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1 Introduction

In this paper we begin the study of a family of multi-variable Rankin-Selberg integrals in

similitude Orthogonal groups. Unfortunately, as it seems right now, this family of inte-

grals produce L functions only for low rank groups. To describe the construction, let π

be a cuspidal generic irreducible representation of the group GSO2n(A). Let P denote

the standard Siegel parabolic subgroup of GSO2n(A). Thus P has the Levi decomposition

P = (GL1 × GLn) · U(P ). Let EP (g, s) denote the Eisenstein series defined on the group

GSO2n(A), which is associated to the induced representation Ind
GSO2n(A)
P (A) δsP . The family of

integrals we consider is given by∫
Z(A)GSO2n(F )\GSO2n(A)

ϕ(g)EQ(g, w)EP (g, s)dg (1)

Here, the function ϕ(g) is a vector in the space of π and EQ(g, w) is a certain Eisenstein

series which depends on the value of n. In other words, in each case we will need to choose a

different representation for EQ(g, w). Also, s and w are complex variables and Z is the center

of the group GSO2n. For simplicity we shall assume that π has a trivial central character.

One of our main results is to show that for a suitable choice of the representation EQ(g, w),

integral (1) is Eulerian. At this point we can show that only when n ≤ 6. The L functions
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obtained by these integrals are Spin L functions. The cases n = 2, 3 are trivial. In fact, when

n = 3 we get the usual Rankin product integral where we view GSO6 as GL4. In this case

one can actually replace EQ(g, w) with any generic automorphic representation of the group

GSO6(A). In [G1] a construction for the Spin L functions is given for the groups GSO10

and GSO12.

In this paper we shall work out integral (1) for the group GSO8. As it turns out, the

Eisenstein series EQ(g, w) actually depends on two complex variables. Hence integral (1)

represents a product of three L functions. The standard L function appears once, and the

Spin L function which corresponds to the fourth fundamental representation of GSpin8(C)

appears twice.

In section two we introduce the global integral and show it to be Eulerian with Whittaker

model. In the third section we carry out the unramified computation. These two sections

are quite standard. In the last section we give an application of our construction. We relate

the functorial lift from the exceptional group G2 to GSO8 with a certain period integral and

show that this is all related to existence of poles of certain L functions. More precisely, we

prove

Main Theorem: ( Theorem 4.3) Let π be an irreducible generic cuspidal representation of

the group GSO8(A) which has a trivial central character. Then the following are equivalent:

1) Both partial L functions, LS(π, Spin, s) and LS(π, St, s) have a simple pole at s = 1.

2) The period integral Pϕ,φ ( see section 4 for definition) is nonzero for some choice of data.

3) The representation π is the functorial lift from a cuspidal generic representation of the

exceptional group G2(A).

As was mentioned above one can produce Eulerian integrals of the type (1) also for the

groups GSO10 and GSO12. The second named author intends to study these cases in the

near future.

2 The Global Integral

Let G = GSO8. Let π denote a cuspidal irreducible generic representation of G(A). For

simplicity, we shall assume that π has a trivial central character. To define the Eisenstein

series we first consider the following parabolic subgroups of G. Let P denote the maximal

standard parabolic subgroup of G with Levi factorization P = (GL1 × GL4)U(P ). We

shall denote by Q the maximal standard parabolic of G with Levi decomposition Q =

(GL2 × GSO4)U(Q). Let EQ(g, s1, s2) denote the Eisenstein series defined on the group
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G(A) corresponding to the induced representation I(s1, s2) = Ind
G(A)
Q(A)(Ind

GL2(A)
B2(A) δ

s1
2 )δs2Q .

Here B2 is the standard Borel subgroup of GL2 and si are complex variables. Also δ2 and

δQ are the modulus functions of B2 and Q respectively. Next we define the Siegel Eisenstein

series EP (g, s3) which corresponds to the induced representation I(s3) = Ind
G(A)
P (A)δ

s3
P .

The global integral we consider is∫
Z(A)G(F )\G(A)

ϕ(g)EQ(g, s1, s2)EP (g, s3)dg (2)

where Z is the center of the group G.

To factorize this integral we first fix some notation. In terms of matrices we consider

the group G relative to the form defined by the matrix J which has ones along the other

diagonal and zeros elsewhere. For 1 ≤ i ≤ 4, let αi denote the four simple roots of the group

G. Let xαi
(r) denote the one dimensional unipotent subgroup corresponding to the root αi.

We label the roots such that

xα1(r) = I + re′1,2 xα2(r) = I + re′2,3 xα3(r) = I + re′3,4 xα4(r) = I + re′3,5

Here I is the 8 × 8 identity matrix and ei,j = ei,j − e9−j,9−i. For 1 ≤ i ≤ 4 let w[i] denote

the simple reflection corresponding to the simple root αi. We shall write w[i1i2 . . . ir] for

w[i1]w[i2] . . . w[ir].

Let ψ denote a non-trivial additive character of F\A. For g ∈ G(A), fs1,s2 ∈ I(s1, s2)

and fs3 ∈ I(s3) we define fRs1,s2(g) to equal

∫
(F\A)4

fs1,s2(w[2134]xα1(r1)xα3(r2)xα4(r3)xα1+α2+α3+α4(r4)g)ψ
−1(r1 + r2 + r3)dri (3)

and

fLs3(g) =

∫
(F\A)2

fs3(w[42]xα2(l1)xα2+α4(l2)g)ψ
−1(l1)dli (4)

We have the following

Theorem 2.1: With the above notations and for Re(si) large we have∫
Z(A)G(F )\G(A)

ϕ(g)EQ(g, s1, s2)EP (g, s3)dg =

∫
Z(A)U(A)\G(A)

Wϕ(g)f
R
s1,s2

(g)fLs3(g)dg (5)

Here Wϕ is the Whittaker function corresponding to ϕ and U is the maximal unipotent

subgroup of G which consists of upper triangular matrices.
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Proof: We start by unfolding the two Eisenstein series. The first thing is to analyze the

contribution to the integral from each of the representatives of the space Q\G/P . This

space contains three representatives which we can choose to be e, w[24] and w[21324]. It is

not hard to check that the first two contribute zero to the integral. As for the third one, the

stabilizer is the group N ′ defined as the subgroup of G consisting of all matrices of the form

N ′ = {


λA1 C1 C2

λA2

A∗
2 C∗

1

A∗
1

 : A1, A2 ∈ GL2, λ ∈ GL1, (C1, C2) ∈Mat2}

Changing variables g 7→ w[4]g and further unfolding the Eisenstein series on G corresponding

to I(s1, s2) we obtain that the left hand side of (5) equals∫
Z(A)B2(F )GL2(F )N(F )\G(A)

ϕ(g)fs1,s2(w[2132]g)fs3(w[4]g)dg (6)

Here B2 ×GL2 and N are embedded in G as

(b, h) =


b
h

h∗

b∗

 n =


I C1 C2

I C∗
1

I
I


where C1, C2 ∈ Mat2 such that the above matrix is in G and I is the two by two identity

matrix. Factoring the integration over N(F )\N(A) we denote by ϕN(g) the constant term

of ϕ along N . Next, we expand ϕN(g) along xα4(r) and then along (I + r1e
′
1,3)(I + r2e

′
1,4)

with points in F\A. It is easy to see that the constant terms will contribute zero by the

cuspidality of ϕ. Thus, (6) equals∫
Z(A)GL2

1(F )N1(A)\G(A)

ϕU1,ψ(g)fs1,s2(w[2132]g)fs3(w[4]g)dg (7)

Here GL2
1 is embedded in G as the group of all diagonal matrices diag(a, b, a, 1, a, 1, ab−1, 1).

The group N1 =< N, xα1(r), xα3(r) >. Also, we denote

U1 =< xα1(r), xα1+α2(r), xα1+α2+α3(r), xα3(r), U(P ) >

where U(P ) is the unipotent radical of the parabolic subgroup P . Finally,

ϕU1,ψ(g) =

∫
U1(F )\U1(A)

ϕ(u1g)ψU1(u1)du1
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where ψU1(u1) = ψU1(xα4(r1)xα1+α2(r2)u
′
1) = ψ(r1 + r2) and u′1 is any product of all other

one dimensional unipotent subgroups in U1.

Next we consider the Fourier expansion of ϕU1,ψ(g) along the group I + re′3,2 with points

in F\A. Using the left invariance property of ϕ under G(F ) we obtain after a suitable

conjugation

ϕU1,ψ(g) =

∫
A

ϕU2,ψU2 (xα2+α4(r)g)dr

Here U2 is the unipotent group defined as follows. Let U ′
1 denote the subgroup of U1 obtained

by omitting the one dimension unipotent subgroup corresponding to the root α2 +α4. Then

define U2 =< U ′
1, x−α2(r) >. Also, the character ψU2 is defined as the restriction of ψU1 to

the group U ′
1. Plugging this identity into (7) and collapsing the adelic integration we obtain∫

Z(A)GL2
1(F )N2(A)\G(A)

ϕU2,ψU2 (g)fs1,s2(w[2132]g)fs3(w[4]g)dg (8)

Here N2 is the subgroup of N1 generated by all one dimensional unipotent subgroups in

N1 omitting the root α2 + α4. Next, using the left invariance property of ϕ we obtain by

conjugation ϕU2,ψU2 (g) = ϕU3,ψU3 (w[42]g). Here U3 is the unipotent radical of the standard

parabolic subgroup of G whose Levi part is GL2
1×GSO4. We also define ψU3(u3) = ψ(r1+r2)

where we write u3 = xα1(r1)xα2(r2)u
′
3 and u′3 is any product of all other one unipotent

subgroups in U3. We plug this into (8). Then we expand along the unipotent subgroup

xα3(r1)xα4(r2) with points in F\A to obtain by collapsing the summation over GL2
1(F ) and

using cuspidality ∫
Z(A)N2(A)\G(A)

Wϕ(w[42]g)fs1,s2(w[2132]g)fs3(w[4]g)dg (9)

We change variables g 7→ w[42]g. This changes the domain of integration to the domain

Z(A)N3(A)\G(A) where N3 = w[42]N2w[24]. Since N3 is a subgroup of the maximal

unipotent subgroup U of G, we can factor the integration domain along N3\U . Using the

left invariance properties of the functions Wϕ, fs1,s2 and f3 we obtain identity (5). �

3 The Unramified Computation

In this section we consider the local unramified integral which results from identity (5). Let

F be a local finite field where all data are unramified. To be more precise, let π denote an
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unramified irreducible representation of the local group G. We assume that π has a trivial

central character. Let I(s1, s2) denote the induced representation IndGQ(IndGL2
B2

δs12 )δs2Q and let

I(s3) denote the induced representation IndGP δ
s3
P . All subgroups in the above representations

were defined in section 2.1. From Theorem 2.1 we are led to consider the integral

I =

∫
ZU\G

Wπ(g)f
R
s1,s2

(g)fLs3(g)dg (10)

Here fRs1,s2(g) and fLs3(g) are the local functionals of the global ones as defined in (3) and (4).

We shall denote by L(π, Spin, s) the local Spin L function corresponding to the fourth

fundamental representation of the group GSpin8(C), which is the L group of the group G.

This representation is defined exactly as in [G1] page 773. By L(π, St, s) we shall denote

the local standard L function of GSpin8(C). Both representations, the Spin representation

and the Standard representation, are an eight dimensional irreducible representations of the

group GSpin8(C). Also, by ζ(s) we shall denote the local zeta function.

The main result of this section is

Proposition 3.1: For all unramified data, and for Re(si) large, integral I equals

L(π, Spin, s1)L(π, Spin, 5s2 − 2)L(π, St, 3s3 − 1)

ζ(2s1)ζ(s1 + 5s2 − 1)ζ(s1 + 5s2 − 2)ζ(−s1 + 5s2 − 1)ζ(−s1 + 5s2)ζ(10s2 − 4)ζ(6s3)ζ(6s3 − 2)

Proof: Let T denote the maximal torus of G. Using the Iwasawa decomposition, integral I

equals

I =

∫
Z\T

Wπ(t)f
R
s1,s2

(t)fLs3(t)δ
−1
B (t)dt (11)

where B is the Borel subgroup of G which consists of upper triangular matrices. We pa-

rameterize the an element t in Z\T as t = diag(ab1, ab2, ab3, a, 1, b
−1
3 , b−1

2 , b−1
1 ). In this case

δ−1
B (t) = |ab1|−6|b2|−4|b3|−2. We start by computing

fLs3(t) =

∫
F 2

fs3(w[42]xα2(l1)xα2+α4(l2)t)ψ
−1(l1)dl1dl2

Conjugating the matrix xα2+α4(l2) to the left we obtain, as inner integration, the following

intertwining operator ∫
F

fs3(w[4]xα4(l2)g)dl2

A simple computation shows that this intertwining operator maps the space IndGBδ
s3
P to the

space IndGBχs3 where χs3(t) = |b1b2b−1
3 |3s3|ab3|. If K is the maximal compact subgroup of G
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then this intertwining operators maps the K fixed vector in one space to the K fixed vector

in the other space. Using the usual factorizations, we thus obtain

fLs3(t) =
ζ(6s3 − 1)

ζ(6s3)

∫
F

f 0
s3

(w[2]xα2(l1)t)ψ
−1(l1)dl1

where f 0
s3

is theK fixed vector in IndGBχs3 . To compute this integral, we break the integration

domain into |l1| ≤ 1 and into |l1| > 1 and proceeding as in [G1] pages 775-776, this last

integral equals

ζ(6s3 − 2)

ζ(6s3 − 1)
|a||b1|3s3|b2|−3s3+2|b3|3s3−1(1− |b2b−1

3 |6s3−2q−6s3+2)

Here q = |p|−1 where p is a generator of the maximal ideal inside the ring of integers of F .

Combining all this we obtain

fLs3(t) =
ζ(6s3 − 2)

ζ(6s3)
|a||b1|3s3|b2|−3s3+2|b3|3s3−1(1− |b2b−1

3 |6s3−2q−6s3+2)

Next we repeat the same calculation, this time with fRs1,s2(t). This computation is more

involved but is done exactly the same way. By conjugating the root xα1+α2+α3+α4(r4) to the

left ( see (3)) we obtain an intertwining operator which we compute as we did above. The

integration along the other three roots, which involves the character ψ−1, is done as in [G1]

pages 775-776. We thus obtain,

fRs1,s2(t) =
ζ(s1 + 5s2 − 2)ζ(−s1 + 5s2 − 2)2

ζ(s1 + 5s2 − 1)ζ(−s1 + 5s2)ζ(−s1 + 5s2 − 1)
|a|s1+2|b1|2|b2|s1+5s2−1|b3|s1−5s2+3×

(1− |b1b−1
2 |s1+5s2−2q−s1−5s2+2)(1− |b3|−s1+5s2−2qs1−5s2+2)(1− |ab3|−s1+5s2−2qs1−5s2+2)

Denote Kπ(t) = Wπ(t)δ
−1/2
B (t). Plugging all this into (11), integral I equals

ζ(6s3 − 2)ζ(s1 + 5s2 − 2)ζ(−s1 + 5s2 − 2)2

ζ(6s3)ζ(s1 + 5s2 − 1)ζ(−s1 + 5s2)ζ(−s1 + 5s2 − 1)

∫
Z\T

Kπ(t)z(a, b1, b2, b3)dt

where

z(a, b1, b2, b3) = |a|s1|b1|3s3−1|b2|s1+5s2−3s3−1|b3|s1−5s2+3s3+1(1− |b2b−1
3 |6s3−2q−6s3+2)×

(1− |b1b−1
2 |s1+5s2−2q−s1−5s2+2)(1− |b3|−s1+5s2−2qs1−5s2+2)(1− |ab3|−s1+5s2−2qs1−5s2+2)
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Consider the following change of variables in T . We set ab3 7→ t1, b1b
−1
2 7→ t2, b2b

−1
3 7→

t3 and b3 7→ t4. Under this change of variables the torus T is parameterized as t =

diag(t1t2t3t4, t1t3t4, t1t4, t1, t4, 1, t
−1
3 , t−1

2 t−1
3 ). Thus, the above integral equals∫

Z\T

Kπ(t)z(t1, t2, t3, t4)dt

where now

z(t1, t2, t3, t4) = |t1|s1|t2|3s3−1|t3|s1+5s2−2|t4|s1+3s3−1(1− |t3|6s3−2q−6s3+2)×

(1− |t2|s1+5s2−2q−s1−5s2+2)(1− |t1|−s1+5s2−2qs1−5s2+2)(1− |t4|−s1+5s2−2qs1−5s2+2)

For 1 ≤ i ≤ 4 write ti = pni . We shall also denote x = q−s1 , y = q−5s2+2 and z = q−3s3+1.

It follows from the Casselman-Shalika formula [C-S], that Kπ(t) = (n2, n3, n4, n1) where

(n2, n3, n4, n1) equals the trace of the irreducible representation n2$1 +n3$2 +n4$3 +n1$4

evaluated in the semi-simple conjugacy class ofGSpin8(C) associated with the representation

π. Here $i is the i− th fundamental representation of GSpin8(C).

Hence the above integral equals

∞∑
ni=0

(n2, n3, n4, n1)x
n1+n3+n4yn3zn2+n4(1−(x−1y)n1+1)(1−(xy)n2+1)(1−z2n3+2)(1−(x−1y)n4+1)

Cancelling the zeta factors on both sides, to prove the identity stated it is enough to prove

the identity
∞∑
ni=0

(n2, n3, n4, n1)x
n1+n3+n4yn3zn2+n4

(
1− (x−1y)n1+1

1− x−1y

)
×

(
1− (xy)n2+1

1− xy

)(
1− z2(n3+1)

1− z2

)(
1− (x−1y)n4+1

1− x−1y

)
=

(1− xy)
L(π, Spin, s1)

ζ(2s1)

L(π, Spin, 5s2 − 2)

ζ(10s2 − 4)

L(π, St, 3s3 − 1)

ζ(6s3 − 2)

Using the decomposition of the symmetric algebras as given in [B], we have

L(π, Spin, s1)

ζ(2s1)
=

∞∑
m1=0

(0, 0, 0,m1)x
m1

L(π, Spin, 5s2 − 2)

ζ(10s2 − 4)
=

∞∑
m2=0

(0, 0, 0,m2)y
m2

L(π, St, 3s3 − 1)

ζ(6s3 − 2)
=

∞∑
m3=0

(m3, 0, 0, 0)zm3
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Thus we need to prove the identity

∞∑
ni=0

(n2, n3, n4, n1)x
n1+n3+n4yn3zn2+n4

(
1− (x−1y)n1+1

1− x−1y

)
×

(
1− (xy)n2+1

1− xy

)(
1− z2(n3+1)

1− z2

)(
1− (x−1y)n4+1

1− x−1y

)
=

(1− xy)
∞∑

m1=0

(0, 0, 0,m1)x
m1

∞∑
m2=0

(0, 0, 0,m2)y
m2

∞∑
m3=0

(m3, 0, 0, 0)zm3

Finally, this identity can be written as

∞∑
ni=0

(n2, n3, n4, n1)x
n1+n3+n4yn3zn2+n4

(
1− (x−1y)n1+1

1− x−1y

)
×

(
1− (xy)n2+1

1− xy

)(
1− z2(n3+1)

1− z2

)(
1− (x−1y)n4+1

1− x−1y

)
=

(1− xy)
∞∑

mi=0

(0, 0, 0,m1)⊗ (0, 0, 0,m2)⊗ (m3, 0, 0, 0)xm1ym2zm3 (12)

Here and henceforth, by abuse of notations, we denote by (n2, n3, n4, n1) the representation

itself.

To prove this identity, we need two lemmas.

Lemma 3.2

(0, 0, 0,m1)⊗ (0, 0, 0,m2) =

min(m1,m2)⊕
r=0

min(m1,m2)−r⊕
i=0

(0, r, 0, |m2 −m1|+ 2i),

and Lemma 3.3

(0, r, 0, s)⊗ (m, 0, 0, 0) =
⊕
a,b,c,k

(m−k−a+ b, r+k−a− 2b− c,−k+a+ b+2c, s−k+a+ b).

where the sum is over quadruples (a, b, c, k) satisfying the bounds

0 ≤ k ≤ m (13)

0 ≤ a ≤ min(r,m− k) (14)

max(0, k − a− s) ≤ b ≤ min(k, r − a) (15)

max(0, k − b− a) ≤ c ≤ min(k − b, s). (16)

9



Both lemmas are proved using the formulae in [B-K-W]. Black, King, and Wybourne have

obtained their formulae via branching rules for the restriction from SO8 to U4. Using their

formula, one proceeds as follows. First, one obtains a sum of products of representations

of U4. These are parametrized by “composite Young diagrams,” {µ̄;λ}, that is, by pairs of

partitions µ and λ such that the total number of parts does not exceed 4. A representation of

U4(C) may also be specified by a pair, consisting of an irreductible representation of SU4(C)

and an integer (the power of the determinant to twist by). The relationship between the two

parametrizations is

{µ̄;λ} ↔ ({λ1 + µ1, . . . , λp + µ1, µ1, . . . , µ1, µ1 − µq, . . . , µq−1 − µq}, det −µq),

and the parametrization of irreducible representations of SUk by partitions with at most

k − 1 parts is as usual. One then takes the product of the representations of U4 by the

Littlewood-Richardson rule. One then must interpret the results as “representations” of

SO8, using “modification rules.” Some composite Young diagrams correspond to actual

representations. Others give a representation with the coefficient −1 to cancel one of the

other terms in the sum, and still others correspond to zero.

We include only the proof of the lemma 3.3. By a similar but easier argument, one may

deduce a formula for (m1, 0, 0, 0)⊗ (m2, 0, 0, 0) which is equivalent, by triality, to lemma 3.2.

Proof of Lemma 3.3: Black, King and Wybourne define the notation λ/ξ as follows. Let

mν
λµ be the constants that appear in the Littlewood-Richardson rule. Thus

{λ} · {µ} =
∑
ν

mν
λµ{ν}.

Then

{λ/ξ} =
∑
ν

mλ
νξ{ν}.

Black, King and Wybourne denote (m, 0, 0, 0) by [m], while (0, r, 0, s) is denoted by [µ]−

when s is even, and [∆;µ]− if s is odd, where µ = µ2
1µ

2
3, with µ1 = r + b s

2
c, µ3 = b s

2
c. The

relevant formulae are

[λ]× [µ]− =
∑
ξ

[{ξ̄; (λ/ξB)} · {µ}]−,

in the “tensor” case (s even) and

[λ]× [∆;µ]− =
∑
ξ

[∆; {ξ̄; (λ/ξB)} · {µ}]−,
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in the “spinor” case (s odd). Here B is the sum of all partitions such that each part appears

an even number of times (e.g. {4, 4, 1, 1}). Since λ = (m) has only one part, we may drop

the B. Further, λ/ξ is trivial unless ξ = {k, 0, 0, 0} with k ≤ m. Thus, we obtain,

m∑
k=0

[{k̄;m− k} · {µ2
1µ

2
3}]−.

To compute {k̄;m − k} · {µ2
1µ

2
3} we compute {m, k, k} · {(µ1 − µ3)

2}, and then twist by

det−k+µ3 . The Littlewood-Richardson rule gives

{m, k, k} · {(µ1−µ3)
2} =

∑
a+b≤µ1−µ3

b+c≤k≤a+b+c
a+k≤m

{µ1−µ3 +m− a, µ1−µ3− b+ k, a+ b+ c, k− c} (17)

Twisting by det µ3−k amounts to adding µ3 − k to each term, which yields

{µ1 +m− a− k, µ1 − b, µ3 + a+ b+ c− k, µ3 − c}.

The next step is to interpret this using modification rules, which are different in the “tensor”

and “spinor” cases. We will restrict our attention to the “tensor” case. The “spinor” case

is similar, but things are shifted by 1, the end result being that where 2µ3 appears in the

“tensor” case, 2µ3 + 1 appears in the “spinor” case. These are the respective values of s.

If c ≤ µ3, we have a partition, and the corresponding representation of Spin8, in our

highest weight notation, is

(m− k − a+ b, µ1 − µ3 + k − a− 2b− c, 2c+ a+ b− k, a+ b+ 2µ3 − k).

If c > µ3, we must apply a modification rule to the “composite partition”

[ξ;λ]− = [µ3 − c;µ1 +m− a− k, µ1 − b, µ3 + a+ b+ c− k]−.

Since the partition ξ has only one part the modification rule for [ξ̄;λ]− is easy to describe.

If ξ = λ3 + 1, λ2 + 2 or λ3 + 3, it is zero. If ξ ≤ λ3 it is [λ1, λ2, λ3, ξ]+. If λ3 + 1 < ξ < λ2 + 2

we get −[λ1, λ2, ξ − 1, λ3 + 1]+, in the other two cases we get [λ1, ξ − 2, λ2 + 1, λ3 + 1]+

and −[ξ − 3, λ1 + 1, λ2 + 1, λ3 + 1]+. Let us say that [ξ̄;λ] or (a, b, c, k) is Type 1,2,3 or 4,

respectively, based on which of these cases applies. In particular, for µ3 ≤ c ≤ 2µ3, we get

[µ1 +m− a− k, µ1 − b, µ3 + a+ b+ c− k, c− µ3]+,

which is again

(m− k − a+ b, µ1 − µ3 + k − a− 2b− c, 2c+ a+ b− k, a+ b+ 2µ3 − k).

11



Our task is now to show that the terms with c > 2µ3 all cancel with one another. (Note

that if c ≤ 2µ3 then necessarily b ≥ k − 2µ3 − a and k ≤ µ1 + µ3.) This may be done

by constructing explicit bijections between the set of Type 1 quadruples appearing that

satisfy c > 2µ3 and a subset of the set of Type 2 quadruples, between the remaining Type 2

quadruples and a subset of the set of Type 3 quadruples, and between the remaining Type

3 quadruples and the set of Type 4 quadruples. Given a Type i pair [ξ̄;λ], it is easy to

construct pairs of each of the other types which are mapped to the same partition under

the modification rules. It is also easy to see that the map (a, b, c, k) 7→ [ξ̄;λ] is injective,

and one gets bijections on the space of quadruples. What remains to check is that these

correspondences match quadruples that appear in the sum (17) with one another.

For example, the map (a, b, c, k) 7→ (a′, b′, c′, k′) defined by

a′ = k − b− 2µ3 − 1

b′ = b

c′ = a+ b+ c− k + 2µ3 + 1

k′ = a+ b+ 2µ3 + 1.

matches Type 1 quadruples appearing in (17) such that c > 2µ3 with a subset of the set of

Type 2 quadruples appearing in (17), namely those satisfying, k ≤ µ1+µ3+1. The remaining

bijections are similar. �

We may now proceed to the proof of (12). We first apply Lemma 3.2 to

∞∑
m1,m2=0

(0, 0, 0,m1)⊗ (0, 0, 0,m2)⊗ (m3, 0, 0, 0)xm1ym2 ,

obtaining
∞∑

r,i=0

∞∑
m1,m2=r+i

(0, r, 0, |m1 −m2|+ 2i)⊗ (m3, 0, 0, 0)xm1ym2 .

Now, we consider the set of triples (m1,m2, i) such that |m1 −m2| + 2i is equal to a fixed

number s. It’s clear that (m1 +m2) must have the same parity as s. Furthermore,

(m1 +m2) = |m1 −m2|+ 2i+ 2(min(m1,m2)− i) ≥ s+ 2r,

because both m1 and m2 are at least (r + i). Put k = (m1 + m2 − s − 2r)/2. Then k is a

nonnegative integer, and every nonnegative integer occurs as a value of k. Triples (m1,m2, i)

satisfying m1 +m2 = 2k+2r+ s and |m1−m2|+2i = s are in bijection with pairs (m1,m2)

such that m1 +m2 = 2k + 2r + s and |m1 −m2| ≤ s. The bound on |m1 −m2| is equivalent

12



to m1,m2 ≥ r + k. Put j = m1 − r − k. Then j runs from 0 to s, and m2 − r − k = s− j.

We have shown:

∞∑
m1,m2=0

(0, 0, 0,m1)⊗ (0, 0, 0,m2)⊗ (m3, 0, 0, 0)xm1ym2 ,

=
∞∑

r,s,k=0

(0, r, 0, s)⊗ (m3, 0, 0, 0)(xy)r+k
s∑
j=0

xjys−j. (18)

The sum over k gives (1− xy)−1. It follows that

(1− xy)
∞∑

mi=0

(0, 0, 0,m1)⊗ (0, 0, 0,m2)⊗ (m3, 0, 0, 0)xm1ym2zm3 =

∞∑
m3,r,s,k=0

(0, r, 0, s)⊗ (m3, 0, 0, 0)(xy)rzm3

(
s∑
j=0

xjys−j

)
.

Next we apply lemma 3.3. Since we’re summing over all r, s,m3, the inequalities (13)-(16)

may be simplified somewhat, yielding the summation

∞∑
a,b,c=0

∞∑
r=a+b

∞∑
s=c

a+b+c∑
k=b+c

∞∑
m3=k+a

.

Let us introduce new variables

µ3 = m3 − a− k

ρ = r − a− b

κ = k − b− c

α = a− κ = a+ b+ c− k

σ = s− c.

Then we obtain

∞∑
m3,r,s,k=0

(0, r, 0, s)⊗ (m3, 0, 0, 0)(xy)rzm3

(
s∑
j=0

xjys−j

)

=
∑

(µ3 + b, ρ+ κ, α + c, α+ σ)(xy)ρ+α+κ+bzµ3+α+b+c+2κ

(
c+σ∑
j=0

xjyc+σ−j

)
,
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where the summation is from 0 to ∞ in all variables (except, of course, j.) Now,

∞∑
µ3,b=0

=
∞∑

n2=0

n2∑
b=0

,

∞∑
ρ,κ=0

=
∞∑

n3=0

n3∑
κ=0

.

The sums on b and κ yield (
1− (xy)n2+1

1− xy

)(
1− z2(n3+1)

1− z2

)
.

Finally, one may show that

∑
α,c,σ≥0

α+c=n4,α+σ=n1

c+σ∑
j=0

xα+jyα+c+σ−j = xn1+n4

(
1− (x−1y)n1+1

1− x−1y

)(
1− (x−1y)n1+1

1− x−1y

)
.

by checking that both sides are equal to∑
I+J=n1+n4

min(I, J, n1, n4)x
IyJ .

The identity (12) follows.

4 Poles of L functions

In this section we will characterize all generic irreducible cuspidal representations π of the

group G = GSO8 such that both, the Standard and the Spin L functions has a pole.

We start with a certain local result.

Lemma 4.1: Let F be a local field. For any choice of complex numbers s1, s2 and s3 there

is a choice of data such that integral (10) is nonzero.

Proof: This is quite standard. We refer the reader to [G-S] for details for a similar case. �

Let S denote a set of places such that outside of S all data is unramified. We denote by

LS(π, Spin, s1) the partial Spin L function and by LS(π, St, 3s3 − 1) the partial Standard L

function of π. It follows from [G2], that these two L functions can have at most a simple

pole at the points s1 = 1 and s3 = 2/3 respectively. Before stating our results concerning

certain periods, we recall some basic facts about residues of Eisenstein series.

We start with the Eisenstein series EP (g, s3). It follows from the results of [K-R], that

this Eisenstein series has a simple pole at s3 = 1 and s3 = 2/3. The residue at the first
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point is the constant function and if follows from [G-R-S3] that the residue at s3 = 2/3 is

the minimal representation of GSO8. Thus if we denote this representation by θ(g), we have

θ(g) = Ress3=2/3(g, s3).

Next we consider the Eisenstein series EQ(g, s1, s2). Taking the residue at the point s1 = 1

and using the fact that the residue of the GL2 Eisenstein series is the constant function, we

thus obtain EQ(g, s2) = Ress1=1EQ(g, s1, s2). Here EQ(g, s2) is the Eisenstein series defined

on the group GSO8(A) which corresponds to the induced representation Ind
GSO8(A)
Q(A) δs2Q .

From this discussion and from sections one and two we obtain

Proposition 4.2: Suppose that the partial L functions LS(π, Spin, s1) and LS(π, St, 3s3−1)

have simple poles at the points s1 = 1 and s3 = 2/3 respectively. Then there is a choice of

data such that the integral ∫
Z(A)G(F )\G(A)

ϕ(g)θ(g)EQ(g, s2)dg (19)

is not zero. �

We now unfold integral (19). For Re(s2) large we unfold the Eisenstein series and we

obtain ∫
Z(A)Q(F )\G(A)

ϕ(g)θ(g)fQ(g, s2)dg (20)

Consider the unipotent subgroup of G generated by all matrices of the form x(r) = I8+re′1,7.

We expand the theta representation along this group and we obtain

θ(g) =

∫
F\A

θ(x(r)g)dr +
∑
α∈F ∗

∫
F\A

θ(x(r)g)ψ(αr)dr

Plugging this expansion into (20) it follows from the smallness properties of θ(g) that the

contribution of the constant term is zero. On the remaining terms the rational points of the

group GL2×GSO4, the Levi part of Q, acts with one orbit and the stabilizer are the rational

points of the group H = (GL2 ×GSO4)
0. Here the zero indicates that the similitude factor

of both groups is the same. Thus (20) equals∫
Z(A)H(F )V (F )\G(A)

ϕ(g)

∫
F\A

θ(x(r)g)ψ(r)drfQ(g, s2)dg (21)

Here V is the unipotent radical of the parabolic subgroup Q. Arguing in a similar way as in

[G-R-S2] page 610 formula (4.3) we have the identity∫
F\A

θ(x(r)m)ψ(r)dr = θψφ (m)
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and this identity holds for all m ∈ HV . Here the function θψφ (m) is the theta representation

defined on the group S̃p8(A). The function φ is a Schwartz function of A4. Plugging this

into (21) we obtain the integral

Pϕ,φ =

∫
Z(A)H(F )\H(A)

∫
V (F )\V (A)

ϕ(vh)θψφ (vh)dvdh

as an inner integration. We have proved a part of the following

Theorem 4.3: Let π be an irreducible generic cuspidal representation of the group G(A)

which has a trivial central character. Then the following are equivalent:

1) Both partial L functions, LS(π, Spin, s1) and LS(π, St, 3s3−1) have simple poles at s1 = 1

and s3 = 2/3 respectively.

2) The period integral Pϕ,φ is nonzero for some choice of data.

3) The representation π is the functorial lift from a cuspidal generic representation of the

exceptional group G2(A).

Proof: We proved that 1) implies 2). Suppose that Pϕ,φ is nonzero for some choice of data.

Let us first prove that LS(π, St, s) has a simple pole at s = 1. To do that we consider the

global integral ∫
Z(A)H(F )\H(A)

∫
V (F )\V (A)

ϕ(v(h1, h2))θ
ψ
φ (v(h1, h2))E(h1, s)dvdh1dh2 (22)

where (h1, h2) ∈ H with h1 ∈ GL2 and h2 ∈ GSO4 and E(h1, s) is the Eisenstein series

on GL2 which corresponds to the induced representation Ind
GL2(A)
B2(A) δ

s
B2

. Since Pϕ,φ is the

residue of integral (22) it follows from the assumption that (22) is not zero for Re(s) large.

Unfolding the Eisenstein series and then the theta series we obtain∫
Z(A)GSO4(F )N(A)\H(A)

∫
Y (A)\V (A)

∫
L(F )\L(A)

ϕ(lv(h1, h2))ψ1(l)ωψ(v(h1, h2))φ(0)fs(h1)dldvdh1dh2

(23)

Here N is the maximal unipotent subgroup of GL2 and L consists of all unipotent matrices

in G of the form t(l1, . . . , l6) = I8 +
∑6

i=1 lie
′
1,i+1. The group Y is the subgroup of L which

consists of all matrices of the form t(0, l2, . . . , l6) and ψ1(l) = ψ(l6). Also ωψ is the Weil

representation defined on the group Sp6(A). Conjugating by a suitable Weyl element w, we

obtain as inner integration ∫
L(F )\L(A)

ϕ(lwv(h1, h2))ψL(l)dl (24)
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where now ψL(l) = ψ(l1). Let R be the unipotent subgroup of G which consists of all

matrices of the form k(r1, r2, r3, r4) = I8 +
∑4

i=1 rie
′
2,i+2. We expand the above integral

along the group R. The group GSO4(F ) acts on this expansion with three orbits. First

the constant term. By cuspidality we get zero contribution to integral (23). Similarly, the

orbit which corresponds to the nonzero vectors of length zero. It will also contribute zero

to integral (23). Thus we are left with the orbit which corresponds to vectors with nonzero

length. The stabilizer inside GSO4(F ) contains the group SO3 and we thus obtain as an

inner integration to (23), the integral∫
SO3(F )\SO3(A)

∫
L(F )\L(A)

∫
R(F )\R(A)

ϕ(lr(1,m))ψL(l)ψR(r)drdldm (25)

where ψR(r) = ψR(k(r1, r2, r3, r4) = ψ(r2 + r3). From the assumptions it thus follows that

integral (25) is nonzero for some choice of zero. Arguing as in [G-R-S1] theorem 3.4 we

obtain that LS(π, St, s) has a simple pole at s = 1.

What is more important to us is that if we view π as a cuspidal representation of the

group SO8(A) then its theta lift to Sp6(A) is a nonzero generic cuspidal representation.

Indeed, this follows from [G-R-S1] proposition 3.2. In other words the integral

f(m) =

∫
SO8(F )\SO8(A)

ϕ(g)θ̃ψφ ((m, g))dg (26)

is not zero for some choice of data. Here m ∈ Sp6 and θ̃ψφ is the theta function defined on

the group S̃p48(A) and φ is a Schwartz function on A24.

Let U denote the unipotent subgroup of the standard maximal parabolic subgroup of Sp6

whose Levi part is GL2 × SL2. In matrices we have

U =


u =


1 x1 x2 y1 y2

1 x3 x4 y2 ∗
1 ∗ ∗

1 ∗ ∗
1

1




where the * indicates that the matrix is in Sp6. Define a character ψU of U by ψU(u) =

ψ(x1 + x4). It is easy to see that the stabilizer of ψU inside GL2 × SL2 is SL2 embedded

diagonally. We shall now compute the integral

fSL2U,ψ(m) =

∫
SL2(F )\SL2(A)

∫
U(F )\U(A)

f(urm)ψU(u)dudr
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Plugging (26) into this we obtain

fSL2U,ψ(m) =

∫
SO8(F )\SO8(A)

∫
SL2(F )\SL2(A)

∫
U(F )\U(A)

ϕ(g)θ̃ψφ ((urm, g))ψU(u)dudrdg

Arguing as in [G-R-S2] pages 552-553 we deduce that the right hand side converges absolutely

after a suitable normalization. We unfold the theta function and use the well known formulas

for the Weil representation as can be found, for example, in [M-V-W]. We have

θ̃ψφ ((urm, g)) =
∑

δ1,δ2,δ3∈F 8

ωψ((urm, g))φ(δ1, δ2, δ3)

Consider the polarization where the group SO8 acts linearly on each of the vectors δi. Per-

forming the integral over the variables yi in U we may restrict the summations to all δi ∈ F 8

such that (δ1, δ1) = (δ1, δ2) = (δ2, δ2) = 0 The group SL2(F ) × SO8(F ) acts on this set of

vectors with various orbits. One can check that all orbits contribute zero except the orbit

which corresponds to δi = δ0
i where δ0

1 = (0, 0, 0, 0, 0, 0, 0, 1) and δ0
2 = (0, 0, 0, 0, 0, 0, 1, 0). In

this case the stabilizer inside SL2 × SO8 is the group H0V where H0 = SL2 × SO4 and V

is the subgroup of SO8 as defined right after (21). The group SL2 is embedded diagonally

inside SL2 × SO8 where inside the SO8 it is embedded inside the group H defined right

before (21). The group SO4 is embedded inside the group H in the obvious way. Thus

fSL2U,ψ(m) equals∫
H0V (F )\(SL2×SO8)(A)

∫
T (A)U(F )\U(A)

ϕ(g)
∑
ξ∈F 6

ωψ((urm, g))φ(δ0
1, δ

0
2, (0, 1, ξ)ψU(u)dudrdg

Here T is the subgroup of U which consists of the subgroup generated by all matrices where

x1 = x3 = 0. We also performed the integration with respect to x2 and x4 which gives the

conditions (δ0
1, δ3) = 0 and (δ0

2, δ3) = 1 to deduce that δ3 = (0, 1, ξ) where ξ ∈ F 6.

The last two unipotent variables in U , the variables x1 and x4 act linearly and we obtain

that fSL2U,ψ(m) equals ∫
H0(A)\(SL2×SO8)(A)

∫
A2

∫
H0(F )\H0(A)

∫
V (F )\V (A)

ϕ(vhg)×

∑
ξ∈F 4

ωψ(vh(rm, g))φ(δ0
1, δ

0
2, (0, 1, ξ, x1, x2)ψ(x2)dxidrdg

We claim that there is a choice of data such that fSL2U,ψ(m) is nonzero. Suppose not.

This means that the above integral vanishes for all choice of data. Choosing the Schwartz
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functions in an appropriate way, the vanishing assumption implies that the inner integration

over H0 and V is zero for all choice of data. Analyzing the action of the groups H0 and V

on the Schwartz function in the above integration we deduce that the inner integration over

H0 and V can be realized as acting on θψφ1
. Here θψφ1

is the theta representation on the group

S̃p8(A) and φ1 is a Schwartz function on A4. In other words the embedding of H0 in the

above integral is compatible with the embedding of H0 inside Sp8 as the tensor product, and

the action of V is compatible with the action of the Heisenberg group with nine variables.

From all this we deduce that the vanishing assumption we made, implies that the integral

P ′
ϕ,φ =

∫
H0(F )\H0(A)

∫
V (F )\V (A)

ϕ(vh)θψφ (vh)dvdh

is zero for all choice of data. However, if we factor out the similitude element inside Pϕ,φ we

obtain P ′
ϕ,φ as inner integration. Thus P ′

ϕ,φ is not zero for some choice of zero. We derived

a contradiction which implies that fSL2U,ψ(m) is not zero for some choice of data.

Let τ denote the representation of Sp6(A) generated by all functions of the form f(m)

as defined in (26). As was mentioned above τ is a generic cuspidal representation which has

a nonzero period integral with respect to the group SL2U and the character ψU . By this we

mean that the integral fSL2U,ψ(m) is not zero for some choice of data.

We now consider the lifting of τ to the exceptional group G2. We do this as in [G-R-S3]

and [G-J]. Let θE7 denote the minimal representation of the exceptional group E7 as was

constructed in [G-R-S3]. We construct the integral

F(x) =

∫
Sp6(F )\Sp6(A)

f(m)θE7((x,m))dm (27)

Here x ∈ G2. Let σ be the representation of G2(A) generated by all functions F(x). It

follows from [G-J] theorem 3.1 that σ is a cuspidal representation of G2(A). Let us remark

that even though all statements in [G-J] are made for the group GSp6, all the following

statements are obtained in a similar way for the group Sp6. From [G-J] theorem 3.3 and

from the fact that fSL2U,ψ(m) is not zero for some choice of data, it follows that σ is a generic

representation. In particular σ is not zero.

Finally, both lifting from SO8 to Sp6 and from Sp6 to G2 given by the above constructions

are functorial. Hence we proved that 2) implies 3).

To complete the proof of the theorem, we need to show that 3) implies 1). Let π be

a generic cuspidal representation of the group G(A) which is the functorial lift of a cus-

pidal generic representation σ of G2(A). It follows that LS(π, Spin, s) = LS(π, St, s) =
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LS(σ, s)ζS(s) where LS(σ, s) is the standard seven degree L function of G2. It follows from

[G-R-S2] that σ lifts to a cuspidal generic representation τ of PGL3 or Sp6. In the latter

case, it follows from [C-K-PS-S] that τ lifts to a cuspidal representation of GL7.( In that

paper the lifting was established for odd orthogonal groups. However, it is expected to be

similar for symplectic groups and we shall assume their result in our case.) From all this

we deduce that LS(σ, s) is not zero at s = 1. Hence, both L functions LS(π, Spin, s) and

LS(π, St, s) have a simple pole at s = 1. This completes the proof of the theorem. �
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