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In this dissertation, density functional theory (DFT) calculations were used to 

investigate (1) NO2 adsorption on BaO in NOx Storage Reduction (NSR) catalyst affected 

by the morphology of BaO and the γ-Al 2O3 support, (2) energy barrier of H2 dissociative 

adsorption over Mg clusters affected by its electronic structure, and (3) comparison of the 

activities of CeO2 clusters affected by two different supports—monoclinic ZrO2 and non-

spinel γ-Al 2O3. Our results showed that the electronic effect caused by the non-

stoichiometry of the bare BaO clusters and surfaces improves their reactivities toward 

NO2 adsorption greatly, whereas the geometric structure of the catalyst has only minor 

effect on the activity; we also found that the γ-Al 2O3 substrate improves the reactivities of 

the supported BaO clusters and at the same time the interface between BaO and γ-Al 2O3 

provided a unique and highly reactive environment for NO2 adsorption. Hydrogen 

dissociation barrier over pure Mg clusters is greatly affected by the electronic structure of 

the clusters—closed shell clusters such as Mg10 and Mg9
2- have higher energy barrier 

toward H2 dissociation; however, H2 dissociation over clusters that are two electrons shy 

from the closed electronic shell are relatively easier. As substrates, neither ZrO2(111) nor 
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γ-Al 2O3(100) affects the reactivity of the supported Ce2O4 toward CO2 adsorption and 

CO physisorption significantly; whereas the reactivity of Ce2O4 toward CO reactive 

adsorption were found to be affected by the two substrates very differently.  
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CHAPTER 1 

GENERAL INTRODUCTION AND OUTLINE 

Heterogeneous catalysis plays a vital role in many industrial operations and many 

other processes. These processes include oil refining1, production of fertilizers, as well as 

eliminating the pollution from chemical and petroleum processes, and vehicular 

emissions.2 The advancement of fuel-cell technologies also rely on the development of 

more efficient catalysts at both electrodes3. Heterogeneous catalysis is a type of catalysis 

process where the catalyst is in a different phase from the reactant. Normally the catalyst 

is a solid and the reactants are gas or liquid. The catalytic process usually proceeds by the 

chemsorption of the reactants to the catalyst surfaces, and the strength and characteristic 

of the chemsorption determine the performance of the catalyst. Therefore, gaining the 

knowledge of the catalyst performance as a function of the chemical composition and 

molecular structure of the catalyst surface or nanocluster is the science foundation for 

heterogeneous catalysis.  

The state-of-the-art modern experimental approaches provided useful tools for the 

study of this field. For example, low energy electron diffraction (LEED) is widely used to 

characterize the structure of the surfaces4-6. The yet more powerful scanning tunneling 

microscopy (STM)7-9 and atomic force microscopy (AFM)10,11 allow the viewing the 

surface at the atomic level. Vibrational frequencies from high resolution electron energy 

loss spectroscopy (HREELS) or reflection adsorption infrared spectroscopy (RAIRS) are 

used to characterize the adsorbed reactive molecules on the surfaces. The measurement 

adsorption and reactivity from temperature programmed desorption (TPD) and 

temperature programmed reaction (TPR) experiments provides quantitative information 
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on the elementary adsorption and reaction steps that occur on these model surfaces. In 

addition, the technique of synthesizing metal clusters on well-defined thin oxide films12-18 

enables the more controlled preparation of catalysts. With these carefully prepared 

samples, some atomic details of the catalysts were revealed and conditions affecting the 

performance of catalysts were well understood. 

Despite the valuable information we can obtain from the experiments, there are also 

phenomenon and insights into the system hitherto unobservable using pure experimental 

approaches. For example, some experimental approaches merely reveal the average 

behavior of a system, while the contribution of distinct localized domains/structures 

cannot be measured. Furthermore, some experimental data are hard to be interpreted due 

to the complexity of the system and the coupling of multiple interactions.  For example, 

the information of molecular bonding and orbital and electronic charge distributions 

cannot be obtained from experiments. The strength of interactions and the relative 

stabilities between different structures cannot be predicted by experiments. The 

information of a complete reaction pathway cannot be described by any experimental 

approach. Therefore, an approach beyond experiment is needed to predict the 

unobservable properties and improve the interpretation of the experimental data.  

Quantum mechanics methods can be used to solve some of the problems that 

experimental approaches failed. By applying different theoretical methods, most of the 

molecular behavior can be predicted. For example, the structures and the relative energies 

of a molecule or solid can be calculated to obtain the knowledge of stable atomic 

structures of a system. The frequency calculations of each individual mode can be used to 

assign the peaks from experimentally obtained spectrum. Some methods based on 
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transition state theory can discover the complete reaction pathways, calculating the 

transition state structures and also determine which of the pathways is more favorable for 

the reaction. Depending on the quantum theory being used, there are several types of 

computational methods: ab initio method, semi-empirical/empirical method, molecular 

mechanics and molecular dynamics. Here we consider the density functional theory 

(DFT) belong to ab initio category since the molecular Hamiltonian needs to be solved 

although some of the functionals employ parameters derived from empirical data.  

In this dissertation, a brief review of the DFT and its implementation in 

computational packages are present in Chapter 2. The transition state theory applied in 

my work is also briefly discussed in this chapter. Chapter 3−5 presents my study of the 

properties that influence the activities of catalysts: geometric and electronic structures of 

a catalyst, defect and substrate effect. Chapter 3 presents how the morphologies of BaO 

surfaces and clusters, as well as the existence of defects and support substrate, affect the 

BaO-NO2 interaction. Chapter 4 reports the influence of the electronic structures of 

magnesium clusters on the energy barriers of magnesium-catalyzed H2 dissociation. The 

effect of the nature of the support substrate on the reactivities of the supported metal 

oxide was studied in Chapter 5. The reactivities of monoclinic ZrO2(111) and non-spinel 

γ-Al 2O3(100) supported Ce2O4 clusters toward CO and CO2 adsorption were compared to 

reveal the different support effects. 
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CHAPTER 2 

COMPUTATIONAL METHOD 

2.1. A Brief History of Quantum Mechanics 

Toward the end of the nineteenth century, thanks to the work of the great physicists, 

most important principles of the classical physics have been discovered and brought to a 

high degree of sophistication19. The turn of 20th century is a heady era of great success for 

a more profound discoveries and revolution that impact the science field of physics, 

chemistry and biology, as well as engineer and technologies. This revolution starts with 

the birth of the theory of relativity and quantum mechanics and these two constitute what 

now is called modern physics. Modern physics completely altered our way to look at the 

world. Quantum mechanics was initially developed to provide a better explanation of the 

behavior of systems at atomic length scales and smaller, especially the spectra of light 

emitted by different atomic species. After several decades of development, quantum 

mechanics nowadays not only plays a very important role in the field of physics, but also 

has its many applications in chemistry. 

In early 1838, Michael Faraday discovered the “cathode rays” when passing current 

through a rarefied air filled glass tube. These cathode rays are actually steams of 

electrons. In 1897, the British physicist Joseph John Thomson performed an early version 

of the famous oil drop experiment of Millikan and calculated the charge and mass of the 

electron. Although his calculations of charge and mass were in error by 50%, the 

experiment did show that there exists a subatomic particle much lighter than the lightest 

atom. After Gustav Kirchhoff’s study of the black body radiation problem in 1859, 

Ludwig Boltzmann suggested in 1877 that the energy states of a physical system could be 
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discrete. Finally in 1900, Germany physicist Max Planck successful proposed a 

mathematical formula for the discrete energies of the black body: 

� � ���,              (2.1) 

where � is an integer, � is a constant and � is the frequency. However, Planck’s theory 

was too revolutionary to be accepted by most physicists at the time. A few years later, in 

1905, Einstein explained the photoelectric effect using the very same idea of Plank’s and 

obtained a value of � in close agreement with Planck’s value. In 1907, he further proved 

that the mechanical vibrations of the atoms in crystals are also quantized. Ever since then, 

the idea of quantization condition became provocative. In effort of explaining the line 

spectrum of hydrogen, Niels Bohr formulated a model of hydrogen atom that was in good 

accordance with the spectrum. However, Bohr’s theory could not be successfully 

extended to explain some phenomenas such as the spectrum arising under a magnetic 

field. The stage for the next advance was set by de Broglie, who, in 1923, postulated that 

electrons and other particles have waves associated with them and the wavelength is 

given by  

� � �/	,     (2.2) 

where p is the momentum of the particle. Combining this wave nature of particles with 

Bohr’s theory, the quantization of Bohr orbitals can be explained by whether the wave is 

in phase of the orbital. In 1926, the electron was experimentally shown to act like wave 

for the first time by George Paget Thomson, J. J. Thomason’s son. Following the 

discovery of both particle-like and wave-like properties of atomic and subatomic 

particles, Schrödinger found a wave equation that governs the behavior of those particles 

in 192620.  
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The Schrödinger’s equation is a very fundamental equation in quantum mechanics. 

The solution of this equation is called wavefunction. It is the most complete description 

of any system. The general equation for one particle can be written as: 


� �

�

Ψ��, �� � ��Ψ��, �� =� ��

��
��Ψ��, �� � ����Ψ��, ��,     (2.3) 

where Ψ��, �� is the wavefunction, r is the position in three-dimensional space, �� is the 

Hamiltonian operator, m is the mass and ���� is the potential at point r. The time-

independent Schrödinger’s equation can be written as: 

����� =� ��

��
������ � ��������,      (2.4) 

which formulated the Schrödinger’s equation as an eigenvalue problem. 

Shortly after Schrödinger’s equation for the electronic wavefunction was validated for 

simple small systems like H2 and many-electron atom He, there was a saying that 

chemistry had come to an end because all the chemistry can be entirely contained in the 

powerful equation. However, in most of the cases, the quantum mechanical equation is 

way too complicated to be solved exactly, so finding proper approximation to 

Schrödinger’s equation became an intuitive and straightforward solution. As matter of 

fact, during the decades after Schrodinger’s equation, the entire field of computational 

chemistry is built around approximate solutions. Some of these solutions are very crude 

and others are expected to be more accurate than any experiment that has yet been 

conducted. The knowledge of each approximation and how accurate the results are 

expected to be the key to the choice of method. Extremely powerful computers, 

sometimes supercomputers, are needed for obtaining very accurate results. Generally, the 

larger the system is (containing more particles), the more expensive the computation is.  

2.2. Density Functional Theory 
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Density Functional Theory (DFT) method uses the electron density of a system to 

provide us the properties of the ground states. It was first introduced in 1960s by 

Hohenberg-Kohn21 and Kohn-Sham in two of the seminar papers21,22. Later, the theory 

has attracted a lot of research interest in improving the adaption of the method for 

practical computational use. The last few decades have witnessed the prevailing 

applications of DFT method—especially after 90s, the usage of the method has increased 

exponentially. It is so far the most successful and most promising approach to compute 

the electronic structure of the matter. It also calculates a large variety of molecular 

properties such as molecular structures and energies, vibrational frequencies, electric and 

magnetic properties and reaction pathways, etc. It is among the most popular methods 

available in condensed matter physics, computational physics, and computational 

chemistry… Nowadays, it is often referred to as “theory of the moment”. In 1998, Walter 

Kohn was awarded with the Nobel Prize in Chemistry for his contributions to the 

“development of the density functional theory”, symbolizing the recognition of the 

contribution of the theory to physics and chemistry science societies. 

There are three important benchmark works in DFT development history: First, the 

rudimentary but inspirational form of DFT that was discussed in 1927 by Thomas and 

Fermi, known as Thomas-Fermi theory. In 1964 and 1965, the Thomas-Fermi theory was 

put forward in two seminar papers, known as Hohenberg-Kohn theory and Kohn-Sham 

equation. These three benchmarks will be introduced below: 

2.2.1. Thomas-Fermi Theory  

The Thomas-Fermi theory first introduced electron density instead of wavefunction as 

the variable to quantum equations. The theory considered interacting electrons moving in 
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an external potential field and it has a very crude description of electronic energy in terms 

of the electron density distribution ����: 

n�r� �  γ�µ � ν$%%�r��&/�,                        (2.5) 

where 

      ν$%%�r� � ν�r� � '
(�),�

|)+ ),|
dr..                                          (2.6) 

 µ in Equation (2.5) is the coordinate-independent chemical potential and r is a constant. 

Equation (2.6) calculates the difference between external potential (the first term) and the 

electrostatic energy that is generated by the electron density distribution ���� (the second 

term). The number of electrons within a small enough distance element dr is 

homogeneous and can be expressed as ����/�. So the energy of the system can be 

calculated by: 

�012����3 � '
&

45
�37��

�
8 ����

9
8/� +' ν�r�n�r�dr � 4

�
'

(�)�(�),�

|)+ ),|
drdr.,          (2.7) 

where the first term is the electronic kinetic energy calculated by integrating the kinetic 

energy density of homogeneous electron gas. 

One big breakthrough of the Thomas-Fermi theory is it provided a crude form of 

expressing the solution of the many-electron Schrodinger’s equation in terms of electron 

density ���� instead of in terms of wavefunction ψ, so we can characterize the electronic 

structure of the system by knowing the electron density ����. However, Equation (2.5) 

was based on the expression of a uniform electron gas distribution under the external 

potential, so the theory suffers many deficiencies. First, the gradients of ν$%%�r� were 

obviously ignored. Therefore, the theory only applies for systems with slowly varying 

density. Second, the description of kinetic energy is very crude. While the kinetic energy 

represents a substantial portion of the total energy of a system so the small error of 
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kinetic energy description for each point can lead to disastrous results. So it is only good 

in describing the qualitative trends of energies. Third, the electron-electron interaction is 

over-simplified. These interactions were treated classically so a lot of the quantum 

phenomenon was not taken account of.  The theory totally fails to calculate chemical 

bonding23,24. Although later on, the gradient, exchange and correlation were made to 

improve the method, it was generally considered too rough to be useful for the 

applications of electoral structure calculation. 

2.2.2. Hohenberg-Kohn Theory 

 Uniqueness: The first important lemma of the Hohenberg-Kohn theory is the proof 

of “the ground state density ���� of a bound system of interacting electrons in some 

external potential ν�r� determines this potential uniquely”. The proof of this lemma was 

simply assuming an electron density ����, corresponds to two non-degenerate ground 

state potentials ν4�r� and ν��r� with ground sate wavefunction of ψ4 and ψ�. However, 

the ground state energy E1 and E2 calculated from the two different potential and 

wavefunction but the same electron density yielded E1 + E2 < E1 + E2, contradicting 

with the assumption that two states are non-degenerate.21 Therefore, the ground state can 

be uniquely determined by the ground state electron density �5���. 

Variational Theory: The variational theory, which is very useful to a lot of quantum 

method, stated that the expectation value of the Hamiltonian for a trial wavefunction must 

be greater than or equal to the actual ground state energy. Based on the uniqueness 

theorem, the ground state energy can be solved if the groundstate electron density �5��� 

is known. So adding the Variational Theory on top of it, the ground state energy can be 

solved by minimizing the energy in terms of electron density ����.  The energy can be 
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written as a summation of kinetic energy, electrostatic energy and the energy of non-

interacting electron moving under external potential: 

E2(�)�3 �  T2(�)�3 � U2(�)�3 � ' V�r?�n�r?�d&r,                           (2.8) 

where the first two terms are independent of external potential V�r� and can be expressed 

using a universal functional of the electron density n(r): 

T �  '
&

45
237�����3

�
8n�r�dr                                           (2.9) 

U �  4

�
'

(�),�

|)+ ),|
dr.dr                                                  (2.10) 

So, the Hohenberg-Kohn Theory provided a form of calculating energy in terms of 

electron density. But the method is not accurate due to the inadequate representation of 

the kinetic energy T. 

2.2.3. Kohn-Sham Equations 

Following the Hohenberg-Kohn theorem, the Kohn-Shawn theorem stated that if we 

can find the true ground state electron density, we find the lowest energy of the system 

and thus the ground state of the system. Furthermore, the theorem provided a way of 

finding the ground state density. Kohn and Sham proposed the ground state energy can be 

written as a functional of the charge density: 

E2(�)�3 �  T2(�)�3 � E$@A2(�)�3 � 1/2 '
(�)�(�),�

|)+ ),|
� D@E2(�)�3,                        (2.11) 

where the first term is the kinetics energy and the second term is the interaction between 

electron and the external potential. The third and fourth terms are electron-electron 

electrostatic interaction and the non-classical exchange-correlation energy, respectively. 

The last two terms combined describe the electron-electron interaction. Inspired by the 

self-consistent single particle equations for the approximation of the electronic structure 
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by Hartree25,26 where every electron was regarded as moving in an effective single 

particle potential, Kohn and Sham then reintroduced the single particle wavefunctions: 

                                        ���� � ∑ �G
H����G���I

GJ4 .                                              (2.12) 

The kinetic energy can be written in terms of wavefunctions by: 

                                   K2����3 � � ��

��
∑ L �G|��|�G MI

GJ4 .                                 (2.13) 

Equation   

                                                ' �G
H����N���/� � OG,N                                                (2.14)  

guarantees the orthonormality of the wavefunctions. These wavefunctions are the 

solutions to the Schrödinger’s equation of non-interacting particles moving in an 

effective potential DPQQ���: 

                                  � ��

��
���G��� � DPQQ����G��� � �G�G���,                                (2.15) 

where  

                            DPQQ��� � DPR
��� � DRS��� � 4

�
'

(�),�

|)+ ),|
dr..                                   (2.16) 

The exchange-correlation potential is given by:  

DRS��� �
TUVW2X�Y�3

TI�Z�
.                                                     (2.17) 

So the energy of the system can be written as: 

E2(3 �  ∑ ε\
(
\J4 � 1/2 '

n�r,�
|r� r]|

� E@E2(�)�3 � '
TUVW2X�Y�3

TI�Z�
n�r�dr,    (2.18) 

where ̂ \s are the eigenvalues of non-interacting single-particle equation which is 

supposed to be an “exact” term.  

Now the attention turned into the exact form of the exchange-correlation functional. 

Actually, this term is so important that the practical use of the ground state DFT entirely 
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depends on the accuracy of this approximation term. The discussion of the exchange-

correlation term will be presented in the following section. 

2.2.4. Functional Effect 

This exchange-correlation term is, in my opinion, the beauty of DFT because we do 

not need to deal with the electron exchange and correlation term explicitly any more. In 

Hartree-Fock method, the electron correlation energy was ignored and the electron 

exchange term has to be treated by solving the mixed wavefunction terms of different 

electrons. Sometimes these crossing terms from the electron exchange can be really 

“nasty” and solving them cost a lot of computational effort. While in DFT, not only was 

the electron correlation calculated, it was treated along with the exchange term which 

makes the calculation a lot easier. The idea of treating electron exchange and correlation 

together is great, however, the exact form of this term is unknown. Therefore, like lots of 

the other quantum theories, approximations were made to express this term.  

As discussed above, finding a good approximation of the exchange-correlation 

functional is critical for the proper application of DFT. As a matter of fact, after the 

appearance of the Kohn-Sham equation, a lot of research effort has been focused on 

developing an accurate approximation functional which, at the same time, sufficiently 

simple to be solved. There are three categories of exchange-correlation functional—the 

local density approximation (LDA), general gradient approximation (GGA) and hybrid 

functional. 

The LDA functional is the simplest approximation for the E$@�(�. The exchange-

correlation term can be approximated to the energies of a homogeneous electron gas of 

the same local density: 
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E$@�(� � ' e@E`n�r�an�r� dr   (2.19) 

where the e@E�n� is the exchange-correlation energy of a uniform electron gas of density 

n. The exchange part is given by 

e@�n� � � 5.cde

)f
 ,    (2.20) 

where rg is the radius of a sphere containing one electron. The correlation part was first 

estimated by Wingner27: 

eE�n� � � 5.cc

)fhi.e
 ,     (2.21) 

reflecting the combined effect of the Pauli principle and the electron-electron interaction. 

The accuracy of the exchange energy for the LDA form is typically within 10%, 

while the correlation energy, which is normally much smaller, is generally overstimated 

by up to a factor 2. Fortunately, the two errors typically cancel each other partially. Thus, 

the LDA gives ionization energies of atoms, dissociation energies of molecules and 

cohesive energies with a fair accuracy of typically 10-20%, while the bond lengths of 

molecules and solids are typically decent with an accuracy of 2%. However, the LDA 

calculations are insufficient for most applications in chemistry, especially when it comes 

to systems like heavy fermions, where the electron-electron interaction effect dominates.  

The GGA is an improved form based on the LDA functional by including the gradient 

expansion term: 

E$@�(� � ' e@E�n�r�, | ∂n�r�|�n�r� dr.   (2.22) 

Furthermore, some of the GGA methods that were developed in recent years often have 

been empirically calibrated to optimize the accuracy of the atomization energies of 

standard sets of molecules and have really successfully produced the structural and 
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energetic properties of various systems. Major contributors include A.D. Becke, D.C. 

Langreth, M. Levy, R.G. Parr, J.P. Perdew, C. Lee and W. Yang.28 Examples of 

commonly used GGAs are PW91 and PBE. 

Another successful functional was introduced is the hybrid method which 

incorporates linear combination of exact exchange from Hartree-Fock theory with 

exchange-correlation from other sources. The idea was first introduced by Axel Becke in 

1993.29 For example, the famous B3LYP30,31 functional is written as: 

E@E
k&lmn � E@E

lop � α5�E@
rs � E@

lop� � α@�E@
ttp � E@

lop� � αE�EE
ttp � EE

lop�,  

  (2.23) 

where the values of the three parameters α5, α@ and αE are determined by fitting the 

predicted values to a set of experimental data such as atomization energies and ionization 

energies etc. 

GGA's and hybrid approximations have reduced the LDA errors of atomization 

energies of standard set of small molecules by a factor 3-5. This improved accuracy has 

made DFT nowadays a very important and popular computational method of quantum 

chemistry. The hybrid functional can even deal with some problems that cannot be 

achieved by the LDAs and GGAs such as the highly localized f electrons in transition 

metals.  

2.2.5. Overview of Theory 

2.2.5.1. Major Contributions of Theory 

Fundamental Understanding (DFT v.s. Hartree-Fock): Following Schrödinger’s 

equation, traditionally, we consider a system as Hilbert space of single particle orbitals 

and the wavefunctions are the most important variables for a system. While the DFT 



 
 

15 
 

provided a complimentary perspective by focusing on quantities in real coordinate space 

n(r), so this is conceptually a totally different point of view. In addition, the exchange-

correlation energies were included in DFT and they were cleverly written together using 

and approximated functional. 

Practical: Another success of the DFT is it is actually a very practical method for the 

study of quantum system. In quantum computations, Hartree-Fock method is a basic 

method that provides a “reasonable” physical description of the interactions such as 

attractions, repulsions and electron exchanges between nucleus and electrons of a system. 

However, the method has its limitation: by increasing the complexity of the basis set in 

the calculation, the convergence eventually reaches to the “exact” solution of the Hartree-

Fock calculation and this is called Hartree-Fock limit. Unfortunately, the limit is still far 

from the exact description of many electronic structures and properties simply due to the 

ignorance of the electron correlation term. For example, Hartree-Fock calculations yield 

poor results for the dissociation energies and even worse results for the reaction energies. 

DFT, along with others such as perturbation theory (MP2, MP3 and MP4 calculations), 

configuration interaction method and coupled-cluster method are considered “beyond 

Hartree-Fock” approaches. These “beyond Hartree-Fock” methods provide more accurate 

computational results by including the correlation energies. However, except the DFT, all 

the other “beyond Hartree-Fock” methods all suffer a big drawback: if we use 

tranditional wavefunction methods, when the system size increases, at certain point, we 

encounter a so called “exponential wall”—as the particle number increases, the 

computational effort increases exponentially. While the computational effort of DFT is 

significantly lowered, thus the computation of large systems became achievable. The 
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“practical” success can be explained by showing the difficulties of solving traditional 

Hartree-Fock in terms of wavefunction below: 

The original Hamiltonian is written as:  

�� � � ��

��
∑ ��(

\J4 � ��

��u
∑ ��v

wJ4 � ∑ ∑ xu

Zyu

�
zJ4

I
GJ4 � ∑ ∑ 4

Zy{

I
N|4

I
GJ4 � ∑ ∑ xux}

~u}

�
�|z

�
GzJ4  

           (2.24) 

After the first “famous” approximation, that is, Born-Oppenheimer approximation, 

the electronic Hamiltonian can be written as: 

��P�PS � � ��

��
∑ ��(

\J4 � ∑ ∑ xu

Zyu

�
zJ4

I
GJ4 � ∑ ∑ 4

Zy{

I
N|4

I
GJ4 ,      (2.25) 

where there are only three terms left—the electron kinetics, the nuclei-electron attractions 

and the electron-electron repulsions. The first and second terms in Equation 2.25 are 

usually very straightforward and easy to deal with, but the electron-electron interaction is 

often cumbersome. The Hartree-Fock method describe the electron-electron interaction 

using ∑ J\�+
(
\,�J4 K\�where 

�GN � ' ' �G��4���?� �G
H��4���?� 4

Z��
�N�������?��N

H�������?�/�4���?/������?                            (2.26) 

�GN � ' ' �G
H��4���?��N��4���?� 4

Z��
�G�������?��N

H�������?�/�4���?/������?.                          (2.27) 

Jij is Coumlomb integrals, and Kij is exchange integrals which covers the electron 

exchange energy. It was the last exchange term of the Hartree-Fock model that made the 

Hartree-Fock equation not “separable” for each electron, and furthermore, solving 

equations with this mixed term can be really “painful”. One of the reasons why DFT 

method is so efficient compared with the Hartree-Fock method is it avoids dealing with 

this term. Instead, only the Schrödinger’s equations of single particles need to be solved. 

2.2.5.2 Applications 
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 DFT has been successfully applied to calculate various ground state properties of a 

lot of different systems. Theoretically, any property that can be derived by solving 

Schrödinger’s equation can be calculated by the DFT. Those properties typically include: 

mechanical properties (elasticity and plasticity), phonons and thermodynamics, 

theoretical crystallography and mineralogy. It can also deal with some chemical 

processes such as heterogeneous catalysis (oxidation and hydrogenation), 

hydrodesulferization and isomerization cracking, as well as electrochemistry and 

electrocatalysis. Furthermore, the time-dependent density functional theory (TD-DFT)32 

is the extension of DFT method and can be used to calculate the excited state properties 

such as excitation energy and photoadsorption spectrum. The DFT method can also be 

conveniently implemented into ab initio Car-Parronello molecular dynamics 

simulations33 wherein the electronic degree of freedom is included. 

Other techniques to improve the applications of DFT include: using high-performance 

code (MPI-based code, for example), good choice of basis set (planewave for extended 

system, Pseudopotentials rather than full-electron methods) and tight-binding techniques 

(semi-empirical).  

DFT still have unsolved issues of dealing with certain systems and properties. 

Because the DFT calculations are very sensitive to the electron density and thus it fails 

for systems where electron density is not a slowly varying function such as Van der 

Waals energies between non-overlapping subsystems and electronic tails evanescing into 

the vacuum near the surfaces of bounded electronic systems and electronic Wigner 

crystal. The poorly calculated properties also include long range polarization energies, 

regions of evanescent electron densities, partially filled electron shells and reaction 
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barriers. Only through proper special approximations, these problems can be successfully 

treated.   

2.3. Locating Transition States 

Before the development of transition state theory (TST), the empiricism-based 

Arrhennius equation 

� � ��+� ~0⁄      (2.28) 

 is generally accepted34. However, the equation is based the experimental observation and 

does not have theoretical or mechanism base. The detailed consideration of the pre-factor 

� and the activation energy � was not dealt with until 1935 when the TST was discussed 

by Henry Eyring and by Gwynne Evans and Michael Polanyi simultaneously.35-37 The 

Eyring equation, also known as the Eyring-Polanyi equation 

  � � ��0

�
�+�t‡ ~0⁄         (2.29) 

successfully addressed the two factors (pre-factor and activation energy) in the Arrhenius 

equation. The fundamental assumption is that there exists a hypersurface in phase space 

which divides space into a reactant region and a product region, and once the trajectory 

passes through this dividing surface to the product direction it will never recross the 

hypersurface again. Thus, the reaction rate can be calculated by focusing attention on the 

activated complex which lies at the saddle point of the potential energy surface and the 

details before the transition state is reached is not important. A more refined version of 

transition state theory is the variational transition state theory (VTST)38,39. It is 

distinguished from the conventional TST by varying the definition of the dividing 

surface. The dividing surface does not only intersect the saddle point, it is also 

perpendicular to the reaction coordinate in all reaction coordinate dimensions. Thus, the 
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dividing surface between reactant and product regions is variationally optimized to 

minimize the reaction rate. Some recent development of the original TST include RRKM 

theory40-42 and quasi-equilibrium theory (QET)43 etc.  

In my study, the Nudged Elastic Band (NEB) method44,45 was used to seek the 

minimum energy pathway (MEP) and locate the saddle point of the MEP. The NEB 

method was developed by Hannes Jonsson et al. The method is a very efficient approach 

for finding MEP between given initial and final state even for systems with very complex 

potential energy surfaces. In the NEB method, first a set of images (replicas) of the 

system are constructed between initial and final states. Then a spring interaction is added 

to between adjacent replicas so that the images on the path are continuous. The spring 

force limits any irrational movement of the images that would not end up with the 

transition state and the system now mimics an elastic band. Figure 2.1 shows the potential 

energy surface of a reaction that involves three atoms a, b and c. Atom b either binds with 

a or c. At point AB, compound ab forms  

 

Figure 2.1. A contour plot of potential energy surface for a three-atom system.  
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and at point BC compound bc forms and these two points are both energy minimum on 

the plot. The points at the straight line with small dots which connect to initial and final 

state AB and BC represent the set of images constructed at the beginning of a NEB 

calculation. If the spring force didn’t exist between the images, optimizing the images at 

the straight line would lead to the images on the right hand side of the system falling into 

region Q and those on the left into P at the end, which obviously would not lead to a 

transition state. However, minimizing the force acting on the images with the spring 

force, we end up with the MEP which is indicated by the line with large dots. To be more 

specific, the tangent to the path at each image during the minimization was calculated so 

that both spring force and true force can be decomposed into components parallel or 

perpendicular to the path. Only the parallel spring force and the perpendicular real force 

should be included in minimization. This ensures that the spring forces only controls the 

spacing between the images along the band but do not interfere with the convergence of 

the elastic band to the MEP (the perpendicular spring force prevent the band from 

following a curved pathway causing “corner-cutting”); at the same time, the true force 

pushes the images into the MEP but does not affect the distribution of images along the 

band (the parallel true force causes the images to slide away from the high energy regions 

towards the minima, reducing the density of images where they are needed most).  

The NEB has been conveniently adapted for conjunction use with the DFT 

calculation code VASP. In my study, I used the Perl code developed by Henkelman et 

al.45 

2.4. Computational Codes 
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The density functional theory has been implemented in various computational codes. 

Two simulation codes were used in my study—the VASP and GAUSSIAN. Both codes 

are very well commercialized and widely used.  

2.4.1. VASP. The Vienna Ab-initio Simulation Package (VASP) performs ab-initio 

density functional theory calculations. It is by far one of the most popular computational 

codes for calculations of infinite systems such as solid states and condensed matters.  

VASP uses plane wave basis set rather than localized basis set.  The PAW method or 

ultra-soft pseudopotentials are used to describe the interaction between ion and non-

valence electron so that the size of the basis set can be reduced. The self-consistency 

cycles and choices of numerical methods to calculate the electronic Kohn-Sham ground-

state in VASP are quite efficient and robust. Periodic boundary conditions are used to 

treat infinite numbers of atoms. The package also includes the Monkhorst Pack to sample 

the Brillouin zone. In the actual computation, only the atoms within one periodic cell was 

optimized and computed with the consideration of their interactions with atoms in the 

neighboring cells. For example, a CeO2 bulk structure is shown in Figure 2.2. The system 

is infinite, but in the actual calculation, only atoms in the highlighted unit cell is 

computed, however, when calculating the atoms in the highlighted unit cell, their 

interactions with the atoms in neighboring cells are also considered. 
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Figure 2.2. Bulk CeO2 structure. Atoms in each box are repeated in other boxes. 

 The VASP offers support for a large variety of flatforms, such as Pentium, Athlon, 

IBM, HP, Cray and SUN(-). High performance computation (paralleled computers) is 

available. All these features make the package very suitable for computations of extended 

large systems. In principle, in paralleled computing the more processors are used, the 

faster the calculation is. However, for the computer clusters, depending on the processor 

type, there is always a critical number of CPUs, larger than which the computation speed 

does not increase linearly with the number of CPUs used—for example, computing on 

four nodes might be two times faster than computing on two nodes, but computing on 

eight nodes does not necessarily improve the efficiency by as much as four times. 

A typical VASP calculation requires at least four basic input files—INCAR, 

POTCAR, POSCAR and KPOINTS. 

INCAR:  The actual calculation control parameters are included in this file. It decides 

what calculations need to be done and how they should be done. The basic parameters are 

as following: 

  IBRION    =    2      Ionic relaxation algorithm: 0-MD 1-quasi-New 2-Conjugated Gradient. 
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  POTIM     =    0.50                                                Time-step for ion-motion. The proper  

value can speed up the calculation 
 

  ISIF           =     2                                                      What to relax. Typically 7- bulk, 2-cluster, 
and 3 or 2 for surface. 

    
  NSW          =    100                                               Number of steps for ionic relaxation. 

Stopping criteria before EDIFFG is reached. 
 

EDIFF       =   .5E-04                              Stopping-criterion for electronic self consistent loop. 
 

  EDIFFG    =   .5E-03                                             Stopping-criterion for ionic relaxation. 
Typically ten times of the value of EDIFF. 

 
  ISPIN        =    1                                                  Spin state.1-unpolarized 2-polarized. 

 Different setup will yield different energy value. 
   

  ENCUT    =   450.0                                     Cut-off energy. Directly affects the accuracy of the                      
calculation and the calculated absolute energy value. 

   

  The parameters listed above are the basic important parameters for an INCAR file. 

One should try to keep all the parameters as consistent as possible within one system for 

the comparison reason, i.e., all the calculations should have the same accuracy to be 

compared with each other. 

Additional parameters:  

 PREC       =   high                 Precision of the calculation. “High” will change cut-off energy. 

       LCHARG  =  T                                                                               Whether to write CHGCAR. 

      LWAVE    =  T         Whether to write WAVECAR. CHGCAR and WAVECAR take 

 a lot of disk space. Unless necessary, don’t write them out. 

  LORBIT   =  12                                   Whether to write DOSCAR and in what format. 

  
POTCAR:  The VASP is supplied with a set of standard pseudopotentials of various 

atoms. Before starting a calculation, one should have the pseudopotentials of each atom 

involved in the system concatenated in POTCAR under the working directory.  
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POSCAR: This file contains the lattice geometry and the ionic positions. For MD 

calculations, it also optionally contains the starting velocities. For VASP calculations, the 

system of interest is always a “box”, so the shape and size of the box should be defined in 

this file. The number of each type of atoms should be written in one line according to the 

order the element appears in the POTCAR file. Then the coordinates of each atom should 

be listed either in Direct or Cartesian coordinate. One can also conveniently specify 

which dimension of which atom should be allowed to relax and what should be 

confined/frozen. Vacuum space can be inserted between images in neighboring cells 

when the interactions between them need to be avoided. As shown in Figure 2.3a, for a 

bulk structure calculation the system is periodically continuous, so the atoms should fill 

up the unit cell in all three dimensions. For one single gas phase molecule, enough 

vacuum space should be inserted in all three dimensions to avoid the interactions between 

the molecule and its images in neighboring cells. The example of unit cell containing a 

single CO2 molecule is shown in Figure 2.3b. A surface is normally simulated using a 

slab. As shown in Figure 2.3c, the atoms in the two surface dimensions (x and y) should 

be “continuous” (no vacuum space) and in the direction normal to the surface a vacuum 

space should be added. 
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(a) (b)

(c)x
y

 

 Figure 2.3. Examples of unit cells of (a) bulk CeO2 structure, (b) a single CO2 molecule and (c) 
CeO2(111) surface. 
 

KPOINTS:  The choice of KPOINTS depends both on the type of the system (cluster, 

surface or bulk) and on the size of the unit cell. For isolated clusters, due to the vacuum 

space inserted in all three dimensions, Γ-point was used. A bulk structure extends in all 

three dimensions of the box, so the K-points according to the Monkhorst-Pack scheme 

should be used. Normally, the larger the number of K-points, the more accurate the 

results should be and the more expensive the calculation is. Therefore, the numbers of K-

points need to be large enough to guarantee the accuracy but not too large for the 

consideration of computational cost. The safest way to determine the proper K-points is 

to do an energy convergence test—calculating the same system with increasing number 

of K-points and the number of K-points at which the calculated energies start to converge 
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should be the choice of K-points. Fortunately, the convergence test is not always required. 

Empirically, a division in reciprocal space of less than 0.05Å-1 has been shown to provide 

converged structures and adsorption energies, so one can conveniently choose the values 

of K-points accordingly. For example, if the size of a bulk unit cell is 4 × 5 × 2 Å, then 

the K-points should be set up to 5 × 4 × 10. For surface calculations, the two dimensions 

within the surface (x and y) are extended in neighboring cells while a vacuum space is 

inserted along the dimension that is vertical to the surface (z). Thus, the choice of K-

points values for the dimensions in the surface should follow the same rule as for bulk, 

i.e. a division in reciprocal space of less than 0.05Å-1. For the “discontinuous” z 

dimension, 1 should be used. 

Examples of INCAR, KPOINTS, POTCAR and POSCAR files are shown in 

Appendix I. 

If the input files are set up properly, after the calculation, the structure will be written 

in a file called CONTCAR. If after the required ionic relaxation steps (NSW), the 

calculation is still not converged yet, one can continue the calculation using the structure 

optimized but not yet converged from the last run (cp CONTCAR POSCAR). Detailed 

information of the calculation, including the energy of the system, will be written in the 

file OUTCAR. 

By setting LORBIT = 12 in the INCAR file, the phase projected density of state 

(DOS) will be written in DOSCAR. This allows us to plot out the phase decomposed (s, p 

or d) density of state graph to analyze the interactions between atoms. 
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Bader charge46 of the system can be analyzed by using the Perl code written by 

Henkelman et al47. However, it is necessary to set LCHARG = T and LAECHG = T in 

the INCAR file before starting the calculation. 

Due to the variation of the systems studied in this work, additional descriptions of 

computational parameters are presented in each individual chapter. 

2.4.2. GAUSSIAN 03. Gaussian is very popular and widely used computational 

software due to its user-friendly interface. A lot of the standard or default inputs are very 

useful to amateurs while at the same time modifications of parameters are also available 

for more sophisticated users. Unlike VASP, GAUSSIAN collected various quantum 

mechanical methods, including the DFT method with different functional, and the 

perturbation method such as MP2, MP3. Both Cartesian coordinates and Z-matrix are 

accepted as the input coordinate. A variety of basis set are available in the program. 

Besides optimizing structure and calculating energy of the system, it can also be used to 

calculate frequencies, Raman and NMR spectrums, two or three layers of ONIOM 

geometry optimizations, molecular dynamics simulations, and locate transition states.  

The GAUSSIAN input consists of a series of lines: 

• Link 0 Commands: Locate and name scratch files. The location of the 

“Checkpoint” file should be specified in this line. The “Checkpoint” file is 

machine-readable and it stores the calculation results (optimized structure and 

orbital information). The checkpoint file is really handy when using the results of 

one calculation as the starting point for a second calculation. This shall save 

computational time. For example, when running a calculation that starts with the 

structure stored in the checkpoint file, one should use keyword “geom = check 
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guess=read” so that the system will read the structure and basis set information 

from the checkpoint file. However, if this line is not changed before running the 

second calculation, the original checkpoint file will be overwritten. 

• Route section (# lines): Specify desired calculation type and iop parameters. The 

main information of job type (e.g. optimization, frequency, IRC, NMR, or 

ADMP), computational method (e.g. ground state, TD-DFT, HF, DFT, CCSD, or 

MP2) and basis set are specified in this line. The internal options can also be set 

in this line to overwrite the system default parameters. 

• Title section: Brief description of the calculation. Blank line is acceptable. 

• Molecule specification: Specify molecular system to be studied. It is usually a line 

of charge and spin state information followed by the atom types and coordinations 

of each atom. Both Z-matrix and Cartesian coordinate are legal format. 

• Optional additional sections: Additional input needed for specific job types. 

Examples of GAUSSIAN 03 input were shown in Appendix II including calculations 

for structure optimization, transition state optimization and IRC calculation. 

2.5. Computational Facilities 

The Guassian calculations in this work are performed on Dell WORKSTATION 

PWS650 running on Windows XP with quad-core Xeon CPU 3.20 GHz and 3.50 GB of 

RAM, as well as Dell Precision 380 running on Linux Redhat release 4 with Xeon CPU 

2.27 GHz and 7.60 GB of RAM. 

The VASP calculations were computed on high performance computer clusters 

“Pluto”, “Sirius” and “Procyon” of Ge’s research group, as well as the molecular science 

computing facility “Chinook” in Environmental Molecular Sciences Laboratory (EMSL) 
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located at Pacific Northwest National Laboratory. “Pluto" is composed of 25 slave nodes. 

Each of these slave nodes has 1.4 GHz dual Athlon processors and 1 Gb of memory. 

"Sirius" is composed of 24 slave nodes each with 1.8 GHz dual Opteron 244 processors 

and 2 Gb of memory. “Procyon” is composed of 23 slave nodes and each node has quad-

core and 15.67 Gb memory. “Chinook” is sponsored by the US Department of Energy 

Office of Biological & Environmental Research. It has 2,310 nodes each with HP/Linux 

supercomputer two quad-core AMD Barcelona processors (2.2 GHz). 
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CHAPTER 3 

EFFECT OF MORPHOLOGY, STOICHIOMETRY AND SUPPORT ON 
REACTIVITY OF CATALYSTS: 

 NO2 INTERACTION WITH UNSUPPORTED AND Г-Al 2O3 SUPPORTED BaO  
 

 
3.1. Introduction 

NOx (NO and NO2) species is one of the common pollutants for our environment. 

One of the main manmade sources of NOx is produced by fuel combustion in motor 

vehicles—diatomic nitrogen in combustion air is oxidized at high temperature. 

Nowadays, most of the vehicles were equipped with emission control system called 

catalysis convertor. The most conventional catalyst used in the catalysis convertor is the 

three-way catalysts. The catalysts abate hydrocarbon, CO and NOx in the exhaust 

simultaneously at the stoichiometric air-to-fuel ratio combustion condition. However, in 

order to improve fuel efficiency, “lean-burn” technology was introduced to gasoline 

internal combustion engines. The lean-burn engine operates at a higher air-to-fuel ratio 

than the stoichiometric ratio so that the engine achieves a more complete combustion and 

therefore, a better fuel economy. The relative oxidative environment resulted from the 

high air-to-fuel ratio makes the reduction of NOx generated during combustion more 

challenging, so the three-way catalysts are ineffective to eliminate NOx under lean burn 

conditions.48 To meet the stringent NOx emission standards, alternative NOx control 

technologies are needed. One of the new technologies is the NOx storage-reduction 

(NSR) catalysts.48-51  

The design of the NSR catalyst is based on the cyclic operation of the engine between 

lean and rich modes, i.e. at high air-to-fuel ratio lean mode, the reduction of NOx is not 
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so the catalysis system  stores the NOx species temporarily; when the 

mode, the stored NOx will be released and then reduced to N

being emitted into the air.48 A typical NSR catalyst consists of porous materials as 

support, noble metals as active redox catalyst components and alkaline earth metal oxide

storage components. Previous study showed among many candidates for NO

effective towards NOx adsorption, so it has been chosen as the 

storage component in NSR catalysts.52 There is a general consensus

over the Pt sites precedes NOx storage. A schematic illustration 

is shown in Figure 3.1.  

echanism of NOx storage reduction (NSR) catalysis. 
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of 0.8 ± 0.05 eV. In a later publication by the same group, they studied NO2 adsorption 

over a (BaO)9 cluster.69 The low-coordinated cluster sites were found to have a stronger 

affinity towards NO2 compared with the surface sites on a flat BaO(100) surface. 

However, the reported values cannot be compared to the results in our study due to the 

fact that the methods used in two studies were different. Branda et al. also showed that 

the low-coordinated sites were much more active towards NO2 adsorption than the flat 

surface sites using the DFT cluster model.64 

Although the previous computational studies on NO2/BaO interactions provided us 

valuable information and fundamental understanding of NO2 interaction with BaO, the 

roles of other factors that can greatly impact the performance of the catalyst, such as 

defects and support materials, were not properly accounted for. In a lot of heterogeneous 

catalysis processes, the stability and activity of a catalyst can be greatly affected by the 

defect and support material. Particularly for the NSR catalysts, the choice of support 

materials has been illustrated to strongly influence the sorption property of BaO towards 

NOx.
55,60,70-75 Furthermore, the support material itself can also provide storage sites at 

temperatures below 300°C.76 Therefore, the effect of defect and support cannot be 

ignored and need to be studied. 

The NO2 adsorption over defected clusters and surfaces was studied to illustrate the 

defect effect. To be able to show the change of NO2/BaO interaction caused by the 

defect, we have used the results of NO2 adsorption over BaO(100) as references. 

Although the (100) surface were studied previously by many groups, we built and 

calculated our own model of BaO(100) so that the results can be directly compared with 

the rest of the work with consistent method treatment. The (100) surface results are 
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shown in Section 3.3.1. The NO2 adsorption over stoichiometric clusters is reported in the 

first part of Section 3.3.2. This part of results show us the size effect of BaO clusters. 

Stoichiometric step surface was studied as one type of defective surface and the results 

are shown in the second half of Section 3.3.2. Non-stoichiometric clusters and non-

stoichiometric surfaces were both studied as the defects whose effect on NO2/BaO 

interaction was not investigated before. The results are shown in Section 3.3.3. 

 Among many support materials, γ-Al 2O3 has been used as a support material for 

NSR catalysts in many studies.49,50,59,77-81 It was shown to provide the highest NOx 

storage capacity70, so γ-Al 2O3 surface is the choice of support in my study. The structure 

of γ-Al 2O3 is by far still controversial. There are two schools of general models for γ-

Al 2O3 structure—non-spinel and defective spinel. In my worked I used the defective 

spinel structure that was proposed by Pinto et al82. More detailed information about this 

model will be given in the Methodology section. In addition to the choice of the support 

material, a highly dispersed phase of BaO on the support surface is also critical to achieve 

high NSR reactivity.71,80,83-85 For example, a flame-made Pt-Ba/Al2O3 catalyst was shown 

to contain an active Ba-containing phase where Ba species were in intimate contact with 

the support.77 It has also been observed that the decomposition of Ba(NO3)2 crystalline 

supported on γ-Al 2O3 leads to nanosized BaO particles during a NSR cycle.80,86 As such, 

a study of BaO clusters dispersed over the γ-Al 2O3 surface and their activities towards 

NO2 adsorption would help to gain insights into the NSR catalysts. The results are 

reported in Section 3.3.4. 
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In addition to the contributions of the physics that this study revealed for the NRS 

catalysis, this is the first time that an oxide supported oxide model was developed and 

studied.  

3.2. Methodology 

3.2.1. General Method. All the calculations in this chapter were carried out using the 

VASP code87. The interaction between ions and electrons was described using the 

projector augmented wave  (PAW) method.87 The plane wave basis set with a cutoff 

energy of 400 eV was used to expand the wavefunction of valence electrons. The PBE 

functional88 were used to evaluate the nonlocal exchange-correlation energy. All 

calculations include spin-polarization. K-point meshes generated with the Monkhorst-

Pack89 scheme were used to sample the first Brillouin zone of the surface unit cell. As 

discussed in Section 2.4.1, the division in reciprocal space of less than 0.05Å-1 led to a 8 

× 8 × 1, 5 × 8 × 1 and 3 × 3 × 1 for BaO(100), BaO(310) and γ-Al 2O3 supported BaO 

clusters, respectively. Γ-point was used for isolated clusters. The atomic structures were 

relaxed until the forces on the unconstrained atoms were less than 0.05 eV/Å. Bader 

charge analysis was carried out for selected structures using the program developed by 

Henkelman and co-workers.90  

To validate the computational parameters we chose, we first optimized the bulk 

structure BaO with above parameters. The lattice constant was calculated to be 5.549 Å,  

in good agreement with both the literature value of 5.539 Å91 (experimental) and 5.59 Å69 

(DFT calculation). 

3.2.2. Modeling of Bare BaO Clusters, (100) and (310) Surfaces. Initial structures of 

small BaO clusters were built by extracting different size of BaO fragments from the 
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relaxed bulk structure. The cluster together with the adsorbed NO2 molecule was then 

allowed to relax without constraints. For unsupported cluster calculations, a vacuum 

space of at least 10 Å of in each direction was inserted between neighboring cells to 

avoid the unwanted interactions between its periodic images.  The initial structures of 

unsupported BaO (100) and (310) surfaces were cleaved from the relaxed bulk BaO 

structure. Both surface slabs have five layers. Convergence test of NO2 adsorption energy 

on BaO(100) was carried out to validate the 5-layer slab model. The test proves that five 

layers are thick enough to simulate the surface. The bottom two layers of the five layer 

slab were kept frozen at the respective bulk positions whereas the top three layers 

together with the adsorbed NO2 molecule were allowed to relax during the calculations.  

3.2.3. Modeling of γ-Al2O3 Supported BaO Clusters. There exist two molecular models 

of γ-Al 2O3
92-95–the defective spinel82 model and the non-spinel model96. In this work, the 

defective spinel model was used. The perfect spinel structure was named after the crystal 

structure of MgAl2O4. We start building the defective γ-Al 2O3 structure by substituting 

Mg atom in the MgAl2O4 crystal structure with Al atom, so that we have spinel Al3O4. 

Then a supercell containing 18 Al and 24 O atoms was created, in which two Al atoms 

have to be removed to maintain the stoichiometry (defective spinel). The nature and 

distribution of the vacancies in the spinel structure is also a hotly debated subject97. The 

choice of Al atoms to be removed was discussed in Pinto’s work82. We chose to remove 

the two Al atoms that correspond to the lowest energy penalty, i.e. the system is most 

stable after removing this combination of Al atoms. The removals of the two Al atoms 

were illustrated in Figure 3.2. This Al16O24 structure was then allowed to fully relax.  
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Figure 3.2. The supercells of non-stoichiometric spinel Al18O24 and stoichiometric defective 
spinel Al16O24 after removing two Al atoms highlighted in the Al18O24 structure. (a = 17.14Å, b = 
5.71Å, c = 5.17Å, α = β = γ =60o) 
 

The γ-Al 2O3(111) surface with the lowest surface energy of 0.98 J/m2 after relaxation 

was chosen as the substrate for BaO in this study. The γ-Al 2O3(111) surface is shown in 

Figure 3.3. For the calculations of the γ-Al 2O3 supported BaO clusters, the bottom four 

layers of γ-Al 2O3(111) were kept frozen and the top five layers together with BaO and 

NO2 were allowed to relax.  
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Figure 3.3. Side view of γ-Al 2O3(111) surface. The Al vacancy sites were labeled. 

 

3.3. Results and Discussion 

3.3.1. NO2 Interaction with BaO(100) Surface. We first calculated NO2 adsorption over 

the perfect BaO(100) flat surface. This system has been a subject of many theoretical 

studies61,63,66-68, and our results only serve as references for comparison with NO2 

adsorption on other BaO substrates. Top views of three optimized NO2 adsorption 

configurations on various surface sites are shown in Figure 3.4, along with the 

corresponding adsorption energies. The adsorption energies were calculated using  

�z�� � ����h��� � ����� � �����,                                   (3.1) 

where ���� and ���� are the energies of BaO substrate and gas phase NO2 molecule, 

respectively. ����h��� is the energy of the structure where NO2 is adsorbed on the BaO 

substrate. The most stable NO2 adsorption configuration is shown in Figure 3.4a. In this 

structure, the N atom of the NO2 molecule sits on top of a surface O site and the two O 

atoms of NO2 point to two surface Ba atoms. The plane of the adsorbed NO2 molecule is 
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almost parallel to the surface. The adsorption energy of this structure was calculated to be 

−1.06 eV. The two configurations with NO2 being adsorbed at the surface Ba site(s) 

(Figure 3.4b and c) are less stable. The relative stabilities of these three adsorption 

structures are in agreement with previous works.15,17,66,67 For example, using the GGA-

PBE method implemented in CASTEP with a fixed two-layer slab, Broqvist et al. also 

reported that the NO2 adsorption on the O site of BaO(100) surface is the most favorable 

adsorption configuration61. The adsorption structure they reported is very similar to the 

structure in Figure 3.4a and the adsorption energy is ~ −0.8 eV. In later works by the 

same group, the NO2 adsorption on the BaO(100) surface were again calculated but using 

the GGA-PBE method implemented in the CPMD code and three-layer p(3×3) surface 

slabs. The NO2 adsorption over the surface O site with an adsorption energy of −1.32 eV 

was also found to be most stable.66,67 Using the GGA-PW91 method and ultrasoft 

pseudopotentials implemented in the VASP code, Schneider calculated the adsorption 

energy to be ~ −1.5 eV for a similar NO2 adsorption geometry on the O site of BaO(100) 

surface.63 Clearly, the values of adsorption energy calculated by different authors with 

different methods may not be directly compared. Tutuianu et al. compared the results 

reported by different authors and found that the calculated NO2 adsorption energies on 

BaO(100) in a similar adsorption configuration can be greatly affected by the NO2 

coverage and the number of BaO layers.68 The NO2 adsorption energy at the coverage of 

the present work was −0.9 eV in that study using five-layer slab. 68 Nevertheless, a 

consistent conclusion that the O site of the BaO(100) surface is the most favorable NO2 

adsorptions site can be reached.  



 
 

39 
 

 
Figure 3.4. Top view of the adsorption geometries and energies of NO2 on the BaO(100) surface. 

(a) N-down over the surface O site; (b) N-down over surface Ba site; (c) O-down in a bidentate 

configuration. The BaO(100) surface is shown in stick and NO2 molecule in ball and stick. (Red: 

O, Green: Ba, Blue: N) Reproduced with permission from J. Phys. Chem. C, 2008, 112, 16924. 

Copyright 2008 American Chemical Society. 

 
3.3.2. NO2 Interaction with Stoichiometric BaO Clusters and Stepped Surface. a. 

Stoichiometric Clusters. Our calculation started with the smallest cluster (BaO)1 and 

increased to (BaO)2, (BaO)4, and (BaO)32. The structures of these clusters were 

constructed based on the rock-salt structure of bulk BaO. The smallest cluster (BaO)1 is 

linear and only has one dimension. The (BaO)2 cluster is a square and it has two atoms 

on each side (2 × 2). The (BaO)4 cluster is the smallest three-dimensional cluster and has 

a cubic structure with 2 atoms on each edge (2 × 2 × 2). The clusters that have 3 atoms 

on each edge (3 × 3 ×3) have odd number of atoms. They are non-stoichiometric and 

will be discussed in the following section. Therefore, the next stoichiometric cluster in 

this series is (BaO)32 which has 4 atoms on each edge (4 × 4 × 4). The mean Ba−O bond 

lengths of these clusters were calculated to be 2.02, 2.30, 2.45 and 2.68 Å for (BaO)1, 

(BaO)2, (BaO)4 and (BaO)32, respectively. These bond lengths are shorter than the Ba−O 

bond length of 2.79 Å in bulk BaO. Bader charge analysis showed that for (BaO)1, 

(BaO)2 and (BaO)4, the charge on each Ba atom and O atom has the same magnitude but 

opposite signs. The charges on Ba atoms in these clusters are 1.22, 1.31 and 1.36 |e|, 

respectively. Unlike in the smaller clusters, Ba or O atoms in (BaO)32 are not in the 
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equivalent positions. Consequently, the charges on Ba or O atom in (BaO)32 varies 

according to the exact location of the atom in the cluster. The interior Ba and O atoms (4 

each) have Bader charges of 1.33 and − 1.40 |e|, respectively. These values are close to 

the Bader charge of the atoms in bulk BaO (1.36 |e|). The Bader charges of the surface 

and edge Ba atoms span in the range of 1.42 ~ 1.45 |e|, whereas those of surface and 

edge O atoms range from − 1.40 to − 1.45 |e|. Obviously, the charges on the surface and 

edge atoms are bigger than those on the atoms in bulk BaO. In fact, similar charge 

redistribution was observed in the BaO(100) surface layers—the surface atoms have 

bigger charges than the bulk atoms. The larger charges on the surface Ba/O atoms are 

related to the relaxation at the surface.  
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1.36

(a) -1.22eV (b) -1.11eV (c) -1.68eV

1.33

(d) -0.97eV (e) -0.69eV (f) -1.56eV

1.46

(g) -0.86eV (h) -0.61eV (i) -0.88eV  
Figure 3.5. The adsorption geometries and energies of NO2 over the stoichiometric BaO clusters. 

NO2 adsorption at the O site of (a) (BaO)1, (d) (BaO)2 and (g) (BaO)4; NO2 adsorption at the Ba 

site of (b) (BaO)1, (e) (BaO)2 and (h) (BaO)4; NO2 bidentate adsorption at (c) (BaO)1, (f) (BaO)2 

and (i) (BaO)4. While NO3
δ- species forms, the N-Ocluster bond length is labeled. Reproduced with 

permission from J. Phys. Chem. C, 2008, 112, 16924. Copyright 2008 American Chemical 

Society. 

 

For each of the stoichiometric clusters, we calculated the NO2 adsorption over a 

single O site and a single Ba site as well as in a bridging bidentate configuration over two 

Ba sites. The optimized structures were shown in Figure 3.5 together with the 

corresponding adsorption energies. The adsorption energies were also calculated 
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according to Equation 3.1. The structures in Figure 3.5 were arranged from left to right in 

each row: NO2 adsorption on a single O site, on a single Ba site, and in a bidentate 

configuration with O down bridging over Ba atoms adsorption. As shown in Figure 3.5, 

for each cluster, the NO2 adsorption configuration in which the two O atoms of NO2 

bridge over the cluster Ba atom(s) (Figure 3.5c, f and i) is the most energetically 

favorable. This is different from NO2 adsorption on BaO(100), as shown in Figure 3.4, 

where the surface O site is most stable. 

The bridging bidentate configuration of NO2 adsorption on the (100) surface of MgO, 

CaO, SrO, and BaO was classified as basic NO2 by Schneider.63 This can be attributed to 

the fact NO2 was adsorbed in a surface Ba (basic) site and acted as an electron acceptor. 

Bader charge analysis showed that for the bidentate configuration in Figure 3.5f, the NO2 

fragment became negatively charged with a net charge of −0.86 |e|. The charges on the 

two Ba atoms were increased to 1.48 |e|, whereas those on the two O atoms became −1.05 

|e|. The interaction through the O atoms of NO2 was weakened as the size of the cluster 

was increased, as shown in the right column of Figure 3.5. We note that the strong 

Bacluster-ONO2 interactions caused the BaO square to deform from its original planar 

structure (Figure 3.5f). However, the structural distortion of (BaO)4 due to NO2 

adsorption was counteracted by the underneath BaO units, as shown in Figure 3.5i. The 

structural rigidness of (BaO)4 reduced the energy gain through the “basic adsorption”. As 

such, the “acidic adsorption” of forming a NO3
δ- shown in Figure 3.5g became almost as 

stable as the “basic adsorption” of forming NO2
δ-. Our results of the adsorption structures 

of NO2 on the (BaO)1 and (BaO)4 clusters are similar to the results reported by Gronbeck 

at al.67 However, our calculated adsorption energies of −1.68 and −0.88 eV on (BaO)1 
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and (BaO)4, respectively, are consistently larger than the corresponding values of −1.48 

and −0.74 eV reported in that work.67 Furthermore, these authors67 did not report the 

formation of NO3
δ- structures shown in Figure 3.5a,d,g. For example, the N-down 

configuration on the edge of (BaO)6 has a N−Ocluster distance of 3.09 Å and adsorption of 

−1.07 eV67. 

We also explored NO2 adsorption on different sites of the (BaO)32 cluster. Due to the 

large size of the cluster, each facet of the cluster has some characteristics of the BaO(100) 

surface. As such, we expected the interaction of NO2 with the center of the cluster surface 

to be similar to that with the BaO(100) surface. Indeed, our results showed that the NO2 

adsorption energies at the center O and Ba sites of each facet were slightly smaller than 

but comparable to those on the BaO(100) surface. The adsorption at the cluster edge and 

corner site, on the other hand, is stronger than on the flat (100) surface. For example, at 

the cluster O edge site and Ba corner site, the NO2 adsorption energies are −1.14 and 

−0.90 eV, respectively. Adsorption at the edge O site also led to the formation of a NO3
δ- 

species with a N−Ocluster distance of 1.45 Å. 

b. Stoichiometric Stepped Surface. In addition to the edges of a cluster, edge sites 

can also be generated by a controlled cleavage of a bulk crystal. Step-edge is a common 

type of defect on surfaces, often separated by varying sizes of terraces. In this study, we 

used BaO(310) cleaved from the relaxed bulk BaO to represent the stepped surface. A 

perspective view of BaO(310) was shown in Figure 3.6a, with the step-edge and terrace 

sites being labeled. On the BaO(310) surface, the activities of the terrace Ba and O sites 

that are away from the step-edge are very similar to those on the flat BaO(100) surface. 

However, the step-edge Ba and O sites show different activities towards NO2 adsorption. 
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For example, the adsorption of NO2 at the step-edge O site forms a NO3
δ--like species 

that was not found on the flat BaO(100) surface (Figure 3.6b). NO2 adsorption in this 

configuration has an adsorption energy of −1.13 eV. Although the adsorption energy is 

only slightly greater than the NO2 adsorption energy at the surface O site of BaO(100) 

(Figure 3.4a, −1.06eV), the formation of NO3
δ- species makes the configuration similar to 

the adsorption at the edge O site of the (BaO)32 cluster rather than on the O site of 

BaO(100). The N−Osurface distance in the NO3
δ- species is 1.46 Å. The NO2 molecule can 

also be adsorbed on the step-edge Ba site with two oxygen atoms pointing to the Ba site 

(Figure 3.6c), yielding an adsorption energy of −0.73 eV, stronger than that on the Ba 

sites of the (100) surface (−0.56 eV). The enhanced activities of the step-edge Ba and O 

sites on BaO(310) can be attributed to the low coordination numbers of these sites. These 

low-coordination sites have a higher degree of bond unsaturation and allow a higher 

degree of steric flexibility than the sites on the flat surface. Our results are different from 

that of Broqvist et al98, who showed the higher coordination 4S and 5S oxygen sites on a 

(BaO)9 cluster had stronger binding toward NO2 than the low-coordination 3S sites. We 

again note that none of the adsorption configurations of a single NO2 molecule reported 

in their work98 resulted in the nitrate species. 
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(d)(c)(b)

(a)

1.46

step-edge sites

terrace sites

-1.13eV -0.73eV -1.39eV
 

Figure 3.6. (a) A perspective view of the BaO(310) surface showing the step-edge sites and 
terrace sites. (b) NO2 is adsorbed at the (310) edge O site forming NO3

δ-. The N-Ocluster bond 
length of the NO3

δ- species is labeled. (c) NO2 is adsorbed in O-down (bidentate) configuration 
over a step surface edge Ba site. (d) NO2 bridges over the step-edge and terrace Ba sites. 
Reproduced with permission from J. Phys. Chem. C, 2008, 112, 16924. Copyright 2008 

American Chemical Society. 

 
 

Furthermore, the creation of the steps produced adsorption sites that did not exist on 

the flat BaO(100) surface. For example, an NO2 adsorption configuration with the two O 

atoms bridging over the two Ba sites from different terraces, shown in Figure 3.6d, would 

not be formed on BaO(100). This adsorption configuration has an adsorption energy of 

−1.39 eV and is the energetically most favorable NO2 adsorption configuration on the 

BaO(310) surface. The NO2−BaO interaction in this configuration is even stronger than 

the bidentate adsorption configuration on the perfect BaO(100) surface and has not been 

reported. 

(a) 
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Branda et al. also studied the effect of the steps on BaO-NO2 interaction by using an 

embedded cluster model to simulate the stepped BaO surfaces.64 They concluded that the 

adsorption energies of NO2 at the surface step sites were enhanced by ~ 100% and 35% 

from those on the BaO(100) surface for N-down and O-down configurations, 

respectively. Our results showed enhancements of step-edge sites towards NO2 

adsorption but much less dramatic. Our calculated adsorption energies for N-down 

configuration was increased by 0.07 eV (~6%). The adsorption energy in the new NO2 

adsorption configuration formed across the step of BaO(310) (Figure 3.6d) was increased 

by −0.56 eV over the O-down configuration on BaO(100). We would like to stress that 

this new configuration cannot be formed on BaO(100).  

3.3.3. NO2 Interaction with Non-stoichiometric BaO Surfaces and Clusters. a. Non-

stoichiometric Clusters. The study of stoichiometric clusters in previous section provided 

a measure of the geometry of the substrate on its interaction with NO2. The study of the 

non-stoichiometric clusters shown next will illustrate how the electronic characters of the 

substrate affect the adsorption of NO2. The initial structures of the two non-

stoichiometric cubic clusters, Ba13O14 and Ba14O13, were also constructed on the basis of 

the bulk structure. Apparently, Ba14O13 cluster has an extra Ba atom whereas the Ba13O14 

has an extra O atom with respect to the 1:1 stoichiometric ratio. Bader charge analysis 

was performed for both clusters. The averaged charges of Ba and O atoms are +1.44 |e| 

and −1.34 |e| in Ba13O14 and +1.34 |e|, −1.44 |e| in Ba14O13, respectively. There are two 

types of Ba atoms and two types of O atoms in each cluster, depending on position of 

each atom. In Ba13O14, twelve Ba atoms are located at the center of each edge of the cube 

(edge-center) and one is in the center of the cube (cube-center) (Figure 3.7a). The charge 
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on the two types of Ba atoms differs only by ~ 0.1 |e|. Two types of oxygen atoms, eight 

are located at the corner and six in the center of each face (face center). The difference in 

the charge of the two types of oxygen atoms is less than 0.1 |e|. The excess O atom in 

Ba13O14 makes the cluster electrophilic. For the Ba14O13 cluster, there are 12 edge-center 

oxygen atoms and one cube center oxygen atom, and eight corner Ba atoms and 6 face-

center Ba atoms (Figure 3.7e). Again, the difference of charges on the atoms in different 

positions is noticeable. The excess electrons due to the extra Ba atom of Ba14O13 can be 

easily donated, making the cluster nucleophilic.  

 
Figure 3.7: NO2 adorption on the non-stoichiometric clusters. (a) and (e): The bare Ba13O14 and 
Ba14O13 cluster. On the Ba13O14cluster: (b) N-down forming nitrate at cluster corner O site. The 
N-Ocluster bond length of the NO3

δ- species is labeled. (c) one O atom of NO2 interacts with the 
cluster edge Ba site, and (d) bidentate with two O atoms bridging over two cluster Ba sites. On 
Ba14O13 cluster: (f) N-down at the cluster edge O site, (g) O-down at the cluster corner Ba site, 
and (h) O-down at the cluster face-center Ba site. Reproduced with permission from J. Phys. 
Chem. C, 2008, 112, 16924. Copyright 2008 American Chemical Society. 

 

We first examined NO2 adsorption over the Ba13O14 cluster at corner O site and edge 

Ba site as well as in a bridging bidentate configuration over the two Ba atoms. The 

optimized NO2 adsorption geometries were shown in Figure 3.7. The adsorption energies 

are −3.55, −1.57, and −1.96 eV for adsorption at the corner O site (Figure 3.7), the edge 
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Ba site (Figure 3.7c) and the bridge bidentate configurations (Figure 3.7d). These 

adsorption energies are significantly larger than those on the stoichiometric clusters. The 

structure of the clusters was strongly distorted upon NO2 adsorption (Figures 3.7b-d). 

Among the three adsorption structures, NO2 directly bound the cluster O site with an 

adsorption energy of −3.55 eV is the most stable structure. In this structure, a NO3
δ- 

species is formed through the “acidic adsorption”.63 The N−Ocluster distance in this NO3
δ- 

species is 1.31 Å, close to 1.24 Å of N-O bond in NO3
-. The formation of the NO3

δ- 

species was facilitated by both the electrophilic nature of the Ba13O14 cluster and the 

electron donating ability of NO2: the lone pair electrons on N atom were shared with 

Ba13O14. 

We then calculated NO2 adsorption on the Ba14O13 cluster edge O site, corner Ba site 

and face-center Ba site. The adsorption energies are −4.09, −3.69 and −3.96 eV for the 

relaxed structures shown in Figure 3.7f (edge O site), Figure 3.7g (corner Ba site) and 

Figure 3.7h (face-center Ba site), respectively. Strong distortions from the bare Ba13O14 

cluster structure can be observed upon NO2 adsorption in Figure 3.7f and h, whereas the 

original cluster geometry was very much maintained after NO2 adsorption at the corner 

Ba site (Figure 3.7g). In structure shown in Figure 3.7f, the N−Ocluster distance (3.02 Å) is 

too long to have any significant bonding interactions although the N atom points to the 

edge O atom of the cluster. In fact, the distances between the O atoms of NO2 and the 

nearest Ba atoms are ~ 2.8 Å, close to that of a Ba−O ionic bond. Consequently, the 

O−Ba interactions dominate NO2 adsorption on Ba14O13 in all three structures shown in 

figure 3.7f-h. The strong basic adsorption of NO2 on various Ba14O13 cluster sites is a 

consequence the nucleophilic nature of the cluster: the excess Ba atom makes the cluster 
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electron-rich. As a Lewis base, the nucleophilic Ba14O13 cluster can interact with NO2 

strongly by donate its electrons to the molecule. As such, the “acidic adsorption” where 

NO2 shares its lone pair electrons with the substrate and forming NO3
δ- does not occur on 

the Ba14O13 cluster. 

  b. Non-stoichiometric Surfaces. Surface vacancy is another type of defects that may 

have great effects on the catalytic activity of metal oxides.14,64 The existence of vacancies 

creates charged centers on the surface which may affect the relative stability between the 

reactant and product states as well as the transition state. Herein, we studied the effect of 

both Ba and O vacancies in the BaO(100) surface on NO2 adsorption. We used the same 

surface unit cell as in our calculations for NO2 adsorption on the perfect BaO(100) 

surface to eliminate the coverage effect for comparison. Although the vacancy density 

simulated by such a unit cell may be too high to quantitatively compare with the surface 

under operating conditions, we expect the model will provide some insights into the 

effect of these defects on NO2 adsorption.  

 
Figure 3.8: Top view of NO2 adsorption on defective BaO(100).  (a) BaO(100) with oxygen 
vacancies. (b) NO2 adsorption at the surface O site. (c) NO2 adsorption at the surface Ba site. (d) 
BaO(100) with barium vacancies. (e) NO2 adsorption at the surface O site forming nitrate. The N-
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Ocluster bond length of the NO3
δ- species is labeled. (f) NO2 adsorption at the surface Ba site. The 

surface is shown in stick and the adsorbed NO2 molecule is shown in ball and stick. Yellow and 
cyan diamonds represent the surface O and Ba vacancies, respectively. Reproduced with 
permission from J. Phys. Chem. C, 2008, 112, 16924. Copyright 2008 American Chemical 
Society. 
 

The O vacancy on BaO(100) was created by eliminating a neutral O atom from the 

surface layer of the slab, as shown by the yellow diamond in Figure 3.8a. By creating a 

neutral O vacancy on the surface, the slab simulating the BaO surface became non-

stoichiometric with an extra Ba atom. Similar to Ba14O13, this extra Ba atom made the 

electron transfer from the defective BaO surface to adsorbed NO2 favorable, resulting in a 

strong adsorption of NO2 on both surface O site and Ba site. The optimized adsorption 

structures on the O site and the Ba site were shown in Figure 3.8b and c with the 

corresponding adsorption energies of −2.96 and −2.83 eV, respectively. In the adsorption 

configuration of NO2 over the surface O site (Figure 3.8b), the NO2 molecular plane was 

parallel to the surface with each O atom pointing to the corresponding surface Ba site. 

The structure of NO2 adsorption on top of Ba site is very similar to that of perfect (100) 

surface (Figure 3.4b) except for that one of the O atoms in the NO2 molecule now points 

to the surface O vacancy site where the surface oxygen used to reside. Bader charge 

analysis show that NO2 adsorbed at the Ba site of the defective surface gains 0.85 |e| from 

the surface, significantly larger than the charge gained in similar adsorption geometry on 

the perfect (100) surface. Similar to the Ba14O13 cluster, such nucleophilic substrate can 

readily donate its electronic charge to the adsorbate. Therefore, the charge transfer from 

the surface with O vacancies to NO2 molecule is significantly larger than that from the 

perfect (100) surface. For the same reason, the “acidic adsorption” configuration where 

NO2 shares its lone pair with the surface O site, forming a nitrate-like species, was not 

found on the defective surface with oxygen vacancies.  
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In contrast, creating a surface Ba vacancy (shown in Figure 3.8d in cyan diamond) 

makes the slab have an extra oxygen atom in the unit cell. Consequently, the slab holds 

onto its electrons tight, making the slab electrophilic. As such, the “acidic adsorption” 

that NO2 shares its lone pair electrons became favorable. The structure of NO2 adsorbed 

over the surface O site forming a nitrate-like species (Figure 3.8e) has an adsorption 

energy of −3.08 eV. On the other hand, the “basic adsorption” on the surface Ba site 

(Figure 3.8f) yielded an adsorption energy of only −0.22 eV.  

In summary, the non-stoichiometric clusters have multiple sites that are much more 

active towards NO2 adsorption than the stoichiometric clusters. Many surface sites on the 

defective BaO surfaces also became highly active towards NO2 adsorption. The NO2 

molecule is amphiphilic and can act as either Lewis acid or base by interacting with the 

surface through different parts of the molecule. When the barium oxide is electron-rich, 

the excess electrons can be readily donated to the NO2 molecule through the “basic” 

adsorption mode, i.e. the O atoms of the NO2 molecule approaching the surface sites. On 

the other hand, if the defects make BaO electron-deficient, NO2 favors the “acidic” 

adsorption mode by forming a nitrate-like species. In the latter case, N atom of the 

molecule approaches a surface O site and shares its lone pair electrons with the surface O 

atom. On both non-stoichiometric clusters and non-stoichiometric slabs, the “basic” 

adsorption of NO2 occurs for both electron-rich and electron-deficient substrates although 

the NO2-substrate interaction for the electron-rich substrate is much stronger. In contrast, 

only “acidic” adsorption occurs at the O site of an electron-deficient adsorbate.   
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3.3.4. NO2 Interaction with γ-Al2O3 Supported BaO Clusters. a. γ-Al2O3 Supported 

BaO Clusters. To study the support effect on NO2-BaO interaction, we used a c(2×1) unit 

cell of the γ-Al 2O3(111) supported (BaO)1, (BaO)2 and (BaO)4 clusters as the 

computational model. The c(2×1) unit cell of γ-Al 2O3 surface slab is consist of 32 Al and 

48 O atoms. 

The initial structures of the supported cluster models were built based on the 

structurally optimized γ-Al 2O3(111) surface and BaO clusters. For example, to build γ-

Al 2O3 supported (BaO)2 structure, in a molecular modeling visualization software, the 

optimized (BaO)2 square was placed on top of the optimized γ-Al 2O3 surface slab. The 

BaO square can be placed with its plane either normal or parallel to the γ-Al 2O3(111) as 

shown in Figure 3.9. By comparing the energies of these two structures, it was found the 

“paralleled” BaO square is more stable, so the “parallel” model was selected for further 

study of NO2 adsorption. 
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Parallel Normal  

Figure 3.9: (BaO)2 supported on γ-Al 2O3(111) with the BaO cluster square plane parallel and 
normal to the support surface, respectively. 

 

The same rule applied to the selections of the supported (BaO)1 and (BaO)2 cluster 

structures for further NO2 adsorption study. The selected supported cluster structures are 

shown in Figure 3.10. 
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Figure 3.10: Most stable structures of γ-Al 2O3(111) supported (BaO)1 and (BaO)4. 
 

 
Note that for all the structures of supported clusters, all the BaO clusters were 

stabilized by anchoring an oxygen atom at the γ-Al 2O3(111) surface cation site. The other 

atoms in the clusters do not have direct bonding interaction with the substrate. The 

binding energy of the clusters to the support surface can be calculated using: 

��GI�GI� � ���������
PZ � ������
PZ � ������,                           (3.2) 

where �����
PZ and ����� are the energies of the gas phase BaO cluster and bare γ-

Al 2O3(111) surface, respectively. ���������
PZ is the energy of the support surface along 

with the cluster bound to it. ��GI�GI� were calculated to be −5.99, −5.74 and −5.54 eV for 

(BaO)1, (BaO)2 and (BaO)4, respectively, implying strong interactions between the BaO 

clusters and the support surface. Bader charge analysis showed that with the support 

surface, the Ba−O bonds of the BaO clusters became more ionic. For example, the Bader 
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charges of two oxygen atoms in the supported (BaO)2 are −1.72 (anchoring) and −1.40 

|e|, respective, larger than −1.31 |e| of the oxygen in the bare/unsupported (BaO)2 cluster. 

b. NO2 Adsorption on γ-Al2O3 Supported BaO Clusters. For the supported (BaO)1 

cluster, there are two sites available on the BaO for NO2 adsorption—the O site which is 

also anchoring the cluster to the support surface and the Ba site. The adsorption energies 

can be calculated using Equation 3.1 with the relaxed structure of γ-Al 2O3-supported 

(BaO)1 as the substrate. The NO2 can be adsorbed on the (BaO)1 anchoring O site 

forming a NO3
δ- species (Figure 3.11a) with an adsorption energy of −0.85 eV. NO2 

adsorption at the Ba site corresponds to an adsorption energy of −0.42 eV, less stable 

than on the anchoring O site. This implies that although the O site is already binded to Al 

and Ba atoms, it is still more active towards NO2 adsorption than the Ba site. This is in 

contrast to the NO2 interaction with unsupported BaO monomer where Ba site was 

favored.  

(BaO)1 (BaO)1

(a) (b)
-0.85 eV -0.42 eV

 

Figure 3.11 NO2 adsorption over γ-Al 2O3(111) supported (BaO)1 O site (a) and Ba site (b). 

 
Based on the results of the supported BaO monomer calculations, the O site of the 

cluster is more active towards NO2 adsorption, so for the calculations of NO2 interacting 
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with supported (BaO)2 and (BaO)4, only the cluster O sites that were not connected to the  

γ-Al 2O3 surface were studied as the active adsorption sites. We found a strong synergy 

from BaO clusters and γ-Al 2O3 for NO2 adsorption: a NO2 molecule interacts with the 

BaO cluster O atom and the γ-Al 2O3 support surface simultaneously, yielding a very large 

adsorption energy. The synergistic adsorption structures are shown in Figure 3.12 with 

the adsorption energies of −3.10 and −2.23 eV for supported (BaO)2 and (BaO)4 clusters, 

respectively. These two structures are the most favorable NO2 adsorption geometries on 

the supported clusters. The most favorable adsorption structure for NO2 over unsupported 

(BaO)2 and (BaO)4 clusters with the two oxygen atoms of NO2 bridging over two Ba sites 

(Figure 3.5f and i) were much less stable over the supported (BaO)2 and (BaO)4.  

-3.10 eV -2.23eV  

Figure 3.12 Synergistic adsorption of NO2 on supported (a) (BaO)2 and (b) (BaO)4. 

 
In order to understand the greatly enhanced interaction of NO2 with the supported 

(BaO)2 and (BaO)4, we constructed a model where the adsorbed NO2 molecule only 

interacts with the (BaO)2 cluster part and another where the NO2 interacts with the 

substrate only but in the presence of the (BaO)2 cluster. The structures were shown in 

Figure 3.13 together with the structure of NO2 adsorption over the γ-Al 2O3 support 
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surface with no presence of BaO. Adsorption energy of the NO2 molecule at the oxygen 

atom of the supported (BaO)2 (Figure 3.13b) yields an adsorption energy of −1.46 eV; on 

the other hand, an adsorbed unidentate NO2 molecule with and oxygen bonded to a 

surface Al in the presence of (BaO)2, as shown in Figure 3.13c, gives a binding energy of 

−2.24 eV. The NO2 adsorption on the bare γ-Al 2O3 surface in a similar unidentate 

configuration and obtained an adsorption energy of −1.15 eV (Figure 3.13d). This value 

is significantly smaller than the adsorption energy of −2.24 eV with the same 

configuration in the presence of (BaO)2. These results indicate that there is a synergistic 

effect between the supported (BaO)2 cluster and the alumina substrate for NO2 

adsorption: the mere presence of the BaO cluster on the surface greatly strengthens the 

interaction between NO2 and the γ-Al 2O3 surface; at the same time, the NO2-BaO 

interaction is enhanced when the BaO clusters is supported by the γ-Al 2O3 surface, e.g. 

the adsorption energy of NO2 on the supported (BaO)2 cluster (Figure 3.13b) is larger on 

(BaO)2 without support (Figure 3.5d). The bridging structure between (BaO)2 and the 

substrate surface formed upon NO2 adsorption (Figure 3.13a) further enhances this effect. 

However, the strength of synergistic adsorption (NO2 binds with both support surface and 

BaO cluster) for supported (BaO)4 cluster is not as strong as it for (BaO)2, implying that 

adding more BaO layer will weaken the synergy effect. As such, we conclude that the 

submonolayer BaO dispersed on the γ-Al 2O3 surface with abailable substrate Al sites 

provides strong binding sites for NO2 adsorption. These strong binding sites may be the 

active sites for NOx storage in the NSR catalysts. 
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Figure 3.13. Decomposition of (a) NO2 adsorption on supported-(BaO)2 into (b) NO2-BaO 

interaction and (c) NO2-support interaction. (d): NO2 adsorption on clean γ-Al 2O3 surface. 

 

c. NO2 Adsorption on γ-Al2O3 Supported BaO Clusters with Bigger Unit Cell. In the 

small unit cell calculations of γ-Al 2O3 supported BaO, the supported (BaO)2 clusters 

formed a BaO strip by linking with its periodic images from the neighboring unit cells, as 

shown in Figure 3.14a.  In order to answer the criticism whether such strong synergistic 

effect was an artifact of the particular (BaO)2 structure, we re-examined NO2 adsorption 

on γ-Al 2O3-supported (BaO)2 with a bigger γ-Al 2O3 surface unit cell. The number of 

layers in the slab simulating the γ-Al 2O3 surface was kept the same as the previous study, 

but the area of the surface unit cell was doubled, as shown in Figure 3.14b. The increase 

Breaking
O-Al bond

Breaking
N-O bond

(a)

(b)

(c)

(d)
-3.10 eV

-1.46 eV

-2.24 eV

-1.15 eV
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in the surface unit cell size reduces the coverage of BaO by half. In the new surface unit 

cell, the supported (BaO)2 cluster is isolated from its periodic images in the neighboring 

unit cells. Using this surface unit cell, the adsorption energy of NO2 over the supported 

(BaO)2 in synergistic configuration was calculated to be −3.0 eV, very close to −3.1 eV 

of the previous result. The similar adsorption energies calculated using different sizes of 

unit cell indicates that the synergistic effect is independent of BaO coverage within the 

submonolayer regime. The availability of the surface Al site and the unbound oxygen 

atom at the γ-Al 2O3 and BaO interface is the key to the formation of the strong binding 

synergistic structure.  

Figure 3.14. Top view of NO2 adsorption over the γ-Al 2O3 supported (BaO)2. (a) The small unit 
cell shown as black rectangular box used in previous study. (b) The big unit cell, shown as the 
yellow box, used in the present calculations. Reproduced with permission from J. Phys. Chem. C, 
2008, 112, 16924. Copyright 2008 American Chemical Society. 
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Figure 3.15 (a) NO2 interacts only directly with supported (BaO)2. (b) NO2 interacts only 
simultaneously with both supported (BaO)2 and γ-Al 2O3. (c) PDOS plot of the Al site shown in 
(a). (d) PDOS plot of the Al site shown in (b). (e) PDOS plot of the O1 shown in (b). (f) PDOS 
plot of the O2 shown in (b). (g) PDOS plot of the O2 shown in (a).

 
Reproduced with permission 

from J. Phys. Chem. C, 2008, 112, 16924. Copyright 2008 American Chemical Society. 
 
 

 In order to understand the origin of the synergistic effect for NO2 adsorption, we 

compared the local projected density of states (PDOS) of NO2 only interacting with the 

supported (BaO)2 (Figure 3.15a), which will be referred to as BaO-only, with those of 

O1

(a) (b)
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O2 O2

Al Al
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NO2 interacting simultaneously with (BaO)2 and γ-Al 2O3, which will be referred to as 

synergistic (Figure 3.15b). We also numbered three O atoms and labeled the surface Al 

site in Figure 3.15a,b. Parts c and d of Figure 3.15 show the local PDOS of the O2 atom 

and the Al site, respectively, in the BaO-only configuration. The PDOS of the Al site and 

the O1 and O2 atoms in the synergistic configuration (Figure 3.15b) were plotted in parts 

e, f, and g of Figure 3.15, respectively. The scales of the oxygen PDOS plots are 5 times 

those of Al atoms. The intensity difference between the O and Al PDOS is a reflection of 

the ionic nature of Al-O interaction. A comparison of the two Al PDOS plots shows that 

the py-derived states above the Fermi level in Figure 3.15d disappear after the Al site 

became occupied by the O1 atom, as shown in Figure 3.15e. The py-derived states 

become dominant in the energy range of −5 to −2.5 eV, as shown in Figure 3.15e. These 

states were clearly a result of Al-O1 bond formation in the synergistic configuration 

shown in Figure 3.15b. The s-states of Al also contribute to bonding with the O1 atom in 

the synergistic configuration, as indicated by the peak at 8.5 eV. The binding of O1 on 

the Al site changes not only the PDOS of the O1 and Al atoms but also the PDOS of the 

O2 atom, as shown in Figure 3.15c,g. The states below −7 eV as well as those small 

peaks around the Fermi level were mainly results of covalent bonding with the N atom. 

The strong py-derived states above Fermi level in BaO-only configuration (Figure 3.15c) 

almost disappeared in the synergistic configuration (Figure 3.15g). The states in the 

energy range of −5 to −2.5 eV are a result of interaction with the neighboring Ba atoms. 

We further compared the atomic Bader charges of NO2 in the BaO-only and 

synergistic configurations. The Bader charges on N and O atoms as well as the binding O 

and Al sites are summarized in Table 3.1. The change of Bader charge on Ba and other O 
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and Al atoms is negligible and was not included in the table. The charges in Table 1 show 

that allowing O1 to interact with the surface Al site makes the NO3 fragment more 

negatively charged. There are some charge redistributions within the fragment, but the 

charge transfer occurs primarily on the O1 atom. These results indicate that acidic Al site 

enhances the binding of the adsorbed NO2 on the supported (BaO)2 by donating its charge. 

 

Table 3.1: Atomic Bader Charges in BaO-Only (Figure 3.15a) and Synergistic (Figure 3.15b) 
Configuration a.

 
Reproduced with permission from J. Phys. Chem. C, 2008, 112, 16924. 

Copyright 2008 American Chemical Society. 
 

 BaO-only Synergistic 
N +0.62 +0.60 
O1 −0.68 −0.92 
O2 −0.84 −0.78 
O3 −0.66 −0.60 
Al +0.66 +0.61 

a Refer Figure 3.15 for numberings of atoms. 

 

We also compared the atomic Bader charges of NO2 in the BaO-only configuration 

with NO2 interaction with a bare (BaO)2 cluster in a similar configuration. On BaO-only, 

the charges on NO2, (BaO)2, and γ-Al 2O3 support are −0.72, +0.87, and −0.15 |e|,  

respectively. In the case of NO2 interacting with bare (BaO)2, the charges on NO2 and 

(BaO)2 are −0.33 and +0.33 |e|, respectively. These results demonstrated that the presence 

of γ-Al 2O3 as support facilitated an electron transfer from (BaO)2 to both the adsorbed 

NO2 molecule and γ-Al 2O3, resulting in a positively charged (BaO)2 sandwiched between 

the negatively charged NO2 molecule and the γ-Al 2O3 slab. The γ-Al 2O3 surface enabled 

the charge redistribution although it does not have direct contact with the adsorbed NO2 

molecule. 
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We then analyzed the charge distribution for NO2 interacting with γ-Al 2O3 support in 

the presence of the (BaO)2 cluster but not directly in contact with the cluster. Our results 

showed that (BaO)2 lost 0.52 |e| upon NO2 adsorption although NO2 does not have direct 

contact with (BaO)2. After (BaO)2 was replaced by a cubic (BaO)4, the overall charge 

loss by (BaO)4 was reduced to 0.31 |e|. These results indicated that the supported BaO 

clusters act as an electron donor, enhancing NO2 interaction with the γ-Al 2O3 support. In 

other words, the supported BaO clusters enhance the electron donating ability of the γ-

Al 2O3 support and, therefore, the Lewis basicity of the support. 

The present study addressed some important aspects of the NSR catalysis: the effect 

of BaO morphology and γ-Al 2O3 support on NO2 adsorption. We showed that the 

morphology of BaO as well as the interaction of BaO with the support will play 

important roles in stabilizing the active species and modifying the interaction of other 

gases with the surface. NSR catalysis also involves many other aspects such as the 

existence of other gaseous species in the exhaust stream and operating conditions. 

Competitive adsorption of different gases on BaO and other alkaline earth metal oxides 

have been examined.68,99 Furthermore, the coupling between the redox sites and the 

storage sites will be critical to the overall de-NOx efficiency. 78,100 All these issues need to 

be addressed before a more complete understanding of the NSR catalysis can be 

developed.     

3.4. Conclusion 

First principles density functional theory calculations have been used to characterize 

NO2 adsorption on BaO surfaces, unsupported and γ-Al 2O3 supported BaO clusters. Our 

results showed that the adsorption energy of NO2 depends strongly on the morphology of 
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BaO and the existence of defects. On the stoichiometric BaO, the low-coordinate sites are 

more flexible for NO2 adsorption, resulting in stronger NO2 bindings. NO2 adsorption at 

the edge O sites of the clusters and the stepped surface resulted in a NO3
δ- species.  

Furthermore, the electronic properties of the BaO substrates were found to have more 

dramatic effect on NO2-BaO interaction. On the non-stoichiometric BaO clusters and 

surfaces, the adsorption energy of NO2 is much greater than on the stoichiometric clusters 

and surfaces, up to −4.09 eV for NO2/Ba14O13.  

We also demonstrated that the γ-Al 2O3 support is critical for NOx storage. On one 

hand, the support surface alters the electronic character of the supported BaO cluster, thus 

affect the NO2 adsorption configuration and energy of the BaO. On the other hand, a BaO 

cluster covered over the γ-Al 2O3 support modifies the acidity of the top layer cation (Al) 

sites, therefore, the reactivities of the support surface sites are enhanced. The interface 

where the adsorbed NO2 can interact with both BaO and γ-Al 2O3 provides the strongest 

binding towards NO2.  However, the synergistic effect of enhancing the adsorption of 

NO2 was weakened by adding an extra BaO layer on the supported (BaO)2: the 

adsorption energy of NO2 on the supported (BaO)4, of which the configuration is in the 

form of two layers of (BaO)2, was reduced to −2.23 eV from −3.10 eV on the supported 

(BaO)2. We therefore propose that a highly dispersed submonolayer BaO will be the most 

effective for NOx storage in a NSR catalyst. 
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CHAPTER 4 

ELECTRONIC SHELL EFFECT ON REACTIVITY OF SMALL METAL 

CLUSTERS 

—EXAMPLES OF H 2 DESORPTION ON MAGNESIUM CLUSTERS 

 

4.1. Introduction 

The study of H2 dissociation over Mg clusters reveals the effect of electronic 

structures on the reactivities of the small metal clusters. The reaction was studied as an 

important step in using magnesium as hydrogen storage material. 

 Although magnesium dihydride has for long been recognized as one of the most 

attractive hydrogen storage materials candidate due to its low cost and high hydrogen 

storage capacity (7.6 wt%), its actual onboard application is limited by the high 

desorption temperature and the slow H2 adsorption and desorption kinetics. A DFT 

calculation using PBE functional predicted an activation barrier of ~1.05 eV for H2 

dissociation over the Mg (0001) surface101. This relatively high threshold energy is 

responsible for the slow H2 adsorption kinetics over the bulk surface although the phase 

transition between Mg and MgH2 can also be rate-limiting. As the research focus of 

hydrogen storage swings from demonstrating possibilities to improving commercial 

viability, lots of effort has been made to decrease the operation temperature and increase 

the adsorption/desorption rates of Mg-based system. Alloying and doping magnesium 

with other metals102-106 or metal oxide107-109 can actually improve the kinetics of and 

increase the rate hydrogen sorption, however, this sacrifices hydrogen storage capacity 

due to the added weight of the doped metal and oxide. So the intuitive ideal solution to 

the problem would be modifying the thermodynamics and kinetics of H2 sorption over 

Mg/MgH2 without the addition of extra component. Ball mining technique effectively 
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reduced Mg grain size and increased H2 sorption rates. However, the enhanced rate is 

solely related to surface area enlargement and diffusion length decrease while the grain 

size of particles obtained by this technology is still not small enough to change 

thermodynamics of the system, the H2 desorption process still requires high temperature 

(~300 ºC at 1 bar H2).
110,111  

Recently, it has been demonstrated that when the crystal grain size is down to about 

1.3 nm, the hydrogen desorption energy decreases significantly, so that, 

thermodynamically speaking, the hydrogen desorption on small size MgH2 can occur at 

lower temperature, e.g. 200 ºC for 0.9 nm crystalline.112 In a work by Li et al.113, Mg 

nanowires were demonstrated to have improved H2 sorption kinetics. For example, the 

nanowires with diameter of 30-50nm can achieve 7.60 wt% uptake of hydrogen within 30 

min at around 300 ºC. The accelerated sorption rates should be related to the low sorption 

activation energy barriers. Therefore, in this chapter, we investigated the H2 dissociation 

energy barriers over Mg clusters. The aim is to provide the insight into the difference 

between H2 sorption kinetics over Mg surfaces and small clusters. 

4.2. Methodology 

The structure optimizations of the Mg9, Mg9
2+, Mg9

2-, Mg10 and Mg10
2+ clusters and 

the reactions (H2 dissociation over the clusters) were carried out using the GAUSSIAN 

03 package114. The DFT method with both the B3LYP and the PBE88,115,116 forms of 

exchange/correlation energies were used. The choice of basis sets are 6-31+g(d,p). In the 

discussions of the results, we refer to the GAUSSIAN calculation results with PBE 

functional unless otherwise noted. The structures of clusters were optimized until the 

energies were minimized to the GAUSSIAN default convergence criteria. The transition 
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states were located by minimizing the force of the structures to the saddle points. Then 

frequency calculations of those optimized structures were performed to confirm that they 

are indeed the transition states corresponding to H2 dissociation. 

The calculations of the Mg9, Mg10 and Mg10
2+ clusters were also carried out using the 

DFT implementation program package the VASP code117 for comparison and supporting 

purpose. The VASP code was also used to calculate H2 dissociation over the Mg(100) 

and (110) surfaces. In the VASP calculations, the exchange-correlation energy was 

evaluated by the PBE88 functional. The interaction between ions and electrons was 

described using the projector augmented wave method,87,118 and a plane wave basis set 

with a cutoff energy of 450 eV was used to expand the wavefunction of valence 

electrons. The atomic structures were relaxed using spin-polarized conjugate-gradient 

algorithm until the forces on the unconstrained atoms were less than 0.005 eV/Å. The 

transition states were located using nudged elastic band method and confirmed by 

frequency calculations. In the calculations of Mg clusters, there were at least 20 Å 

separations in all three directions (a, b and c) between clusters in neighboring unit cells to 

avoid the interactions. The cluster structures were subjected to relaxation without 

constraints. The Mg(100) and (110) surfaces were cleaved from the relaxed bulk Mg 

structure and were simulated with six and four layers slabs, respectively. Separations of 

at least 10 Å in c directions were inserted between neighboring cells to minimize the 

interactions along these directions between periodic images. The bottom layers of the 

surface slabs were kept frozen at the respective cleaved-from-bulk positions whereas the 

top layers together with the two hydrogen atoms were allowed to relax. For the cluster 

calculations, Γ-point was used for Brillouin zones. 6 × 3 × 1 and 4 × 4 × 1 K-point 
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meshes generated with the Monkhorst-Pack scheme were used to sample the Brillouin 

zones for surface (100) and (110), respectively.  

4.3. Results & Discussion: 

4.3.1. Structures of Mg9, Mg9
2+, Mg9

2-, Mg10 and Mg10
2+ Clusters. The most stable 

structure of Mg9 is a six-atom triangular prism core with three atoms attached to each 

side square of the triangular prism (Figure 4.1a). The same structure was also reported 

previously in a work by Lyalin et al.119 The structures of Mg9
2+ and Mg9

2- clusters were 

calculated by relaxing the optimized Mg9 cluster with +2 and –2 charges, respectively. 

These two structures were shown in Figure 4.1 b and c. Comparing these three 9-atom 

clusters, we found that the more electron the cluster has, the more closely packed the 

triangular prism is. For example, the average bond length of the triangles of the triangular 

prism in the Mg9
2+ cluster is ~4.2 Å, much larger than that of the neutral Mg9 cluster (3.2 

Å) and the Mg9
2- cluster (3.06 Å). The calculated HOMO-LUMO band gaps were 0.73, 

0.90 and 0.81 eV for Mg9, Mg9
2+ and Mg9

2-, respectively. Adding one atom to the Mg9 

triangle cap, we obtain the Mg10 structure shown in Figure 4.1d. The Mg10
2+ cluster was 

calculated by relaxing the Mg10 cluster with two positive charges shown in Figure 4.1e. 

The HOMO-LUMO band gaps for these two structures are 1.25 eV for Mg10 and 0.92 eV 

for Mg10
2+. 
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Figure 4.1. Energy diagram of H2 adsorption over (a) Mg9, (b) Mg9

2+, (c) Mg9
2-, (d) Mg10, and (e) 

Mg10
2+ clusters. For clarity, five of the Mg atoms were labeled in initial state, transition state and 

final state structures (green: Mg; white: H). 
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For small metal clusters consisting of less than hundred atoms, a mean field potential 

can be introduced to calculate the energy level of the system where every atom and 

electron counts. This is the base of the Jellium model, which has successfully explained 

the unusual stabilities of the Na clusters with closed electronic shells120, i.e., Na clusters 

consisting of 2, 8, 20, 40, …atoms have higher binding energies due to the successive 

complete filling of electron shells. Such clusters were known as the magic clusters. 

Experimental evidence of such concept is the observation of high peaks corresponding to 

those magic clusters in mass spectrum.121 The stabilities of certain divalent and trivalent 

clusters, where each atom contribute two and three electrons, respectively, can also be 

explained from the electronic shell closure rules121,122. For example, in the work of 

Doppner etc.121, the neutral Mg10 and doubly positive-charged Mg11 clusters both contain 

20 electrons and have enhanced stabilities compared with their corresponding uncharged 

and doubly charged neighbors. Applying the same rule, Mg9
2- has a closed-shell (9 Mg 

atoms × 2 valence electron/atom + 2 e- = 20 e-) thus should have extra stability. Because 

the binding energies of the three clusters, Mg9, Mg9
2+ and Mg9

2-, are not directly 

comparable due to the fact that they are differently charged, we compare the HOMO-

LUMO gaps of the clusters instead of binding energies as indication of their relative 

stabilities. We found that the band gap of the closed-shell Mg9
2- (0.81 eV) is larger than 

that of Mg9 (0.73 eV) which is two electrons shy than the magic number. This obeys the 

magic rules that the closed shell clusters are more stable thus having larger band gaps. 

However, the Mg9
2+ cluster is an exception—the band gap of Mg9

2+ is 0.90 eV, larger 

than the other two 9-atom clusters which cannot be explained by the magic rule. For the 

two 10-atom clusters, our results also follow the magic rule that the Mg10 is the close-
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shell cluster and its band gap of 1.25 eV is larger than that of the Mg10
2+ cluster (0.92 

eV). 

4.3.2. H2 Dissociation over Mg9, Mg9
2+, Mg9

2-, Mg10 and Mg10
2+ Clusters. To 

calculate the transition states, we first used the nudged elastic band (NEB) method 

implemented in VASP to calculate the transition states of H2 dissociation on the Mg9, 

Mg10 and Mg10
2+ clusters. Those transition state structures were then used as the initial 

input structures for the GAUSSIAN calculations and allowed to be optimized to the 

saddle points. These three transition state structures also provided prior knowledge of the 

transition state structures of such systems. Based on this information, the initial structures 

of the transition states of H2 dissociation over the Mg9
2+ and Mg9

2- clusters were 

constructed and subjected to optimize to their corresponding saddle points. For 

comparison purpose, the H2 dissociation locations on all clusters were chosen to be very 

similar, i.e. over the Mg4-Mg5 bridging bond (Figure 4.1). The activation energies were 

calculated using: 

��zS
 � �0� � ��S���
PZ � � ��,     (4.1) 

where �0�, �S���
PZ and � � are the energies of the transition state, the initial Mg cluster 

and a gas phase H2 molecule, respectively. ��zS
 calculated using both GAUSSIAN and 

VASP were reported in Table 4.1.  
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Table 4.1. H2 dissociation energy barrier (eV) over Mg clusters calculated using Gaussian with 
both B3LYP and PBE functional, as well as using VASP with PBE functional. 

# of electrons of 
the cluster 

# of electrons of 
the transition state 

∆Eact 
( Gaussian,B3LYP) 

∆Eact 

 (Gaussian,PBE) 

∆Eact 

 (VASP, PBE) 

Mg9 18 20 1.03 0.62 0.61 

Mg9
2+ 16 18 0.73 0.07 

 
Mg9

2- 20 22 1.37 1.28 
 

Mg10 20 22 1.66 1.47 1.64 

Mg10
2+ 18 20 1.15 0.73 0.77 

 
 

As shown in Table 4.1, although ��zS
 calculated using different computational 

codes and functionals have different absolute values, the relative orders of the values for 

different clusters within each method are consistent. Note that for the same cluster, the 

activation energies calculated using GAUSSIAN with PBE and using VASP with PBE 

are very similar, while the results using GAUSSIAN with B3LYP is much higher than 

the former two, for example, the ��zS
 of the Mg9
2+ cluster calculated using B3LYP is 

0.66 eV higher than the PBE result. Therefore, the choice of the functional significantly 

affects the calculated energy barriers. However, comparing the values calculated by the 

same method, the ��zS
 of the Mg9
2- and Mg10 clusters are consistently the two highest 

among all five clusters and the ��zS
 for the Mg9
2+ cluster is significantly smaller than all 

the other clusters. Since the local steric environments for H2 dissociation on all clusters 

are very similar, the obvious difference of ��zS
 of different clusters should be attributed 

to the relative stabilities of the reactant Mg clusters and the transition states, which are 

determined by the difference of their electronic structures. From herein, we only compare 

the activation energies of different clusters calculated using Gaussian/PBE. 
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When a hydrogen molecule approaches and dissociates over a magnesium cluster, the 

electronic shell structure of the reaction transition state and final state differs from that of 

the original magnesium cluster. According to the electron counting rule developed for 

Al nHm clusters123, when a hydrogen atom is at the bridge bonded Al−Al position, its 

electron would become delocalized and should be counted in the electron shell of the 

metal-hydrogen cluster entity. Since in the transition state structures of hydrogen 

dissociation, both hydrogen atoms sit on bridge magnesium bonds, the two electrons from 

the hydrogen atoms should be both counted for the electron shells. Accordingly, the 

hydrogen dissociation transition states TSMg10 and TSMg9(2-) both have 22 shell electrons. 

At the same time, the initial structures of both Mg10 and Mg9
2- clusters are both very 

stable due to the electron closures, therefore, changing electron shell from 20 electrons 

(closed) to 22 electrons (open) by adding a hydrogen molecule is not favored, thus the 

��zS
 for these two are expected to be high. On the other hand, the Mg9 and Mg10
2+ 

clusters are both two electrons shy from closed shells. Adding two hydrogen atoms to the 

cluster, the transition state structures of hydrogen dissociation complete closed electronic 

shells since the electrons from two hydrogen atoms are both counted as delocalized 

electrons. Therefore, opposite to H2 dissociation on the Mg10 and Mg9
2- clusters discussed 

above, the reactions on Mg9 and Mg10
2+ are from open to closed electron shells. Because 

the closed-shell transition states TSMg9 and TSMg10(2+) have enhanced stabilities compared 

with the their corresponding reactant clusters, the height of the potential barrier that the 

system needs to overcome is reduced. This explains why the ��zS
 of 0.62 and 0.73 ev 

for Mg9 and Mg10
2+, respectively, are much lower than Mg10 and Mg9

2- clusters, as well 

as Mg(0001) surface. 
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The reaction of a hydrogen molecule dissociates over a Mg cluster is a simultaneous 

process of H-H bond elongating/splitting and hydrogen adsorption on the magnesium 

cluster. The H−H elongation normally costs energy, thus it raises the energy of the 

system and contributes to the increase the activation energy. The latter involves the two 

hydrogen atoms joining the magnesium cluster skeleton accompanied by the structure 

adjustment of the original magnesium cluster to adopt the newly added two atoms. This 

can either stabilize or destabilize the system depending on the interaction between the 

two hydrogen atoms and the magnesium cluster. Accordingly, we decompose the ��zS
 

into two parts of energies—the H−H elongation/splitting energy and the hydrogen 

adsorption energy. The H−H elongation/splitting energy cost was calculated by 

subtracting the energy of a gas phase hydrogen molecule from the energy of two 

hydrogen atoms at the distance of the transition state H-H bond length. These energies 

are reported in Table 4.2. Depending on the transition state H−H bond length, the 

elongation energy on different clusters varies—the longer the H−H bond length is in the 

transition state structure, the larger the elongation energy is. The absolute value of the 

imaginary H-H stretch frequency of the transition state also increases as the H-H distance 

of the transition state and the splitting energy increase. Subtracting the H−H elongation 

energy cost from ��zS
 yields the adsorption energy, e.g. the stabilizing/destabilizing 

energy by forming the magnesium cluster and hydrogen entity. When this adsorption 

energy is positive, it will be added up to the H−H elongation energy and raise the 

activation energy of H2 adsorptive dissociate over the cluster; however, if the adsorption 

energy is negative, it will compensate the H−H elongation energy cost and thus decrease 

the activation energy. The adsorption energies are also reported in Table 4.2. The smaller 
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this energy is, the more stabilized the cluster structure becomes after the addition of two 

hydrogen atoms. The adsorption energy calculated as such should be a good indication of 

the stability change caused by the interaction between the magnesium cluster and the 

newly added two hydrogen atoms, thus the values of this energy follow the magic rule. 

For example, the adsorption energies for Mg9 and Mg10
2+, −0.62 and −0.75 eV, 

respectively, are lower than Mg10 and Mg9
2-. This is, again, because for the former two 

the originally 18-electron clusters were greatly stabilized by the addition of two hydrogen 

atoms; while for the latter two clusters, the electron shells changed from 20-electron to 

22-electron, which is not a thermodynamically favored. Especially for the Mg9
2-, besides 

the unfavorable electronic shell structure change from closed to open, the added electron 

from the hydrogen atoms entered an anti-bonding orbital. Thus, the adsorption energy for 

this cluster is the highest, with a positive energy of 0.19 eV. 

Table 4.2. H2 dissociation adsorption activation energies (eV) decomposed to H-H splitting 
energy cost and pure adsorption energies. Imaginary frequencies (cm-1) of H-H splitting were also 
reported. All results are PBE calculations. 

 Mg9 Mg9
2+ Mg9

2- Mg10 Mg10
2+ 

��zS
 0.62 0.07 1.28 1.47 0.73 
H-H splitting 
energy cost 1.24 1.01 1.09 1.61 1.48 

Adsorption energy -0.62 -0.94 0.19 -0.14 -0.75 

H-H frequency -1086 -741 -815 -1355 -1105 

 

The Mg9
2+ cluster has 16 electrons in the valence shell. Adding one hydrogen 

molecule to the Mg9
2+ cluster makes the transition state an 18-electron structure. The 

reaction over the Mg9
2+ cluster is an open shell (reactant) to open shell (transition state) 

process. Neither reactant nor product cluster structure has extra stability by completing 

electronic shell closure. However, the activation energy of 0.07 eV is exceptionally low, 
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indicating the reaction is almost barrierless. This is probably because the 18-electronics 

shell structure of the transition state is closer to the closed shell compared with the 

reactant. As the electronic shell structure of a cluster getting close to closure, the stability 

of the cluster increases. Thus the reaction is very readily to occur so that the electrons 

from the hydrogen can help stabilizing the structure of the cluster. 

 

Table 4.3. Band gaps (eV) of magnesium clusters and their corresponding transition states. 
 

Mg9 Mg9
2+ Mg9

2- Mg10 
Mg10

2+ 

Band gap  
of cluster 0.73 0.90 0.81 1.25 0.92 

Band gap of 
transition state 1.23 2.12 0.54 0.90 1.36 

 

The band gaps of the transition states of H2 dissociation on the five clusters were 

reported in Table 4.3. The two 22-electron structures TSMg9(2-) and TSMg10 have smaller 

band gaps (0.54 and 0.90 eV, respectively) than the two 20-electron structures TSMg9 

(1.23 eV) and TSMg10(2+) (1.36 eV). Again, the exception to the magic rule here is the 

transition state of Mg9
2+— the 18-electron transition state TSMg9(2+) has an remarkable 

large band gap of 2.12 eV. Since ��zS
 was calculated by �0� � ��S���
PZ � � �� and the 

� �term for each cluster is the same, the value of ��zS
 is actually determined by the 

value of (�0� � �S���
PZ). Base on the fact that both energy and band gap are good 

indication of the stability of small clusters, the value of (�0� � �S���
PZ) should be 

proportional to the band gap (BG) difference between the transition state and initial 

cluster (¡¢0� � ¡¢S���
PZ). Therefore, when we plot out (¡¢0� � ¡¢S���
PZ� vs. ��zS
  

of each cluster, the ��zS
 is linear to (¡¢0� � ¡¢S���
PZ) as clearly shown in Figure 4.2. 
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For the Mg9
2- and Mg10 clusters, because the products have smaller band gaps than their 

corresponding reactants, their (¡¢0� � ¡¢S���
PZ) terms are negative. This implies the 

transition state cluster entities are less stable than the reactants, in good agreement with 

the prediction of the magic rule. As a result, for such reaction to occur the systems need 

to overcome large energy barriers. For cluster Mg9, Mg10
2+ and Mg9

2+, the transition 

states are more stable than reactants (¡¢0� � ¡¢S���
PZ > 0), ��zS
 are lower. We also 

plotted the H2 dissociation reaction energy of each cluster vs. the corresponding ��zS
 in 

Figure 4.2. Clearly, the activation energy and the reaction energy do not exactly follow 

the linear free energy relationship, e.g. the Mg9
2+ has higher reaction energy but lower 

activation energy than Mg10.  

 

 
Figure 4.2. Activation energy vs. band gap difference between the transition state and the 
reactant of the Mg clusters/surfaces.  
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4.3.3. Comparison of H2 Dissociation over Mg Clusters and Surfaces. As discussed 

above, the very different reactivities of the Mg clusters with similar sizes depend on the 

electronic shell structure changes from the initial to the final state. As we can imagine, 

these changes are only significant for small metal clusters that can be described with 

Jellium model. For the H2 dissociation occurring on surfaces or clusters with larger sizes, 

the adsorption of H atoms on Mg species is not very strong and the structural adjustment 

of Mg to adapt H would be relatively localized, thus, the H−H splitting energy cannot be 

properly compensated. The transition states of H2 dissociation over Mg(100) and (110) 

are shown in Figure 4.3. The ��zS
 of 0.98 and 1.16 eV, respectively, are very similar to 

the ��zS
 of 1.05eV on (0001). 

 

      
(a)             (b) 

Figure 4. 3. Transition states of hydrogen dissociation over the (a) Mg(100) surface and (b) 
Mg(110) surface.   

 

Furthermore, the reaction occurring on Mg surfaces is too localized to bring any 

significant change to the overall band gap of the system. Thus the �¡¢0� � ¡¢S���
PZ� 

approximately equals zero. Assuming ¡¢0� � ¡¢S���
PZ= 0 for these three surfaces, we 

∆E=1.16eV ∆E=0.98eV 
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marked the data points in green (0001), black (100) and blue (110) squares, respectively, 

in Figure 4.2. All three points are converged nearly on the linear data line at 

approximately 1.0−1.1 eV. Furthermore, the interaction between the Mg surfaces and the 

hydrogen atoms at the transition state is so weak, that the energy cost of the H-H 

elongation/splitting cannot be compensated. Thus ��zS
 on the Mg surfaces are relatively 

high comparing with some of the clusters where the adsorption energy of hydrogen on 

Mg clusters lowers the activation energy.  

Furthermore, our results demonstrated that the kinetics of H2 dissociation over small 

Mg clusters, to which the magic rule applies, is very different from that of the surfaces. 

4.4. Conclusions: 

First principles density functional theory was used to study the H2 dissociation over 

selected Mg clusters. We have demonstrated the reaction energy barrier of hydrogen 

dissociation on these clusters highly depends on the electronic structure of the initial bare 

cluster and the transition state cluster entity (magnesium with hydrogen attached). For 

cluster Mg9 and Mg10
2+, the electronic structures change from open shell initial states to 

closed shell transition states, so the activation energies are relatively lower than for 

cluster Mg9
2- and Mg10, of which the electron shells change from closed (initial state) to 

open (transition state). This follows the magic rule that the clusters with closed electronic 

shell have extra stability than the open shell. However, the Mg9
2+ cluster is exceptionally 

stable and the hydrogen dissociation barrier over the cluster is expectedly low, which is 

not discussed in the magic rule. More importantly, we demonstrate that some of the 

clusters, compared with surfaces, have very high reactivities and completely different 
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kinetic properties toward H2 dissociation, which might shed light on tailoring the 

materials for better usage of hydrogen storage. 
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CHAPTER 5 

ORIGIN OF SUPPORT EFFECTS ON THE REACTIVITY OF 
CERIA CLUSTER 

 

5.1. Introduction  

Metal oxides are commonly used as catalyst supports in a variety of commercial 

heterogeneous catalytic processes, including the conversion of hydrocarbon and emission 

control.124,125 Metal oxide also acts as active catalysts and/or promoters in many 

reactions.14 Catalysts comprised of an active metal oxide dispersed on the surface of 

another metal oxide support are used widely.14,126 In these catalysts, the supporting oxides 

and the dispersed oxides may exhibit very different physical and chemical properties 

from their corresponding bulk counterparts. The geometric structure and the variable 

oxidation states of metal in the active oxide, as well as the local environment where the 

reaction takes place, control the overall catalytic performance.127-131 In this regard, the 

loading of active oxide, the nature of the supporting oxide, and the preparation method all 

contribute to the activity of the catalyst. For example, it was well documented that the 

turn-over frequency of the selective oxidation of methanol to formaldehyde on metal 

oxide supported vanadia/molybdena can be greatly affected by the support51,132-139. In the 

mean time, the loading of the dispersed active metal oxide determines the number of 

active sites since the coverage of the dispersed phase is in the range of submonolayer (< 

100%). Establishing a relationship between the reactivity of the dispersed metal oxide 

catalysts on different oxide substrates by investigating the oxide cluster and overlayer on 

the different support oxides is key to understand and design more efficient catalysts. 

Unfortunately, unlike the very well studied metal clusters supported on metal oxide 
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systems12-17,140-148, the supported oxide catalysts are not as well understood as the 

supported metal catalysts due to the challenges in manipulating the dispersion oxide 

particles and characterizing the oxide overlayers.  

Ceria-based catalysts have attracted enormous interest because of their various 

applications in heterogeneous catalysis such as automobile exhaust treatments and 

oxidative dehydrogenation of hydrocarbons.142,149-153 The unique capability of cerium that 

it adapts its oxidation states under different environments, makes ceria not only a good 

support for transition metals, but also an active component in many practical 

catalysts.149,150,154 However, pure ceria is not suitable for the dual functionalities in those 

catalysts because of the rapid sintering, poor thermal stability, and high reduction 

temperature.2,155 A second metal oxide, such as ZrO2 or γ-Al 2O3, was generally added in 

ceria-based catalysts.156-159 The addition of another metal oxide is expected to enhance 

the dispersion and resist the sintering, as well as improve the redox property of 

CeO2.
2,155,160 Numerous experimental investigations have attempted to follow the 

structural transformation and to elucidate stability of the oxygen vacancy in the mixed 

oxides.132,153,156-159,161-166 However, to establish a structure-property relationship for the 

complex mixed oxide systems on the molecular level is still prohibited.14  

Experimentally, it has been demonstrated that the loading of the ceria species and the 

nature of the support result in different reactivity of the catalyst. For example, the 

dispersion of the CeO2 entities in an alumina-supported ceria catalyst was found to 

depend upon the interaction between CeO2 and the underlying alumina support.158 In the 

range of 1 ~ 39 wt% CeO2, two general types of CeO2 structures have been observed.158 

At low CeO2 loadings, CeO2 particles are highly dispersed on the support as two-
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dimensional (2D) patches. As the CeO2 content increases, three-dimensional (3D) 

crystalline CeO2 particles form and grow at the expense of the 2D CeO2 patches. More 

importantly, different redox properties were observed for the 2D and 3D CeO2. For 

example, re-oxidizing the Ce sites of the reduced 2D CeO2 patches was found to be 

difficult as observed by electron paramagnetic resonance (EPR).158 For CeO2-ZrO2 

systems, most previous studies indicated that mixed CexZr1-xO2 solid solutions 

form.155,159,163,166-168 The redox properties of CexZr1-xO2 are strongly dependent upon the 

structure and composition of the active phase. Due to the limitations of current surface 

science techniques, the activity of the catalyst is measured as an average over the entire 

CeO2-ZrO2 sample. Consequently, the origin of the improved redox property by adding 

ZrO2 to the system is not clear.166,168  It has been suggested that the enhanced redox 

properties relates to the composition of the mixed CeO2-ZrO2 nanodomain.166,168 The 

nanoscale heterogeneity derived from the local composition and structure may play an 

important role in determining the support and promotion effects of ZrO2.
166,168 Putna et 

al. investigated CO oxidation on the CeO2 film supported by the polycrystalline ZrO2 and 

α-Al 2O3 substrates.162 They reported that the CeO2 film over the ZrO2 substrate was 

highly reducible and much more reactive towards CO oxidation than the α-Al 2O3 

substrates. Furthermore, there was no evidence of forming a mixed CeO2-ZrO2 phase. 

The observed enhancement in activity was rationalized by the improved reducibility of 

CeO2 film since ZrO2 was buried under the CeO2 film at the reaction conditions.162 These 

authors also suggested that the support effects of ZrO2 might simply be explained by 

promoting the formation of small, incoherently dispersed CeO2 islands.162   
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To better understand of the origin of support effects on the CeO2 catalyst, CO 

adsorption and oxidation over the oxide-on-oxide model catalyst, i.e. a stoichiometric 

Ce2O4 cluster (as the active oxide phase) supported on the reducible ZrO2 and the 

irreducible γ-Al 2O3 substrates was studied using first principles density functional theory 

(DFT) method. We demonstrated the distinctive effects of the irreducible and reducible 

supports on the reactivity of supported Ce2O4 clusters toward CO and CO2 and analyzed 

the origin of the differences.  

5.2 Methodology 

All the calculations were carried out using the VASP code,87 a DFT  program 

package with plane wave as basis set. The interactions between ions and electrons was 

described using the projector augmented wave method.87 The nonlocal exchange-

correlation energy was evaluated by the PBE functional. For systems involving Ce atoms, 

the DFT+U method130,169-172 (U = 5 used in this work) was used to treat the highly 

correlated f-electrons of Ce atoms. The plane wave basis set with a cutoff energy of 400 

eV was used to expand the wave function of valence electrons. Spin-polarization was 

included in all calculations. The atomic structures were relaxed until the forces on the 

unconstrained atoms were less than 0.05 eV/Å.  

The ZrO2 substrate was taken from the monoclinic ZrO2 bulk structure optimized 

with the same set of parameters. The zirconium atoms in the bulk structure are all hepta-

coordinated whereas the oxygen atoms are either tri- or tetra- coordinated. The optimized 

lattice parameters  a, b, c and γ of ZrO2 bulk are 5.160, 5.236, 5.319 Å and 99.64º, in 

good agreement with the experimental values of 5.151, 5.212, 5.317 Å and 99.23º.173 

Since the (111) orientation of ZrO2 is the most stable surface, the ZrO2(111) surface was 
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chosen as the supporting ZrO2 substrate. The model ZrO2(111) slab consists of three O-

Zr-O tri-layers. As shown in Figure 5.1a, within the surface tri-layer, the topmost layer 

consists of four bi-coordinated oxygen and four tri-coordinated oxygen sites (labeled as 

O2c and O3c). The middle layer of the top tri-layer consists of four hexa-coordinated and 

four hepta-coordinated Zr atoms (labeled as Zr6c and Zr7c).  

O2c
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O2c

O2c

(b)

(c)

OL OL

Zr 6c
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Zr 7c

Zr 7c

Zr 7c
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O3c
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Figure 5.1. Top and side views of ZrO2(111) and γ-Al 2O3(100) surface slabs. (a) ZrO2(111); (b) 
γ-Al 2O3(100). The atoms in the top surface layer are shown in ball and stick; the other atoms in 
the systems are shown in line format. Zr6c and Zr7c (in light blue) are the hexa- and hepta-
coordinated Zr atoms; O2c and O3c (in red) are di- and tri-coordinated O atoms; Al5c (in magenta) 
is the penta-coordinated Al atom.

 
Reproduced with permission from J. Phys. Chem. C, 2009, 113, 

18296. Copyright 2009 American Chemical Society. 
 

The γ-Al 2O3 substrate was taken from the non-spinel γ-Al 2O3 bulk structure. Previous 

experiments suggested that the penta-coordinated Al sites are available only on the (100) 

surface of the γ-Al 2O3 and are the most likely nucleation sites for metal and metal oxide 

clusters.129,174 As a result, the γ-Al 2O3(100) surface was chosen as the γ-Al 2O3 support in 

this work. As shown in Figure 5.1b, the γ-Al 2O3(100) surface is terminated with twelve 
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tri-coordinated oxygen and eight penta-coordinated Al3+ atoms. We note that both cations 

and anions are exposed in the topmost layer on the γ-Al 2O3(100) surface. This is different 

from the ZrO2 (111) surface where the anion layer is distinctively higher than the cation 

layer. Both the ZrO2(111) and γ-Al 2O3(100) surface slabs are stoichiometric, non-polar 

and oxygen-terminated. The dimensions of the two surface unit cells were chosen to 

allow a nearly same coverage of the binding Ce2O4 cluster.  

In all surface calculations, a vacuum space of at least 12 Å was inserted in the 

direction perpendicular to the surface between images of the slab. The initial structure of 

the Ce2O4 cluster was constructed on the basis of the CeO2 bulk structure and was 

optimized in a box with a vacuum space of at least 12 Å in each direction. For the 

supported Ce2O4 cluster on both surfaces, the cluster together with the top two tri-layers 

of ZrO2(111) surface and the top two layers of γ-Al 2O3 surface were allowed to relax 

during the geometry optimization. K-point meshes of 2 × 3 × 1 and 2 × 2 × 1 for 

ZrO2(111) and γ-Al 2O3(100), respectively, were used to generate the K-points according 

to the Monkhorst-Pack scheme. Convergence tests with regard to cutoff energy and K-

points sample have been performed to ensure the accuracy of the calculations.   

5.3 Results and Discussion 

5.3.1. Adsorption of CO and CO2 on the ZrO2(111) and γ-Al 2O3(100) Surfaces. a. CO 

Adsorption. On ZrO2(111), our optimization resulted in a CO molecule lying 2.56 Å 

above a hexa-coordinated Zr site. Our calculated adsorption energy of CO in this 

structure is −0.43 eV, close to the measured heat of adsorption for CO (0.46 ~ 0.52 eV) 

from microcalorimetry.175 The C−O stretching frequency is calculated to be 2172 cm-1 

which is blue shifted by 43 cm-1 with respect to the calculated C−O stretching frequency 
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of 2129 cm-1 in the gas phase. In the previous experimental studies, two different CO 

adsorption modes were reported on the monoclinic zirconia.175,176 The high C−O 

frequency that ranges from 2192 to 2195 cm-1 was assigned to CO adsorbed at the 

defective sites. The low C−O frequency in the range of 2184~2187 cm-1, which is blue 

shifted by 41 ~ 44 cm-1 with respect to the experimental C−O stretching frequency of 

2143 cm-1 in the gas phase,177 was assigned to the adsorbed CO at the surface Zr cations. 

With respect to the calculated C−O stretching frequency in gas phase, our calculated C−O 

frequency for adsorbed CO is in good agreement with the experimental measurements. 

Since the (111) surface is the most stable surface and is expected to dominate the surface 

of a ZrO2 particle,178 the low C−O frequency mode in those experimental spectra should 

correspond to the adsorbed CO at the cationic Zr site of  the ZrO2(111) surface. 

On the γ-Al 2O3(100) surface, CO was found to adsorb at the penta-coordinated 

surface Al site with a O−Al distance of 2.33 Å. The adsorption energy of CO on the γ-

Al 2O3(100) surface is –0.15 eV. The calculated C−O stretching frequency is blue shifted 

by 16 cm-1 with respect to the gas phase value. Although there is no direct comparison 

with the experimentally observed IR spectra, our results are in general consistent with the 

previous theoretical calculations.96,179 In the early computational work of Zecchina et al, 

the band with a blue shift of 22 cm-1 was assigned to CO adsorption at the penta-

coordinated Al3+ sites with an adsorption energy of –0.21 eV.179 Digne et al96 also 

reported a blue shift of 10~16 cm-1 for CO adsorption on the penta-coordinated Al sites 

with the same γ-Al 2O3(100) surface model used in this work.  The adsorption energy of 

CO were in a range of −0.41 ~ −0.21 eV, slightly larger than our value.  
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The vibrational properties of CO adsorbed on oxides have been used to elucidate the 

nature of the cationic sites.179 On a non transition metal oxide surface, the interaction 

between CO and cation site is predominantly electrostatic. The blue shift of CO 

stretching frequency is a result of the polarized field of the cation, and the magnitude of 

the shift is proportional to the strength of the field.179 We note, however, that Zr is a 4d 

transition metal element and the contribution of d orbitals often reduces the electrostatic 

effect. The fact that CO adsorbed on the ZrO2(111) surface has a larger blue shift in C−O 

stretching frequency and a larger adsorption energy than CO adsorbed on γ-Al 2O3(100) 

indicates that the local field induced by Zr4+ on the ZrO2(111) surface is stronger than 

that by the Al3+ sites on γ-Al 2O3(100). Consequently, the Zr4+ site on the ZrO2(111) 

surface is expected to be more acidic than the Al3+ sites on γ-Al 2O3(100).   

b. CO2 Adsorption. The acidic CO2 molecule generally adsorbs on the basic sites of 

oxide surface.180 Different strengths of surface basicity are expected to result in different 

adsorption configurations.83,181,182 Typically, CO2 binds at a strong basic oxygen site in a 

monodentate configuration via a C−Osurf bond, whereas at the weak basic sites, it binds in 

bidentate or bridged configurations via both C−Osurf and O−Msurf bonds. On the 

ZrO2(111) surface, we found that CO2 adsorbs in a bidentate configuration, forming a 

carbonate like species. The C−O bond lengths of the carbonate species are 1.21, 1.28 and 

1.51 Å, respectively. The adsorption energy was calculated to be +0.05 eV, indicating 

that the adsorption is slightly endothermic. However, our vibrational frequency analysis 

of the adsorption structure shows that the resulting carbonate is at a true minimum since 

no imaginary frequency was found. The frequencies corresponding to the symmetric and 

asymmetric stretching are 1850 and 1187 cm-1, respectively. These values are close to 
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those of bridged carbonate species.183 The adsorption of CO2 on γ-Al 2O3(100) has been 

studied previously.181 The adsorbed CO2 binds a surface O−Al bridge site and forms a 

bidentate carbonate species. The calculated adsorption energy of CO2 on the γ-

Al 2O3(100) surface is −0.80 eV. 

5.3.2. Ce2O4 Cluster on the ZrO2(111) and γ-Al 2O3(100) Supports. The optimized 

structure of the unsupported Ce2O4 cluster consists of a planar ring and two out-of-plane 

oxygen “legs” (OL), as shown in Figure 5.1c. Based on the chemical intuition that aligns 

the cluster cations with the surface anions and the cluster anions with surface cationic 

sites, multiple binding configurations of the Ce2O4 cluster over on ZrO2(111) and γ-

Al 2O3(100) have been examined. The stability of the supported Ce2O4 cluster was 

evaluated by calculating its binding energy, 

��GI� � �SP�£c
� � ���P��c � ������,       (5.1) 

where �SP�£c
�  is the total energy of the Ce2O4 cluster interacting with the supporting 

substrate; ��P��cand �����are the total energies of the unsupported Ce2O4 cluster and the 

substrate, respectively. According to this definition, a more negative binding energy 

corresponds to a stronger interaction between the cluster and the supporting surface. 

The most stable structure of the Ce2O4 cluster on the ZrO2(111) surface has a binding 

energy of −5.32 eV. The top and side views of this structure are shown in Figure 5.2a. 

Two OL atoms of the Ce2O4 cluster bind with the surface Zr6c and Zr7c sites in a bridging 

configuration. The bond lengths of the OL−Zr6c and OL−Zr7c are 2.15 and 2.09 Å, 

respectively. The planar structure of Ce−O1−Ce−O2 is tilted with respect to the ZrO2(111) 

surface plane so that the O1 atom points to the substrate surface with a O1−Zr7c bond of 

2.11 Å.  In addition, each Ce atom interacts with an O2c site at a Ce−O2c distance of ~ 
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2.20 Å, further enhancing the interaction between the cluster and the support. Bader 

charge analysis90 indicates that the ZrO2 surface slab is slightly reduced with a total 

charge of −0.20 |e|. This charge was transferred from the supported Ce2O4 cluster.  
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Figure 5.2. Optimized structures of Ce2O4 cluster supported on the (a) ZrO2(111) and (b) 
γ-Al 2O3(100) surfaces. (c) Optimized structure of the unsupported Ce2O4 cluster. The 
color scheme is the same as that of Figure 1. Oxygen atoms of Ce2O4 cluster are shown in 
dark red;  Ce atoms are shown in yellow. Reproduced with permission from J. Phys. Chem. C, 
2009, 113, 18296. Copyright 2009 American Chemical Society. 

 

On the γ-Al 2O3(100) surface, all the oxygen atoms are tri-coordinated. The strength of 

the interaction between a cluster Ce ion and the surface oxygen site is expected to depend 

on their distance. In the most stable structure of the Ce2O4 cluster supported on the γ-

Al 2O3(100) surface, shown in Figure 5.2b, the distances between the oxygen atoms of the 

cluster and the bonded Al5c sites are 1.85, 1.88, and 1.96 Å, respectively. The two Ce−O3c 

bond lengths are 2.35 and 2.28 Å. The calculated binding energy of Ce2O4 on the γ-

Al 2O3(100) surface is −4.21 eV. Bader charge analysis indicates that no net charge 

transfer is found between the supported Ce2O4 cluster and the γ-Al 2O3(100) slab. This can 

be attributed to the irreducible nature of the γ-Al 2O3 surface. 



 
 

91 
 

 

The interaction between the Ce2O4 cluster and the γ-Al 2O3(100) substrate is weaker 

than that between Ce2O4 and ZrO2(111). The binding of the Ce2O4 cluster on the 

ZrO2(111) and γ-Al 2O3(100) surfaces arises from the cation and anion pairs between the 

cluster and surface sites. The relative stabilities of the Ce2O4 cluster on the supports can 

be affected by many factors, including the charge and coordination unsaturation of 

surface cationic sites as well as the geometric mismatch between the cluster and the 

substrate. First, the formal charges of the cationic sites on ZrO2(111) and γ-Al 2O3(100) 

are +4 and +3, respectively. Second, the ZrO2(111) surface exposes both the bi-

coordinated and the tri-coordinated oxygen sites while the γ-Al 2O3(100) surface exposes 

only the tri-coordinated oxygen sites. The stronger binding of Ce2O4 on ZrO2(111) than 

on γ-Al 2O3(100) can be attributed to an overall effect of both factors.  
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 Figure 5.3. CO2 adsorption on (a) ZrO2(111) supported and (b) γ-Al 2O3(100) supported 
Ce2O4 cluster. CO2 adsorption on the unsupported Ce2O4 cluster is shown in the inset. 
The C atom is in gray. Reproduced with permission from J. Phys. Chem. C, 2009, 113, 18296. 
Copyright 2009 American Chemical Society. 

 

5.3.3. CO2 Adsorption on the Supported Ce2O4 Cluster. CO2 also adsorbs on the basic 

oxygen sites of the supported Ce2O4 clusters. Figure 5.3 shows the relaxed structures for 
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CO2 adsorption on both ZrO2(111) and γ-Al 2O3(100) supported Ce2O4 clusters. In both 

adsorption structures, the carbon atom binds an oxygen atom of the Ce2O4 cluster, 

forming a surface carbonate CO3
2- species. CO2 adsorption on the supported Ce2O4 

cluster is typically attributed to an acid-base interaction due to the strong basicity of the 

oxygen atoms in the Ce2O4 cluster.184,185 The adsorption energies of CO2 on the 

ZrO2(111) and the γ-Al 2O3(100) supported Ce2O4 cluster are −0.98 and −1.11 eV, which 

are close to the adsorption energy of −1.12 eV of CO2 on the unsupported Ce2O4 cluster 

in a similar configuration. Bader charge analysis showed that the CO2 adsorption did not 

cause charge transfer between support and Ce2O4: the ZrO2(111) slab remains reduced by 

~ −0.2 |e| whereas  there is no net charge in the γ-Al 2O3(100) slab. Charge redistributions 

did occur between the adsorbed CO2 molecule and the Ce2O4 clusters. Since there is no 

charge transfer between the Ce2O4 clusters and the two substrates, it is expected that the 

ZrO2(111) and γ-Al 2O3(100) supports have very minor effects on the acid-base 

interaction between CO2 and the Ce2O4 clusters.  

 Unlike the typical adsorption configuration of CO2 on single crystal metal oxide 

surfaces in which at least one of the oxygen atoms of the resulting carbonate species does 

not interact directly with the cationic sites of the surface,56 all three oxygen atoms of the 

carbonate species shown in Figure 5.3 are in the range of forming bonds with the Ce 

atoms of the cluster. The calculated asymmetric and symmetric stretching frequencies for 

the carbonate species formed on ZrO2(111) supported Ce2O4 cluster are 1529 and 1262 

cm-1, respectively. The corresponding frequencies on the γ-Al 2O3(100) supported Ce2O4 

cluster are 1517 and 1278 cm-1, respectively. On the unsupported Ce2O4 cluster, the 

carbonate species has the frequencies of 1514 and 1266 cm-1. Clearly, these frequencies 
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of the carbonates, both on the supported clusters and unsupported cluster, are in the range 

of but different from the reported assignments of the monodentate, bidentate and bridged 

configurations of adsorbed CO2 on metal oxide surfaces,184 suggesting the uniqueness of 

CO2 adsorption configuration on the Ce2O4 clusters.  

5.3.4. CO Adsorption on Ce Sites of the Supported Ce2O4 Cluster. CO molecule can 

adsorb through its carbon atom onto the acidic Ce site of the supported Ce2O4 cluster in 

an upright configuration. The optimized structures of CO adsorption on the Ce site of the 

ZrO2(111) supported Ce2O4 (Figure 5.4a) and γ-Al 2O3(100) supported Ce2O4 the (Figure 

5.4b) are very similar. The calculated CO adsorption energies are −0.25 and −0.28 eV 

respectively. Compared to the CO adsorbed on the unsupported Ce2O4 cluster (−0.24 eV), 

the weak interaction between CO molecule and the supported Ce2O4 cluster via the C−Ce 

bonding indicates both supports have little effects on “physical” adsorption of CO on the 

Ce2O4 cluster.  
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Figure 5.4. CO adsorption on Ce atom of (a) ZrO2(111) supported and (b) γ-Al 2O3(100) 
supported Ce2O4 cluster. CO adsorption on the Ce atom of the unsupported Ce2O4 cluster 
is shown in the inset. Reproduced with permission from J. Phys. Chem. C, 2009, 113, 18296. 
Copyright 2009 American Chemical Society. 
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5.3.5. The Reactivity of the ZrO2(111) and the γ-Al 2O3(100) Supported Ce2O4 

Clusters. The reactivity of the ZrO2(111) and the γ-Al 2O3(100) supported Ce2O4 clusters 

are investigated by “reactive” adsorption of CO. In addition to the physisorbed CO on the 

supported and the unsupported Ce2O4 clusters discussed in section 5.3.4, a CO molecule 

can also be adsorbed through its carbon atom, bridging the two oxygen atoms of the 

supported Ce2O4 cluster. After adsorption, the CO molecule, in combination with the two 

oxygen atoms of the cluster, forms a carbonate like (CO3
2-) species. We therefore refer to 

this CO adsorption mode as CO reactive adsorption. The optimized structures of CO 

reactive adsorption on the ZrO2(111) and γ-Al 2O3(100) supported Ce2O4 clusters are 

shown in Figure 5.5a and 5.5b. After CO reactive adsorption, the O1 and O2 atoms of the 

supported Ce2O4 cluster were pulled out of their original positions to form the CO3
2- 

species. Meanwhile, the other atoms of the Ce2O4 clusters underwent pronounced 

relaxations. As shown in Figure 5.5a, the two Ce atoms were pushed apart from each 

other with respect to their original positions in the adsorbed cluster structure before CO 

adsorption. Nevertheless, both OL atoms and both Ce atoms as well as the O1 atom 

remain bonded with the support. The lengths of the three C−O bond in the CO3
2- species 

formed on the ZrO2(111) supported Ce2O4 cluster are 1.28, 1.29, and 1.34 Å, 

respectively. These C–O bond distances are very close to the C−O distance of 1.28 Å in 

CaCO3,
186 confirming the formation of a CO3

2- species after CO reactive adsorption. 

Moreover, the vibrational frequencies calculated for the adsorption structure are 1510 and 

1299 cm-1, consistent with the experimental values on the CeO2 surface, although the 

comparable values were assigned to an inorganic carboxylate.184 On the γ-Al 2O3(100) 

supported Ce2O4 cluster, the optimized structure is more symmetric after CO reactive 
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adsorption, as shown in Figure 5.5b. Although the original structure of the Ce2O4 cluster 

is also deformed after CO adsorption, the atoms of Ce2O4 remain bonded with the γ-

Al 2O3(100) substrate. The calculated C−O distances of the CO3
2- species formed on the γ-

Al 2O3(100) supported Ce2O4 cluster are 1.27, 1.28 and 1.37 Å, respectively, and again, 

are very similar to the CO3
2- in bulk CaCO3. The frequencies calculated for the CO3

2- 

species are 1562 and 1255 cm-1, which are also in agreement with the experimental 

values.184   
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Figure 5.5. Carbonate-like structure formed on (a) ZrO2(111) supported and (b) γ-
Al 2O3(100) supported Ce2O4 cluster upon reactive adsorption of CO. Reproduced with 
permission from J. Phys. Chem. C, 2009, 113, 18296. Copyright 2009 American Chemical 
Society. 
 

Furthermore, we examined the energetics for reactive adsorption of CO. The 

adsorption energies are calculated as, 

�z��
� � ��¤$�¥���¤¥&�

� � ��¤$�¥c
� � ����                                       (5.2) 

where ��¤$�¥���¤¥&�
�  is the total energy of system in which CO is reactively adsorbed on 

the supported Ce2O4 cluster. The calculated CO adsorption energies for the ZrO2(111) 

and γ-Al 2O3(100) supported Ce2O4 clusters are −0.55 and −4.33 eV, respectively. Bader 

charge analysis showed that in addition to the charge redistribution associated with the 

formation of the CO3
- species, the ZrO2(111) and γ-Al 2O3(100) supports gained electron 

charges of 0.37 and 0.28 |e|, respectively, indicating both substrates were reduced upon 
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CO adsorption. In the case of ZrO2(111), CO adsorption makes the substrate further 

reduced with respect to the substrate only supporting the Ce2O4 cluster. We expected the 

contributions from the CO−Ce2O4 interaction to CO adsorption energies to be similar 

since CO only interacts directly with the Ce2O4 clusters in both systems. Such a 

significant difference in CO adsorption energies was, therefore, not anticipated. The 

obvious difference between the two systems is the substrate: zirconia is reducible 

whereas alumina is not. As a reference, we calculated the reactive adsorption of CO on 

the unsupported Ce2O4 cluster. The optimized adsorption structure is similar to those of 

the Ce2O4-CO fragments in Figure 5.5a and b. The adsorption energy is −2.60 eV 

according to 

�z�� � ��¤$�¥���¤¥&� � ���P��c � ����      (5.3) 

where ��¤$�¥���¤¥&� is the total energy of reactively adsorbed CO on the unsupported 

Ce2O4 cluster. If we use the adsorption energy on the unsupported Ce2O4 as a reference, 

the two supports will have an opposite effect on the CO reactive adsorption: the 

adsorption energy is decreased with ZrO2(111) being the support but increased with γ-

Al 2O3(100) as the support. 
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support supportEbind
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Scheme 5.1. Thermodynamic cycle of CO reactive adsorption on the supported Ce2O4 
cluster. Reproduced with permission from J. Phys. Chem. C, 2009, 113, 18296. Copyright 2009 
American Chemical Society. 

 

To understand the origin of the dramatic difference between the ZrO2(111) and γ-

Al 2O3(100) supported Ce2O4 cluster towards CO reactive adsorption, we constructed a 
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thermodynamic cycle of converting Ce2O4 to (Ce2O2)
2+(CO3)

2- through CO reactive 

adsorption on the two supports. As shown in Scheme 5.1, the formation of CO3
2- causes 

CO to lose two electrons to the adjacent two Ce4+ ions. The step on the unsupported and 

both supported Ce2O4 clusters can be described as:  

Ce2O4 + CO � (Ce2O2)
2+(CO3)

2-                             (R5.1) 

Thus the adsorption structures shown in Figure 5.5 can be divided into two parts: the 

support and the (Ce2O2)
2+(CO3)

2- complex. The interaction energy (�GI
) between the 

support and the (Ce2O2)
2+(CO3)

2- complex can be calculated as: 

�GI
 � ��¤$�¥���¤¥&�
� � ���¤$�¥���¤¥&� � ������   (5.4) 

The calculated �GI
 are −3.27 eV for ZrO2(111) and −5.94 eV for γ-Al 2O3(100). Based on 

thermodynamic cycle illustrated in Scheme 5.1, we have 

�z��
� � �z�� � �GI
 � ��GI�                    (5.5) 

With Eads known from Eq.(5.3), �z��
�  will only depend on the value of (�GI
 � ��GI�). 

�GI
 (¦� ��GI�) measures the strength of the interaction between (Ce2O2)
2+(CO3)

2- (or 

Ce2O4) and the support. The calculated �GI
 and ��GI� for both supports are provided in 

Table 5.1. On the ZrO2(111) support, the interaction between (Ce2O2)
2+(CO3)

2- and 

ZrO2(111) (�GI
= −3.27 eV) is weaker than that between Ce2O4 and ZrO2(111) (��GI�= 

−5.32 eV). Consequently, �GI
 � ��GI� is positive (2.05 eV). This makes the CO reactive 

adsorption much weaker on the ZrO2(111) supported Ce2O4 than that on the unsupported 

Ce2O4. On the other hand, the binding of (Ce2O2)
2+(CO3)

2- (�GI
= −5.94 eV) is 

significantly stronger than that of Ce2O4 (��GI�= −4.21 eV) on the γ-Al 2O3(100) 

substrate, yielding a negative value of ��GI
 � ��GI�) (−1.73 eV). This results in an 

increased CO reactive adsorption energy on the γ-Al 2O3(100) support Ce2O4 cluster by 
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1.73 eV stronger with respect to the unsupported Ce2O4 cluster. Overall, difference of the 

CO reactive adsorption energy on the two supports is 3.78 eV. Clearly, the ZrO2(111) and 

γ-Al 2O3(100) substrates induced completely opposite effects for the Ce2O4 cluster toward 

reactive adsorption of CO.  

Table 5.1. Calculated reactive adsorption energies (eV) of CO on the unsupported 
Ce2O4 cluster (Eads), an on the  ZrO2(111) and γ-Al 2O3(100) supported  Ce2O4 cluster 
(Eads

s); the binding energies of Ce2O4 cluster (Ebind) and (Ce2O2)
2+CO3

2- (Eint) on the 
ZrO 2(111) and the γ-Al 2O3(100) substrates. Reproduced with permission from J. Phys. 
Chem. C, 2009, 113, 18296. Copyright 2009 American Chemical Society. 
 

System Eads Eads
s Ebind Eint 

Ce2O4 −2.60  − − − 
Ce2O4/ZrO2(111) − −0.55  −5.32  −3.27  

Ce2O4/γ-Al 2O3(100) − −4.33  −4.21  −5.94  
 
 

To further elucidate the effect of different supports on the CO reactive adsorption on 

Ce2O4, we performed a local density of state analysis for the Ce atoms in the Ce2O4 

cluster supported on the ZrO2(111) and γ-Al 2O3(100) substrates, as well as the 

unsupported Ce2O4 cluster. The projected density of states (PDOSs) of the Ce atoms was 

plotted in Figure 5.6. Before CO adsorption, the PDOSs of the two Ce atoms in the Ce2O4 

cluster on both substrates are very similar, as shown in Figure 5.6a and d. Upon CO 

adsorption, the f-associated peaks of the Ce atoms were shifted downward on both 

ZrO2(111) (Figure 5.6b, c) and γ-Al 2O3(100) (Figure 5.6e,f) supports. On the ZrO2(111) 

supported Ce2O4 cluster shown in Figure 5.2a, the main f-states are located at 1 ~ 2 eV 

above the Fermi level, as shown in Figure 5.6a. This indicates that the f-states of the Ce 

atoms are unoccupied and the Ce atoms are fully oxidized. After reactive adsorption of 

CO, these f-states are split into two parts: one is located at the Fermi level while the other 

lies at a relatively higher energy of ~ 3 eV above the Fermi level, as shown in Figure 5.6b 
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and c. Moreover, the states located at –5 ~ –1 eV with equally dominant d and f features 

before CO adsorption have been shifted downward to −6 ~ −2 eV and lost some intensity 

after CO adsorption. Although the two Ce atoms in Figure 5.5a appear not to be 

structurally symmetric, the PDOSs of these two Ce atoms shown in Figure 5.6b and c are 

very similar. Therefore, both Ce atoms were reduced through partial occupation of their 

4f states upon CO reactive adsorption. On the γ-Al 2O3(100) supported Ce2O4 cluster, the 

initially unoccupied f states of the Ce atoms are located at 0.5 ~ 1.5 eV above the Fermi 

level (Figure 5.5d). After CO reactive adsorption, these f states are shifted to ~ –1 eV 

below the Fermi level and become occupied (Figure 5.6e and f), again indicating the Ce 

atoms were reduced. 
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Figure5.6. PDOS of the Ce atoms in the ZrO2(111)-supported Ce2O4 before (a) and after 
(b,c) CO reactive adsorption and  PDOS of the Ce atoms in the Al2O3(100)-supported 
Ce2O4 before (d) and after (e,f) CO reactive adsorption. Reproduced with permission from J. 
Phys. Chem. C, 2009, 113, 18296. Copyright 2009 American Chemical Society. 
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Figure 5.6 also shows the differences between the splits of states on the two supports. 

On ZrO2(111), the occupied 4f states are located at the Fermi level and close to the 

bottom of the conduction band. In contrast, these occupied states on γ-Al 2O3(100) are 

located at the top of the occupied valance band and well-below the Fermi level. The 

different characteristics of Ce 4f states on the two supporting oxides are likely results of 

the different properties of the two oxides. The reducible ZrO2(111) destabilizes the 

occupied Ce 4f states after reduction, and thereby, the (Ce2O2)
2+(CO3)

2- intermediate, and 

promotes the  turnover of CO to CO2. On the other hand, the irreducible γ-Al 2O3(100) 

stabilizes the occupied Ce 4f states, and consequently, the (Ce2O2)
2+(CO3)

2- intermediate. 

The high stability of the intermediate formed on γ-Al 2O3(100) makes the reaction 

stagnate at the intermediate states and slows down the overall reaction. 

The oxidation of CO has been frequently used as a probe reaction to investigate the 

reactivity of ceria-based catalysts.153,156,157,165,187,188 It is believed that the lattice oxygen 

acts as oxidant and the reaction occurs via the Mars-van Krevelen mechanism.149,150 

Aneggi et al demonstrated that the reaction is surface structure sensitive.189 The 

carbonate-like species have been proposed as likely intermediates during CO oxidation 

over the ceria-based catalysts.189 In the following discussion, we demonstrate the support 

effects on the reactivity of the Ce2O4 cluster for CO oxidation based on the formation of 

the (Ce2O2)
2+(CO3)

2- intermediate by analyzing the complete cycle on the ZrO2(111) and 

γ-Al 2O3(100) supported, as well as the unsupported Ce2O4 clusters. The oxidation of CO 

in these systems can be schematically decomposed into three steps, as shown in Figure 

5.7a. In the first step, CO molecule adsorbs on the Ce2O4 cluster forming the carbonate-

like complex species. The first step is exothermic on Ce2O4 supported on both ZrO2(111) 
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and γ-Al 2O3(100) and the reaction energies are −0.55 and −4.33 eV. The second step is to 

desorb CO2 and form an oxygen-deficient Ce2O3 cluster supported on the substrates by 

the decomposing the carbonate-like (Ce2O2)
2+(CO3)

2- species via the following reaction: 

(Ce2O2)
2+(CO3)

2- � Ce2O3 + CO2.                                               (R5.2) 

The calculated reaction energies for (R5.2) are −0.50 and +1.71 eV for the ZrO2(111) and 

γ-Al 2O3(100) supported clusters, respectively. We note that after CO2 desorption the 

resulted Ce2O3 clusters on both supports kept the skeletal structures of the original 

supported Ce2O4 clusters. To complete the catalytic cycle, the Ce2O3 cluster has to be re-

oxidized to regenerate Ce2O4,  

Ce2O3 + ½ O2 � Ce2O4.                                          (R5.3) 

The reaction energies of the oxidation step (R5.3) are calculated to be −2.21 and –

0.63 eV for the ZrO2(111) supported and the γ-Al 2O3(100) supported clusters, 

respectively. Figure 5.7b summarizes the energetics in the potential energy profiles for 

the reaction on the ZrO2(111) and γ-Al 2O3(100) supported Ce2O4 clusters.  Figure 5.7 

also includes the energetics of the corresponding reaction steps on the unsupported Ce2O4 

cluster. The reaction energies of three steps (R5.1~R5.3) on the CeO2(100) surface were 

reported by Nolan et al.171 using DFT+U (U = 5) method. The local structure of the (100) 

surface where CO reactive adsorption occurs is very similar to that of the unsupported 

Ce2O4 cluster in this work. The adsorption energy of CO on the CeO2(100) surface with 

the similar adsorption structure is −3.21 eV. (We note that the adsorption energy of CO 

on CeO2(110) depends on the U values in DFT+U calculation, as demonstrated by Huang 

and Fabris.172) The reaction energy for CO oxidation on the CeO2(100) surfaces is −0.88 

eV.171 We re-analyzed their results based on the reaction cycle in Figure 5.7a and 
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obtained the CO2 desorption energies of +2.33 eV on the CeO2(100) surface shown in 

Figure 5.7b.  
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Figure 5.7. Potential energy profiles of CO oxidation on unsupported (black), ZrO2(111) 
(red) and γ-Al 2O3(100) (blue) supported Ce2O4 cluster, and  CeO2(100) (green) surface. 
Reproduced with permission from J. Phys. Chem. C, 2009, 113, 18296. Copyright 2009 
American Chemical Society. 
 

As shown in Figure 5.7b, the ZrO2(111) and γ-Al 2O3(100) substrates have 

dramatically different effects on the CO oxidation reaction over the supported Ce2O4 

clusters. The formation of the intermediate (Ce2O2)
2+(CO3)

2- (R5.1) and the re-oxidation 

step (R5.3) are exothermic on both supports. However, CO2 desorption (R5.2) is 

exothermic on the ZrO2(111) supported Ce2O4 cluster but endothermic on the γ-
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Al 2O3(100) supported Ce2O4 cluster. Although the reactive adsorption of CO is 

energetically favorable over the γ-Al 2O3(100) supported Ce2O4, the extremely high 

energy cost to desorb CO2 is expected to hinder the catalytic turnover. The CO2 

desorption energy from the CeO2(100) surface is even higher. In fact, the formation of 

carbonate-like species was observed experimentally after introducing CO into the system 

and the CO conversion to CO2 is far less than 100%.165 This is concomitant to our results, 

suggesting that CO2 desorption is the most likely rate-limiting step for CO oxidation in 

ceria-based catalysts. Compared to the unsupported Ce2O4 cluster, our results predict a 

negative effect of the γ-Al 2O3(100) support on CO oxidation. In contrast, all three steps 

on the ZrO2(111) supported Ce2O4 cluster are exothermic. Therefore, we expect that the 

ZrO2(111) substrate will promote the turnover of CO oxidation on the supported Ce2O4 

cluster. These predictions are consistent with previous experimental observations. For 

example, Aguila et al. studied the oxidation of CO on γ-Al 2O3, ZrO2 and SiO2 supported 

CeO2 catalysts at low temparature.156 They reported a higher CO conversion on ZrO2 

supported CeO2 catalyst than on the other two supports. Putna et al. investigated CO 

oxidation on CeO2 thin films supported by α-Al 2O3 and polycrystalline ZrO2.
162 They 

found a significant fraction of CO was oxidized on the ZrO2 supported CeO2 thin film 

whereas on the α-Al 2O3 supported CeO2 only very small fraction of CO was oxidized. 

The lattice oxygen of the supported CeO2 islands was believed to be responsible for the 

oxidation reaction.162 Although exact structures of the γ-Al 2O3, α-Al 2O3 and 

polycrystalline ZrO2 supports used in those experiments are different from our model 

Ce2O4/γ-Al 2O3(100) and Ce2O4/ZrO2(111), we believe that our models capture a key 

aspect of those supported catalytic systems: the reducibility of the support. More 
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importantly, our results demonstrated the reactivity of the supported oxide clusters can be 

manipulated by using different oxide substrates.  

 

5.4 Conclusion 

First-principles density functional theory calculations were used to examine the effect 

of ZrO2(111) and γ-Al 2O3(100) as supports on the reactivity of the Ce2O4 clusters for CO 

oxidation. Our results showed that the supports do not affect the acid-base interaction, as 

manifested by the adsorption CO2 and CO in upright configuration. However, for the 

reactive adsorption of CO, the two substrates were found to have very different impacts 

on the reaction energies. The reactive adsorption of CO leads to a (Ce2O2)
2+(CO3)

2- 

species with adsorption energies of –0.55 eV and –4.33 eV, on ZrO2(111) and γ-

Al 2O3(100) supported Ce2O4, respectively. The results were analyzed in the context of 

catalytic oxidation of CO by ceria. ZrO2 is expected to be a more active support due to 

the relatively smooth potential energy profile. On the other hand, the γ-Al 2O3(100)-

supported ceria is likely to be less efficient due to the formation of the highly stable 

(Ce2O2)
2+(CO3)

2- intermediate. The results suggest that the catalytic properties can be 

tailored by varying the supports. 
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CHAPTER 6 

SUMMARY 

As illustrated in the above three chapters, by choosing the proper model and 

theoretical method, the performance of heterogeneous catalyst systems can be studied as 

a function of chemical composition, molecular structure and electronic structure. Unlike 

experimental measurements, where the data reveal only the average of a sample, the 

theoretical modeling is proved to be able to pin down to the active site and yield 

important structural, electronic and energetic information of the reaction. Furthermore, as 

the metal-on-oxide systems have been intensely studied in the past decade, to our best 

knowledge the modeling of an oxide-on-oxide system presented in this dissertation was 

the first. We hope our work will shed light on even broader studies of similar highly 

dispersed catalytic systems. 
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APPENDIX I. 
VASP Input Files 

 
INCAR 

 
 System = Mg surface 
 Start parameter for this Run: 
   NWRITE =    2;   LPETIM=F    write-flag & timer 
   ENCUT    =   450.0 
   PREC       =   high 
   ISTART   =   0                   job   : 0-new  1-cont  2-samecut 
   ICHARG =    2      charge: 1-file 2-atom 10-const 
   ISPIN       =    1      spin polarized calculation? 
   INIWAV  =    1      electr: 0-lowe 1-rand  2-diag 
   NELM      =    200;   NELMIN= 2; NELMDL= 0     # of ELM steps 
   EDIFF      =   .5E-04                 stopping-criterion for ELM 
  
 Ionic Relaxation 
   EDIFFG    =  .5E-03                 stopping-criterion for IOM 
   NSW          =    1     number of steps for IOM 
   NBLOCK  =    1;   KBLOCK =    115    inner block; outer block 
   IBRION     =    2        ionic relax: 0-MD 1-quasi-New 2-CG 
   ISIF           =     2 
   IWAVPR  =     1        prediction:  0-non 1-charg 2-wave 3-comb 
   ISYM        =     2        0-nonsym 1-usesym 
   LCORR    =     T        Harris-correction to forces 
   POTIM     =    0.500                   time-step for ion-motion 
   TEIN         =     5000.0      initial temperature 
   SMASS      =   -1      Nose mass-parameter (am) 
   
 Electronic Relaxation 2 
   IALGO  =      48      algorithm 
   LDIAG  =      T      sub-space diagonalisation 
   LREAL  =      F       real-space projection 
   LPLANE = T 
   NPAR   = 1 
   LSCALU = F 
   NSIM = 4 
   LORBIT = 12 
 
 
 DOS related values: 
   EMIN   =  10.00;   EMAX   =-10.00   energy-range for DOS 
   ISMEAR =   0;   SIGMA  =    0.1        broadening in eV -4-tet -1-fermi 0-gaus 
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POTCAR 
 

PAW_PBE Mg 05Jan2001 
 2.00000000000000000 
 parameters from PSCTR are: 
   VRHFIN =Mg: s2p0 
   LEXCH  = PE 
   EATOM  =    23.0029 eV,    1.6907 Ry 
 
   TITEL  = PAW_PBE Mg 05Jan2001 
   LULTRA =        F    use ultrasoft PP ? 
   IUNSCR =        1    unscreen: 0-lin 1-nonlin 2-no 
   RPACOR =    2.000    partial core radius 
   POMASS =   24.305; ZVAL   =    2.000    mass and valenz 
   RCORE  =    2.000    outmost cutoff radius 
   RWIGS  =    2.880; RWIGS  =    1.524    wigner-seitz radius (au A) 
   ENMAX  =  210.012; ENMIN  =  157.509 eV 
   ICORE  =        2    local potential 
   LCOR   =        T    correct aug charges 
   LPAW   =        T    paw PP 
   EAUG   =  274.554 
   DEXC   =    -.136 
   RMAX   =    3.182    core radius for proj-oper 
   RAUG   =    1.300    factor for augmentation sphere 
   RDEP   =    2.025    radius for radial grids 
   QCUT   =   -3.929; QGAM   =    7.858    optimization parameters 
 
   Description 
     l     E      TYP  RCUT    TYP  RCUT 
     0   .000     23  2.000 
     0  2.000     23  2.000 
     1   .000     23  2.000 
     1  2.000     23  2.000 
     2   .000     23  2.000 
   Error from kinetic energy argument (eV) 
   NDATA  =      100 
   STEP   =   20.000   1.050 
  1.04      1.03      1.03      1.02      1.02      1.00      .983      .970 
  .942      .908      .890      .851      .809      .764      .718      .671 
  .623      .576      .530      .463      .421      .381      .324      .290 
  .258      .214      .176      .154      .124      .991E-01  .781E-01  .607E-01 
  .465E-01  .352E-01  .262E-01  .192E-01  .123E-01  .875E-02  .546E-02  .386E-02 
  .254E-02  .184E-02  .153E-02  .142E-02  .140E-02  .140E-02  .137E-02  .128E-02 
  .116E-02  .986E-03  .794E-03  .646E-03  .483E-03  .354E-03  .248E-03  .195E-03 
. 
. 
. 
.  
. 
. 
. 
 
  .110411849401E-01   .222294381191E-02  -.769082318013E-02  -.188122184779E-01  -

.312592923923E-01 
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  -.451552348125E-01  -.606274240112E-01  -.778063850533E-01  -.968246278328E-01  -
.117815051255E+00 

  -.140908114251E+00  -.166226693095E+00  -.193878249699E+00  -.223945644936E+00  -
.256478870224E+00 

 End of Dataset 
 PAW_PBE H 15Jun2001 
 1.00000000000000000 
 parameters from PSCTR are: 
   VRHFIN =H: ultrasoft test 
   LEXCH  = PE 
   EATOM  =    12.4884 eV,     .9179 Ry 
    
   TITEL  = PAW_PBE H 15Jun2001 
   LULTRA =        F    use ultrasoft PP ? 
   IUNSCR =        0    unscreen: 0-lin 1-nonlin 2-no 
   RPACOR =     .000    partial core radius 
   POMASS =    1.000; ZVAL   =    1.000    mass and valenz 
   RCORE  =    1.100    outmost cutoff radius 
   RWIGS  =     .700; RWIGS  =     .370    wigner-seitz radius (au A) 
   ENMAX  =  250.000; ENMIN  =  200.000 eV 
   RCLOC  =     .701    cutoff for local pot 
   LCOR   =        T    correct aug charges 
   LPAW   =        T    paw PP 
   EAUG   =  400.000 
   RMAX   =    2.174    core radius for proj-oper   
   RAUG   =    1.200    factor for augmentation sphere 
   RDEP   =    1.112    radius for radial grids 
   QCUT   =   -5.749; QGAM   =   11.498    optimization parameters 
. 
. 
. 
.  
. 
. 
. 
   .218291785052E+00   .231111285582E+00   .244653165208E+00   .258955547168E+00   

.274058360669E+00 
   .290003411772E+00   .306834456261E+00   .324597274563E+00   .343339748817E+00   

.363111942119E+00 
   .383966180135E+00   .405957135129E+00   .429141912617E+00   .453580140822E+00   

.479334063113E+00 
   .506468633774E+00   .535051617308E+00   .565153691761E+00   .596848556376E+00   

.630213044198E+00 
   .665327240103E+00   .702274605035E+00   .741142107159E+00   .782020360869E+00   

.825003774715E+00 
   .870190709396E+00   .917683647268E+00   .967589374872E+00   .102001918033E+01   

.107508906766E+01 
   .113291999036E+01   .119363810694E+01   .125737506141E+01   .132426829240E+01   

.139446137456E+01 
   .146810439717E+01   .154535438480E+01   .162637576612E+01   .171134089760E+01   

.180043064973E+01 
   .189383506471E+01   .199175409551E+01   .209439843814E+01 
 End of Dataset 
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POSCAR 
 

System: Mg10H2cluster 
1.000000000000000 
     20.000000000000000    0.0000000000000000    0.0000000000000000 
     0.0000000000000000    20.000000000000000    0.0000000000000000 
     0.0000000000000000    0.0000000000000000    20.000000000000000 
10  2 
Direct 
  0.3024582491600278  0.3223225089071744  0.1975114696982939 
  0.4392890084967666  0.2485222338819169  0.1940740464683674 
  0.5112309247480651  0.3781776000761421  0.2237877554118134 
  0.3602572435061475  0.2597495995746340  0.3274403435789272 
  0.3712669872237620  0.4538305050257938  0.2276336207534491 
  0.4300904730949092  0.3898751586293988  0.3608118596951291 
  0.4932382803046711  0.5075843311194194  0.2948241745509927 
  0.5113223105808880  0.2660293457359018  0.3261589719714888 
  0.2809929479054621  0.3887775668772402  0.3314743448823219 
  0.4138569692793003  0.3703656961723810  0.1075264382392041 
  0.4300904730949092  0.3608118596951291  0.3223225089071744   
  0.4300904730949092  0.2660293457359018  0.3314743448823219 
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KPOINTS 
For Surfaces: 
 
K-Point Grid 
0 
Monkhorst Pack 
3 3 1 
0 0 0 
 
For Clusters: 
 
K-Point Grid 
0 
Monkhorst Pack 
1 1 1 
0 0 0 
 
 
For Clusters: 
 
K-Point Grid 
0 
Monkhorst Pack 
3 3 4 
0 0 0 
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APPENDIX II. Gaussian Input Files 
 

Structure optimization: 
 

%chk=Mg10_2+.chk     directory for checkpoint file 
%mem=300MB     specify the memory usage 
# b3lyp/6-31+g(d,p) opt    specify calculation type and basis set 
 
Title Card Required 
 
2 1       charge and spin state 
Mg      6.4        6.2       4.5    coordinates(Cartesian) 
Mg      8.7        4.3       5.0 
Mg      9.4        7.0       3.9 
Mg      7.1        5.2       7.3 
Mg      7.3        9.1       4.7 
Mg      8.2        7.9       7.3 
Mg      10.4      9.1       5.7 
Mg      10.4      6.1       6.6 
Mg      9.2        6.0       9.2 
Mg      5.3        7.7       6.7 
 

Transition state locating 
 

%chk=Mg10_2+_TS.chk 
%mem=300MB 
# PBEPBE/6-31+g(d,p) opt=(ts,EstmFC) freq    transition state and frequency calculation  
geom=check guess=read iop(5/13=1,1/11=1)                  structure read from checkpoint 
 
Title Card Required 
 
2 1     structure will be read from checkpoint, no coordinate input 

 
 

IRC calculation 
 

%chk=Mg10-TS.chk                    checkpoint file must be an optimized transition state 
%mem=300MB 
# IRC=(reverse,calcFC,MaxPoints=30,internal)                                          thirty IRC steps 
 Iop(5/13=1,2/16=1) PBEPBE/6-31+g(d,p) geom=check guess=read 
 
Title Card Required 
 
0 1 
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