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It is a fact of classical invariant theory that, if we consider the adjoint representation of
PGLn(C), and the second fundamental representation of PSp2n(C), (often denoted ∧2

0) then we
find that the algebras of invariants for these two representations are isomorphic. This can be seen,
for example, in the table on p. 260 of [P-V]. More precisely, each is a free algebra, having n − 1
generators of degrees 2, 3, 4, . . . , n. It was observed in [G-R] that when such an isomorphism of
algebras of invariants exists, it is an indication that if Rankin-Selberg constructions happen to
exist for the L-functions corresponding to both cases, then they are likely to make use of the same
Eisenstein series.

In the family at hand, there are already two examples for this: when n = 3, the adjoint L
function was constructed in [G1] and the L function for ∧2

0 was constructed in [G-R], using the
same Eisenstein series, which is defined on the exceptional group G2. Similarly, for n = 4, the
adjoint L function was constructed in [B-G1] and the L function for ∧2

0 was constructed in [B-G2].
These constructions use the same Eisenstein series, which is defined on the exceptional group F4.

In these notes we describe some recent progress towards the construction of Rankin-Selberg
integrals corresponding to the case n = 5. As far as we know, these will be the first Rankin-Selberg
integrals corresponding to L group representations such that the algebra of invariants has more
than three generators. This time, the Eisenstein series is defined on the exceptional group E8.

Our first integral is of the form∫
Spin11(F )\Spin11(A)

ϕ(g)
∫
U(F )\U(A)

E(ug, s)θψφ (`(u)g)ψUP
(u)dudg, (1)

where U is the unipotent radical of a certain parabolic subgroup of E8, and ψUP
is a character of

U. The group Spin11 is embedded in the Levi part of this parabolic as the stabilizer of a certain
character of a certain subgroup of U. Also, θψφ is a theta function defined on the semidirect product

of the metaplectic group S̃p32(A) and the Heisenberg group H33(A) in 33 variables, while ` is a
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projection of U onto H33 and j is an embedding of Spin11(A) into S̃p32(A). Finally, the function
ϕ(g) is a generic cusp form defined on the group GSpin11(A), while E(g, s) is an Eisenstein series
on E8(A). See section 2 for precise notation.

Our second integral is similar but simpler: using the same Eisenstein series, and the same group
U, we choose a character ψU having stabilizer isomorphic to SL5. The integral is∫

SL5(F )\SL5(A)
ϕ(g)

∫
U(F )\U(A)

E(ug, s)ψU (u)dudg. (2)

This time ϕ is a cusp form defined on GL5(A).
The relationship between our two integrals is another example of a phenomenon observed in

[G-H1]: if we replace ϕ in (1) by an Eisenstein series induced from a cuspidal representation of
the parabolic of Spin11, having Levi part isomorphic to GL5, then our GL5 construction may be
regarded, in a suitable formal sense, as a convergent sub-integral of our Spin11 construction. We
give some details in section 3. Incidentally, it is possible to relate the construction of [G-R] section
4 with that of [G1], and the construction of [B-G2] with that of [B-G1] in a similar fashion.

In addition to the L function attached to the second fundamental representation of Sp2n(C),
there is another family of L functions which seems to share a special affinity with the family of
adjoint L function. These are the ratios ζK(s)/ζF (s) of Dedekind zeta functions, which may also
be expressed as products of Artin L functions. Here K is a commutative algebra of degree n over
F.

This second observation goes back at least to [Ja-Z]. The paper [J-R] of Jiang and Rallis makes
the connection with the theory of integral representations, and we refer the reader there for a
more detailed discussion. What was noted in [J-R] is that, at least for values of n up to 5, the
two families seem to be related on a nuts-and-bolts level in the theory of integral representations,
in addition to the relationships suggested by [Ja-Z]. Indeed, the main Theorem of [J-R] may be
formulated as stating that for n = 3 the ratio ζK(s)/ζF (s) has an integral representation using the
same Eisenstein series (in this case, defined on the group G2) that was used in [G1] to obtain a
Rankin-Selberg integral for the adjoint L function of GL3. For the case n = 2, Jiang and Rallis
point to [Si, Sh, Ge-Ja], before noting that work of Wright and Yukie [W-Y] constitutes evidence
that a similar approach might work for n = 4 and 5. We expand on this observation slightly.

An integral representation for the ratio ζK(s)/ζF (s) arises from a correspondence between al-
gebras K and M(F ) orbits of characters of N(F )\N(A), where P = MN is a parabolic subgroup
in a split reductive algebraic group G defined over F. This G is Sp4 for n = 2, and G2 for n = 3.
For n = 4 and 5, a similar correspondence is defined in [W-Y], with the role of G being played by
F4 and E8 respectively. (Actually, what Wright and Yukie attach to an orbit is not an algebra of
degree n but a field extension of degree at most n, but the overlap– field extensions of degree exactly
n– is the main interest anyway.) Thus it may be regarded as further evidence of the Jiang-Rallis
philosophy that Rankin-Selberg integrals representing the corresponding adjoint L functions have
been found in precisely these two groups.

Part of the heuristic similarity between adjoint L functions and the products of Artin L functions
ζK(s)/ζF (s) rests on the fact that the adjoint L function may also be expressed as a quotient:
L(s, π × π̃)/ζF (s), where π̃ is the contragredient of π. The same is true of the L function for the
representation ∧0

2, attached to an automorphic representation of Spin11(A): it is L(s, π,∧2)/ζF (s).
We now describe the content of this paper. In sections 1 and 2 we define our two integrals, and

we state the results concerning their unfoldings. In section 3 we give some details of the formal

2



manipulations that may be used to relate them. In section 4 we describe the part of the unramified
computations for the GL5 integral which is complete.

This research was completed while the second named author was a post doc at Tel Aviv Uni-
versity. He wishes to thank the University for this excellent learning opportunity.

1 The GL5 global integral

The group E8 has 8 simple roots and 120 positive roots. We number the simple roots

α1 α3 α4 α5 α6 α7 α8

α2

and refer to all other roots as octuples of integers in terms of this basis. For each root α there is
a one dimensional unipotent subgroup Uα. We will wish to make use of a family of isomorphisms
xα : Ga → Uα. It will be important to know the coefficients nα,β such that

[xα(r), xβ(s)] = xα+β(nα,βrs).

The isomorphisms may be chosen so that all the coefficients are 0, 1, or −1 as described in [Gk-Se]
We now describe the elements of our Rankin-Selberg integral. First, let Q denote the maximal

parabolic subgroup of E8 whose unipotent radical contains the subgroup Uα5 . The derived group
of its Levi part is isomorphic to SL5×SL4. We consider the Eisenstein series E(g, s) associated to
the induced representation IndE8(A)

Q(A) δ
s
Q. Next, let P denote the parabolic subgroup whose unipotent

radical, UP , contains the groups Uα1 and Uα8 , and whose Levi part contains Uαi for the remaining
values of i. The derived group of this Levi part is isomorphic to Spin12. We fix an additive character
ψ of F\A, and define a character of UP (F )\UP (A) by

ψU (xα(r)) =

{
ψ(r), α = α1, α8, 12343210, 01122221
1, otherwise.

The identity component of the stabilizer of this character in the Levi part of P is generated by the
groups U±αi for i = 2, 4, 5, 6. In particular, it is isomorphic to SL5. Using the maps xα fixed above,
we may pin down a specific isomorphism, which we use to identify elements of this subgroup of E8

with 5× 5 matrices in SL5.
The Fourier coefficient ∫

U(F )\U(A)
E(ug, s)ψU (u)du

is left SL5(F )-invariant. Restricting the g variable to SL5(A) we obtain a smooth automorphic
function on SL5 of moderate growth, which we now integrate against a cusp form, in the space of
an irreducible automorphic cusipidal representation of GL5(A). Thus, our integral is∫

SL5(F )\SL5(A)
ϕ(g)

∫
U(F )\U(A)

E(ug, s)ψU (u)dudg. (3)
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In regards to the integration over U(F )\U(A), we wish to make the following remark. In [G-R-S1]
and [G2], a procedure is described which begins with a nilpotent orbit, and associates to it a set of
Fourier coefficients. Here, the “nilpotent orbits” are for the coadjoint action of a group on its Lie
algebra over the algebraic closure. The details in [G-R-S1, G2] are for classical groups and make
use of the labeling of nilpotent orbits by partitions, but the same idea works for exceptional groups,
where the most convenient labeling is by weighted Dynkin diagrams. The above integral defines a
Fourier coefficient which is associated, by this procedure to the nilpotent orbit in e8, associated to
the weighted Dynkin diagram

2 0 0 0 0 0 2

0

As noted on p. 405 of [C], the stabilizer of a point in this orbit is a group of type A4.
We unfold integral (3). The result is as follows. Let w̃0 denote the shortest element of the

double coset
WQw`WSL5 ,

where w` is the longest element of the Weyl group. Let V denote the maximal unipotent subgroup
of SL5 corresponding to our choice of positive roots. It is identified with the group of 5× 5 upper
triangular unipotent matrices. Let V ′ to be the subgroup consisting of elements of the form

1 v1 v2 v3 v4
1 v5 v6 v7

1 −v5 v2
1 −v1

1

 .

Finally, let U0 = U ∩ w̃−1
0 UP w̃0 =

∏
α>0:w̃0α<0 Uα. Then we have

Theorem: For Re(s) large, integral (3) is equal to

I(Wϕ, f, s) :=
∫
V ′(A)\SL5(A)

Wϕ(h)
∫
U0(A)

f(w̃0δ0u0h, s)ψU (u0)du0 dh, (4)

where Wϕ is the Whittaker function of ϕ and

δ0 = x00001110(1)x01111000(−1)x00111100(1)x01121110(−1).

From this it essentially follows that, for suitable data, the original integral is factorizable– i.e. that
it may be expressed as an infinite product of corresponding local integrals.

2 The GSpin11 global integral

Next we describe a similar construction, involving a cusp form in the space of an irreducible
automorphic cuspidal generic representation of GSpin11(A).
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We make use of the same parabolic P as before. The derived group of the Levi part of P is
isomorphic to Spin12 and so the Levi part itself is isomorphic to a quotient of Spin12 ×GL2

1. Let
ψUP

be the character of UP defined by

ψUP
(xα(r)) =

{
ψ(r) α = 01011111, 00111111
1 otherwise.

The stabilizer of this character in the Levi part is isomorphic to GSpin11.
The next element of our Rankin-Selberg integral is a theta function. To define it, we notice

that a certain subgroup UH of UP has the structure of a Heisenberg group. Specifically, UH is the
product of the subgroups Uα associated to roots α = n1α1 + · · · + n8α8, such that n8 = 0 and
n1 6= 0. Because of the Heisenberg group structure, UH/U22343210 is a 32 dimensional symplectic
vector space, with the skew-symmetric bilinear form being given by commutator. By Sp32 we shall
mean the group of automorphisms of this symplectic vector space.

Above we noted a subgroup of the Levi part of P isomorphic to GSpin11. It acts on UH by
conjugation. The subgroup of elements which fix the subgroup U22343210, and hence correspond to
elements of Sp32, is precisely the derived group, isomorphic to Spin11. This map of Spin11 into
Sp32 is essentially the spin representation, and in particular is an embedding. Thus Spin11 is
simultaneously identified with a certain subgroup of E8, and with a certain subgroup of Sp32.

Now, having fixed an additive character above, we obtain a Schrödinger-Weil representation ωψ
of the semidirect product of UH(A) and S̃p32(A), where S̃p32(A) denotes the metaplectic double
cover of Sp32(A). This representation has an automorphic realization by theta functions, θψφ , where
φ is a Schwartz function, and ψ is the additive character fixed above. Furthermore, there is a map
j : Spin11(A) → S̃p32(A) such that the following diagram commutes:

S̃p32(A)

Spin11(A) Sp32(A).
?�

�
�

�
��3

There is a natural projection from UP to UH which we denote `. Thus, a theta function θψφ may be
evaluated at `(u)j(h) for u ∈ U(A) and h ∈ Spin11(A).

The integral we consider is∫
Spin11(F )\Spin11(A)

∫
U(F )\U(A)

ϕ(h)θψφ (`(u)j(h))E(uh, s)ψU (u)dudh, (5)

where ϕ is a cusp form in the space of a generic irreducible cuspidal automorphic representation
π of GSpin11(A). This time, the integral over U defines a Fourier coefficient obtained from the
nilpotent orbit of e8 associated to the weighted Dynkin diagram

2 0 0 0 0 0 1

0

.
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The result of the unfolding is similar. Let w be the shortest element of Qw`P, which is of length
83, and U0 = U ∩ w−1UQw, the product of all the groups Uα such that α > 0 and wα < 0.

Then for a certain codimension 5 subgroup V ′′ of V, defined similarly to V ′ above, and a suitable
element ξ0 of F 16, we have
Theorem: For Re(s) large, the integral (5) is equal to∫

V ′′(A)\Spin11(A)

∫
U0(A)

ωψ(`(u)j(h))φ(ξ0)f(wuh, s)ψU (u)

Wϕ(x−00000100(x3)x−00011100(x1)x−00010000(x2)w[645]h)dudh.

Once again, the factorization as a product of local integrals is now essentially immediate.

3 Formal manipulations

In this section, we describe how to obtain the GL5 integral from the GSpin11 integral via certain
formal manipulations. We emphasize that every integral appearing at an intermediate stage is
divergent, so this procedure is purely formal.

Let τ be an automorphic representation of GL5(A) and Eτ (g, s) an Eisenstein series defined on
Spin11(A) using the section fτ (g, s) ∈ Ind

G(A)
R(A)τ ⊗ δsR. Here R is the standard maximal parabolic

subgroup of Spin11 having Levi part isomorphic to GL5. We plug Eτ (g, s) into (5) for ϕ, and
formally unfold the resulting divergent integral. We obtain∫

R(F )\Spin11(A)

∫
U(F )\U(A)

fτ (g, s)θ
ψ
φ (`(u)j(g))E(ug, s)ψU (u)dudg.

Next we replace integration overR(F )\Spin11(A) by integration overGL5(F )\GL5(A)×UR(F )\UR(A)
where GL5 is identified with the Levi part of R and UR is its unipotent radical. At the same time,
we replace fτ (g, s) by a cusp from ϕτ in the space of τ. This step may be thought of as plugging
in the Iwasawa decompostion of Spin11 with respect to the parabolic R and passing to an “inner
integral.”

We allow ourselves to plug in simplified, formal versions of the sorts of identities which commonly
arise in the unfolding of Rankin-Selberg integrals and other similar computations.

For example, the next step is to replace integration over the whole group U against a theta
function by integration over a subgroup against a character. The group is obtained by deleting
16 of the subgroups Uα from the Heisenberg part, and the character is the one which is trivial on
every Uα except 22343210 and ψ(r) on x22343210(r). This may be regarded as a simplified formal
version of the type of identities found on p. 5 of [G-R-S1].

We also use a simplified formal version of the technique of “exchange of roots.” (Cf. [G-L],
section 2.1, [G-R-S2] pp. 748-750.) The idea is to replace integration over one unipotent group U1

against a character ψ1 by integration over a more advantageous group U2 against a corresponding
character ψ2 by proving an identity of the form∫

U1(F )\U1(A)
f(u1g)ψ1(u1)du1 =

∫
Z(A)

∫
U2(F )\U2(A)

f(u2zg)ψ2(u2)du2dz.

This is possible under suitable hypotheses on the groups U1, U2 and Z. For a more thorough
discussion see the references cited above. In our simplified formal version, we omit the z integral.
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This may be thought of as passing once again to an “inner integral,” corresponding to a fixed value
of z.

Conjugation by w[34254365428765431] (here we specify an element of the Weyl group as a word
in the simple reflections) maps {22343210, 01011111, 00111111} to {α1, 01122221, 12343210}. It is
then possible to exchange roots so as to obtain integration over the subgroup of U generated by
{Uα ⊂ U : α 6= α8}. We then perform a Fourier expansion on Uα8 .

We ignore the term corresponding to the trivial character. The remaining terms are permuted
transitively by our (conjugated) GL5,which acts by det on this one dimensional subgroup. The
stabilizer is SL5, embedded exactly as in section 1. In this manner, formally, we have obtained the
GL5 integral.

4 Unramified computations in the GL5 case.

We consider the local analogue of integral (4), at a place where the data is unramified. (So, W is
now the normalized spherical vector in the Whittaker model of a local representaion, etc.) We wish
to show that I(W, f, s) = L(s, π,Ad)/N(s) where N(s) is the normalizing factor of the Eisenstein
series, given by

ζ(11s)ζ(11s−1)ζ(11s−2)2ζ(11s−3)2ζ(11s−4)ζ(22s−6)ζ(22s−7)ζ(22s−8)2ζ(22s−9)ζ(22s−10)

ζ(33s− 12)ζ(33s− 13)ζ(33s− 14)ζ(33s− 15)ζ(44s− 18)ζ(44s− 20)ζ(55s− 25)

Performing a series of fairly standard steps, such as plugging in the Iwasawa decomposition and a
suitable form of the Casselman-Shalika formula, we may express I(W, f, s) as:∑

λ∈Λ++
R

χλ(tπ)x`(λ)I(W, f, s;λ), (6)

where λ is summed over dominant weights of PGL5(C) (i.e., dominant weights of GL5(C) which are
in the span of the roots), χλ denotes the trace of the irreducible finite dimensional representation
of GL5(C) having highest weight λ, and ` is an integer-valued linear function on the root lattice.
Also, x = q−11s+5, where q is the absolute value of a uniformizer. The heart of the matter is the
“inner integral” I(λ). Let λ =

∑4
i=1miβi, where β1, . . . , β4 are the simple roots of GL5(C), and

choose a uniformizer p. Then I(λ, s) can be written as∫
F 3

ψ(pm1−m3+m4r1 − p−m1+m2r2)
∫
U1

ψU1(u1)f(w̃1xα7(r1)xα4(r2)x00011100(r3)δ(m)u0, s)du0dri

(7)
with U1 being a conjugate of U0 above, ψU1 a character, and

δ(m) = x−α2(p
−m2+m3)x−α5(p

m1−m2+m3−m4)x−α7(p
−m1+m4)x−α3(p

m2−m3).

The delicate part of the dependence of I(λ, s) on λ comes from δ(m). As m varies, the shape of the
Iwasawa decomposition of this element varies, and results in several different cases for the shape of
the integral. The easiest is when m1 = m4 and m2 = m3. This case corresponds to weights λ which
are symmetric under the outer automorphism of GL5(C) that reverses the order of the simple roots,
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i.e., weights which, in terms of the fundamental weights, are of the form λ = (m, k, k,m). For such
weights, we find that N(s)I(W, f, s, λ) equals

xk+2m

(1− x)(1− x2)(1− x3)(1− x4)

[
δk,0x

6(1− xm−1)(1− xm)(1− xm+1)(1− xm+2)

+
(1− xk+1)(1− xk+2)(1− xk+3)

(1− x)(1− x2)(1− x3)
(1− xm+1)(1− xm+2)(1− xm+3)(1− xm+4)

+x3 (1− xk+1)(1− xk)(1− xk+3)
(1− x)2(1− x2)

(1− xm)(1− xm+1)(1− xm+2)(1− xm+3)

−x7 (1− xk−1)(1− xk+1)(1− xk+2)
(1− x)2(1− x2)

(1− xm−1)(1− xm)(1− xm+1)(1− xm+2)

− x12 (1− xk−1)(1− xk)(1− xk+1)
(1− x)(1− x2)(1− x3)

(1− xm−2)(1− xm−1)(1− xm)(1− xm+1)
]
.

(Here δk,0 is the Kronecker delta.)
Turning our attention to the other side of the desired identity, we need an analog of the identity

appearing near the top of p.155 in [B-G1]. The identity for our case is

(1− x)
(1− x5)

∞∑
ki=0

xk1+2k2+3k3+4k4Trace(tπ|Vk1,k2,k3,k4 ⊗ Vk4,k3,k2,k1) =
∞∑
n=0

Trace(tπ|symnAd), (8)

where Vk1,k2,k3,k4 is the irreducible finite-dimensional representation of GL5(C) having highest
weight

∑
i ki$i. (In fact, this is an identity of functions, which is then evaluated at tπ.)

Fix a dominant weight λ. We may consider the “coefficient” of χλ(tπ) = Trace(tπ|Vλ) –a
power series in x – on either side of (8). Let J(λ) denote this coefficient, and let Ĩ(W, f, s, λ) =
N(s)I(W, f, s, λ) (and extend by zero to dominant weights which are not in the root lattice). Then
our main assertion may be repackaged as the assertion that J(λ) = Ĩ(W, f, s, λ) for all λ.
Proposition: This holds for λ = (m, k, k,m).
In fact, one may prove an equality of the “symmetric pieces”:

∞∑
k,m=0

Ĩ(W, f, s,m, k, k,m)x`(m,k,k,m)χ(m,k,k,m)(tπ) =
∞∑

k,m=0

J(m, k, k,m)χ(m,k,k,m)(tπ),

by replacing χ(m,k,k,m)(tπ) by T k1 T
m
2 , where T1 and T2 are indeterminates. The resulting power

series in 3 variables may then be summed to obtain explicit rational functions, which turn out to
be equal.

We remark that the desired equality can be verified by hand for small asymmetrical λ as
well. Also, the quantity Ĩ(W, f, s, λ) which was introduced on an ad hoc basis above also appears
naturally as an “inner integration” if we interpret part of the unipotent integration in I(W, f, s, λ)
above as an intertwining operator, and part as the Jacquet integral for the Whittaker function on
the GL4 ×GL5 Levi part.
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