(Note that one or more of the sums here may be empty.)
Next, let U (k)

6 be the subgroup of Umax defined by the conditions u2n,2n+1 = 0, un+k−1,j = 0 for
j < 2n, and ui,i+1 = 0 if n− k+ 1 ≤ i < n+ k− 1 and i ≡ n− k mod 2. The same formula which
defines ψ(k)

5 also defines a character of U (k)
6 . We denote this character by ψ(k)

6 .
We make the following observations:

• (U (1)
5 , ψ

(1)
5 ) is precisely (U4, ψ4).

• For each k, (U (k)
5 , ψ

(k)
5 ) is conjugate to (U (k+1)

6 , ψ
(k+1)
6 ). The conjugation is accomplished by

any preimage of the permutation matrix which transposes i and i+ 1 for n− k ≤ i < n+ k
and i ≡ n− k mod 2.

• (U (k)
6 , ψ

(k)
6 ) may be swapped for (U (k)

5 , ψ
(k)
5 ).

Thus (U4, ψ4) ∼ (U (n−1)
5 , ψ

(n−1)
5 ).

Now, let U ′
2 = U

(n−1)
5 , and let

ψ′2(u) = ψ(u1,3 + · · ·+ u2n−2,2n + u2n−2,2n+1 +
a

2
u2n−1,2n + u2n−1,2n+2).

Then (U (n−1)
5 , ψ

(n−1)
5 is conjugate to (U ′

2, ψ
′
2), which may be swapped for (U2, ψ2). �

Lemma 8.3.2. Let (U3, ψ3) and (U2, ψ
0
2) be defined as in Theorem 5.1.15. Then

(U3, ψ3) ∈ 〈(U2, ψ
0
2), {(N`, ϑ) : n ≤ ` < 2n and ϑ in general position.}〉.

Proof. To prove this assertion we introduce some additional unipotent periods. For k = n to 2n−1
let U (k)

7 denote the subgroup of Umax defined by u2n,2n+1 = 0, and uj,2n = 0 for k+ 1 ≤ i ≤ 2n− 1,
and let

ψ
(k)
7 (u) = ψ0

(
k−1∑
i=1

ui,i+1 + uk,2n +
2n−2∑
i=k+1

ui,i+1 + u2n−1,2n+2

)
.

Let U (k)
8 denote the subgroup defined by by u2n−1,2n+1 = 0, uk,j = 0 for k + 1 ≤ j < 2n, and let

U
(k)
9 denote the subgroup defined by the additional condition uk,2n = 0. The same formula which
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defines ψ(k)
7 may be used to specify a character of U (k)

8 , which we denote ψ(k)
8 . In addition, let

ψ0

(
k−1∑
i=1

ui,i+1 + uk,2n+2 +
2n−1∑
i=k+1

ui,i+1

)
,

be denoted by ψ̃(k)
8 for u ∈ U (k)

8 or ψ(k)
9 for u ∈ U (k)

9 .
Now, we need the following observations:

• (U (n)
7 , ψ

(n)
7 ) is just the period (U0

1 , ψ
0
1) from theorem 5.1.15, and so is equivalent to (U2, ψ

0
2)

by the previous result.
• For each k, (U (n)

7 , ψ
(n)
7 ) is conjugate to (U (k+1)

9 , ψ
(k+1)
9 ). (One conjugates by a preimage of

a permutation matrix and then by a toral element to fix a minus sign which is introduced.)
• (U (k+1)

8 , ψ̃
(k+1)
8 ) is spanned by (U (k+1)

9 , ψ
(k+1)
9 ) and {(Nk, ϑ) : ϑ in general position}. More

precisely, if ϑ is any extension of ψ(k+1)
9 which is not in general position, then the restriction

of ϑ to U8 is ψ̃(k+1)
8 ). (Cf. Corollary 8.1.2.)

• (U (k)
8 , ψ̃

(k)
8 ) is conjugate to (U (k)

8 , ψ
(k)
8 ).

• (U (k)
8 , ψ

(k)
8 ) may be swapped for (U (k)

7 , ψ
(k)
7 ).

We deduce that (U2, ψ
0
2) divides (U (2n−1)

8 , ψ
(2n−1)
8 ), a period which differs from (U3, ψ3) only in that

integration over u2n,2n+1 is omitted. Thus (U3, ψ3) is the constant term in the Fourier expansion
of (U (2n−1)

8 , ψ
(2n−1)
8 ), in the variable u2n,2n+1, while all of the nonconstant terms are Whittaker

integrals with respect to various generic characters of Umax. As E−1(τ, ω) is non-generic, they all
vanish. The result follows. �

Lemma 8.3.3. Take a ∈ F×. We regard a as fixed throughout and, for the most part we suppress
it from the notation. As in Theorem 5.1.15, let Vi denote the unipotent radical of the standard
parabolic of G4n+1 having Levi isomorphic to GLi × G4n−2i+1 (for 1 ≤ i ≤ 2n). For 1 ≤ j < 2n,
let V 4n−2j

i denote the unipotent radical of the standard maximal parabolic of Ga4n−2j having Levi
isomorphic to GLi × Ga4n−2j−2i (for 1 ≤ i ≤ 2n − j − 2 in the split case and 1 ≤ i ≤ 2n − j − 2
in the nonsplit cases). Let (N`, ψ

a
` ) be the period used to define the descent, as usual, and let

(N`, ψ
a
` )

(4n−2k+1) denote the analogue for G4n−2k+1, embedded into G4n+1 inside the Levi of a
maximal parabolic.

Then, (V 2n
k ,1) ◦ (Nn, ψn) is an element of

〈(Nn+k, ψn+k), {(Nn+j , ψn+j)(4n−2k+2j) ◦ (Vk−j ,1) : 1 ≤ j < k}〉.

Proof. In this proof, we shall not need to refer to any of the unipotent periods defined previously.
On the other hand we will need to consider several new unipotent periods.

Let m = (m1,m2,m3) be a triple of integers satisfying: 0 ≤ m1 < m2 ≤ m3 + 1 ≤ 2n. We
associate to this data a unipotent group Um and two characters ψm, ψ′m as follows:

• Um is defined by the condition that ui,j = 0 whenever m1 < i < m2 − 1 and j < m2, or
m3 < i,

• ψm(u) = ψ0

(∑m1
i=1 ui,i+1 + um1+1,m2 +

∑m3−1
i=m2

ui,i+1 + um3,2n + a
2um3,2n+2

)
,

• ψ′m(u) = ψ0

(∑m1−1
i=1 ui,i+1 + um1,m2−1 +

∑m3−1
i=m2=1 ui,i+1 + um3,2n + a

2um3,2n+2

)
.

Then (Um, ψ′m) is conjugate to (Um, ψm) and may be swapped for (Um′ , ψm′), where (m1,m2,m3)′ =
(m1−1,m2−1,m3). Furthermore, for any k < n, (V 2n

k ,1)◦(Nn, ψn) is an integral over the subgroup
of Un,n+k+1,n+k defined by the conditions, ui,2n = −a

2ui,2n+2, for n < i ≤ n+k. It may be swapped
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for the period (Um, ψ′′) corresponding to m = (n− 1, n+ k + 1, n+ k), and

ψ′′(u) = ψ0

(
n−1∑
i=1

ui,i+1 + un,2n +
a

2
un,2n+2

)
,

and this period is conjugate to (Um, ψ′m) for this value of m. It follows that (V 2n
k ,1) ◦ (Nn, ψn) is

equivalent to (Um, ψ′m) for the triple m = (0, k + 2, n+ k).
Now, it’s easy to see that (U(0,1,m3), ψ

′
(0,1,m3)) = (Nm3 , ψ

a
m3

), and that for m2 > 2 there are
two orbits of extensions of ψ(0,m2,m3) to U(0,m2−1,m3), namely, the one containing ψ′(0,m2−1,m3), and

the trivial extension, which yields the period (Nm3−m2+2, ψ
a
m3−m2+2)

(4n−2m2+5) ◦ (Vm2−2,1). This
proves the assertions regarding all cases except for the two parabolics with Levi isomorphic to
GL1 ×GLn in the split case.

As noted previously, it is enough to consider one of them, because they are conjugate in G4n+1.
Furthermore, we may conjugate by ha, and use the more convenient embedding of G�

2n into G4n+1

as (Lψnn )0.
For this case we take m ∈ Z with 0 ≤ m ≤ n, and define Um to be the subgroup of Umax defined

by ui,j = 0 whenever m < i < j ≤ m+ n+ 1. Take

ψ′m(u) = ψ0

(∑
i = 1m−1ui,i+1 + um,m+n+1 +

2n∑
i=m+n+2

ui,i+1

)
,

ψ′′m(u) = ψ0

(∑
i = 1mui,i+1 + um+1,m+n+2 +

2n∑
i=m+n+3

ui,i+1

)
.

Then (V 2n
n ,1) ◦ (Nn, ψn) = (Un, ψ′n). Furthermore (Um, ψ′m) is conjugate to (Um, ψ′′m) and may be

swapped for (Um−1, ψ
′′
m−1). Furthermore, (U0, ψ

′
0) is easily seen to be in the span of the periods

(U4n−2k+1
max , ϑ) ◦ (Vk,1)

for 0 ≤ k < n and ϑ a generic character of the maximal unipotent subgroup of G4n−2k+1 (embedded
into G4n+1) as a component of a standard Levi as usual. This completes the proof. �

8.4. Relation of periods on U2 via theta functions. The next relation of unipotent periods
differs from all the others, both in the nature of the statement and in the nature of the proof. We
described in section 3.8 how a character of U(F\A), where U is a unipotent subgroup of a reductive
group G, may be thought of as an element of an F -vector space equipped with an algebraic action
of NG(U). For purposes of this discussion it is more useful to identify this character with an element
of a space having an action of all of G, which is compatible with the action of G(F ) on unipotent
periods by conjugation (as in 8.1), and this may be done using the coadjoint representation of G
on the F -dual, g∗F , of its Lie algebra.

Observe that if an equivalence between (U1, ψ1) and (U2, ψ2) can be proved using conjugation
and swapping, then ψ1 and ψ2 correspond to points in the same orbit of G(F ) acting on g∗F . The
manner in which U1 and U2 will be related is not as easy to describe, but one may note for example
that they will have the same dimension.

So far, we have proved relations of two forms

• Equivalencies, in which the unipotent subgroup U is replaced by another of the same di-
mension, and the character ψ by another in the same orbit.

• Relations where one replaces U by a group of properly larger dimension, and considers all
orbits of extensions of ψ.
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The statement that (U2, ψ
0
2) is spanned by {(U2, ψ

a
2) : a ∈ F×} is of a different nature, and it is

proved by a different method, which was shown to us by David Ginzburg.
Let V denote the subgroup of Umax defined by u2i−1,2i = 0 for 1 ≤ i ≤ n. We begin by defining

a certain representation of V (A). It will be convenient to introduce explicitly the isomorphisms of
various root subgroups of Umax with Ga corresponding to our coordinates uij . Thus, let xij : Ga →
Umax be defined by the condition that

(xij(r))k,` = δi,kδk,`r, for 1 ≤ i < j ≤ 4n+ 1− i, 1 ≤ k < ` ≤ 4n+ 1− k.

Let Uij denote its image.
The main thing is to define the action of the subgroup of UH of V consisting of those elements

such that uij = 0 whenever i < 2n− 1. This subgroup is the product of U2n−1,2n+1, U2n−1,2n+2 and
U2n,2n+1. It is a Heisenberg group in three variables, with center U2n−2,2n+2.

As is well known, UH(A) has a unique isomorphism of class of representations π satisfying

π(x2n−1,2n+2(r))v = ψ0(r)v,

and there is a representation ωψ0 in this class given by action on the space S(A) of Schwartz
functions on A such that

ωψ0(x2n−1,2n+1(r))φ(x) = ψ0(rx)φ(x), and

ωψ0(x2n,2n+1(r))φ(x) = φ(x+ r).
This may then be extended to an action of all of V (A) by decreeing u acts by the character

ψV2(u) := ψ0

(
2n−2∑
i=1

ui,i+2 + u2n−1,2n+2

)
whenever u is in the subgroup V2(A) of V (A) defined by u2n−1,2n+1 = u2n,2n+1 = 0. Observe that
this character is the common restriction of all the characters ψa2 .

The group V is the unipotent radical of a certain parabolic R. Let L denote its Levi factor.
It acts on the space of characters of V2. The stabilizer is isomorphic to SL2. Its image under pr
consists of matrices of the form

diag(g, . . . , g, 1, tg, . . . , tg), g ∈ SL2.

Denote this stabilizer Sψ. Then ωψ0 extends to a projective representation of V (A) o Sψ(A) or a
genuine representation of V (A)o S̃ψ(A), where ˜ denotes the metaplectic double cover. It is known
that Sψ(F ) lifts to a subgroup of S̃ψ(A). The representation ωψ0 has an automorphic realization
given by theta functions

θψ0

φ (g) =
∑
ξ∈F

ωψ0(g)φ(ξ).

For φ ∈ S(A) and ϕ ∈ C∞(G4n+1(F\A)) we may now define

Θφ(ϕ) : Sψ(F )\S̃ψ(A) → C
by

Θφ(ϕ)(h̃) =
∫
V (F\A)

ϕ(vp̃r(h̃))θψ0

φ (vh̃) dv,

where p̃r denotes the projection S̃ψ(A) → Sψ(A). Observe that the subgroup U2 is the product of a
codimension one subgroup of V and USψmax := Sψ ∩ Umax, which is a maximal unipotent of Sψ. The
group USψmax(A) lifts to a subgroup of S̃ψ(A). For a ∈ F let

Θa
φ(ϕ) =

∫
U
Sψ
max(F\A)

Θφ(ϕ)(u)ψ0(au12) du.
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Lemma 8.4.1. For a ∈ F, and ϕ ∈ C∞(G4n+1(F\A)),

ϕ(U2,ψa2 ) ≡ 0 ⇐⇒ Θa
φ(ρ(g)ϕ) = 0 ∀ φ ∈ S(A).

Proof.

Θa
φ(ϕ)(h) =

∫
U
Sψ
max(F\A)

∫
V (F\A)

∑
ξ

ϕ(vuh)ωψ0(vuh)φ(ξ)dvψ0(au1,2) du∫
U
Sψ
max(F\A)

∫
V (F\A)

∑
ξ

ϕ(x2n,2n+1(ξ)vuh)ωψ0(x2n,2n+1(ξ)vuh)φ(0)dvψ0(au12) du.

We may rewrite USψmax · V as U2 · U2n,2n+1, obtaining∑
ξ

∫
(F\A)

∫
U2(F\A)

ϕ(x2n,2n+1(ξ)u2x2n,2n+1(r)h)ωψ0(x2n,2n+1(ξ)u2x2n,2n+1(r)h)φ(0)du2 dr.

=
∑
ξ

∫
(F\A)

∫
U2(F\A)

ϕ(u2x2n,2n+1(ξ + r)h)ωψ0(u2x2n,2n+1(ξr)h)φ(0)du2 dr.

=
∫

A

∫
U2(F\A)

ϕ(u2x2n,2n+1(r)h)ωψ0(u2x2n,2n+1(r)h)φ(0)du2 dr.

But from the description of the action ωψ0 given above we see at once that

ωψ0(u2x2n,2n+1(r)h)φ(0) = ψa2(u2)ωψ0(x2n,2n+1(r)h)φ(0),

so we have ∫
A
ϕ(U2,ψa2 )(x2n,2n+1(r)h)ωψ0(x2n,2n+1(r)h)φ(0) dr.

Our assertion now follows, for a smooth function whose integral against every Schwartz function is
the zero function (and vice versa). �

Corollary 8.4.2. Let the group U2, and the character ψa2 for each a ∈ F be defined as in the main
theorem. Then (U2, ψ

0
2) ∈ 〈{(U2, ψ

a
2) : a ∈ F×}〉.

Proof. In light of lemma 8.4.1, this now follows from the fact that a genuine function on S̃L2(A)
can not be equal to its constant term. �
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[Tad2] M. Tadić, An external approach to unitary representations. Bull. Amer. Math. Soc. (N.S.) 28 (1993), no.

2, 215–252.
[Tate1] J. Tate, Number theoretic background. Automorphic forms, representations and L-functions (Proc.

Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, pp. 3–26, Proc.
Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979. Available online at
http://www.ams.org/online bks/pspum332/

51



[Tate2] J. Tate, Fourier analysis in number fields, and Hecke’s zeta-functions. 1967 Algebraic Number Theory (Proc.
Instructional Conf., Brighton, 1965) Cassels, Frohlich ed., Thompson, Washington, D.C., pp. 305–347.

[Tits] J. Tits, Reductive groups over local fields. Automorphic forms, representations and L-functions
(Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 1, pp. 29–69, Proc.
Sympos. Pure Math., XXXIII, Amer. Math. Soc., Providence, R.I., 1979. Available online at
http://www.ams.org/online bks/pspum332/

[Vog] D. Vogan, Gelfand-Kirillov dimension for Harish-Chandra modules. Invent. Math. 48 (1978), no. 1, 75–98.
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