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and
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1 Introduction

The notion of a tower of Rankin-Selberg integrals was introduced in [G-R]. To recall this
notion, let G' be a reductive group defined over a global field F. Let “G denote the L
group of G. Let p denote a finite dimensional irreducible representation of “G. Given an
irreducible generic cuspidal representation of G(A), we let L°(m, p, s) denote the partial L
function associated with 7 and p. Here s is a complex variable and A denotes the adele
ring associated with F. If p acts on the vector space V', we denote by C[V] the symmetric
algebra attached to the vector space V. Let C[V]LG denote the LG invariant polynomials
inside the symmetric algebra. As far as we know all examples of L functions represented by
a Rankin-Selberg integral are associated with representations p such that C[V]LG is a free
algebra. A list of all such groups, representations and the degrees of the generators of the
invariant polynomials are given in [K].

The basic observation in [G-R] is that there is some relation between the Eisenstein
series one uses to construct the Rankin-Selberg integral and the number of generators of
the invariant polynomials and their degrees. This relation is far from being clear and it is
mainly based on observation of all known constructions of such integrals. To summarize in
an unprecise manner, the relations are:

1) If p; and p, have the same number of generators with the same degrees, then in some
cases the Rankin-Selberg integrals which represent the corresponding two L functions, use

the same Eisenstein series.



2) Suppose that the Eisenstein series one uses for a certain construction is defined on H(A),
where H is a reductive group. Suppose that this Eisenstein series corresponds to an induced
representation induced from a parabolic subgroup P = MU of H. Here M is the Levi
part of P and U its unipotent radical. As in the work of Shahidi, the group “M acts on
LU by conjugation and one obtains this way r irreducible finite dimensional representations
of EM. Suppose that the corresponding Rankin-Selberg integral represents the L function
L5(m, p,s). Let k denote the number of generators of C[V]“¢, where we recall that we assume
that C[V]"€ is free. Then the second observation (cf. [G-R], p.202) is that r > k.

It should be stressed that these two observations are based mainly on experience and we
are not aware of precise theoretical reasons. We also want to mention that information on
L functions L°(7, p, s) where p does not satisfy the above properties, can be obtained using
other methods such as lifting theory.

In this paper we wish to point out two more observations that may shed some more
light on the above relations. It will be convenient to first illustrate these observations by
considering two examples.

Consider the following example of a tower given in [G-R]:

(al) G=0GL, LG =GL,(C) p = 2w
(a2) G =GL, x GL, LG =GL,(C) x GL,(C) p=w X w
(8.3) G= GLQn LG = GLQn(C) P = W2

We recall the construction of the Rankin-Selberg integral which represents the L function

in case (a3). This integral was introduced in [J-S] and is given by

/ [ e (P ,) usseaxs o

Z(A)GLn(F)\GLn(A) Matpxn(F)\Matnxn(A)
Here ¢, is a vector in the space of 7 which is an irreducible cuspidal representation defined
on GLy,(A), and E(g,s) is an Eisenstein series defined on the group GL,(A). For more
details see [J-S]. Let us show how the integral which represents the L function given in
(a2) can be derived from integral (1). First notice that GL, x GL, is a Levi part of
a maximal parabolic subgroup P of GLs,. Now suppose we formally replace in (1) the
cuspidal representation 7 by the Eisenstein series E;,(g,v) associated with the induced
representation [ ndg(Lli’;(A)(T ® 0)0%. Here 7 and o are cuspidal representations defined on
GL,(A) and v is a complex variable. Of course the integral will not converge. However,
if we ignore this issue, and formally unfold the Eisenstein series E.,(g,v), we are led to

consider the space of double cosets

P\GL2/{(9%)| G € GL,, X € Mat,xn} .
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If we consider the open orbit contribution to the integral, it is not hard to check that we
obtain the integral

©r(9)ps(9)E(g, s)dg (2)

Z(A)GLy (F)\GLn(A)

as inner integration. As is well known, integral (2) represents the tensor product L function
of 7 X . In other words, this integral is the one which represents the L function described in
case (a2). Furthermore, if one restricts the exterior square representation wj of GLy,(C) to
GL,(C) x GL,(C), then one obtains wj|ar, xar, = (w1 X @1) & (wa x 1) & (1 X ws). From
this we deduce the following. If we start with the representation p as defined in case (a3) and
restrict it to the L group of the Levi part then the representation p corresponding to case
(a2) occurs in the restriction. Moreover its the representation with the largest dimension
which occurs in the restriction.

The formal replacement of a cuspidal representation by an Eisenstein series and then
analyzing the contribution from the open orbit is one of the observations we wish to make.
It should be mentioned that this observation does not explain how to derive a global con-
struction that will represent the L function described in case (al).

We now consider the second example of a tower as described in [G-R]. This tower consists

of four members as follows:

(b2) G = GL3 LG == GLg(C) P = Wi + o
(b3) G = GSpin, LG = GSps(C) p = ws
(b4) G = F4 LG = F4(C) P = W4

The construction of Rankin-Selberg integrals for cases (bl), (b3) and (b4) was given in
|[G-R]. The case (b2) was studied in [G1]. The integral which represents the L function
given in (b4) can be described as follows. Let 7 denote a generic cuspidal representation
defined on the group Fy(A). Let E(g, s) denote the degenerate Eisenstein series defined on
the exceptional group G2(A) as described in section 1 in [G-R]. The global integral is

/ / g, s)tbu (u)dudg (3)

G2(F)\G2(A) U

Here U is a certain unipotent subgroup of Fj and ¢y is an additive character defined on
the group U. Observe that GSpin; is a Levi part of a maximal parabolic subgroup P of F}.
Let 7 denote a generic cuspidal representation defined on the group GSpin;. Let E.(g,v)

denote the Eisenstein series defined on the group Fj(A) which is associated to the induced



representation [ ndi“(f))rég. If we formally replace in (3) the cuspidal representation 7 by

E.(g,v), and then unfold this Eisenstein series, then we obtain from the open orbit

©-(9)E(g,5)dg (4)
Ga(F)\G2(A)

as inner integration. As described in [G-R] section 4 this is precisely the global integral which
represents the L function which is described in (b3). Further more, let ) denote the maximal
parabolic subgroup of Spin; whose Levi part is GL3. Let o denote a cuspidal representation
defined on the group GL3(A). Replace in (4) the cuspidal representation 7 by the Eisenstein
series F,(g,v) which is associated with the induced representation [ ndé’(’fg (A)aé(i). Unfolding

the integral we obtain from the open orbit

/ vs(9)E(g,s)dg (5)

SL3(F)\SL3(A)

as inner integration. As described in [G1] this is precisely the global integral which represents
the L function described in (b2).

As in the previous case we can restrict in each case the representations p to the L group
of the Levi part. All representations are labeled by n-tuples of integers corresponding to the
coefficients of the fundamental weights, in the highest weight of that representation. This
does not specify the action of the central torus, but is sufficient for our present purposes.
The fundamental weights are numbered in the manner that is customary in the literature.
Thus (0,0,0,1) is the representation of F;(C) of dimension 26. This is the representation p
obtained in case (b4). Restrict it to GSps(C) which is the L group of GSpin;. We obtain
(0,0,0,1)|gsps = (0,1,0) +2(1,0,0). Here (0,1,0) is the second fundamental representation
of GSpe(C) which has degree 14, and (1,0, 0) is the six dimensional standard representation.
If we further restrict GSpg(C) to GL3(C) we obtain (0,1,0)|gz, = (1,1) + (1,0) + (0, 1).
Again, as in the first tower we can see that if we restrict p as defined in case (b4) we obtain
the representation p as defined in case (b3) as the largest piece in the restriction. Similarly,
if we restrict from case (b3) to (b2).

We mention again that this observation does not allow one to obtain the integrals for
cases (al) and (b1). The construction in these cases is more complicated and involves
covering groups.

To summarize, the above examples suggest the following two points:

3) Suppose that we are given a Rankin-Selberg integral which we know how to unfold to an

Eulerian integral with the Whittaker function defined on the cuspidal representations. Then
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replacing a cuspidal representation by an Eisenstein series and considering the contribution
from the open orbit, sometimes yields a new Eulerian Rankin-Selberg integral. In fact, one
can replace the cuspidal representation by various Eisenstein series. Experience indicates
that most of the time one gets either zero, or an integral which does not unfold to a Whit-
taker integral. The second point is
4) Suppose that the Eulerian integral we start with represents an L function which is associ-
ated to the finite dimensional irreducible representation p of the complex group *G. Suppose
that we replace a cuspidal representation, defined over the group G(A), by an Eisenstein
series induced from a cuspidal representation defined on the Levi part M(A). Suppose that
when we formally unfold the new integral, the contribution from the open orbit produces a
new integral which is Eulerian with Whittaker functions. Then the new integral will rep-
resent the L function associated with the largest irreducible representation which occurs in
the restriction plr ;.

In these notes we announce a construction of a new tower of Rankin-Selberg integrals.

The tower we consider is the following

(cl) G = GLs x GL, LG = GL3(C) x GLy(C) p = 2w X w
(c2) G=GL3xGLyx GLy G = GL3(C) x GL3(C) x GLy(C) p =10, X w1 X @
(Cg) G = GL6 X GL2 LG = GLG(C) X GLQ(C) p = Wy X W
(C4) G = EG X GL2 LG = E6<C> X GLQ(C) p = w1 X Wy

It follows from [K] that in all these representations the “G invariant algebra has one
generator of degree 12. At this point we know a Rankin-Selberg construction for all three
cases (c2) — (c4). In the next section we shall explain these constructions and show in an
example how to derive one integral from the other. One can also check that restricting from
one case to the other does indeed produce the right representation p in each case.

It should be mentioned that all of these L-functions can be studied using the Langlands-
Shahidi method as explained in [S].

2 The Global Integrals

We start with the global construction which will correspond to case (c4), as explained in the
introduction. Let G denote the similitude exceptional group of type Eg, constructed exactly
as in [G2]. To introduce the global integral we shall need to consider two small representations
which we shall now define. First, let § denote the minimal representation defined on G(A).

This representation was constructed and studied in [G-R-S]. The construction there is defined
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on the group Ejg, however there are no problems to extend this definition to similitude groups.
See [G-J] for a similar definition for the similitude exceptional group G F;. In this paper we
shall denote a function in the space of this representation by (g). Another representation we
will need for our construction was defined and studied in [G-H] section 3. The representation
constructed there was defined on the group GSO;p(A). A similar definition holds for the
group GSpinio(A). This representation depends on a cuspidal representation 7 defined on
GLo(A), with trivial central character. We shall denote a vector in this space by 6, (h) where
h € GSpinip(A). We briefly recall the definition. Let R denote the parabolic subgroup of
GSpinyy whose Levi part is GLs x GSpiny. Let p(7) denote the symmetric square lift of
T to GL3 as constructed in [Ge-J|, and let €(7) denote the outer tensor product 7 ® 7.
A priori this is a representation of PG Ly x PGLy, but GSpinyg covers this group. Let
E(7,h,s) denote the Eisenstein series defined on GSpinio(A) associated with the induced
representation [ ndgiﬁnwm) (u(T)®€())0%. It is not hard to check that this Eisenstein series
has a unique pole in the domain Re(s) > 3, which is simple and located at s = 2/3. We
denote the residue representation by 6.

Using this last representation, we shall now construct the Eisenstein series we use in our
global construction. Let P denote the maximal standard parabolic subgroup of G' whose
Levi part contains all the simple roots except ;. This Levi part is essentially GSpinig. Let
E.(g,s) denote the Eisenstein series defined on G(A) which is associated to the induced
representation ndggig&éj;.

Let 7 denote a generic cuspidal representation defined on G(A). We shall assume that

7 has a trivial central character. Consider the global integral

/ ©r(9)0(9)E-(g,5)dg (6)

Z(A)G(F)\G(A)

Here Z denotes the center of G and ¢, is a cusp form in the space of w. This integral
represents the L function corresponding to case (c4).

Let us show how to obtain the Rankin-Selberg integral which will represent case (c3) as
denoted in the introduction. Let () denote the maximal parabolic subgroup of G whose Levi
part is M = GL; x GLg. Let o denote a cuspidal representation of GLg(A) with trivial
central character. Let E,(g,v) denote the Eisenstein series defined on G(A) associated with
the induced representation ndggigac%. In (6) we replace the function ¢.(g) by E,(g,v).

Even though the integral does not converge, we formally unfold the Eisenstein series F, (g, v)



to obtain

fo(9,v)0(9) E- (g, 5)dg (7)

Z(A)M(F)U(F)\G(A)

Here U is the unipotent radical of @) and f,(g,v) defines a section in the corresponding
induced representation. Recall that U has a structure of a Heisenberg group with 21 variables.
Let 2192391 () denote the one dimensional unipotent subgroup which is the center of U. Here,
and henceforth we shall use the notations for various roots of the group G as defined in [G2].
We expand 6(g) along the center of U. That is, we expand it along the unipotent group
generated by 129321 (r) with points in F'\A. The group M(F') acts on this expansion with

two orbits. Ignoring the trivial orbit, we obtain the contribution

/9(%22321(T1)9)¢(T1)dT1fa(g>V)ET(Q,S)CZQ (8)
Z(AVH(F)U(F)\G(A) F\A

Here H is the stabilizer inside M of the character 1. One can check that H = {g € GLg :
detg is a square}. Factoring the integration over H and over the center of U we obtain after

a change of variables, the integral

/ 0o (h)0(ux129321 (1)) E- (0192301 (r2) b, $)0 (11 — 19)dridradh
Z(A)H(P)\H(A) U(FN\U(A) (F\A)?
(9)
as inner integration. Here ¢, is a cusp form in the space of the cuspidal representation o.
Notice that this integral converges absolutely. This is the Rankin-Selberg integral which
represents case (c3).

We can further continue and replace o by an Eisenstein series. Indeed let 7, and 75 denote
two cuspidal representations of GL3(A). Let L denote the parabolic subgroup of G'Lg whose
Levi part is GL3 x GL3. Let E .,(z,v) denote the Eisenstein series associated with the
induced representation Ind L(LX A) (m1 ® m2)0%. Replacing in (9) the cuspidal representation o
by this Eisenstein series ( again, this is a formal process, since the integral does not converge)

and performing certain Fourier expansions, one obtains the integral

/ / / <P7r1,7r2 95010000(7"1)?11'112321(7”2)95122321(7"3)h) X (10)

Z(A)H(F)\H(A) V(F)\V(A) (F\A)3
E-(z010000(71)vh, $)1(ry 4 ro)dr;dvdh

as inner integration. Here ¢, r, is a vector in the space of m ® my. We also have H =

{(g1,92) € GL3 x GL3 : detg, = detgs} and the group V' is the standard unipotent radical
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of the maximal parabolic subgroup of G whose Levi part is GL3 X GL3 X GLs. This is the
integral which represents the case (c2).

At this point we unfolded all these three integrals and established that they are indeed
Eulerian. This we achieved by showing that once the integrals are unfolded the resulting
integrals involve functions in the Whittaker models of the cuspidal representations and are
hence Eulerian by the usual uniqueness of the model. As always, with these type of integrals,
the unfolding process is long and tedious but quite straightforward. The next step is to
compute the unramified local integrals. We describe this process briefly. First, the unramified
local integral is expressed as a power series in ¢—°, with the coefficients being characters of
finite dimensional representations of the L-group, evaluated at the Satake parameter of the
cuspidal representation that appeared in the original integral. A local L-function is a similar
object: if ¢, is our Satake parameter and p is our representation of the L-group, then the
coefficient of ¢=™* is Tr(Sym"p(t,)). We are thus reduced to proving an identity in the ring
R[LG][[X]] of formal power series over the representation ring of the L-group, which amounts
to a description of the decomposition of the symmetric algebra of the original representation.
It is not yet clear to us how complicated will be the decomposition of the symmetric algebras
in the various cases. It will also be interesting to study the possible poles of these L functions.
This will be accomplished by understanding the poles of the Eisenstein series we use in all
these cases.

We are also interested in finding the Rankin-Selberg integral which represents case (c1).
Past experience indicates that some of the representations involved should be defined on a
covering group. So far we don’t know how to do it.

We summarize
Theorem: Integrals (6), (9) and (10) are Eulerian. Each of these integrals unfolds to an
FEulerian integral involving the Whittaker model of each cuspidal representations appearing
in the original integral. Integral (6) represents the partial L function L°(m x 7, St x St, s)
where St x St corresponds to the standard representation of “G x GL(C). Integral (9)
represents L°(o x 7, A% x St,s) where A\? is the exterior square representation of G'Lg(C),

and integral (10) represents L°(m; X my X T, St x St x St, s).
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