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Abstract

The Möbius ladder, Mn, is a simple cubic graph on 2n vertices. We present a
technique which enables us to count exactly many different structures of Mn, and
somewhat unifies counting in Mn. We also provide new combinatorial interpreta-
tions of some sequences, and ask some questions concerning extremal properties
of cubic graphs.

Introduction

The Möbius ladder , Mn, is a simple cubic graph on 2n vertices. It is shown in Fig 1a,
and the representation of it used in this paper appears in Fig. 1b.

This class of graphs is interesting both for mathematicians, see Biggs [1], where Mn

is often used as an example; and chemists, see Hosoya and Harary [7], and the references
therein.

A spanning edge-subgraph of a simple graph is a subset of the edges of the graph,
together with all of its vertices. All structures considered here, except those in §19 and §20,
are spanning, labelled edge-subgraphs; henceforth referred to simply as edge-subgraphs.

We present a counting technique which enables us to count exactly many different
structures of Mn.

Fig. 1a and 1b here.

Preliminaries

Consider Fig. 1b. The edges ii′ for i = 1, . . . , n are diagonals, all other edges are
outside edges. The graph Mn contains n diagonals and 2n outside edges. Unless otherwise
stated, we will always assume that n ≥ 2 and 1 ≤ k ≤ n.

Now consider the 2n vertices labelled 1, 2, 3, . . . , n, 1′, 2′, 3′, . . . , n′ arranged clockwise
around a circle, see Fig. 2a. A (n, k)-graph, G, is a subgraph of Mn with vertex set these
2n vertices, and edge set any k diagonals and any number of outside edges.

Fig. 2a and 2b here.

Call vertices which lie on a diagonal diagonal vertices. Moving clockwise, call the
edge-subgraph of G between two consecutive diagonal vertices, u and v, a join. Denote
it by [u, v), see Fig. 2b; clearly G has 2k joins. The join [u, v) does not contain vertex
v, hence every vertex and every outside edge of G lie in exactly one join. Call the join
[u, v) complete if all possible outside edges are present in it, incomplete otherwise. Thus,
a complete join is a path with its last vertex removed.
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Call the join [u, v) empty if it contains no edges, and G empty if all of its joins are
empty. We will often use K to denote an empty (n, k)-graph. The joins [u, v) and [u′, v′)
(see Fig. 2b) are opposite and comprise a join-pair . Such a join-pair is incomplete if at
least one of [u, v) or [u′, v′) is incomplete. The graph G is join-pair incomplete if each of
its k join-pairs is incomplete.

Let the non-diagonal vertices between u and v be labelled u2, . . . , ur. We define the
size of the join [u, v) = [u, u2, . . . , ur, v) to be r, which is the maximum possible number
of edges in the join. A join of size 1 is an edge or a non-edge; a join is even/odd if its size
is even/odd. It is straightforward to prove the following theorem:

Theorem A. Let G be a (n, k)-graph:
(i) G is acyclic if and only if G is join-pair incomplete and has ≤ k − 1 complete joins;
(ii) if G is connected then G has ≥ k − 1 complete joins;
(iii) if G is acyclic and connected then G is join-pair incomplete and has exactly k − 1

complete joins.

The following is a key definition and theorem.
A k-composition of n, x1 + · · · + xk, is an expression of n as an ordered sum of k

positive integers, each xj ≥ 1. Throughout this paper we let x = x1 · · ·xk = x1 + · · · + xk

be an arbitrary k-composition of n, there are
(
n−1
k−1

)
such compositions.

Let θ(n, k) be the number of empty (n, k)-graphs.
Consider the vertices [n] = {1, 2, . . . , n} of a (n, k)-graph. Now the diagonal vertices

without the ′ form a k-set of [n]. Conversely, a k-set of [n] determines k diagonals by
choosing each vertex in the k-set to be a diagonal vertex. Thus θ(n, k) =

(
n
k

)
. However,

we need the following theorem, central to the main idea of this paper.

Theorem B. Let θ(n, k) denote the number of empty (n, k)-graphs, then

θ(n, k) =
n

k

∑

x

1 =
n

k

∑

x

k∏

j=1

12.

Proof. Let K be an empty (n, k)-graph which contains the diagonal 11′, see Fig. 3.
Let us start at vertex 1 and move clockwise, as we move we record the size of the joins
which we pass through. Let the j-th join be Xj , and let |Xj | = xj for 1 ≤ j ≤ k.
After k joins we obtain x1 · · ·xk, a k-composition of n. Conversely, any k-composition of
n, y1 · · · yk, uniquely determines a (n, k)-graph which contains 11′, by starting at 1 and
(moving clockwise) letting the size of the j-th join be yj for 1 ≤ j ≤ k. Hence, the number
of (n, k)-graphs containing 11′ is

∑
x 1.

Similarly, for any fixed i, 2 ≤ i ≤ n, the number of (n, k)-graphs containing ii′ is∑
x 1.

Hence
∑n

i=1

∣∣∣∣
{

(n,k)−graphs
containing ii′

}∣∣∣∣= n
∑

x 1. But each (n, k)-graph is counted k times

in the left-hand side of this equation. Hence kθ(n, k) = n
∑

x 1, i.e., θ(n, k) = n
k

∑
x 1.

Now, an empty join can be made into an empty join in 1 way, and an empty join-pair
into an empty join-pair in 12 way(s). So the product

∏k
j=1 12 gives the number of ways

the k join-pairs of K can be extended to an empty (n, k)-graph. Hence the result.
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Fig. 3 here.

Let [xn]H(x) be the coefficient of xn in H(x). We have the following result, where ′

denotes differentiation.

Theorem C.

(i)
∑

x

k∏

j=1

σ(xj ) = [xn]{σ(1)x + σ(2)x2 + · · ·}k.

(ii) Let H(x) = xJ(x), where J(0) and J ′(0) are defined.

Then [xn]
n∑

k=1

n

k
H(x)k = [xn]

xH ′(x)
1 −H(x)

.

Now let the elements of [n] be arranged in a circle. A non-consecutive, cyclic – ncc –
set of [n] is a subset of elements of [n] which are non-consecutive when chosen from this
circular arrangement. Let ψ(n, t) denote the number of ncc t-sets of [n], where 0 ≤ t ≤ bn

2 c.

So ψ(n, t) =
n

n− t

(
n− t

t

)
and L(n) =

b n
2 c∑

t=0
ψ(n, t) =

(
(1 +

√
5)/2

)n
+

(
(1 −

√
5)/2

)n
,

where L(n) is the n-th Lucas number; see pp. 24 and 46 of Comtet [3], and pp. 73 and
246 of Stanley [10].

In the following sections, when counting Generic Structures – gs – of Mn, we let
gs(n, k) denote the number of generic structures of Mn with k diagonals, and gs(n) the
total number of generic structures of Mn.

The idea of this paper is to count generic structures in Mn by extending an empty
(n, k)-graph, K, to a generic structure by adding edges to its empty joins, whilst keeping
k fixed. For example in §2, if K is extended to a forest of Mn, then a join of the extended
K can be any arbitrary edge-subgraph of the complete join; for a tree (§8), a join must be
either complete or complete less one edge. So, we first find gs(n, k) by summing over x,
and then sum over k to determine g(n).

Even though some of these structures have been counted before, and thus some counts
appear in the literature, it seems that this technique is new, and somewhat unifies the
approach to counting structures in Mn; it also works for the cubic prism. For a unified
approach to counting structures in Kn, the complete graph on n vertices, see Harary and
Palmer [6].

We are now ready to start counting.

1. Edge-Subgraphs – e

Clearly Mn has 3n edges, so e(n) = 23n = 8n.
We now illustrate our technique by redetermining e(n).
First consider k = 0. Let C2n denote the cycle with 2n vertices and 2n edges; any

edge-subgraph of C2n is an edge-subgraph of Mn with no diagonals, hence e(n, 0) = 4n.
For k ≥ 1, let K be the empty (n, k)-graph that contains diagonal 11′ and determines

the composition x = x1 · · ·xk, see Fig. 3, and let [k] = {1, 2, . . . , k}. Now, if K is to be
extended to an edge-subgraph, then a join of size r of the extended K can be any of the 2r

edge-subgraphs of the complete join. From Theorem B, the number of empty (n, k)-graphs
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is n
k

∑
x

k∏
j=1

12, so, using the multiplication principle, we have

e(n, k) =
n

k

∑

x

k∏

j=1

(
2xj

)2
. (1)

So e(n) = e(n, 0) +
n∑

k=1

e(n, k) = 4n +
n∑

k=1

(
n

k

∑

x

k∏

j=1

4xj

)
= 8n.

2. Forests – f

A forest is an acyclic edge-subgraph. If a (n, k)-graph, F , is a forest of Mn then
an incomplete join of F is an arbitrary edge-subgraph of the complete join, (except the
complete join).

Using Theorem A(i), we have:
Lemma 2.1. Let F be a (n, k)-graph. Then F is a forest of Mn if and only if
(i) F is join-pair incomplete;
(ii) F has ≤ k − 1 complete joins; and
(iii) each incomplete join of F is an arbitrary incomplete join.

If an incomplete join has size r then it can be any of 2r − 1 edge-subgraphs.
Any edge-subgraph of C2n, except C2n itself, is a forest ofMn; hence, f(n, 0) = 4n − 1.
Now for k ≥ 1. Let t be an arbitrary variable; for x = x1 · · · xk, with n and k fixed,

define

π(x, t) = π(x1 · · · xk, t) =
k∏

j=1

(txj − 1),

and
α(n, k, t) =

∑

x

π(x, t).

Then, using Theorem C(i)

α(n, k, t) = [xn]{(t− 1)x + (t2 − 1)x2 + . . .}k

= [xn]
{

(t− 1)x
(1 − x)(1 − tx)

}k

= [xn]A[t](x)k , say. (2)

Again, let K be as in Fig. 3. Consider the (n, k)-graph F s that has s complete joins
on the right-hand side of 11′ for some s, where 0 ≤ s ≤ k − 1, and no complete joins on
the left-hand side.

By the above lemma F s is a forest and the number of such forests is

π(x, 2) ·
∑

S⊂[k]

{
π(x, 2)∏

j∈S

(2xj − 1)

}
,
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where S is a s-set of [k], and
∏
j∈∅

(2xj − 1) = 1.

The first factor in the expression above gives the number of possible edge-subgraphs
on the left-hand side of 11′ in F s, and the second factor the number on the right-hand
side.

Now F s is join-pair incomplete and so the s complete joins on the right-hand side of
11′ can be arranged in 2s ways: for each complete join [u, v), switch it with its incomplete
opposite join [u′, v′), (if a(a + 1) is an edge in [u, v) then, after switching, a′(a + 1)′ is
an edge in [u′, v′), and vice versa). Conversely, if a forest contains s complete joins then
0 ≤ s ≤ k− 1 and it is join-pair incomplete, so we may form such a graph F s by switching
all complete joins from the left-hand side of 11′ to the right-hand side.

Hence, incorporating the factor of 2s into the above expression and simplifying, the
total number of forests which can be formed from K is

π(x, 2)2
∑

S⊂[k]

∏

j∈S

(
2

2xj − 1

)
(3)

= π(x, 2)2
{ k∏

j=1

(
1 +

2
2xj − 1

)
−

k∏

j=1

(
2

2xj − 1

)}

= π(x, 2)
{ k∏

j=1

(2xj + 1) − 2k

}
(4)

= π(x, 4) − 2kπ(x, 2).

Now, using Theorem B, the number of empty (n, k)-graphs is n
k

∑
x

1.

Hence

f(n, k) =
n

k

∑

x

{π(x, 4) − 2kπ(x, 2)} =
n

k
{α(n, k, 4) − 2kα(n, k, 2)}. (5)

Using (2) and (5), we have:
Lemma 2.2.

f(n, k) =
{

4n − 1, k = 0;
[xn]n

k
{A[4](x)k − (2A[2](x))k}, k ≥ 1.

Then

f(n) = 4n − 1 + [xn]
{ n∑

k=1

n

k
{A[4](x)k − (2A[2](x))k}

}
,

now use Theorem C(ii) twice,

= 4n − 1 + [xn]
{

xA′
[4](x)

1 −A[4](x)
−

2xA′
[2](x)

1 − 2A[2](x)

}

= 4n − 1 + [xn]
x(1 + 4x − 40x2 + 16x3 + 16x4)

(1 − 2x)(1 − 4x)(1 − 5x+ 2x2)(1 − 8x+ 4x2)
.
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Thus, the above rational function is the ordinary generating function for the total
number of forests of Mn with k ≥ 1.

Finally, partial fractions give:

Theorem 2.3.

f(n) = (4 +
√

12)n + (4 −
√

12)n + 2n −
(
(5 +

√
17)/2

)n −
(
(5 −

√
17)/2

)n − 1.

The numbers {f(n) : n ≥ 2} yield the sequence {38, 328, 2686, 21224, . . .} which does
not appear in Sloane and Plouffe [9]. The numbers {f(n, n)} = {3n − 2n} appear as
sequence M3887, so we have a new combinatorial interpretation of this sequence.

Note that from p. 103 of Biggs [1], and Biggs, Damerell, and Sands [2], the Möbius
ladders form a recursive family of graphs, i.e., their Tutte polynomials satisfy a homoge-
neous linear recurrence relation, and so can be computed. Hence, see p. 104 of [1], we may
count the number of forests to give the same as above.

So, for large n, f(n) is approximately (7.4641)n. For an arbitrary cubic graph on 2n
vertices the number of forests is less than 8n. A natural question is then: Does there exist
a family of cubic graphs, Gn, on 2n vertices, such that, for some n0 and all n > n0, the
number of forests of Gn is greater than (7.4641)n?

3. Strong Edge-Subgraphs – se

A strong edge-subgraph, E, of Mn is an edge-subgraph with no isolated vertices. If an
edge-subgraph of C2n is strong then its non-edges must be non-consecutive, cyclic. Thus,
se(n, 0) = L(2n).

Similarly, the join [u, u2, . . . , ur, v) of E is strong if it contains no isolated vertices.
For this join to be strong we only require that the vertices u2, . . . , ur, are not isolated
because u is incident to a diagonal.

Let β(r) be the number of strong joins for a join of size r. For k ≥ 1, the number of
strong edge-subgraphs which come from K of Fig. 3 is

∏k
j=1 β(xj)

2.
Thus, (cf., (1)),

se(n, k) =
n

k

∑

x

k∏

j=1

β(xj)
2
.

Now β(1) = 2, β(2) = 3, and β(r) = β(r − 1) + β(r − 2) for r ≥ 3, see p. 45 of [3].
The recurrence for β(r)2 is β(r)2 = 2β(r − 1)2 + 2β(r − 2)2 − β(r − 3)2.

Let B(x) =
∑

r≥1

β(r)2xr =
x(4 + x − x2)

(1 + x)(1 − 3x+ x2)
.

Lemma 3.1.

se(n, k) =
{
L(2n), k = 0;
[xn]n

k
B(x)k , k ≥ 1.

By similar reasoning to that used in §2, we have
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se(n) = L(2n) + [xn]
x(4 + 2x+ 3x2 − 4x3 + x4)

(1 + x)(1 − 3x + x2)(1 − 6x− 3x2 + 2x3)
.

Theorem 3.2.

se(n) ≈ (6.4188)n + (−0.8056)n + (0.3867)n − (−1)n.

The first few terms in the sequence {se(n) : n ≥ 2} are {41, 265, 1697, 10897, . . .}.
Let Hn be an arbitrary cubic bipartite graph on 2n vertices, then, necessarily, the

number of vertices in each part is n. Let one part contain the vertices v1, . . . , vn. Now
each vi is incident to 3 edges. A strong edge-subgraph of Hn must contain at least one of
these edges i.e., it must contain one of the 23 − 1 = 7 non-empty subsets of edges incident
to vi. Hence, the number of strong edge-subgraphs of Hn is at most 7n.

Now, for n odd, the graph Mn is bipartite, and, for large n, contains approximately
(6.4188)n strong edge-subgraphs. Hence, we may ask the following question: For odd
n, does there exist a family of cubic bipartite graphs, Gn, on 2n vertices, such that, for
some n0 and all odd n > n0, the number of strong edge-subgraphs of Gn is greater than
(6.4188)n?

4. Strong Forests – sf

A strong forest , F , of Mn is a forest with no isolated vertices. By comparison with
Lemma 2.1, we have:

Lemma 4.1. Let F be a (n, k)-graph. Then F is a strong forest of Mn if and only if
(i) F is join-pair incomplete;
(ii) F has ≤ k − 1 complete joins; and
(iii) each incomplete join of F is a strong incomplete join.

For k = 0, the number of strong forests of Mn equals the number of strong edge-
subgraphs of C2n less 1, (C2n itself). Thus, sf(n, 0) = L(2n) − 1.

Let γ(r) be the number of strong incomplete joins for a join of size r.
By similar reasoning to that used in §2, the number of strong forests which come from

K of Fig. 3 is given by
k∏

j=1

γ(xj) ·
{ k∏

j=1

(γ(xj) + 2) − 2k

}
.

Thus, (cf., (5)),

sf(n, k) =
n

k

{∑

x

k∏

j=1

(γ(xj )2 + 2γ(xj )) −
∑

x

k∏

j=1

(2γ(xj))
}
. (6)

Now γ(1) = 1, γ(2) = 2, and γ(r) = γ(r − 1) + γ(r − 2) + 1 for r ≥ 3.
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Let C1(x) =
∑

r≥1

(γ(r)2 + 2γ(r))xr =
x(3 − x)

(1 − x2)(1 − 3x + x2)
and

C2(x) =
∑

r≥1

2γ(r)xr =
2x

(1 − x)(1 − x − x2)
.

Again, using Theorem C(i) and (6), we have:
Lemma 4.2.

sf(n, k) =
{
L(2n) − 1, k = 0;
[xn]n

k {C1(x)k − C2(x)k}, k ≥ 1.

sf(n) =L(2n) − 1

+ [xn]
x(1 − 48x3 + 48x4 − 4x5 − 3x6 + 8x7 − 8x8 + 2x9)

(1 + x)(1 − 3x + x2)(1 − x− x2)(1 − 4x + x3)(1 − 6x+ x2 + 3x3 − x4)
.

Theorem 4.3.

sf(n) ≈(5.7400)n + (−0.7340)n + (0.5953)n + (0.3986)n +
(
(1 +

√
5)/2

)n

+
(
(1 −

√
5)/2

)n − (−0.4728)n − (3.9354)n − (0.5374)n − (−1)n − 1.

The first few terms in the sequence {sf(n) : n ≥ 2} are {19, 132, 851, 5298, . . .}.

5. Single-Component Edge-Subgraphs – sce

A single-component edge-subgraph, E, of Mn is an edge-subgraph with exactly one
non-trivial connected component, i.e., exactly one connected component with one or more
edges, all other components being isolated vertices. Clearly sce(n, 0) = 2n(2n− 1) + 1.

If [u, v) has size r then the number of possible incomplete joins is r(r+1)
2 .

Let E be a single-component edge-subgraph which comes from K of Fig. 3, and let E
denote the graph obtained from E by switching all complete joins from the left-hand side
of 11′ to the right-hand side. From Theorem A(ii) we see that E has ≥ k − 1 complete
joins to the right-hand side of 11′.

Let E have (k − 1) + s complete joins in total, where 0 ≤ s ≤ k + 1. Then two cases
can occur:
(a) E has exactly k−1 complete joins to the right-hand side of 11′. Let the i-th join on the
right-hand side of 11′ in E be incomplete, for some i, where 1 ≤ i ≤ k, then its opposite
join is also incomplete, (or otherwise case (b) occurs). So E has s complete joins to the
left-hand side of 11′, and E has exactly s complete join-pairs; here 0 ≤ s ≤ k − 1.

Let Z be a (k − 1 − s)-subset of [k]\{i} and let
∏

j∈∅
xj(xj+1)

2 = 1.
Then, the number of such E is given by
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k∑

i=1

{k−1∑

s=0

( ∑

Z⊆[k]\{i}

∏

j∈Z

xj(xj + 1)
2

· 2|Z|
)(

xi(xi + 1)
2

)2}

=
1
4

k∑

i=1

{ k∏

j=1
j 6=i

(x2
j + xj + 1)(x2

i + xi)2
}
.

(b) E has exactly k complete joins to the right-hand side of 11′, soE has s−1 complete joins
to the left-hand side of 11′, and E has exactly s−1 complete join-pairs; here 1 ≤ s ≤ k+1.

Let Z be a (k − (s − 1))-subset of [k]. Hence, the number of such E is given by

k+1∑

s=1

( ∑

Z⊆[k]

∏

j∈Z

xj (xj + 1)
2

· 2|Z|
)

=
k∏

j=1

(x2
j + xj + 1).

Lemma 5.1.

sce(n, k) =
n

4k

∑

x

( k∑

i=1

{ k∏

j=1
j 6=i

(x2
j + xj + 1)(x2

i + xi)2
})

+
n

k

∑

x

k∏

j=1

(x2
j + xj + 1). (7)

Let

D1(x) =
∑

r≥1

(r2 + r + 1)xr =
x(3 − 2x + x2)

(1 − x)3
;D2(x) =

∑

r≥1

(r2 + r)2xr =
4x(1 + 4x + x2)

(1 − x)5
.

Lemma 5.2.

sce(n, k) =





2n(2n− 1) + 1, k = 0;

[xn]
{

n
4D1(x)k−1D2(x) + n

kD1(x)k

}
, k ≥ 1.

This gives us

sce(n) = 2n(2n− 1) + 1 + [xn]
x(4 − 13x+ x2 − 44x3 + 54x4 − 25x5 + x6 − 2x7)

(1 − x)3(1 − 6x + 5x2 − 2x3)2
.

Partial fractions and De Moivre’s theorem give:
Theorem 5.3.

sce(n) ≈(0.6612n+ 1)(5.0958)n + (2.1430)(0.6264)nn sin(0.7646n) + n2

− (0.6612n− 2)(0.6264)n cos(0.7646n) − 2n− 2.
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The first few terms in the sequence {sce(n) : n ≥ 2} are {60, 397, 2464, 14809, . . .}.

6. Single-Component Forests – scf

A single-component forest , F , of Mn is a forest which contains exactly one non-trivial
connected component, all other components being isolated vertices.

An incomplete join [u, v) of F must have at most two non-trivial components, each
component must contain an edge incident to either u or v.

Thus, using Theorem A(iii), we have:
Lemma 6.1. Let F be a (n, k)-graph. Then F is a single-component forest of Mn if and
only if
(i) F is join-pair incomplete;
(ii) F has exactly k − 1 complete joins; and
(iii) each incomplete join [u, v) of F has at most two non-trivial components, each compo-

nent containing an edge incident to either u or v.

For k = 0, we have scf(n, 0) = 2n(2n− 1).
Again, if [u, v) has size r, then the number of possible incomplete joins is r(r+1)

2 .
For k ≥ 1 let K be the (n, k)-graph of Fig. 3. Following §2 with s = k−1, the number

of single-component forests which can be formed from K is given by

(
2k−1

k∏

j=1

xj(xj + 1)
2

)
·

k∑

i=1

xi(xi + 1)
2

=
1
4

k∑

i=1

{ k∏

j=1
j 6=i

(x2
j + xj )(x2

i + xi)2
}
. (8)

So

scf(n, k) =
n

4k

∑

x

( k∑

i=1

{ k∏

j=1
j 6=i

(x2
j + xj)(x2

i + xi)2
})

.

Let E(x) =
∑

r≥1

(r2 + r)xr =
2x

(1 − x)3
and D2(x) be as in §5.

Lemma 6.2.

scf(n, k) =
{

2n(2n− 1), k = 0;
[xn]n

4E(x)k−1D2(x), k ≥ 1.

Thus

scf(n) = 2n(2n − 1) + [xn]
x(1 + 9x − 30x2 − 20x3 + 27x4 − 9x5 − 2x6)

(1 − x)3(1 − 5x + 3x2 − x3)2
.

Theorem 6.3.

scf(n) ≈ 0.8757n(4.3652)n − 1.5432n(0.4786)n cos(0.8458n+ 0.9674) + n2 − 2n.
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The first few terms in the sequence {scf(n) : n ≥ 2} are {34, 222, 1280, 6955, . . .}.
The sequence {scf(n, n)} = {n2n−1} appears as M3444 in [9].

7. Strong Single-Component Edge-Subgraphs – ssce

A strong single-component edge-subgraph is a strong edge-subgraph which contains
exactly one non-trivial connected component. Clearly, ssce(n, 0) = 2n+ 1.

If E, an (n, k)-graph, is a strong single-component edge-subgraph of Mn then every
incomplete join of E is the complete join less one edge; hence an incomplete join of size r
has r possibilities.

Following (7) from §5 we have:
Lemma 7.1.

ssce(n, k) =
n

k

∑

x

( k∑

i=1

{ k∏

j=1
j 6=i

(2xj + 1)x2
i

})
+
n

k

∑

x

k∏

j=1

(2xj + 1).

Let F1(x) =
∑

r≥1

(2r + 1)xr =
x(3 − x)
(1 − x)2

and F2(x) =
∑

r≥1

r2xr =
x(1 + x)
(1 − x)3

.

Lemma 7.2.

ssce(n, k) =





2n+ 1, k = 0

[xn]
{
nF1(x)k−1F2(x) + n

kF1(x)k

}
, k ≥ 1.

Thus

ssce(n) = 2n+ 1 + [xn]
x(4 − 15x+ 2x2 + 5x3)
(1 − x)2(1 − 5x+ 2x2)2

.

Theorem 7.3.

ssce(n) =
({

17−
√

17
34

}
n+1

)(
5 +

√
17

2

)n

+
({

17 +
√

17
34

}
n+1

)(
5 −

√
17

2

)n

+n−1.

The first few terms in the sequence {ssce(n) : n ≥ 2} are {38, 205, 1092, 5719, . . .}.

11



8. Spanning Trees – st

If a (n, k)-graph is a spanning tree of Mn then, as in §7 above, an incomplete join
must be the complete join less one edge.

Lemma 8.1. Let F be a (n, k)-graph. Then F is a spanning tree of Mn if and only if
(i) F is join-pair incomplete;
(ii) F has exactly k − 1 complete joins; and
(iii) each incomplete join of F is the complete join less one edge.

For k = 0 we have st(n, 0) = 2n. The number of possible incomplete joins for a join
of size r is r. So, for k ≥ 1, cf., (8) from §6, the number of spanning trees which can be
formed from K of Fig. 3 is

(
2k−1

k∏

j=1

xj

)
·

k∑

i=1

xi = n 2k−1
k∏

j=1

xj .

Then

st(n, k) =
n22k−1

k

∑

x

k∏

j=1

xj .

Letting G(x) =
∑

r≥1

r xr =
x

(1 − x)2
, we have:

Lemma 8.2.

st(n, k) =

{ 2n, k = 0;

[xn]
n22k−1

k
G(x)k , k ≥ 1.

So

st(n) = 2n+ [xn]
x(1 + 2x− 10x2 + 2x3 + x4)

(1 − x)2(1 − 4x + x2)2
.

Theorem 8.3.
st(n) =

n

2
[(2 +

√
3)n + (2 −

√
3)n] + n.

The first few terms in the sequence {st(n) : n ≥ 2} are {16, 81, 392, 1815, . . .}.
According to p. 42 of Biggs [1] there are two known methods to compute the number

of spanning trees of Mn. The first is the Matrix Tree Theorem, see pp. 39–40 of [1]; and
the second is a recursive method mentioned at the end of §2; see Biggs, Damerell, and
Sands [2], and Sedlacek [8]. This, then, provides a third method.

9. Restricted Edge-Subgraphs – re

A restricted edge-subgraph of Mn is an edge-subgraph with maximum degree 2, i.e.,
every component is an isolated vertex, a path, or a cycle.

It is straightforward to show that an edge-subgraph,E, of Mn is restricted if and only
if it is the complement in Mn of a strong edge-subgraph, (§3). Clearly, the number of
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complements of strong edge-subgraphs is equal to the number of strong edge-subgraphs,
hence re(n) = se(n). Thus:
Theorem 9.1.

re(n) ≈ (6.4188)n + (−0.8056)n + (0.3867)n − (−1)n.

10. Restricted Forests – rf

In a restricted forest every component is an isolated vertex or a path. Unfortunately,
we are unable to use this counting technique to compute the exact value of rf(n). However,
we can use it to obtain the following theorem, the details are omitted.
Theorem 10.1. For large n,

(4.8820)n < rf(n) < (6.4188)n.

The first few terms in the sequence {rf(n) : n ≥ 2} are {34, 241, 1582, . . .}, which
suggests that the value of rf(n) is about (6.3)n.

In some of the following sections we will need knowledge of cycles and unions of cycles
in Mn.

Clearly, each union of cycle(s) in Mn has either k = 0 or k ≥ 1 diagonals, so
(i) k = 0: we have one cycle of Mn, i.e., C2n;
(ii) k ≥ 1: to transform the empty (n, k)-graph K of Fig. 3 into a union of cycle(s) and

isolated vertices without increasing the number of diagonals, we must complete every
second join beginning at X1 or at X2. Either way will result in a single cycle if k is
odd; or a union of (k

2 ) cycles, each containing 2 diagonals, if k is even.
These constructions determine all cycles and union of cycles of Mn.

11. Union of Cycles – uc

An edge-subgraph of Mn is a union of cycles if each component is a cycle or an isolated
vertex.

Clearly uc(n, 0) = 2. For k ≥ 1, by the comments above, each K of Fig. 3 determines
2 such edge-subgraphs, so uc(n, k) = n

k

∑
x 2 =

(
n
k

)
2.

Theorem 11.1.
uc(n) = 2n+1.

12. Cycles – c

A cycle of Mn is an edge-subgraph with exactly one cycle, all other components being
isolated vertices. We have: c(n, 0) = 1, c(n, 2) = 2, and c(n, k) = 0 for k even and ≥ 4;
and c(n, k) = 2 for k odd. Hence

13



c(n) = 1 + 2
(
n

2

)
+

∑

k odd

2
(
n

k

)
.

Theorem 12.1.
c(n) = 2n + n2 − n+ 1.

This formula appears in Entringer and Slater [4]. The first few terms in the sequence
{c(n) : n ≥ 2} are {7, 15, 29, 53, . . .}.

13. Hamiltonian Cycles – hc

Clearly hc(n, 0) = 1. If K of Fig. 3 determines the 2-composition 1, n − 1 of n then
K gives rise to two Hamiltonian cycles for n = 2 and one if n ≥ 3. Hence, hc(2, 2) = 2
and hc(n, 2) = 1 · n = n if n ≥ 3; this deals with even k. For odd k, the graph K must
determine the k-composition 1 · · · 1︸ ︷︷ ︸

k

of n, which gives two more Hamiltonian cycles, hence

k = n.
Theorem 13.1.

hc(n) =
{
n+ 1, n even;
n+ 3, n odd.

14. Paths – p

Let F be a (n, k)-graph which is a path of Mn, with first vertex vf and last vertex v`,
vf 6= v`; as usual all other components of F are isolated vertices. We will abuse notation
and denote by F the non-trivial connected component of F .

Now F is acyclic and connected, and so, from Theorem A(iii), it is join-pair incomplete
and has exactly k − 1 complete joins. Hence F has exactly one join-pair, X1X

′
1, in which

both joins are incomplete. All other join-pairs have exactly one join complete and the
other incomplete.
Fig. 4a and 4b here.

Let k ≥ 4. Consider the join-pairs X2X
′
2 and XkX

′
k to the right and left of X1X

′
1, as

indicated in Fig. 4; exactly one join in each is complete. There are two cases to consider:
(a) Suppose that both X2 and Xk are complete, see Fig. 4a. Without loss of generality
vf ∈ X ′

k ∪X1, (i.e., vf is connected to 1); for, suppose not, then at least one of X ′
k or X1

is complete, a contradiction. Similarly v` ∈ X ′
1 ∪X ′

2.
Hence any join between X2 and Xk, and between X ′

2 and X ′
k, is either complete or

empty because it cannot contain vf or v`. Thus, any join-pair XjX
′
j for 3 ≤ j ≤ k− 1 has

one join complete and the other empty, this forces k to be even.
Since vf is connected to 1 there are (xk + x1 − 1) vertices where vf can be placed

(the edges between vf and 1 are then included as part of F ), and v` can be placed with
a choice of (x1 + x2 − 1) places. Each placement can then be extended uniquely to form
a path. Similarly if both X ′

2 and X ′
k are complete. Also, the unique join-pair with both

joins incomplete can be any of the k join-pairs XjX
′
j for 1 ≤ j ≤ k.

14



Hence, the total number of paths for this case is

k · n
k

∑

x

2(x1 + x2 − 1)(x1 + xk − 1) = 10n
(

n

k + 1

)
+ 2n

(
n− 1
k − 1

)
.

(b) Suppose that both X2 and X ′
k are complete, see Fig. 4b; then k is odd and ≥ 3.

Without loss of generality vf ∈ X ′
1 ∪X ′

2 and v` ∈ Xk ∪X ′
1.

If vf ∈ X ′
2 (with x2 places) then the number of places for v` is (x1 + xk − 1), yielding

x2(x1 + xk − 1) paths.

If vf ∈ X ′
1, the number of places for v` is

x1−1∑

t=1

(x1 + xk − 1 − t), where t is the number

of edges between vf and v′2.
From the previous two paragraphs and the comments in (a) above, the number of

paths for this case is

k.
n

k

∑

x

2
(
x2

1

2
+ x1x2 + x1xk + x2xk − 3

2
x1 − x2 − xk + 1

)
= 8n

(
n

k + 1

)
+ 2n

(
n− 1
k − 1

)
.

The formula for p(n, 2) may be incorporated into the formula for p(n, k) derived in
(a) above.
Lemma 14.1.

p(n, k) =





2n(2n− 1), k = 0;
n(3n2 − 3n+ 1), k = 1;

10n
(

n

k + 1

)
+ 2n

(
n− 1
k − 1

)
, k even and ≥ 2;

8n
(

n

k + 1

)
+ 2n

(
n− 1
k − 1

)
, k odd and ≥ 3.

Theorem 14.2.
p(n) = 10n2n − n3 − 5n2 − 11n.

The first few terms in the sequence {p(n) : n ≥ 2} are {30, 135, 452, 1295, . . .}. The
sequence {p(n, 1)} = {n(3n2 − 3n+ 1)} is M4933 in [9].

15. Hamiltonian Paths – hp

In this section let x = x1 · · · xk = x1, . . . , xk .
Again, let F be a (n, k)-graph which is a Hamiltonian path for Mn, then using the

same reasoning as in §14, there are two cases to consider:
(a) Both X2 and Xk are complete. Since F is a Hamiltonian path then K of Fig. 4a
determines the composition y = x1, x2, 1, . . . , 1︸ ︷︷ ︸

k−3

, n− x1 − x2 − k + 3, or otherwise F will
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contain isolated vertices. Furthermore, k is even and ≥ 4, and at least one of x1 = 1 or
xk = 1, and at least one of x1 = 1 or x2 = 1, or, again, there will be isolated vertices in F .
(i) If x1 = 1 then y = 1, x2, 1, . . . , 1︸ ︷︷ ︸

k−3

, n−x2−k+2,where 1 ≤ x2 ≤ n−k+1. Hence, cf., §14,

the total number of Hamiltonian paths for this case is k · n
k

∑
y 2 = 2n(n− k + 1).

(ii) If x1 > 1 then xk = x2 = 1, and y = n − k + 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, and the total number of

Hamiltonian paths is 2n.

(b) Both X2 and X ′
k are complete. Then k is odd and ≥ 3, and the relevant composition

determined by Fig. 4b is again y = 1, x2, 1, . . . , 1︸ ︷︷ ︸
k−3

, n−x2 −k+2, which yields 2n(n−k+1)

Hamiltonian paths.
Again, the formula for hp(n, 2) may be incorporated into the formula for hp(n, k)

derived in (a) above.

Lemma 15.1.

hp(n, k) =





2n, k = 0, 1, and k = n;
2n(n− k + 2), k even and 2 ≤ k ≤ n− 1;
2n(n− k + 1), k odd and 3 ≤ k ≤ n− 1.

Theorem 15.2.

hp(n) =
{
n3 + 2n, n even;
n3 + 3n, n odd.

The first few terms in the sequence {hp(n) : n ≥ 2} are {12, 36, 72, 140, . . .}.

16. No-Leaf Edge-Subgraphs – nle

Call a vertex in a graph a leaf if it has degree 1. A no-leaf edge-subgraph of Mn is
an edge-subgraph with no leaves, i.e., each of its vertices has degree 0, 2, or 3. Clearly
nle(n, 0) = 2. If E, an (n, k)-graph, is a no-leaf edge-subgraph then its joins must be empty
or complete; moreover, its empty joins must be non-consecutive, cyclic. So the number of
such E which come from an arbitrary K of Fig. 3 is L(2k).

Hence

nle(n, k) =
n

k

∑

x

L(2k) =
(
n

k

)
L(2k).

Theorem 16.1.

nle(n) =
(

5 +
√

5
2

)n

+
(

5 −
√

5
2

)n

.

The first few numbers in the sequence {nle(n) : n ≥ 2} are {15, 50, 175, 625, . . .}.
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17. Matchings – m

A matching, E, of Mn is a collection of disjoint edges and isolated vertices. So
m(n, 0) = L(2n).

Let δ(r) be the number possibilities for a join of E of size r. Then δ(1) = δ(2) = 1,
and δ(r) = δ(r − 1) + δ(r − 2) for r ≥ 3.

By exact analogy with §3, the number of matchings which come from K of Fig. 3 is∏k
j=1 δ(xj )

2. This gives us

m(n) = L(2n) + [xn]
x(1 − 2x + 4x2 − 2x3 + x4)

(1 + x)(1 − 3x+ x2)(1 − 3x − x2 + x3)
.

Theorem 17.1.

m(n) ≈ (3.2143)n + (−0.6751)n + (0.4608)n − (−1)n.

The first few numbers in the sequence {m(n) : n ≥ 2} are {10, 34, 106, 344, . . .}, see
Table 1 in Hosoya and Harary [7].

Let Hn be an arbitrary cubic bipartite graph on 2n vertices, then, by a similar argu-
ment to that used at the end of §3, the graph Hn contains at most 4n matchings. Hence:
For odd n, does there exist a family of cubic bipartite graphs, Gn, on 2n vertices, such
that, for some n0 and all odd n > n0, the number of matchings of Gn is greater than
(3.2143)n?

18. One-Factors – of Two-Factors – tf

A one-factor, E, of Mn is a collection of n disjoint edges, i.e., E is regular of degree
one. For example, see Fig. 1b, let Bn be the one-factor containing outside edge 12 and
every second outside-edge, and Cn the one-factor containing the outside edges not in Bn.

An edge-pair is a pair of opposite outside edges, i.e., the pair ej = {j(j+1), j′(j+1)′}
for some j with 1 ≤ j ≤ n− 1, or the pair en = {n1′, n′1}. Let us identify [n] with the set
of edge-pairs, En = {e1, . . . , en}, in the obvious way. Recall the definition of an ncc set of
[n], so of En, and the number of ncc t-sets of [n], ψ(n, t), from the Preliminaries.

An edge-pair one-factor is a one-factor in which all outside edges occur in edge-pairs.
A t-edge-pair one-factor is an edge-pair one-factor which contains t edge-pairs.

Let F be a t-edge-pair one-factor of Mn, then its t edge-pairs form a ncc t-set of En.
Conversely, the edge-pairs corresponding to a ncc t-set of En can be uniquely extended
to a t-edge-pair one-factor by adding on the diagonals ii′ for each vertex i not already
covered. Hence, the number of t-edge-pair one-factors of Mn is ψ(n, t) = n

n−t

(
n−t

t

)
, where

0 ≤ t ≤ bn
2 c.

Here we have not used our composition technique, however, consider the following:
Call a k-composition of n, x = x1x2 · · · xk, odd if each xj is odd. By adding 1 to each such
xj , we can set up a bijection between odd k-compositions of n and k-compositions of n+k

2 ;

hence, the number of odd k-compositions of n is
(n+k

2 −1
k−1

)
. Now, an (n, k)-graph, E, can

be extended to a unique one-factor if and only if each of its joins is odd. Let ε(r) denote
the number of possibilities for a join of E of size r, then ε(r) = 0 if r is even and ε(r) = 1
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if r is odd. Also, note that an edge-pair one-factor with k diagonals has n−k
2 edge-pairs.

Hence

of(n, k) =
n

k

∑

x

k∏

j=1

ε(xj )
2 =

n

k

(n+k
2 − 1
k − 1

)
=

2n
n+ k

(n+k
2

n−k
2

)
= ψ

(
n,
n− k

2
)
, as required.

It is straightforward to prove that most one-factors of Mn are edge-pair one-factors:
Lemma 18.1. All one-factors of Mn are edge-pair one-factors, except for Bn and Cn

when n is odd.

Hence, for odd n, of(n) =
bn

2 c∑

t=0

ψ(n, t) + 2, where the +2 corresponds to the non-edge-

pair one-factors Bn and Cn; we do not need the +2 for even n.
The numbers of(n) are closely related to the Lucas numbers, see the comments in the

Preliminaries.
Now, a two-factor of Mn is the complement in Mn of a one-factor, and vice versa, so:

Theorem 18.2.

of(n) = tf(n) =
{
L(n), n even;
L(n) + 2, n odd.

This formula appears in [7]. The first few terms in the sequence {of(n) : n ≥ 2} are
{3, 6, 7, 13, . . .}.

19. One-Factorizations – oF

In this section we do not use our composition technique. Our results give us a com-
binatorial interpretation of a sequence which occurs on p. 603 of Guy [5], it appears to be
the first combinatorial interpretation of this sequence.

A one-factorization of Mn is a triple of one-factors which partition the edges of Mn.
For example, see Fig. 1b, let An be the one-factor of Mn consisting of its n diagonals, and
Bn and Cn be as in §18, then {An, Bn, Cn} is a one-factorization of Mn.

An edge-pair cycle is a cycle in which all outside edges occur in edge-pairs, each edge-
pair cycle is an even cycle. An edge-pair two-factor is a two-factor in which each component
is an edge-pair cycle.

As noted earlier, if we remove a one-factor from Mn we obtain a two-factor, moreover:
Lemma 19.1. Let F be an edge-pair one-factor of Mn. Then, for t ≥ 1, F is a t-edge-pair
one-factor if and only if Mn − F is an edge-pair two-factor with t components.
Proof Assume that F is a t-edge-pair one-factor where t ≥ 1.

Without loss of generality, let two consecutive edge-pairs of F be {c(c+ 1), c′(c+ 1)′}
and {d(d + 1), d′(d + 1)′}, see Fig. 5, with obvious notational changes if d = n. Then
c+1, c+2, . . . , d−1, d, d′, (d−1)′, . . . , (c+2)′, (c+1)′, c+1, shown with an arrowed broken
line in Fig. 5, is an even edge-pair cycle of length 2(d− c) which lies in Mn −F . Similarly,
there is an even edge-pair cycle “between” any pair of consecutive edge-pairs of F , and
there are t such pairs of edge-pairs, and so t such cycles, which cover all vertices of Mn.
Hence, Mn − F is a edge-pair two-factor with t components.
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Conversely, if X is an edge-pair two-factor with t components, then, clearly, Mn −X
is an edge-pair one-factor. Suppose Mn − X has s 6= t edge-pairs. Then, by above,
X = Mn − (Mn −X) has s components, a contradiction. Hence, Mn −X is a t-edge-pair
one-factor.
Fig. 5 here.

An edge-pair one-factorization of Mn is a one-factorization in which all one-factors
are edge-pair one-factors. It is straightforward to prove the following, (cf., Lemma 18.1):
Lemma 19.2. All one-factorizations of Mn are edge-pair one-factorizations, except for
{An, Bn, Cn} when n is odd.

Let the number of edge-pair one-factorizations of Mn be eoF (n).
Again, let F be a t-edge-pair one-factor where t ≥ 1. Now, an even cycle has 2

one-factors, thus Mn − F , which contains t even cycles, has 2t one-factors.
Let {F,F ′, F ′′} be an edge-pair one-factorization of Mn which contains F . How many

such one-factorizations are there? Such a one-factorization can be formed by choosing F
first, then there are 2t ways in which to choose F ′, and the remaining edges then form
F ′′. However, this one-factorization could have been formed by choosing F ′′ second and
leaving F ′. Hence, the total number of edge-pair one-factorizations which contain F is
1
2 · 2t = 2t−1.

Recall that the number of t-edge-pair one-factors of Mn is ψ(n, t). Hence, for even

n, we have 3eoF (n) =
bn

2 c∑

t=1

ψ(n, t)2t−1 + 1, where the +1 corresponds to the 0-edge-pair

one-factor An; we do not need the +1 for odd n. This gives: eoF (2) = eoF (3) = 1 and
eoF (n) = eoF (n − 1) + 2eoF (n− 2) for n ≥ 4. So eoF (n) = 1

3
{2n−1 + (−1)n}.

Now oF (n) = eoF (n) if n is even, and oF (n) = eoF (n) + 1 if n is odd via Lemma
19.2. Hence:
Theorem 19.3.

oF (n) =
{

1
3
(2n−1 + 1), n even;

1
3 (2n−1 + 2), n odd.

The first few terms in the sequence {oF (n) : n ≥ 2} are {1, 2, 3, 6, . . .}. This sequence
is M0788 in [9], and appears at the bottom of p. 603 in Guy [5].

20. Perfect One-Factorizations – poF

A perfect one-factorization of Mn is a one-factorization in which the union of any 2
one-factors is a Hamiltonian cycle.

If n = 2 or if n is odd and ≥ 5 then, via Lemma 19.1, {An, Bn, Cn} is the only perfect
one-factorization of Mn. If n = 3 there is one more perfect one-factorization, there are
none for n even and ≥ 4.
Theorem 20.1.

poF (n) =

{ 1, n = 2 or n is odd and ≥ 5;
2, n = 3;
0, n even and ≥ 4.

19



21. Elementary Edge-Subgraphs – ee

An elementary edge-subgraph, E, ofMn is an edge-subgraph in which every component
is regular of degree 0, 1, or 2; i.e., every component is an isolated vertex, a single edge, or
a cycle. Clearly ee(n, 0) = L(2n) + 1.

See K of Fig. 3, and let k ≥ 2. In order to extend K to an elementary edge-subgraph
we can first form cycles, then add on disjoint edges. Now, from §12, cycles of Mn can
contain either two diagonals, or k diagonals for odd k.

For any k, our extended K, call it E, may contain cycles with two diagonals. These
cycles are formed by choosing both joins in an arbitrary join-pair to be complete. These
join-pairs must be a ncc (sub)set of Xk = {X1X

′
1, . . . ,XkX

′
k}, denote this set by N . Those

joins of E which are incomplete are either empty or a matching. Hence, such a join of size
r has δ(r) possibilities where δ(r) is defined as in §17. Conversely, any ncc set N ⊂ Xk

gives rise to |N | cycles by completing the join-pairs corresponding to the elements of N ;
this graph can then be extended to elementary edge-subgraphs by adding disjoint, outside
edges. Let us identify Xk with [k] in the obvious manner. Hence, the number of elementary
edge-subgraphs which come from K is

∑

N⊂[k]

∏

j 6∈N

δ(xj )
2.

If k is odd, we may have a cycle with k diagonals. Here either join X1 or X2 of E
is complete and then every second join is complete. Again, incomplete joins have δ(r)

possibilities, hence K gives rise to 2
k∏

j=1

δ(xj ) elementary edge-subgraphs.

Theorem 21.1.

ee(n, k) =





L(2n) + 1, k = 0;

n

k

∑

x

{ ∑

N⊂[k]
Nncc set

∏

j 6∈N

δ(xj )
2

}
+

2n
k

∑

x

k∏

j=1

δ(xj ), k odd;

n

k

∑

x

{ ∑

N⊂[k]
Nncc set

∏

j 6∈N

δ(xj )
2

}
, k even.

It does not seem possible to compute a concise expression for ee(n).
The first few terms in the sequence {ee(n) : n ≥ 2} are {17, 58, 181, 602, . . .}.

22. Strong Elementary Edge-Subgraphs – see

A strong elementary edge-subgraph (sometimes called sesquivalent) of Mn is an ele-
mentary edge-subgraph which is strong. An even join of K of Fig. 3 cannot be made
strong using disjoint edges; an odd join can be made strong in one way.

The formulas for see(n, k) are as in §21 except that see(n, 0) = 3, and δ(r) must be
replaced by ε(r) where ε(r) = 0 if r is even, and ε(r) = 1 if r is odd, (ε(r) as in §18).

Again, there does not seem to be a more precise expression for see(n).
The first few terms in the sequence {see(n) : n ≥ 2} are {6, 21, 26, 81, . . .}. The

sequence {see(n, n − 1)} =
{
(n/

√
5)

{(
(1 +

√
5)/2

)n−2 −
(
(1 −

√
5)/2

)n−2}}
, appears as

M2362 in [9], Generalized Lucas Numbers.
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Finally, the degree of a vertex in an edge-subgraph of Mn is 0, 1, 2, or 3. Hence, we
may choose any subset of {0, 1, 2, 3} and count the subgraphs of Mn whose vertex degrees
are equal to this subset. For example, in §17, we counted matchings which corresponds
to the subset {0, 1}; also, by taking complements in Mn, we counted the edge-subgraphs
corresponding to the subset {3−0, 3−1} = {2, 3}. Barring trivial cases, we have considered
all subsets except {1, 2}, which is our final section.

23. Strong Restricted Edge-Subgraphs – sre

A strong restricted edge-subgraph of Mn is an edge-subgraph in which the degree of
each vertex is 1 or 2, i.e., every component is a path with at least one edge, or a cycle.

We are unable to use this counting technique to compute the value of sre(n) exactly.
However, we have the following symmetric relationship, since the class of strong restricted
edge-subgraphs is closed under complements in Mn: sre(n, k) = sre(n, n − k). We also
have:
Theorem 23.1. For large n,

(3.2143)n < sre(n) < (6.4188)n.

The first few terms in the sequence {sre(n) : n ≥ 2} are {18, 102, 418, 2006, . . .}, which
suggests that the value of sre(n) is about (4.6)n.
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