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Abstract
We consider the matching polynomials of graphs whose edges have

been cyclically labelled with the ordered set of t labels {x1, . . . , xt}.
We first work with the cyclically labelled path, with first edge la-

bel xi, followed by N full cycles of labels {x1, . . . , xt}, and last edge
label xj . Let Φi,Nt+j denote the matching polynomial of this path. It
satisfies the (τ, ∆)-recurrence: Φi,Nt+j = τ Φi,(N−1)t+j−∆ Φi,(N−2)t+j,
where τ is the sum of all non-consecutive cyclic monomials in the vari-
ables {x1, . . . , xt} and ∆ = (−1)t x1 · · ·xt. A combinatorial/algebraic
proof and a matrix proof of this fact are given. Let GN denote the first
fundamental solution to the (τ, ∆)-recurrence. We express GN (i) as
a cyclic binomial using the Symmetric Representation of a matrix, (ii)
in terms of Chebyshev polynomials of the second kind in the variables
τ and ∆, and (iii) as a quotient of two matching polynomials. We
extend our results from paths to cycles and rooted trees.
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Introduction

The matching polynomial of a graph is defined in Farrell [1]. Often in pure
mathematics and combinatorics it is interesting to consider cyclic structures,
eg., cyclic groups, cyclic designs, and circulant graphs. Here we consider
the (multivariate) matching polynomial of a graph whose edges have been
cyclically labelled.

We concentrate mainly on paths, cycles and trees. To cyclically label a
path with the ordered set of t labels {x1, . . . , xt}, label the first edge with
any xi, the second with xi+1, and so on until label xt has been used, then
start with x1, then x2, . . . , xt, then x1 again . . . , repeating cyclically until
all edges have been labelled, with the last edge receiving label xj. Suppose
that N full cycles of labels {x1, . . . , xt} have been used. Call the matching
polynomial of this labelled path Φi,Nt+j. We show, for a fixed i and j, that
Φi,Nt+j satisfies the following recurrence, the (τ,∆)-recurrence:

Φi,Nt+j = τ Φi,(N−1)t+j −∆Φi,(N−2)t+j,

where τ is the sum of all non-consecutive cyclic monomials in the variables
{x1, . . . , xt} (see Section 1), and ∆ = (−1)t x1 · · · xt. We give two different
proofs of this fact. The first one is a combinatorial/algebraic proof in Sec-
tion 2 that uses the following Theorem concerning decomposing the matching
polynomial M(G,x) of a graph.

Theorem Let G be a labelled graph, H a subgraph of G, and MH a match-
ing of H, then

M(G,x) =
∑

MH

MH(x)M(G − H − MH ,x),

where the summation is over every matching MH of H. The second proof
(Section 3) uses a matrix formulation of the recurrences that we develop.

Let GN denote the first fundamental solution to the (τ,∆)-recurrence;
three different expressions for GN are given in Section 4. The first expression
is a sum of cyclic binomials and uses the Symmetric Representation of matri-
ces from Section 3; the second involves Chebyshev polynomials of the second
kind in the variables τ and ∆; and the third is a quotient of two matching
polynomials, see Theorem 4.5.

2



In Section 5 we extend our results from paths to cycles and rooted trees;
we find explicit forms for the matching polynomial of a cyclically labelled cy-
cle, and indicate how to find the matching polynomial of a cyclically labelled
rooted tree, again using the decomposition Theorem stated above.

Many examples are given throughout the paper.
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1 The multivariate matching polynomial of a

graph, its decomposition; non-consecutive

and non-consecutive cyclic functions

For a fixed t ≥ 1 we use multi-index notations: k = (k1, . . . , kt), where each
ks ≥ 0, 0 = (0, . . . , 0), and variables x = (x1, . . . , xt). The total degree of k
is denoted by |k| = k1 + · · · + kt.

Let G be a finite simple graph with vertex set V (G) where |V (G)| ≥ 1,
and edge set E(G). We label these edges from the t commutative variables
{x1, . . . , xt}, exactly one label per edge. A matching of G is a collection of
edges, no two of which have a vertex in common. A k-matching of G is a
matching with exactly ks edges with label xs, for each s with 1 ≤ s ≤ t. If
MG is a k-matching of G we define its weight to be

MG(x) = xk1
1 · · · xkt

t .

The empty matching of G, which contains no edges, is denoted by M∅; it is
the unique 0-matching and its weight is M∅(x) = 1.

Define the multivariate matching polynomial , or simply, the matching
polynomial , of G, by

M(G,x) =
∑

MG

MG(x),

where the summation is over every matching MG of G.
Denote the number of k-matchings of G by a(G,k). Then an alternative

definition of the multivariate matching polynomial of G is

M(G,x) =
∑

(k1,...,kt)

a(G,k)xk1
1 · · ·xkt

t .

The multivariate matching polynomial is a natural extension of the match-
ing polynomial of Farrell [1]. Indeed, here with t = 1 and in [1] with w1 = 1
and w2 = x1, the polynomials are identical.

Let P1 be the graph with one vertex and no edges, i.e., an isolated vertex;
we define M(P1,x) = 1. Now suppose G′ = G ∪ nP1, where n ≥ 1, i.e., G′
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is the disjoint union of G and n isolated vertices, then we define M(G′,x) =
M(G,x).

For any edge e ∈ E(G), let e denote the set of edges that are incident to
e; and for any subgraph H of G, let H = ∪e∈E(H)e. Define M ∅ = ∅. Also let
G −H be the graph obtained from G when all the edges of H are removed,
so G − H has the same vertex set as G.

Now let H be a fixed subgraph of G and let MH be a matching of H. In
the following theorem we express M(G,x) as a sum of terms, each term con-
taining the weight of a fixed matching, MH(x), of H; we call this decomposing
M(G,x) at H.

Theorem 1.1 Let G be a graph labelled as above, H a fixed subgraph of G,
and MH a matching of H. Then

M(G,x) =
∑

MH

MH(x)M(G − H − MH ,x), (1)

where the summation is over every matching MH of H.

Proof. Let MG be a matching of G which induces a (fixed) matching MH

on H, i.e., MG contains exactly MH and no other edges from H. Then
MG(x) = MH(x)M(x) where M is a matching of G with no edges in H, and
also with no edges in MH or else MG would not be a matching. Hence, M is
a matching of G−H −MH, i.e., M(x) is a term of M(G−H −MH ,x). So
MH(x)M(G−H −MH ,x) is the sum of the weights of all the matchings in
G which induce MH on H.

Now every matching in G induces some matching on H, so we may sum
over all matchings in H to give (1).

Theorem 1.1 extends known facts about matching polynomials, eg., see
Theorem 1 of Farrell [1] for the case where H is a single edge. We have the
corresponding:

Corollary 1.2 Let G be a graph labelled as above, and let H = e labelled
with x be an edge of G. Then

M(G,x) = M(G − e,x) + xM(G − e− e,x). (2)
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Proof. The result comes from (1) since H = e has just two matchings:
the empty matching M∅ with weight M∅(x) = 1, and the matching e with
weight Me(x) = x.

Notation Throughout this paper we use Pm to denote the path with m
vertices and m − 1 edges.

Fix i and j where 1 ≤ i ≤ j ≤ t. Consider the path Pj−i+2 with its j−i+1
edges labelled from the ordered set {xi, . . . , xj}, the first edge receiving label
xi, and the last xj; see Fig. 1.

• • • • • •
xi xi+1 xi+2 xj

Fig. 1: The labelled path Pj−i+2 with matching polynomial φi,j.

The pair xsxs+1 for any fixed s with i ≤ s ≤ j − 1 is called a consecutive
pair. A monomial from the ordered set {xi, . . . , xj} that contains no consec-
utive pairs is a non-consecutive monomial , a nc -monomial. Note that the
empty monomial is a nc -monomial that we denote by 1.

Let φi,j be the sum of all nc -monomials in the ordered variables {xi, . . . , xj}.
Then φi,j = M(Pj−i+2,x) is the matching polynomial of the labelled path
Pj−i+2. We call the functions φi,j elementary non-consecutive functions, and
for any i ≥ 1 define the initial values

φi,i−2 = φi,i−1 = 1. (3)

These initial values ensure that the following recurrence is valid for any j
with i ≤ j ≤ t.

Theorem 1.3 For a fixed i and j with 1 ≤ i ≤ j ≤ t and the initial values
in (3), we have

φi,j = φi,j−1 + xj φi,j−2. (4)

Proof. Let e be the rightmost edge of G = Pj−i+2 shown in Fig. 1,
and apply (2).
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Example 1 For arbitrary i we have

φi,i = 1 + xi, φi,i+1 = 1 + xi + xi+1,
φi,i+2 = 1 + xi + xi+1 + xi+2 + xixi+2,
φi,i+3 = 1 + xi + xi+1 + xi+2 + xi+3 + xixi+2 + xixi+3 + xi+1xi+3.

Example 2 For arbitrary i, putting j = i − 1 and j = i − 2 in Recur-
rence (4) and using (3) give

φi,i−3 = 0 and φi,i−4 =
1

xi−2
.

In the second equation, if i = 1 we replace x−1 by xt−1, and if i = 2 we
replace x0 by xt.

Consider Recurrence (4). It is convenient to work with a basis of solutions
to this recurrence. Denote the first fundamental solution by fi,j and the
second by gi,j, with initial values

fi,i−2 = 0, fi,i−1 = 1 and gi,i−2 = 1, gi,i−1 = 0. (5)

So
φi,i−2 = fi,i−2 + gi,i−2 and φi,i−1 = fi,i−1 + gi,i−1.

Now, from Recurrence (4) and strong induction on j, we have (6) below for
all j with i ≤ j ≤ t

φi,j = fi,j + gi,j. (6)

φi,j = φi+1,j + xi φi+2,j. (7)

Equation (7) comes from decomposing φi,j at the leftmost edge of Pj−i+2,
whose label is xi, i.e., decomposing φi,j at xi; see Corollary 1.2. These two
equations suggest that the fundamental solutions are given by

fi,j = φi+1,j and gi,j = xi φi+2,j.

This is indeed the case:

Lemma 1.4 For any j with i ≤ j ≤ t we have
(i) fi,j = φi+1,j,
(ii) gi,j = xi φi+2,j.
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Proof. We need only prove (i) because of (6) and (7) above.
From (5) we have fi,i−2 = 0 and from Example 2 we have φi+1,i−2 = 0; thus

fi,i−2 = φi+1,i−2. Similarly, from (5) and (3), we have fi,i−1 = φi+1,i−1. So
both fi,j and φi+1,j have the same initial values at j = i−2 and j = i−1 and
they both satisfy Recurrence (4), so they are equal for any j with i ≤ j ≤ t.

Thus we know combinatorially what the two fundamental solutions to
Recurrence (4) are. The first, fi,j, is the matching polynomial of the path
shown in Fig. 2(a); the second, gi,j, is xi × the matching polynomial of the
path in Fig. 2(b).

(a) • • • • •
xi+1 xi+2 xj

(b) • • • •
xi+2 xj

Fig. 2 (a) The labelled path with matching polynomial fi,j.

(b) The labelled path with matching polynomial
gi,j

xi
.

Example 3 For arbitrary i we have

fi,i = 1, gi,i = xi,
fi,i+1 = 1 + xi+1, gi,i+1 = xi,
fi,i+2 = 1 + xi+1 + xi+2, gi,i+2 = xi + xixi+2.

Now arrange the variables {xi, . . . , xj} clockwise around a circle. Thus
xi and xj are consecutive. Call a pair xsxs′ consecutive cyclic if xs and
xs′ are consecutive on this circle. Call a monomial from {xi, . . . , xj} a non-
consecutive cyclic monomial — ncc -monomial — if it contains no consecutive
cyclic pairs. The empty monomial is a ncc -monomial that we denote by 1.

Let τi,j be the sum of all ncc -monomials in the variables {xi, . . . , xj}.
Then, for j ≥ i + 2, τi,j = M(Cj−i+1,x) is the matching polynomial of the
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labelled cycle Cj−i+1 with j − i + 1 edges and j − i + 1 vertices, shown in
Fig. 3; the cycle starts at the large vertex, and proceeds clockwise.

xi+1

xi

xj

Fig. 3: The labelled cycle Cj−i+1 with matching polynomial τi,j.

For initial values let

τi,i−1 = 2, τi,i = 1, and τi,i+1 = 1 + xi + xi+1. (8)

Lemma 1.5 For any j with i ≤ j ≤ t we have
(i) τi,j = fi,j + gi,j−1,
(ii) φi,j − τi,j = xixj φi+2,j−2.

Proof. (i) We check this equality at j = i and j = i + 1 using (5),
Example 3, and (8). For j ≥ i + 2 we decompose τi,j at xi yielding τi,j =
φi+1,j + xi φi+2,j−1, which gives (i) via Lemma 1.4.
(ii) We check at j = i and j = i + 1 using Examples 1 and 2, and (8). For
j ≥ i + 2 the difference φi,j − τi,j consists of all nc -monomials that contain
the consecutive cyclic pair xixj; clearly this is xixj × the sum of all nc -
monomials on {xi+2, . . . , xj−2}, i.e., xixj φi+2,j−2.

Example 4 For arbitrary i we have

τi,i+2 = 1 + xi + xi+1 + xi+2,
τi,i+3 = 1 + xi + xi+1 + xi+2 + xi+3 + xixi+2 + xi+1xi+3.
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2 Cyclically labelled paths; Φi,Nt+j and the

(τ, ∆)-recurrence

Consider a path P and the ordered set of t labels {x1, . . . , xt}. For a fixed
i, where 1 ≤ i ≤ t, and moving from left to right, label the first edge of P
with xi, the second with xi+1, and so on until label xt has been used; so the
(t−i+1)-th edge receives label xt. Then label edge t−i+2 with x1, and edge
t− i+ 3 with x2, and so on . . ., labelling cyclically with {x1, . . . , xt} until all
edges have been labelled. Let the last edge receive label xj, where 1 ≤ j ≤ t.
Suppose that N ≥ 0 full cycles of labels {x1, . . . , xt} have been used beginning
at edge t− i + 2. Then if j = t we call this path P (i,Nt), or if 1 ≤ j < t we
call it P (i,Nt+j). This labelling is a cyclic labelling. The cyclically labelled
path P (i,Nt + j) is shown in Fig. 4. Let Φi,Nt+j(x) = Φi,Nt+j denote the
matching polynomial of the path P (i,Nt + j).

• • • • • • • • • • •
xi xi+1 xt x1 xt x1 xj

∗

                      
Nt edges

Fig. 4: The cyclically labelled path P (i,Nt + j) with matching polynomial Φi,Nt+j.

We define the initial conditions for Φi,Nt+j as

N = −1 : Φi,−t+j = φi,j, for all j with 0 ≤ j ≤ t, (9)

also N = 0 : Φi,0t+j = Φi,j .

In order to find φi,j if j < i we use the initial values for φi,j from (3) and
push back Recurrence (4), as shown in Example 2.

Now Φi,Nt+j satisfies the same recurrence as that of φi,j, Recurrence (4);
the proof is similar, noting that x0 must be replaced by xt, and considering
Nt − 1 as (N − 1)t + t − 1, etc.

Lemma 2.1 For any N ≥ −1 and j with 0 ≤ j ≤ t we have

Φi,Nt+j = Φi,Nt+j−1 + xj Φi,Nt+j−2. (10)
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Notation For i = 1 we write φi,j = φ1,j = φj and φt = φ, also τ1,j = τj and
τt = τ , and f1,j = fj , etc. Also let ∆ = (−1)t x1 · · ·xt.

Lemma 2.2 For any N ≥ 0 and any j with 0 ≤ j ≤ t we have

Φi,Nt+j = Φi,Nt fj + Φi,Nt−1 gj. (11)

Proof. With N = 0 and j = 0 Equation (11) is true using the initial
values f0 = 1 and g0 = 0 of (5) with i = 1. Otherwise, consider the path
P (i,Nt + j) of Fig. 4 and decompose its matching polynomial, Φi,Nt+j, at
the edge labelled x1 marked with a ∗ . This gives

Φi,Nt+j = Φi,Nt φ2,j + x1 Φi,Nt−1 φ3,j

= Φi,Nt fj + Φi,Nt−1 gj ,

using Lemma 1.4.

Now we define the second order (τ,∆)−recurrence

ΘN = τ ΘN−1 − ∆ΘN−2. (12)

Let GN (x) = GN denote the first fundamental solution to this recurrence.
We will evaluate GN in Section 4.

In Theorem 2.4 below we show that, for a fixed i and j, Φi,Nt+j satisfies
the (τ,∆)-recurrence. First:

Lemma 2.3 For any N ≥ 1 we have

(i) Φi,Nt−1 ft − Φi,Nt ft−1 = ∆Φi,(N−1)t−1, (13)

(ii) Φi,Nt−1 gt − Φi,Nt gt−1 = −∆Φi,(N−1)t.

Proof. (i) Using Recurrence (4) on ft and on Φi,Nt (see Lemma 2.1), the
left-hand side of (13) becomes

Φi,Nt−1 {ft−1+xt ft−2}−{Φi,Nt−1+xt Φi,Nt−2} ft−1 = −xt {Φi,Nt−2 ft−1 −Φi,Nt−1 ft−2}.

The second factor in the right-hand side of this equation is the left-hand
side of (13) with subscripts shifted down by 1. After t such iterations the
left-hand side of (13) becomes

(−xt) (−xt−1) . . . (−x1){Φi,(N−1)t−1 f0 − Φi,(N−1)t f−1} = ∆Φi,(N−1)t−1,
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using the initial values f0 = 1 and f−1 = 0. The proof of (ii) is similar.

Now a main result: Φi,Nt+j satisfies the (τ,∆)-recurrence.

Theorem 2.4 For any N ≥ 1, and any fixed i with 1 ≤ i ≤ t, and any fixed
j with 0 ≤ j ≤ t, we have

Φi,Nt+j = τ Φi,(N−1)t+j −∆Φi,(N−2)t+j. (14)

Proof. Due to Recurrences (4) and (10) we need only show that (14) is
true when j = t and t − 1. It will then be true for all j with 0 ≤ j ≤ t by
pushing back Recurrence (10).

With N ≥ 1 and j = t, Equation (11) gives

Φi,Nt+t = Φi,Nt ft + Φi,Nt−1 gt

= Φi,Nt ft + Φi,Nt−1 gt + Φi,Nt gt−1 − Φi,Nt gt−1

= Φi,Nt ft + Φi,Nt gt−1 + Φi,Nt−1 gt − Φi,Nt gt−1

= τ Φi,Nt − ∆Φi,(N−1)t,

= τ Φi,(N−1)t+t −∆Φi,(N−2)t+t,

using τ = τt = ft + gt−1 from Lemma 1.5(i), and Lemma 2.3(ii) at the fourth
line. For j = t − 1 the proof is similar using Lemma 2.3(i).
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3 Matrix formulation of recurrences

Here we use matrices to give another proof that Φi,Nt+j satisfies the (τ,∆)-
recurrence, and prepare for the evaluation of GN in Section 4.

Recall from Section 1 that fi,j and gi,j are the 2 fundamental solutions to
Recurrence (4). Now define the matrix

Xi,j =

(
gi,j−1 fi,j−1

gi,j fi,j

)
.

Then the recurrences for fi,j and gi,j can be written as:

Xi,j =

(
0 1
xj 1

)(
gi,j−2 fi,j−2

gi,j−1 fi,j−1

)
=

(
0 1
xj 1

)
Xi,j−1. (15)

Consistent with (5) we have Xi,i−1 =

(
1 0
0 1

)
= I, the 2× 2 identity matrix.

Thus, for j ≥ i, we have

Xi,j =

(
0 1
xj 1

)(
0 1

xj−1 1

)
· · ·

(
0 1
xi 1

)
. (16)

Let 1 =

(
1
1

)
and e =

(
0
1

)
, and let 〈· , ·〉 denote the usual inner product.

Then for j ≥ i, and using (6),

φi,j = 〈Xi,j1, e〉. (17)

As before if i = 1 we let X1,j = Xj and if j = t we let X = Xt, in
particular,

X =

(
gt−1 ft−1

gt ft

)
=

(
0 1
xt 1

)(
0 1

xt−1 1

)
· · ·

(
0 1
x1 1

)
. (18)

For N ≥ 0, from (10) we may also write
(

Φi,Nt+j−1

Φi,Nt+j

)
=

(
0 1
xj 1

)(
Φi,Nt+j−2

Φi,Nt+j−1

)
,

and then repeated use of (15) gives

Φi,Nt+j = 〈XjX
NXi,t1, e〉. (19)

13



Now using (16) and (18) we see that XjX
−1Xi,t = Xi,j . So, using (17) and

(9), we have

〈XjX
−1Xi,t1, e〉 = 〈Xi,j1, e〉 = φi,j = Φi,−t+j ,

thus (19) is true for N = −1 also.

Theorem 3.1 For N ≥ −1 we have

Φi,Nt+j = 〈XjX
NXi,t1, e〉.

From Lemma 1.5(i) and (16) we have the following forms for the trace
and determinant of matrix Xi,j

tr(Xi,j) = τi,j and det(Xi,j) = (−1)j−i+1xi · · ·xj.

In particular, for matrix X from (18), we have

tr(X) = τ and det(X) = ∆. (20)

Now let Z be any invertible 2×2 matrix with trace tr(Z) and determinant
det(Z), and let T denote transpose. Then the Cayley-Hamilton theorem says
that Z2 = tr(Z)Z−det(Z) I, so ZN = tr(Z)ZN−1−det(Z)ZN−2, for N ≥ 1.
Let u and v ∈ R2 and, for N ≥ −1, define ΨN = 〈ZNu,v〉. Then

Lemma 3.2 For N ≥ 1, ΨN satisfies the recurrence

ΨN = tr(Z)ΨN−1 − det(Z)ΨN−2,

with initial conditions Ψ−1 = 〈Z−1u,v〉 and Ψ0 = 〈Z0u,v〉 = 〈u,v〉.

Now for N ≥ −1,

Φi,Nt+j = 〈XjX
NXi,t1, e〉 = 〈XNXi,t1,XT

j e〉.

So, for N ≥ 1, Lemma 3.2 with Z = X, u = Xi,t1, and v = XT
j e, and (20),

gives,
Φi,Nt+j = τ Φi,(N−1)t+j −∆Φi,(N−2)t+j.

This is a second proof that Φi,Nt+j satisfies the (τ,∆)-recurrence.
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4 The Symmetric Representation, MacMa-

hon’s Master Theorem, three expressions

for GN

Consider polynomials in the variables u1, . . . , ud. We will work with the
vector space whose basis elements are the homogeneous polynomials of degree
N in these variables, i.e., with

{un1
1 · · · und

d |n1 + · · · + nd = N, each n` ≥ 0},

this vector space has dimension
(

N+d−1
N

)
.

The symmetric representation of a d × d matrix A = (a``′) is the action
on polynomials induced by:

un1
1 · · · und

d → vn1
1 · · · vnd

d ,

where
v` =

∑

`′

a``′u`′

or, more compactly, v = Au. That is, define the matrix element

〈
m1, . . . ,md

n1, . . . , nd

〉

A

to be the coefficient of un1
1 · · ·und

d in vm1
1 · · · vmd

d . Then, for a fixed (m1, . . . ,md),
we have

vm1
1 · · · vmd

d =
∑

(n1 ,...,nd)

〈
m1, . . . ,md

n1, . . . , nd

〉

A

un1
1 · · · und

d . (21)

Observe that the total degree N = |n| =
∑

n` = |m| =
∑

m`, i.e., homo-
geneity of degree N is preserved. We use multi-indices: m = (m1, . . . ,md)
and n = (n1, . . . , nd). Then, for a fixed m, (21) becomes

vm =
∑

n

〈m

n

〉
A

un.

Successive application of B then A shows that this is a homomorphism of
the multiplicative semi-group of square d×d matrices into the multiplicative
semi-group of square

(
N+d−1

N

)
×

(
N+d−1

N

)
matrices.

Proposition 4.1 Matrix elements satisfy the homomorphism property
〈m

n

〉
AB

=
∑

k

〈m

k

〉
A

〈
k

n

〉

B

.

15



Proof. Let v = (AB)u and w = Bu. Then,

vm =
∑

n

〈m

n

〉
AB

un

=
∑

k

〈m

k

〉
A

wk

=
∑

n

∑

k

〈m

k

〉
A

〈
k

n

〉

B

un.

Definition Fix the degree N =
∑

n` =
∑

m`. Define trN
Sym(A), the sym-

metric trace of A in degree N , as the sum of the diagonal elements
〈m

n

〉
A
,

i.e.,

trN
Sym(A) =

∑

m

〈m

m

〉
A

.

Equality such as trSym(A) = trSym(B) means that the symmetric traces are
equal in every degree N ≥ 0.
Remark The action defined here on polynomials is equivalent to the action
on symmetric tensor powers, see Fulton and Harris [2], pp. 472-5.

Now it is straightforward to see directly (cf. the diagonal case shown in
the Corollary below) that if A is upper-triangular, with eigenvalues λ1, . . . , λd,
then trN

Sym(A) = hN (λ1, . . . , λd), the N th homogeneous symmetric function.
The homomorphism property, Proposition 4.1, shows that trN

Sym(AB) =
trN

Sym(BA), and that similar matrices have the same trace. Again by the
homomorphism property, if two d × d matrices are similar, A = MBM−1,
then that relation extends to their respective symmetric representations in
every degree. Recall that any matrix is similar to an upper-triangular one
with the same eigenvalues. Thus,

Theorem 4.2 Symmetric Trace Theorem (see pp. 51-2 of Springer [5]).
We have

1

det(I − cA)
=

∞∑

N=0

cN trN
Sym(A).

Proof. With λ` denoting the eigenvalues of A,

1

det(I − cA)
=

∏

`

1

1 − cλ`

16



=

∞∑

N=0

cNhN (λ1, . . . , λd)

=
∞∑

N=0

cNtrN
Sym(A).

As a Corollary we have MacMahon’s Master Theorem, which we express
in the above terminology.

Corollary 4.3 MacMahon’s Master Theorem.

The diagonal matrix element
〈m

m

〉
A

is the coefficient of um = um1
1 · · · umd

d in

the expansion of det(I − UA)−1 where U = diag(u1, . . . , ud) is the diagonal
matrix with entries u1, . . . , ud on the diagonal.

Proof. From Theorem 4.2, with c = 1, we want to calculate the symmetric
trace of UA. By the homomorphism property,

trN
Sym(UA) =

∑

m

〈m

m

〉
UA

=
∑

m

∑

k

〈m

k

〉
U

〈
k

m

〉

A

.

Now, with v = Uw and v` = u`w`, then

vm = (u1w1)
m1 · · · (udwd)

md = umwm =
∑

k

〈m

k

〉
U

wk,

i.e., 〈m

k

〉
U

= um1
1 · · · umd

d δk1m1 · · · δkdmd

so that
trN

Sym(UA) =
∑

m

〈m

m

〉
A

um.

17



Now we restrict ourselves to d = 2, and return to the (τ,∆)-recurrence.

Recall, from (18), the 2 × 2 matrix

X =

(
0 1
xt 1

)(
0 1

xt−1 1

)
· · ·

(
0 1
x1 1

)

= ξtξt−1 · · · ξ1,

where ξs =

(
0 1
xs 1

)
for 1 ≤ s ≤ t. Let us modify ξs slightly by defining

αs =

(
0 1
xs as

)
for 1 ≤ s ≤ t, and calling

X =

(
0 1
xt at

)(
0 1

xt−1 at−1

)
· · ·

(
0 1
x1 a1

)

= αtαt−1 · · ·α1.

Let
tr(X) = τ and det(X) = ∆,

and let GN be the first fundamental solution to the (τ ,∆)-recurrence:

ΘN = τ ΘN−1 − ∆ΘN−2. (22)

Then

∞∑

N=0

cNGN =
1

1 − τc + ∆c2

=
1

det(I − cX)

=
∞∑

N=0

cN trN
Sym(X).

So
GN = trN

Sym(X) =
∑

m

〈m

m

〉
X

=
∑

m

〈m

m

〉
αtαt−1···α1

.

We need to calculate the symmetric trace of X and so identify GN . By
the homomorphism property, we need only find the matrix elements for each
matrix αs, multiply together and take the trace.

18



For αs =

(
0 1
xs as

)
the mapping induced on polynomials is

v1 = u2 , v2 = xs u1 + as u2. (23)

For any integer N ≥ 0, the expansion of vm
1 vN−m

2 in powers of u1 and u2 is
of the form

vm
1 vN−m

2 =
∑

n

〈m

n

〉
αs

un
1u

N−n
2 , (24)

with the notation for the matrix elements abbreviated accordingly. From
(23) and (24), the binomial theorem yields

〈m

n

〉
αs

=

(
N − m

n

)
xn

s a
N−m−n
s .

For example, when t = 3, the product X = α3α2α1 gives the matrix
elements, for homogeneity of degree N ,

〈m

n

〉
X

=
∑

(k2,k3)

〈
m

k3

〉

α3

〈
k3

k2

〉

α2

〈
k2

n

〉

α1

=
∑

(k2,k3)

(
N − m

k3

)(
N − k3

k2

)(
N − k2

n

)
xn

1x
k2
2 xk3

3 aN−k2−n
1 aN−k3−k2

2 aN−k3−m
3 .

Thus, the symmetric trace trN
Sym(X) =

∑

m

〈m

m

〉
X

is

∑

(k1 ,k2,k3)

(
N − k2

k1

)(
N − k3

k2

)(
N − k1

k3

)
xk1

1 xk2
2 xk3

3 aN−k1−k2
1 aN−k2−k3

2 aN−k3−k1
3 ,

a cyclic binomial. In general, for a product of arbitrary length, the symmetric
trace is given by the corresponding cyclic binomial.

Recall the recurrence

SN (x) = 2xSN−1(x) − SN−2(x), (25)

for N ≥ 1. The Chebyshev polynomials of the first kind, TN = TN (x), are
solutions of this recurrence with initial conditions T−1 = x and T0 = 1, and
the Chebyshev polynomials of the second kind, UN = UN (x), are solutions
with U−1 = 0 and U0 = 1.
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Combining these observations yields the main identities:

Theorem 4.4 Let X = αtαt−1 · · ·α1, with αs =


 0 1
xs as


 for 1 ≤ s ≤ t, and

let τ = tr(X) and ∆ = det(X). Let GN denote the first fundamental solution
to the (τ ,∆)-recurrence (22).

Then we have the cyclic binomial identity

GN =
∑

(k1,...,kt)

(
N − k2

k1

)(
N − k3

k2

)
· · ·

(
N − k1

kt

)
xk1

1 xk2
2 · · ·xkt

t aN−k1−k2
1 aN−k2−k3

2 · · · aN−kt−k1
t

= ∆
N/2

UN

(
τ

2
√

∆

)

=

bN/2c∑

k=0

(
N − k

k

)
τN−2k(−∆)k,

where UN denotes the Chebyshev polynomial of the second kind.

Proof. The first equality follows by computing the symmetric trace for
arbitrary t as indicated above. The second follows by induction on N using
initial conditions G−1 = 0 and G0 = 1, the (τ,∆)-recurrence (22) and the
Chebyshev recurrence (25). The third follows from the second by the Sym-

metric Trace Theorem applied to X =

(
0 1

−∆ τ

)
, the shift matrix for the

(τ ,∆)-recurrence.

Note that G−1 = 0 and G0 = 1, so G1 = τ using the (τ,∆)-recurrence.
This also follows directly from the condition ks−1 +ks ≤ 1 for non-zero terms
in the cyclic binomial summation above. Note also that setting all as = 1
above gives explicit expressions for GN .

Example 5 Here N = 2 and t = 3. Let ASym(N) denote the symmetric
representation in degree N of the matrix A. From the above we have

G2 =
∑

(k1,k2 ,k3)

(
2 − k2

k1

)(
2 − k3

k2

)(
2 − k1

k3

)
xk1

1 xk2
2 xk3

3

= 1 + 2x1 + 2x2 + 2x3 + x2
1 + 2x1x2 + 2x1x3 + x2

2 + 2x2x3 + x2
3 + x1x2x3.
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Also d = 2, so
(

N+d−1
N

)
= 3, and ξs =

(
0 1
xs 1

)
for 1 ≤ i ≤ 3, thus

X = ξ3ξ2ξ1 =

(
x1 x2 + 1

x1x3 + x1 x2 + x3 + 1

)
.

Now ξs
Sym(2) =




0 0 1
0 xs 1
x2

s 2xs 1


 for 1 ≤ s ≤ 3, and so

XSym(2) = ξ3
Sym(2)ξ2

Sym(2)ξ1
Sym(2)

=




x2
1 2x1x2 + 2x1 x2

2 + 2x2 + 1

x2
1x3 + x2

1
x1x2x3 + 2x1x2
+2x1x3 + 2x1

x2
2 + x2x3 + 2x2

+x3 + 1

x2
1x

2
3 + 2x2

1x3 + x2
1

2x1x2x3 + 2x1x
2
3 + 2x1x2

+4x1x3 + 2x1

x2
3 + 2x2x3 + x2

2
+2x2 + 2x3 + 1




.

We check that G2 = tr(XSym(2)), as indicated above.

We now give an expression for GN as a quotient of two matching polyno-
mials; this requires (29) from the next section.

Theorem 4.5 For N ≥ 0 we have

GN =
Φ1,Nt−2

φt−2
.

Proof. Equation (29) is

Φi,Nt+j = Φi,j GN − ∆φi,j GN−1, (26)

and from Example 2 we have φi,i−3 = 0. So (26) with j = i − 3 gives

GN =
Φi,Nt+i−3

Φi,i−3
=

Φ1,Nt−2

φt−2
, (27)

the second equality comes from putting i = 1 in the first and then using (9)
in the denominator.
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Finally, consider the Fibonacci sequence {Fm |m ≥ 1} = {1, 1, 2, 3, 5, 8, 13, 21, . . .}.
It is straightforward to show that the number of matchings in the path Pm

with m−1 edges is Fm+1. Now Φ1,Nt−2 is the matching polynomial of the path
P (1, Nt−2) which has (N +1)t−2 edges and so has F(N+1)t matchings. Sim-
ilarly, the path whose matching polynomial is φt−2 has Ft matchings. Now,
evaluating (27) above with N = N − 1 and xs = 1 for all 1 ≤ s ≤ t, gives
Ft|FNt, a well-known result on Fibonacci numbers, see pp. 148-9, Hardy and
Wright [4]. Furthermore, we have

F(N+1)t

Ft
=

∑

(k1,...,kt)

(
N − k2

k1

)(
N − k3

k2

)
· · ·

(
N − k1

kt

)
.

5 Examples: Paths, Cycles, Trees

In this Section we express the matching polynomial of some well-known
graphs in terms of the fundamental solutions to the (τ,∆)-recurrence (12).

GN is the first fundamental solution to the (τ,∆)-recurrence, so the initial
values for GN are

G−2 =
−1

∆
, G−1 = 0, G0 = 1, (and G1 = τ ). (28)

The second fundamental solution is −∆GN−1.

5.1 Paths

Φi,Nt+j satisfies the (τ,∆)-recurrence whose fundamental solutions are GN

and −∆GN−1, thus Φi,Nt+j = aGN + b (−∆GN−1) for some a and b. The
initial conditions for Φi,Nt+j from (9) and for GN from (28) give a = Φi,j and
b = Φi,−t+j = φi,j. Hence for N ≥ −1,

Φi,Nt+j = Φi,j GN − ∆φi,j GN−1. (29)

Example 6 Here i = 2 and t = 3,
N = −1 φ2,2 = 1 + x2,
N = 0 φ2,3 = 1 + x2 + x3,
N = 0 Φ2,1 = 1 + x1 + x2 + x3 + x1x2,
N = 0 Φ2,2 = 1 + x1 + 2x2 + x3 + x1x2 + x2

2 + x2x3,
N = 1 Φ2,3 = 1 + x1 + 2x2 + 2x3 + x1x2 + x1x3 + x2

2 + 2x2x3 + x2
3 + x1x2x3.
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For N ≥ 1 let PNt+j+1 = P (1, (N − 1)t + j) be the path with Nt + j + 1
vertices and Nt + j edges, cyclically labelled starting with label x1. Let
PNt+j+1(x) = PNt+j+1 = Φ1,(N−1)t+j be its matching polynomial. With this
notation any subscript on a P , P, C, or C refers to the number of vertices in
the appropriate graph.

Theorem 5.1 For any N ≥ 1 we have

(i) PNt+j+1 = Φ1,j GN−1 − ∆φj GN−2,

(ii) PNt+1 = GN + (φ − τ )GN−1.

Proof. The proof of (i) is clear using (29) with i = 1 and N = N − 1. So
(i) with j = 0 gives PNt+1 = Φ1,0 GN−1 − ∆φ0 GN−2. But Φ1,0 = Φ1,−t+t =
φ1,t = φt = φ and φ0 = φ1,0 = 1, and then using the (τ,∆)-recurrence for GN

gives (ii).

Example 7 Here t = 3,

• • • • • •
x1 x2 x3 x1 x2

P1·3+2+1

P1·3+2+1 = 1 + 2x1 + 2x2 + x3 + x2
1 + 2x1x2 + x1x3 + x2

2 + x2x3 + x1x2x3.

• • • • • • •
x1 x2 x3 x1 x2 x3

P2·3+1

P2·3+1 = 1+2x1 +2x2 +2x3 +x2
1 +2x1x2 +3x1x3 +x2

2 +2x2x3 +x2
3 +x2

1x3 +
2x1x2x3 + x1x

2
3.

23



5.2 Cycles

Now we identify the first and the last vertices of the path P (i,Nt + j) to
form the cyclically labelled cycle C(i,Nt + j) with matching polynomial
Γi,Nt+j(x) = Γi,Nt+j .

By decomposing Γi,Nt+j at the ‘first’ edge labelled xi we see that, cf. (29),

Γi,Nt+j = Φi+1,Nt+j + xi Φi+2,Nt+j−1,

= Φi+1,j GN − ∆φi+1,j GN−1 + xi{Φi+2,j−1 GN − ∆φi+2,j−1 GN−1},
= {Φi+1,j + xi Φi+2,j−1}GN − ∆ {φi+1,j + xi φi+2,j−1}GN−1,

= Γi,j GN − ∆ τi,j GN−1, (30)

using (29) at the second line, and decomposing Γi,j and τi,j at the first edge
xi at the fourth line. Also, defining Γi,−t+j = τi,j ensures that (30) is true for
all N ≥ −1.

Example 8 Here i = 2 and t = 3 again,
N = −1 τ2,2 = 1,
N = 0 τ2,3 = 1 + x2 + x3,
N = 0 Γ2,1 = 1 + x1 + x2 + x3,
N = 0 Γ2,2 = 1 + x1 + 2x2 + x3 + x1x2 + x2x3,
N = 1 Γ2,3 = 1 + x1 + 2x2 + 2x3 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3.

Let CNt+j = C(1, (N − 1)t + j) be the cycle with Nt + j vertices and
Nt + j edges in which labelling has started with x1, and let CNt+j(x) =
CNt+j = Γ1,(N−1)t+j be its matching polynomial. Compare with Theorem 5.1,

Theorem 5.2 For any N ≥ 1 we have

(i) CNt+j = Γ1,j GN−1 − ∆ τj GN−2,

(ii) CNt = GN − ∆GN−2.

Proof. The proof of (i) is clear from (30). Part (i) with j = 0 gives (ii),
using Γ1,0 = τ , and τ0 = 2 from (8).

Example 9 Here t = 3 again, the cycle starts at the large vertex and
proceeds clockwise,
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C1·3+2

x2

x3

x1

x2

x1

C1·3+2 = 1 + 2x1 + 2x2 + x3 + x2
1 + x1x2 + x1x3 + x2

2 + x2x3

C2·3

x3

x1

x2

x3

x1

x2

C2·3 = 1 + 2x1 + 2x2 +2x3 + x2
1 + 2x1x2 +2x1x3 + x2

2 + 2x2x3 + x2
3 + 2x1x2x3.

For a fixed t ≥ 1 write P̂N = PNt+1 and ĈN = CNt. We now express GN ,
P̂N , and ĈN in terms of Chebyshev polynomials.

It is well-known that, in one variable x, the matching polynomial of the
path P2m is related to U2m as follows

M(P2m, x) = (−1)mxm U2m

(
i

2
√

x

)
,

and, for P2m−1 we have

M(P2m−1, x) = (−1)mxm

[
U2m

(
i

2
√

x

)
+ U2m−2

(
i

2
√

x

)]
,

where i =
√
−1. Also, for the matching polynomials M(C2m) and M(C2m−1)

of the cycles C2m and C2m−1 there are similar formulas but with a factor of
2 on the right-hand side where U is replaced by T . See Theorem 3 of Godsil
and Gutman [3], and Theorems 9 and 11 of Farrell [1].
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Now Theorem 4.4 modified for GN gives

GN = ∆N/2 UN

(
τ

2
√

∆

)
. (31)

Formulas for P̂N and ĈN in terms of UN and TN are given below, where the
variable t is suppressed.

Theorem 5.3 For any N ≥ 1 we have

(i) P̂N = ∆N/2

{
UN

(
τ

2
√

∆

)
+

(
φ − τ√

∆

)
UN−1

(
τ

2
√

∆

)}
,

(ii) ĈN = 2∆N/2 TN

(
τ

2
√

∆

)
.

Proof. (i) This follows from Theorem 5.1(ii) and (31).

(ii) From Theorem 5.2(ii) we have ĈN = GN − ∆GN−2, and now the well-
known relation 2TN = UN − UN−2 between the two types of Chebyshev
polynomials and (31) gives the result.

Expressions for GN , P̂N , and ĈN for N = 0, 1, 2, 3, and 4 are given below
G0 = 1 P̂0 = 1 Ĉ0 = 2

G1 = τ P̂1 = φ Ĉ1 = τ

G2 = τ 2 − ∆ P̂2 = φτ −∆ Ĉ2 = τ 2 − 2∆

G3 = τ 3 − 2τ∆ P̂3 = φτ 2 − φ∆ − τ∆ Ĉ3 = τ 3 − 3τ∆

G4 = τ 4 − 3τ 2∆ + ∆2 P̂4 = φτ 3 − 2φτ∆ − τ 2∆ + ∆2 Ĉ4 = τ 4 − 4τ 2∆ + 2∆2.

5.3 Trees

Here we consider cyclically labelled trees.
First let us extend the definition of a cyclically labelled path to include

the path of Fig. 1, and the graph P1 with one vertex and no edges.
A tree is a connected simple graph with no cycles, and a rooted tree is

a tree in which some vertex of degree 1 has been specified to be the root,
r. Given any rooted tree, let us label its edges by first labelling the edge
incident to r with xi. Then label all edges incident to this edge with xi+1,
then label all edges incident to these edges with xi+2, and so on until label
xt has been used. Then label with the ordered set {x1, . . . , xt} in a similar
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manner to before, repeating cyclically until all edges have been labelled,...,
and so on. Let T denote such a cyclically labelled tree, see Fig. 5 for an
example with i = 2 and t = 3.

x2

x3

x1

r

x3

x1

x1

x1

x2 x3

Fig. 5: A cyclically labelled tree with i = 2 and t = 3.

We may draw any such T with r as the leftmost vertex. Then we place
the other vertices of T from ‘left to right’ according to their distance from
r, i.e., if a vertex v1 is at distance d1 from r and vertex v2 is at distance d2

from r where d2 > d1, then v2 is placed to the right of v1.

Paths in T are of two types: (I) A path that always moves from left to
right (a path that always moves from right to left can be thought of one that
always moves from left to right): such a path is clearly cyclically labelled; or
(II) a path that moves first from right to left and then from left to right; such
a path must pass through at least one vertex of degree ≥ 3, i.e., a vertex
where T ‘branches’.

Let V denote the set of vertices of degree ≥ 3 in T , and let v ∈ V be
arbitrary of degree deg(v). Vertex v has 1 edge to its left and deg(v)− 1 ≥ 2
edges to its right. Let Hv be the subgraph of T that consists of the ‘last’
deg(v) − 2 ≥ 1 edges as we rotate clockwise around v. Thus Hv is the star
K1,deg(v)−2 centered at v. Set H = ∪v∈V Hv.

Lemma 5.4 The forest T − H is a union of cyclically labelled paths.

Proof. We show that T −H does not contain a path of type (II). Suppose
it does contain a path of type (II), then this path must pass through some
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vertex v ∈ V . So 2 edges incident to v and to the right of v lie in this path
and so lie in T − H, a contradiction because T − H contains only 1 edge
incident to v and to the right of v. Thus T − H is a union of paths of type
(I), each of which is a cyclically labelled path.

Thus T − H is a union of cyclically labelled paths, and so T − H − MH

is also, for every matching MH of H. We know the matching polynomial of
any cyclically labelled path, so we can decompose the matching polynomial
of T , M(T,x), at H, according to Theorem 1.1,

M(T,x) =
∑

MH

MH(x)M(T −H − MH ,x),

where the summation is over every matching MH of H.

Example 10 See Fig. 5.

• • • • •
x1 x1 x3

Here H =

H has 6 matchings with weights: 1, x1, x1, x3, x1x3, and x1x3. Thus
there are 6 terms in the decomposition, and M(T,x) is the sum of the fol-
lowing 6 terms:

1.φ1φ2,3Φ2,1+x1.φ1φ2,2φ2,3+x1.φ1φ2,2φ3,3+x3.φ1φ2,3+x1x3.φ2,3+x1x3.φ3,3

= 1 + 4x1 + 2x2 + 3x3 + 3x2
1 + 7x1x2 + 8x1x3 + x2

2 + 3x2x3 + 2x2
3

+5x2
1x2 + 3x2

1x3 + 3x1x
2
2 + 7x1x2x3 + 4x1x

2
3 + 2x2

1x
2
2 + 3x2

1x2x3.
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