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Abstract

A single-change circular covering design (scccd) based on the set [v] = {1, . . . , v}
with block size k is an ordered collection of b blocks, B = {B1, . . . , Bb}, each
Bi ⊂ [v], which obey: (1) each block differs from the previous block by a single
element, as does the last from the first, and, (2) every pair of [v] is covered by some
Bi. The object is to minimize b for a fixed v and k. We present some minimal
constructions of scccds for arbitrary v when k = 2 and 3, and for arbitrary k when
k+1 ≤ v ≤ 2k. Tight designs are those in which each pair is covered exactly once.
Start-Finish arrays are used to construct tight designs when v > 2k; there are
2 non-isomorphic tight designs with (v, k) = (9, 4), and 12 with (v, k) = (10, 4).
Some non-existence results for tight designs, and standardized, element-regular,
perfect, and column-regular designs are also considered.

1. Definitions; notation; examples

A single-change circular covering design based on the set [v] = {1, . . . , v} with block
size k is an ordered collection of b blocks, B = {B1, . . . , Bb}, each an unordered subset of
k distinct elements from [v], which obey:

(1) each block differs from the previous block by a single element, i.e., |Bi−1 ∩Bi| = k−1
for i = 2, . . . , b ; and the last block, Bb, differs from the first, B1, by a single element,
i.e., |Bb ∩ B1| = k − 1; and

(2) every (unordered) pair {x, y} of [v], with x 6= y, can be written as {ei, z} where
ei ∈ Bi\Bi−1 and z ∈ Bi for some i = 2, . . . , b, or as {e1, z} where e1 ∈ B1\Bb and
z ∈ B1.

For i = 2, . . . , b we say that element ei is introduced in block Bi, and the pairs {ei, z}
where z ∈ Bi are covered by Bi. Similarly, e1 is introduced in B1 and pairs {e1, z} where
z ∈ B1 are covered by B1. We also say that a pair is covered by B if it is covered by some
block in B.

A single-change circular covering design is simply a single-change covering design (see
Wallis, Yucas, and Zhang [4], and Preece, Constable, Zhang, Yucas, Wallis, McSorley, and
Phillips [2]) in which a ‘single-change’ is also required between Bb and B1.
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We denote a single-change circular covering design by scccd ; and a scccd based on [v]
with block size k by scccd(v, k), or by scccd(v, k, b) if we wish to mention that it contains b

blocks. For a fixed v and k, where k ≥ 2 and v ≥ k + 1, we denote by b∗(v, k) the smallest
b for which there exists a scccd(v, k, b), and we call such a scccd(v, k, b∗(v, k)) minimal .
We write our designs vertically as in [4].

Our first example is a scccd(6, 3, 8) labelled E and shown in Fig. 1(a). In E each
pair, except {4, 1}, is covered once; {4, 1} is covered twice, in B5 and in B8. This is an
economical design, see §5.

element
blocks introduced pairs covered

Bi ei {ei, z}, z ∈ Bi

B1 6 4 2 6 {6, 4} {6, 2}
B2 6 3 2 3 {3, 6} {3, 2}
B3 6 3 5 5 {5, 6} {5, 3}
B4 6 3 1 1 {1, 6} {1, 3} 1 2 3
B5 4 3 1 4 {4, 3} {4, 1} 2 3 4
B6 4 5 1 5 {5, 4} {5, 1} 3 4 5
B7 2 5 1 2 {2, 5} {2, 1} 4 5 1
B8 2 4 1 4 {4, 2} {4, 1} 5 1 2

E, an economical scccd(6, 3, 8) Y3, a tight scccd(5, 3, 5)
(a) (b)

Fig. 1: Examples: E and Y3.

As the ordering of the elements in a block is immaterial, we often (but not always)
leave a block’s unchanged elements in the same columns as in the previous block, see E
in Fig. 1(a); such a representation of E is called column-strict . In block B4 element 1 is
introduced because 1 6∈ B3 and element 6 is changed because 6 6∈ B5.

Our second example is a scccd(5, 3, 5), see Fig. 1(b); we call this design Y3, see §6.
Here the 10 pairs from the set {1, 2, 3, 4, 5} are each covered exactly once, 2 per block; we
call such a design tight , see §5.

We generally use the notation B = {B1, . . . , Bb} for an arbitrary scccd(v, k, b) and C
for an arbitrary tight scccd(v, k, b), often with v > 2k.
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The main object of this paper is to study scccds, with special interest in the function
b∗(v, k) and in tight designs. We will see that the structure and construction of these de-
signs are somewhat different from those of the single-change covering designs of [4] and [2].

2. Requirements for B to form a single-change circular covering design

Let B = {B1, . . . , Bb} be an ordered collection of b blocks; each Bi contains k distinct
elements from [v].

We say that B has the single-change circular property if |Bi−1 ∩ Bi| = k − 1 for
i = 2, . . . , b, and |Bb ∩ B1| = k − 1.

Lemma 2.1. B is a scccd(v, k) if and only if
(i) B has the single-change circular property, and
(ii) every pair of [v] is in some block of B, and
(iii) no pair of [v] is in every block of B.

Proof. First suppose that B is a scccd(v, k). Then (i) and (ii) are true by definition of a
scccd. Now suppose that (iii) is false, and that the pair {x, y} is in every block of B. Then
neither x nor y is introduced in any block, hence {x, y} is not covered by B, a contradiction
because B covers every pair.

Now suppose that B satisfies (i), (ii), and (iii). As B satisfies (i) we need only show
that it covers every pair of [v] to conclude that it is a scccd(v, k). Now, by (ii), every
pair {x, y} lies in some block of B and, by (iii), the pair {x, y} is not in every block. So
let Bi1 , Bi2 , . . . , Bit , where t ≤ b − 1, be a sequence of consecutive blocks each containing
{x, y}; the block immediately ‘before’ Bi1 , say B, does not contain {x, y}. So exactly one
of x or y lies in B and the other does not. Hence, either y or x (respectively) is introduced
in Bi1 , and so {x, y} is covered there. Hence B covers every pair and is a scccd(v, k).

3. Designs with k=2 and 3

k=2 If a tight scccd(v, 2, b) exists, then b = v(v − 1)/2, see §5. Now, given a tight
scccd(v, 2) with first block B1 = (1, 2) and last block Bb = (v, 1), we may add on the v

blocks as shown in Fig. 2(a) to obtain a tight scccd(v + 1, 2, v(v + 1)/2) based on [v + 1]
with last block (v + 1, 1).

Beginning with the tight scccd(3, 2, 3) shown in Fig. 2(b) we can use this construction
repeatedly to obtain a tight scccd(v, 2) for any v ≥ 3.

k=3 If a tight scccd(v, 3, b) exists, then b = v(v − 1)/4, see §5; and so v ≡ 0 or 1 (mod 4).
Let v ≡ 0 (mod 4), and suppose that we have a tight scccd(v, 3) with B1 = (1, 2, 3) and
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Bb = (v, 1, 2) in which element 1 is introduced in Bb. We can then construct a tight
scccd(v +4, 3, (v + 3)(v + 4)/4) based on [v +4] by altering Bb to (v, v +1, 2) and adding
on the 2v+3 blocks as shown in Fig. 2(c). This new design has last block (v+4, 1, 2) in which
1 is introduced; so we can use this construction repeatedly to obtain a tight scccd(v, 3) for
any v ≡ 0 (mod 4) beginning with the tight scccd(4, 3, 3) shown in Fig. 2(d).

1 2 3
1, 2, 3 1 4 3
· · · 1 2 3 5 4 3
· · · 4 2 3 5 4 2
· · · 4 1 2 5 1 2

1, 2 v, v + 1, 2
· · v, v + 2, 2 a tight a tight
· · v, v + 2, v + 4 scccd(4, 3, 3) scccd(5, 3, 5)
· · v, v + 2, v + 3 (d) (e)
v, 1 v, 1, v + 3
v, v + 1 v + 1, 1, v + 3

v − 1, v + 1 v + 1, 1, v + 2 12 3
· · v + 1, v − 1, v + 2 17 3
· · · · · 1 7 5
· · · · · 1 2 3 1 4 5
1, v + 1 · · · 4 2 3 1 4 6

(a) v + 1, 3, v + 2 45 3 3 4 6
v + 1, 3, v + 4 46 3 3 5 6
v + 3, 3, v + 4 46 1 2 5 6

1 2 · · · 5 6 1 2 7 6
3 2 · · · 5 6 2 2 7 4
3 1 · · · 6 1 2 7 1 2

v + 3, v − 1, v + 4
a tight v + 3, 2, v + 4 an economical an economical

scccd(3, 2, 3) v + 4, 1, 2 scccd(6, 3, 8) scccd(7, 3, 11)
(b) (c) (f) (g)

Fig. 2: Starter designs and additions for k = 2 and 3.
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We can also construct a tight scccd(v, 3) when v ≡ 1 (mod 4) for any v ≥ 5 starting
with the tight scccd(5, 3, 5) shown in Fig. 2(e); and an economical scccd(v, 3, dv(v − 1)/4e)
for v ≡ 2 or 3 (mod 4) for any v ≥ 6 starting with the economical scccds in (f) or (g)
respectively.

Theorem 3.1.
(i) A tight scccd(v, 2) exists for all v ≥ 3;
(ii) a tight scccd(v, 3) exists for all v ≡ 0 or 1 (mod 4), v ≥ 4;
(iii) an economical scccd(v, 3) exists for all v ≡ 2 or 3 (mod 4), v ≥ 6.

4. Standardized forms; isomorphisms; reverses

A scccd(v, k, b) is standardized or in standardized form (see §1 of [2]) if:

(1) the elements of the first block are 1, 2, . . . , k in that order;
(2) the other elements are introduced initially in the order k + 1, k + 2, . . . , v;
(3) the elements of the first block are changed initially in the order k, k − 1, . . . , 2, 1 (if

our scccd(v, k, b) has one element, say element 1, in every block, then the elements of
the first block are changed initially in the order k, k − 1, . . . , 2);

(4) beginning at the second block, a block’s unchanged elements are in the same columns
as in the previous block (i.e., it is column-strict).

Given any scccd(v, k, b), B, that satisfies (4) above, in order to change it to its standardized
form we need to apply a permutation of [v] to it, followed by a permutation of its columns.
For example, if we apply the permutation (1, 6)(3, 4) to E = {B1, B2, . . . , B8} shown in
Fig. 3(a), and then permute its 2nd and 3rd columns, we arrive at its standardized form
shown in (b), with blocks labelled Li.

A cyclic shift of the ordered blocks B = {B1, B2, . . . , Bb} is one of the following
rearrangements:

B = B1 = {B1, B2, . . . , Bb},
B2 = {B2, B3, . . . , Bb, B1},
· · ·
· · ·
Bi = {Bi, . . . , Bb, B1, . . . , Bi−1},
· · ·
· · ·
Bb = {Bb, B1, . . . , Bb−1}.

The block arrangement Bi is called the i-th cyclic shift of B. For each i the first block
in Bi is Bi.
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in ch in ch

ei e′i ei e′i
B1 6 4 2 L1 1 2 3 1 |3| L1 1 2 3 2 |3| 2 4 1
B2 6 3 2 L2 1 2 4 |4| |2| L2 1 2 4 |4| |2| 2 5 1
B3 6 3 5 L3 1 5 4 |5| 5 L3 1 5 4 |5| |1| 4 5 1
B4 6 3 1 L4 1 6 4 |6| |1| L4 6 5 4 |6| 6 4 3 1
B5 4 3 1 L5 3 6 4 3 4 L5 3 5 4 3 4 6 3 1
B6 4 5 1 L6 3 6 5 5 3 L6 3 5 2 2 5 6 3 5
B7 2 5 1 L7 2 6 5 2 5 L7 3 6 2 6 2 6 3 2
B8 2 4 1 L8 2 6 3 3 6 L8 3 6 1 1 6 6 4 2

E sf(E) = sf(E1) rsf(E) = sf(E8) rev(E)

(a) (b) (c) (d)

Fig. 3: The economical scccd(6, 3, 8), E, its standardized form, its representative standard-
ized form, and its reverse.

Each scccd B = {B1, B2, . . . , Bb} has b standardized forms, one for each cyclic shift
Bi; let sf(Bi) denote the standardized form of Bi for each i = 1, . . . , b.

The scccd(5, 3, 5), Y3, of Fig. 1(b) has each of its 5 standardized forms identical (shown
in Fig. 15(d)); but E in Fig. 3(a) has each of its 8 standardized forms different. If a design
B does not have all of its standardized forms identical, one of these forms can usefully be
chosen as the representative standardized form, rsf(B). In order to do this for an arbitrary
B = {B1, B2, . . . , Bb}, we will presently define, for each i, four finite sequences associated
with sf(Bi), namely S1, S2, S3, and S4. (In general, the sequences S1, S2, S3, and S4 will
be different for each i, but we choose this notation for simplicity.) We then consider the
ordered set {S1, S2, S3, S4}. So each sf(Bi) gives us an ordered set of four sequences. Next,
we order these ordered sets of four sequences according to the criteria below, and choose
the ‘least’ in this ordering. Suppose this least ordered set comes from sf(B`), then sf(B`)
is taken as rsf(B).

Again for simplicity, we use L1, L2, . . . , Lb, to denote the b blocks of sf(Bi), for every
i = 1, . . . , b, even though generally the blocks differ for each i. So sf(Bi) = {L1, L2, . . . , Lb}
where L1 = (1, 2, . . . , k) and L2 = (1, 2, . . . , k + 1).

The sequences S1 and S2 are sequences of distinct blocks from {L1, L2, . . . , Lb}; and
S3 and S4 are sequences of not necessarily distinct elements from [v]. For a fixed sf(Bi) we
define S1 with reference to (2) above. For t = 1, . . . , v − k, the t-th member of S1 is the
block into which element k+t is initially introduced. Thus S1 begins with L2. Sequence S2

(see (3) above) is a sequence of blocks beginning at L1. For t = 1, . . . , k, the t-th member
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of S2 is the first block from which element k − t + 1 is initially changed (t stops at k− 1 if
B has element 1 in every block).

Just as for i = 1, . . . , b, the element ei is introduced into block Li, let e′i be the element
changed from Li. So we have e′i ∈ Li\Li+1 for i = 1, . . . , b − 1, and e′b ∈ Lb\L1. Now
define sequence S3 = {ei : Li 6∈ S1}, arranged with increasing i; so, e1 is its first member.
Similarly, we define S4 = {e′i : Li 6∈ S2}, arranged with increasing i.

For an example see sf(E1) in Fig. 3(b), where the column of introduced elements,
ei, is labelled ‘in’, and the column of changed elements, e′i, is labelled ‘ch’. We have
S1 = {L2, L3, L4}, S2 = {L1, L2, L4}, S3 = {1, 3, 5, 2, 3}, and S4 = {5, 4, 3, 5, 6}.

Thus each sf(Bi) gives us an ordered set of four sequences. We now order these ordered
sets of four sequences by, first of all, lexicographically ordering their first elements, the S1

sequences, according to the rule: Lr < Ls if and only if r < s, and choosing the set(s)
whose S1 sequence is the first (i.e., the least) in this list. If two (or more) sets have identical
S1 sequences, we choose the one with the least S2 sequence, using the same ordering. If
two (or more) sets have identical S1 and S2 sequences we then compare their S3 sequences
and order them lexicographically using the natural < ordering on [v], and choose the least.
If still identical, we compare their S4 sequences, with the < ordering, and choose the
least. Two such sets with identical S1, S2, S3, and S4 sequences can easily be shown to
correspond to standardized forms that are identical.

By this process we arrive at the particular sf(B`) with the least set of sequences
according to our lexicographic orderings; we take this particular standardized form as the
representative standardized form of B, rsf(B). For example, rsf(E), shown in Fig. 3(c), is
sf(E8); and rsf(Y3) is shown in Fig. 15(d).

Two scccd(v, k, b)s B and B′ are isomorphic, (B ∼= B′), if we can apply a permutation
of [v] combined with a cyclic shift of the blocks of B to obtain B′. Similarly, an automor-
phism of a scccd(v, k, b) B is a permutation of [v] which, when applied to B, produces a
cyclic shift of B. For example, the permutation (1, 2, 3, 4, 5) is an automorphism of Y3.

Theorem 4.1. Let B and B′ be two scccd(v, k, b)s.
Then B ∼= B′ if and only if rsf(B) = rsf(B′).

Proof. Suppose B ∼= B′, then, for any i ∈ {1, . . . , b}, there exists a j ∈ {1, . . . , b} such
that Bi, the i-th cyclic shift of B, can be changed into B′

j using only a permutation on v, i.e.,
with no cyclic shift of the blocks of Bi. So sf(Bi) = sf(B′

j), and so {sf(B1), . . . ,sf(Bb)} ⊆
{sf(B′

1), . . . ,sf(B′
b)}. Similarly, {sf(B′

1), . . . ,sf(B′
b)} ⊆ {sf(B1), . . . ,sf(Bb)}. Finally we see

that {sf(B1), . . . ,sf(Bb)} = {sf(B′
1), . . . ,sf(B′

b)}, and so rsf(B) = rsf(B′).
Now suppose that rsf(B) = rsf(B′), then B ∼= rsf(B) = rsf(B′) ∼= B′, as required.
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The reverse of the scccd B = {B1, B2, . . . , Bb} is the scccd obtained by reversing
the order of the blocks of B; we denote this design by rev(B) = {Bb, Bb−1, . . . , B1}. The
reverse of E is shown in Fig. 3(d). If B ∼= rev(B) we say that B is self-reverse.

5. Lower bounds on b∗(v,k); constructions of designs for k + 1 ≤ v ≤ 2k

Lemma 5.1. For v ≥ 4 and k ≥ 3, the value of b∗(v, k), the minimum number of blocks
in a scccd(v, k), satisfies

b∗(v, k) ≥ max

{
v − 1,

⌈
v(v − 1)
2(k − 1)

⌉}
.

Proof. In a scccd(v, k) exactly one element is introduced per block, so, if b∗(v, k) < v−1,
then at most v − 2 distinct elements are introduced. Hence, at least 2 distinct elements
are not introduced and the pair containing them is not covered, a contradiction. So
b∗(v, k) ≥ v − 1.

A scccd(v, k) must cover all v(v − 1)/2 pairs of [v], and k − 1 pairs are covered per
block. Thus b∗(v, k) · (k − 1) ≥ v(v − 1)/2, and so the result.

Corollary 5.2. For v ≥ 4 and k ≥ 3 we have

b∗(v, k) ≥





v − 1, for k + 1 ≤ v ≤ 2k − 2;⌈
v(v − 1)
2(k − 1)

⌉
, for v > 2k − 2. (1)

If b∗(v, k) satisfies equation (1) with equality, then the corresponding scccd(v, k) is

economical ; except that if b∗(v, k) = v(v − 1)
2(k − 1) then the corresponding scccd(v, k) is tight .

An economical and a tight design are shown in Fig. 1.

Consider the first case of Corollary 5.2. If a scccd(v, k) with k + 1 ≤ v ≤ 2k − 2
and with the minimal number of v − 1 blocks exists, then a total of v − 1 elements are
introduced in the design; from the proof of Lemma 5.1 these v − 1 elements are distinct.
Hence, without loss of generality, in such a design the elements 1, . . . , v − 1 are each
introduced exactly once; the element v is not introduced, and so appears in every block.
The following construction satisfies these requirements:

Arrange the elements of [v−1] in a circle and call this arrangement the circular [v−1].
Now, for 1 ≤ i ≤ v− 1, let Ai be the block beginning at i and containing k− 1 consecutive
elements taken clockwise from the circle; i.e., Ai = (i, i+1, . . . , i+k−2), where addition is
taken modulo v−1 with v−1 replacing 0. Now let Bi = Ai∪{v} and B = {B1, . . . , Bv−1}.
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Theorem 5.3. For k ≥ 3 and k +1 ≤ v ≤ 2k− 2 the blocks B = {B1, . . . , Bv−1} where
Bi = Ai ∪ {v} form an economical scccd(v, k, v − 1).

Proof. We need only show that B is a scccd(v, k). It then follows, since |B| = v − 1,
that it is an economical scccd(v, k, v − 1). We show that B satisfies (i), (ii), and (iii) of
Lemma 2.1.
(i) This is clear from the definition of B.
(ii) Now Bi = (i, i + 1, . . . , i + k − 2) ∪ {v}, where addition is taken modulo v − 1 with
v − 1 replacing 0. So element i + k − 2 is introduced in Bi, i.e., element i is introduced in
Bi−k+2. Hence, for 1 ≤ i ≤ v − 1, pair {i, v} is covered by Bi−k+2. This deals with pairs
that contain v.

Now consider the pair {i, j} where 1 ≤ i < j ≤ v−1 and let v be even. The pair {i, j}
can be covered by a ‘run’ of v/2 consecutive elements of the circular [v− 1] starting either
at i or at j. But v ≤ 2k − 2 and so v/2 ≤ k − 1, i.e., such a run is contained in Ai or Aj ,
so in Bi or Bj . Hence {i, j} is covered by B. A similar argument works when v is odd.
(iii) Let {i, j} be in every block; then, without loss of generality, we have 1 ≤ i ≤ v − 1.
But i is introduced in Bi−k+2, and so cannot be in the previous block, a contradiction.
Hence no pair is in every block.

Thus B is an economical scccd(v, k, v − 1).

An economical scccd(5, 4, 4) constructed using Theorem 5.3 is shown in Fig. 4(a).

B1 1 2 3 4
B2 2 3 4 5

B1 1 2 3 6 B3 3 4 5 6
B1 1 2 3 5 B2 2 3 4 6 B4 4 5 6 7
B2 2 3 4 5 B3 3 4 5 6 B5 5 6 7 1
B3 3 4 1 5 B4 4 5 1 6 B6 6 7 1 2
B4 4 1 2 5 B5 5 1 2 6 B7 7 1 2 3

an economical a tight a tight
scccd(5, 4, 4) scccd(6, 4, 5) scccd(7, 4, 7)

(a) (b) (c)

Fig. 4: Designs with k = 4 constructed using Theorems 5.3, 5.4, and 5.5 respectively.
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For a fixed k ≥ 3 the only tight designs amongst the economical scccd(v, k, v − 1)s
with k + 1 ≤ v ≤ 2k − 2 occur when v(v − 1)/2 = (k − 1)(v − 1), i.e., when v = 2k− 2. So
Theorem 5.3 with v = 2k − 2 yields tight designs:

Theorem 5.4. For k ≥ 3 and v = 2k − 2 the blocks B = {B1, . . . , B2k−3} where
Bi = Ai ∪ {2k − 2} form a tight scccd(2k − 2, k, 2k − 3).

See Fig. 4(b) for a tight scccd(6, 4, 5) constructed using Theorem 5.4.

So far, for a fixed k ≥ 3, we have constructed economical scccds when k + 1 ≤ v ≤
2k − 2. We now consider v = 2k − 1 and v = 2k, so we are in the second case of Corollary

5.2 in which a scccd has b ≥
⌈

v(v − 1)
2(k − 1)

⌉
blocks.

v=2k-1 Here b ≥ 2k − 1. Consider the circular [2k − 1]. For 1 ≤ i ≤ 2k − 1 let
Bi = (i, i + 1, . . . , i + k − 1), where addition is taken modulo 2k − 1 with 2k − 1 replacing
0. Then we have the following result. This construction and the next also work for k = 2.

Theorem 5.5. For k ≥ 2 and v = 2k − 1 the blocks B = {B1, . . . , B2k−1} where
Bi = (i, i + 1, . . . , i + k − 1) form a tight scccd(2k − 1, k, 2k − 1).

See Fig. 4(c) for a tight scccd(7, 4, 7) constructed using Theorem 5.5.

v=2k Here b ≥ 2k + 2. To construct an economical scccd(2k, k, 2k + 2) based on [2k]
we take the blocks {B1, . . . , B2k−1} of the scccd(2k − 1, k, 2k − 1) in Theorem 5.5 above
and add on 3 new blocks: C between Bk−1 and Bk, then C ′ after B2k−1, and finally C ′′

after C ′, i.e., between C ′ and B1; see Fig. 5(a).

In Fig. 5(a) the single-change circular property between the blocks is preserved. Fur-
ther, as the elements introduced in B1 and Bk are unchanged, the pairs covered by these
blocks are unchanged; and pairs containing the new element 2k are covered in the 3 new
blocks, thus all pairs are covered. Finally, no pair is in every block. Thus , from Lemma 2.1,

this is a scccd(2k, k, 2k+2), which is economical; it is tight only when 2k+2 = 2k(2k − 1)
2(k − 1) ,

i.e., when k = 2.

Theorem 5.6.
For k ≥ 2 and v = 2k the blocks B = {B1, B2, . . . , Bk−1, C,Bk, . . . , B2k−1, C

′, C ′′} form
an economical scccd(2k, k, 2k + 2), which is tight when k = 2.

See Fig. 5(b) for an economical scccd(8, 4, 10) constructed using Theorem 5.6.
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B1 1, 2, 3, . . . , k

B2 2, 3, 4, . . . , k + 1
· · · · · ·
· · · · · ·
· · · · · · B1 1 2 3 4
Bk−1 k − 1, k, k + 1, . . . , 2k − 2 B2 2 3 4 5
C 2k, k, k + 1, . . . , 2k − 2 B3 3 4 5 6
Bk k, k + 1, k + 2, . . . , 2k − 1 C 8 4 5 6
· · · · · · B4 4 5 6 7
· · · · · · B5 5 6 7 1
· · · · · · B6 6 7 1 2
B2k−1 2k − 1, 1, 2, . . . , k − 1 B7 7 1 2 3
C ′ 2k − 1, 2k, 2, . . . , k − 1 C ′ 7 8 2 3
C ′′ 2k, 1, 2, . . . , k − 1 C ′′ 8 1 2 3

scccd(2k, k, 2k + 2) scccd(8, 4, 10)
(a) (b)

Fig. 5: The economical scccd(2k, k, 2k + 2) of Theorem 5.6 (tight only for k = 2), this design for k = 4.

The theorem below summarizes this section, cf., Corollary 5.1 of [4].

Theorem 5.7. For k ≥ 3 we have

b∗(v, k) =

{
v − 1, for k + 1 ≤ v ≤ 2k − 2;
v, for v = 2k − 1;
v + 2, for v = 2k.

So, in this section, we have constructed scccds with a minimal number of blocks for
all k ≥ 3 and k + 1 ≤ v ≤ 2k, and have given examples for k = 4.

From now on we concentrate mainly on tight designs.
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6. Some families of tight designs

Tight scccds are of special interest; they are analogous to tight single-change covering
designs, see [2].

So far we have three infinite families of tight scccds with a fixed k, see Theorem 3.1:
(i) scccd(v, 2) for all v ≥ 3,
(ii) scccd(v, 3) for all v ≡ 0 (mod 4), v ≥ 4, and
(iii) scccd(v, 3) for all v ≡ 1 (mod 4), v ≥ 5.

For the tight designs of [2] infinite families are not known to exist with k variable,
except in the case v = k, here we have two infinite families with k variable:
(iv) F= {Xk : Xk is the tight scccd(2k − 2, k, 2k − 3) of Theorem 5.4, k ≥ 3};
(v) G= {Yk : Yk is the tight scccd(2k − 1, k, 2k − 1) of Theorem 5.5, k ≥ 2}.
(Note that Y3 is shown in Fig. 1(b).)

If a scccd has the same parameters as a member of F or G then it is isomorphic to
that member:

Theorem 6.1. For a fixed k ≥ 3 let X be a scccd(2k − 2, k, 2k − 3).
Then X ∼= Xk ∈ F.

Proof. The parameters of X indicate that it is tight. Let X be based on [v] where
v = 2k − 2.

Now, X has v − 1 blocks, so, from the comments preceding Theorem 5.3, it contains
some element, say v, in every block. Any other element 1, . . . , v− 1 is introduced exactly
once and remains in k − 1 successive blocks because it must appear in v − 1 = 2k − 3
covered pairs; it appears in k − 1 covered pairs in its first block and in one covered pair in
each of its k − 2 successive blocks.

Hence, up to a permutation of [v], we may construct X as follows: first, put v in every
block; then, for i = 1, . . . , v − 1, introduce i in Bi, and leave it there for k − 1 successive
blocks. Then Bk−1 = (1, 2, . . . , k − 1, v), and a cyclic shift of the blocks making this the
first block will produce Xk. Hence X ∼= Xk.

Similarly for the family G.

Theorem 6.2. For a fixed k ≥ 2 let Y be a scccd(2k − 1, k, 2k − 1).
Then Y ∼= Yk ∈ G.

12



7. The numbers tj and fj for a tight design
Now we consider constructions of tight scccds for v > 2k. First we need some prepara-

tory material, much of which is similar to that of §4 in [2].
In an arbitrary tight scccd(v, k) let Tj ⊆ [v] denote the set of elements which are

introduced j times, j ≥ 0, and let tj = |Tj |.
Now consider t0, the number of elements not introduced. From the proof of Lemma 5.1

we must have t0 = 0 or 1. Let Z be a tight scccd(v, k) in which t0 = 1, and let v be the
element not introduced, so v is in every block. Any other element z = 1, . . . , v − 1 is
introduced exactly once, for, if some z is introduced twice or more, then the pair {z, v} is
covered twice or more; a contradiction because Z is tight. Hence, each of 1, . . . , v − 1

is introduced exactly once, and b = v − 1 = v(v − 1)
2(k − 1) , i.e., v = 2k − 2. Thus Z is a tight

scccd(2k − 2, k, 2k − 3) and, by Theorem 6.1, lies in F.
Thus, all tight scccds with t0 = 1 are known; they are members of F with v = 2k − 2.

As we are interested in tight designs with v > 2k, we assume that t0 = 0 and consider only
tj for which j ≥ 1.

Let C be an arbitrary tight scccd(v, k, b), and, for any x ∈ [v], let f{x} denote the
number of blocks that contain x.

Let x ∈ Tj . Each time x is introduced k− 1 pairs containing x are covered. There are

v − 1 pairs containing x to be covered, so we may let j ≤
⌊

v − 1
k − 1

⌋
= A because tj = 0 for

j > A.
Now x ∈ Tj , so there are j blocks in which x is introduced; (k − 1) pairs containing x

are covered in each of these blocks. There are f{x} − j blocks that contain x but in which
it is not introduced; only 1 pair containing x is covered in each of these blocks. This gives
v− 1 = j(k− 1) + (f{x} − j)1, i.e., f{x} = (v − 1)− j(k− 2). Hence f{x} is constant on Tj ,
so we let fj = (v − 1) − j(k − 2) be the number of blocks that contain any fixed element
from Tj . In particular, f1 = v − k + 1.

We have, for 1 ≤ j ≤ A,

A =
⌊

v − 1
k − 1

⌋
,

A∑

j=1

tj = v,
A∑

j=1

jtj = b, fj = (v − 1) − j(k − 2). (2)

Some further properties of the numbers tj and fj are given below.
Lemma 7.1. For k > 2 and any j for which 1 ≤ j ≤ A, we have

(i) fA < fA−1 < · · · < f2 < f1;
(ii) fj ≥ j, and, if fj < j, then t` = 0 for all ` ≥ j;
(iii) if fj = j, then tj = 0 or 1;
(iv) if fj = j + 1, then tj = 0, 1, or 2.

13



Proof.
(i) Clear because fj = (v − 1) − j(k − 2) and k > 2.
(ii) For each of the j times when x ∈ Tj is introduced it appears in at least 1 block, so
fj ≥ j. So, clearly, if fj < j then tj = 0. Also, for any ` > j, we have f` < fj < j < ` by
(i), hence t` = 0.
(iii) For a fixed j, suppose fj = j but tj = |Tj | ≥ 2, and let x and y ∈ Tj . Now, because
x is introduced j times and appears in j blocks, each time it is introduced it must be
immediately removed; similarly for y. But pair {x, y} must appear in some block, hence
both x and y must be introduced in this block, a contradiction.
(iv) Now suppose fj = j + 1 but tj ≥ 3, and let x, y, and z ∈ Tj . By the pigeonhole
principle for one of the j times when x is introduced it must stay for 2 successive blocks;
similarly for y and z. So the configurations x

x , y
y , and z

z occur once each. In order to

cover the pairs {x, y}, {x, z}, and {y, z} we must have the arrangement xz·
xy·
zy·

in the design,

i.e., b = 3. But there are only 2 tight scccds with b = 3: one is X3 ∈ F, which we have
excluded; the other is Y2 ∈ G, which is also excluded because this design has k = 2 and
we are restricted to k > 2.

8. Start-Finish arrays for a tight design; Criteria for a tight design with v > 2k

This section is mainly concerned with the subset T1 of elements introduced exactly
once in C, an arbitrary tight scccd(v, k).

Suppose T1 6= ∅ and let x ∈ T1, and consider the f{x} = f1 = v − k + 1 successive
blocks in C which contain x; call these blocks Bx = {Bx,1, . . . , Bx,f1}, see Fig. 6(a). We
may write x as the leftmost element in each of these blocks. We say that x starts, S, in
Bx,1 (i.e., is introduced there), and finishes, F , in Bx,f1 , see Fig. 6(a). Call this occurrence
of x in f1 successive blocks the run containing x. Now let y be some other element in T1.
The pair {x, y} must be covered in Bx and so, because f{y} = f1 also, either the S or the
F of y must appear in Bx. Similarly for all the other elements in T1.

Thus, as we run through the elements in T1, each adds its S or its F to the array in
the final column of Fig. 6(a). We call this the Start-Finish array, or SF -array, for element
x, and denote it by SFx. Call the Ss and F s symbols.

In Fig. 6(a), block Bx,i gives rise to the i-th row , Rx,i, of SFx, which contains x

and, perhaps, some symbols; to illustrate this we write Bx,i → Rx,i. If a row contains no
symbols it is empty (−).
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Bx,1 → Rx,1 xS

Bx,2 → Rx,2 x 1 2
· · · · 3 2 R3,1 3S R4,1 4S F 1 2 3
· · · · 3 1 R3,2 3− R4,2 4− 2 3 4 Rx,1 xS F

· · · · 3 4 R3,3 3F S R4,3 4F 3 4 5 Rx,2 xS F

Bx,f1−1 → Rx,f1−1 x 2 4 4 5 1 Rx,3 xF S

Bx,f1 → Rx,f1 xF 1 4 5 1 2

SFx SF3 SF4 SFx

a tight scccd(4, 2, 6) Y3

T1 = {3, 4} x ∈ T1 = {1, 2, 3, 4, 5}
(a) (b) (c)

Fig. 6: SF -arrays and examples.

Fig. 6(b) shows a tight scccd(4, 2, 6) with elements 3 and 4 ∈ T1. The SF -array for
element 3, SF3, is shown first; here the S in R3,3 appears because element 4 starts in B3,3.
The array SF4 is shown next; here F ∈ R4,1 because 3 finishes in B4,1. Fig. 6(c) shows
the tight scccd(5, 3, 5), Y3; it has T1 = {1, 2, 3, 4, 5} and, for all x ∈ T1, the arrays SFx are
identical.

The main idea of this section is to place restrictions on the structure of an SF -array
of a tight scccd(v, k) when v > 2k. In the following section we ‘extend’ these SF -arrays
to tight scccds for (v, k) = (9, 4) and (10, 4).

So, let us assume that a tight scccd(v, k, b), C, exists whose set of elements introduced
exactly once is T1, and let x ∈ T1. Then, using the following Observations (1)-(10), we
will establish Criteria (1)-(10) that SFx must satisfy. In the Observations, R denotes an
arbitrary row of SFx, with corresponding block in Bx denoted by BR.

Observations

(1) Each row R of SFx contains at most one S and at most one F . For suppose R contains
two or more Ss say, then two or more elements are introduced in BR, a contradiction.
Similarly for the F s because the reverse of a scccd is again a scccd. Clearly the order of
the symbols in a row does not matter.

(2) The number of empty rows between any row containing F and the next (different)
row containing S as we go down SFx is ≥ b − 2f1 + 1. To see this let y ∈ T1 finish in any
row of SFx and let z ∈ T1 start in a later one, with α empty rows between them. Now,
the pair {y, z} is not covered in Bx, so the runs containing y and z must meet outside Bx.
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That is, α + f{y} + f{z} ≥ b + 1, so α ≥ b − 2f1 + 1.
Furthermore, let FS(v, k) = b−2f1 +1. Now FS(v, k) ≥ 0 with equality if and only if

v = 2k − 2 or 2k − 1. Now, because we are interested only in v > 2k, we may assume that
FS(v, k) ≥ 1, i.e., that there is always at least 1 empty row between a F and the next S.

(3) Suppose the three elements x, y, and z ∈ T1 (where, without loss of generality, the
first is the x of our SFx) are introduced in three successive blocks in C. See Fig. 7(a) where
y starts in Bx,2 changing p, and z starts in Bx,3 changing q; see (b) for the SF -array so
formed. To cover the pairs {p, y} and {q, z} the elements p and q must occur in the two
blocks immediately succeeding Bx,f1 , as shown in (c). Hence, pair {p, q} must be in all
remaining blocks outside Bx, for, if not, it will be covered more than once. So both p and
q ∈ T1, which forces b = 2f1 − 1, i.e., v = 2k − 2 or 2k − 1. So, with our restriction of

v > 2k, we may assume that the configurations
S
S
S

and
F
F
F

do not appear (in C and so)

in SFx. (Such a triple {x, y, z} is called a persistent triple, it persists through v − k − 1
blocks, see Phillips and Wallis [1]. Here we have shown that if a tight scccd contains a
persistent triple then it must belong to one of the families F or G; see the constructions
in §5 and in the proof of Theorem 6.1; all designs in both these families contain persistent
triples.)

· · · · · · · ·
· · · · · · · ·

Bx,1 x p q · Rx,1 xS xp q · Rx,1 xS

Bx,2 x y q · Rx,2 xS x y q · Rx,2 xS

Bx,3 x y z · Rx,3 xS x y z · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · · ·
· · · · · · · · · · · Rx,f1−1 xF

Bx,f1 x y z · Rx,f1 xF x y z · Rx,f1 xF

· y z · p y z ·
· · z · p q z ·
· · · · · · · ·
· · · · · · · ·

(a) (b) (c) (d)

Fig. 7: Persistent triples and their corresponding forbidden configurations.
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Similarly, the configuration shown in Fig. 7(d) cannot occur in SFx; for, if it did, then the
element which starts in Bx,2 must finish in the block succeeding Bx,f1 , thus producing the

forbidden configuration
F
F
F

(in C).

(4) The S of x lies in Rx,1 and the F in Rx,f1 ; and then each of the remaining t1 − 1
elements in T1 have either their S or their F present in SFx, (but not both, for, if element
y, say, has both its S and its F present, then its S must appear after its F , and so {x, y}
is covered twice). This gives a total of t1 + 1 symbols.

(5) Consider R, an arbitrary row of SFx; for each S in or above R there will be an
element from T1 in BR; similarly for each F in or below R, except that the S and F of x

contribute only one element (x itself) to BR. Now C has block size k, so we must have:

{
the number of Ss

in or above R

}
+

{
the number of F s

in or below R

}
− 1 ≤ k.

Call the left-hand side of the above equation the weight of R, wt(R); it is the number of
elements from T1 in BR.

(6) Let R be the last row of SFx; then wt(R) is the number of Ss in SFx, which is ≤ k

by Observation (5). Similarly, the number of F s in SFx is ≤ k. Also, using Observation
(4), the total number of symbols, t1 + 1, is ≤ 2k. Thus, t1 ≤ 2k − 1. There is a tight
scccd(4, 2, 6) with (t1, t2, t3) = (3, 0, 1) for which this inequality is sharp; it is also sharp
for any design in the family G. (Cf. §4 of [2], where t1 ≤ k.)

(7) Suppose that two adjacent rows in SFx each have weight k, then, the corresponding
adjacent blocks in C each contain only elements from T1. Let the single-change between
these two blocks be caused by y finishing in the first block and z starting in the next.
Then, in SFx, there are no empty rows between the row containing the F of y and the
row containing the S of z, a contradiction to Observation (2). Hence, two rows of weight
k cannot be adjacent.

(8) The configuration
S
S
S

does not occur in SFx so the number of configurations S
S in

SFx is ≤ bk/2c, otherwise the first inequality of Observation (6) is violated. Similarly for
the configuration F

F .

(9) A persistent pair in C, see [1] and §4 of [2], is a pair of elements from T1 which
start in successive blocks; thus they persist together through v− k blocks. Each persistent
pair has a configuration S

S and F
F . We claim that our SFx contains exactly one of the

configurations S
S or F

F for each persistent pair of C (except if C ∈ F or G).
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f1 = 2 S

SF

F
f1 = 2

f1

S
S
...
F
F

f1 12
32 3 SF
31 3 FS

scccd(3,2,3)

(a) (b)









{
}

Fig. 8: Configurations corresponding to a persistent pair.

For any persistent pair {y, z} of C its configurations S
S and F

F can be arranged in one
of the two ways shown in Fig. 8(a), where the upper S belongs to y. Our claim is clearly
true if x = y or z, so assume x 6= y, z. Now, the f1 rows of SFx must include either the S

or the F of y, and either the S or the F of z. That is, they must include either the upper
S or the upper F in (a), and either the lower S or the lower F , not both in each case. If
we choose our f1 rows of SFx such that this is true and that neither the whole of the S

S
nor the whole of the F

F is included, then, without loss of generality, the first row must be
the row containing the lower F and, as it proceeds downwards and cycles around, its last
row must be the row containing the upper S. Hence, b = 2f1 −1, i.e., v = 2k−2 or 2k−1,
so C ∈ F or G, as in Observation (3). Thus, because v > 2k, we may assume that, for any
persistent pair of C, our SFx contains either the whole of the pair’s S

S or the whole of the

pair’s F
F , but not both.

Now, because each persistent pair in C contains 2 elements from T1, and different
persistent pairs contain distinct elements, and t1 ≤ 2k−1 from Observation (6), we see that
the total number of appearances of S

S and F
F in SFx is ≤ bt1/2c ≤ b(2k − 1)/2c = k − 1.

(For even k this upper bound is 1 smaller than the upper bound of 2bk/2c obtained by
adding the upper bounds for the number of appearances of S

S and F
F in Observation (8);

for odd k they are the same.)

(10) From Observation (4) SFx contains a total of t1 + 1 symbols, of which at least
1 is F . Hence, the number of appearances of S is ≤ t1. So, via Observation (6), the
number of appearances of S is ≤ min{t1, k}. Hence, the number of appearances of F is
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≥ t1 + 1 − min{t1, k}; similarly for the number of appearances of S. So, finally, we have:
t1 + 1 − min{t1, k} ≤ |S| ≤ min{t1, k}, and similarly for |F |.

So, to summarize our 10 Observations, let C be an arbitrary tight scccd(v, k) with
v > 2k, and let x ∈ T1 and let R be an arbitrary row in SFx. Then, corresponding to the
10 Observations above, SFx must satisfy Criteria (1)–(10) below, where |C| denotes the
number of appearances of configuration C.

Criteria

(1) R contains at most one S and at most one F .

(2) Between any F and the next S there are ≥ FS(v, k) = b − 2f1 + 1 ≥ 1 empty rows.

(3) The configurations
S
S
S

,
F
F
F

, and the configuration of Fig. 7(d) do not appear.

(4) S ∈ Rx,1, F ∈ Rx,f1, |S|+ |F | = t1 + 1.

(5) wt(R) ≤ k.

(6) 1 ≤ t1 ≤ 2k − 1.

(7) Two rows of wt(k) cannot be adjacent.

(8)
∣∣∣∣
S
S

∣∣∣∣ ≤ bk/2c,
∣∣∣∣
F
F

∣∣∣∣ ≤ bk/2c.

(9)
∣∣∣∣
S
S

∣∣∣∣ +
∣∣∣∣
F
F

∣∣∣∣ ≤ k − 1.

(10) t1 + 1 − min{t1, k} ≤ |S|, |F | ≤ min{t1, k}.

Finally, some comments relevant to Observation (9).
To see that our claim fails in a design from F or G, consider the tight scccd(3, 2, 3)

Y2 ∈ G shown in Fig. 8(b). (This corresponds to the second arrangement in (a) where
f1 = 2, so b = 3.) All 3 pairs {1, 2}, {1, 3}, and {2, 3} are persistent pairs; however
k − 1 = 1. The array SF3 contains the S

S of persistent pair {1, 3} and the F
F of persistent

pair {2, 3}, but neither the S
S nor the F

F of persistent pair {1, 2}. Similarly for all other
designs in F or G, where the number of persistent pairs is equal to the number of blocks.

When v > 2k, because SFx must contain either the S
S or the F

F of every persistent
pair in C, the total number of persistent pairs in C equals the total number of appearances
of S

S s and F
F s in SFx, which is ≤ k − 1 (by Criterion (9)); this upper bound is sharp for

the tight scccd(9, 4, 12), U2, which contains 3 persistent pairs, see §9. (Cf. §4 of [2], where
the number of persistent pairs is ≤ k/2.)
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9. Constructions of tight scccd(9,4,12)s and scccd(10,4,15)s using SF-arrays

We now illustrate the method of constructing tight designs with v > 2k using SF -
arrays.

(v,k)=(9,4) First we construct all non-isomorphic tight scccd(9, 4, 12)s. To start, we
must find all SF -arrays for (v, k) = (9, 4) that satisfy Criteria (1)–(10) of §8.

Equation (2) of §7 gives A = 2, t1 + t2 = 9, and t1 +2t2 = 12; hence t1 = 6 and t2 = 3.
We also have f1 = 6 and f2 = 4. From Criterion (2), FS(9, 4) = 1, i.e., there must be at
least 1 empty row between any F and the next S in our SF -arrays. Let T1 = {1, 2, 3, 4, 5, 6}
and T2 = {7, 8, 9}, and let x ∈ T1.

There are exactly 8 SF -arrays that satisfy Criteria (1)–(10). Of these, 6 are shown in
Fig. 9(a)–(f), and the remaining 2 in (a) and (b) of Fig. 12.

Rx,1 xS F xS F xS F xS xS F xS F

Rx,2 xF x− x− xS F x− x−
Rx,3 x− xS F xS x− xS F xS F

Rx,4 xS F x− xS F xS F x− xF

Rx,5 x− xS x− x− xS F x−
Rx,6 xF S xF S xF S xF S xF xF S

(a) (b) (c) (d) (e) (f)

Fig. 9: 6 of the 8 SF -arrays which satisfy Criteria (1)–(10) when (v, k) = (9, 4). These 6
form an equivalence class of SF -arrays.

In an arbitrary scccd C each of the t1 elements of T1 has 2 symbols, a S and a F ; this
gives a total of 2t1 symbols, of which t1 + 1 appear in SFx. We now consider the t1 − 1
‘missing’ symbols.

See Fig. 10(a) which contains the SFx of Fig. 9(a). Let us enlarge this SFx from
f1 = 6 rows to b = 12 rows by including the t1 − 1 = 5 missing symbols and dropping the
xs, see Fig. 10(b). For example, the element which starts in row Rx,4 of (a), i.e., in R4 of
(b), must finish f1 = 6 rows later in R9, hence, the F belonging to this element lies in R9,
as shown. Call this new array with b rows a SF -skeleton; note that the SF -skeleton (b)
is uniquely determined from the SFx in (a).

Now, in Fig. 10(b), let the S ∈ R1 correspond to element 1, the S ∈ R4 correspond to
2, the S ∈ R6 to 3, the S ∈ R8 to 4, the S ∈ R9 to 5, and, finally, the S ∈ R11 to element 6.
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In the SF -skeleton of Fig. 10(b) the SF -array SF1 (i.e., Fig. 9(a) with x = 1) appears
as rows R1–R6; also, SF2 (Fig. 9(b) with x = 2) appears as rows R4–R9; SF3 as rows
R6–R11; SF4 as rows R8–R1; SF5 as rows R9–R2; and, finally, SF6 (Fig. 9(f) with x = 6)
appears as rows R11–R4. Thus all 6 of the SF -arrays in Fig. 9 occur in the SF -skeleton
of Fig. 10(b). We say that these 6 SF -arrays are equivalent (∼) to one another.

In order to begin extending Fig. 10(b) to a tight scccd(9, 4), consider Fig. 10(c), which
is a potential tight scccd(9, 4) with all elements from T1 = {1, 2, 3, 4, 5, 6} present.

Rx,1 xS F R1 S F B1 1 4 6 5 R1 −
Rx,2 xF R2 F B2 1 ∗ 6 5 R2 S F

Rx,3 x− → R3 − B3 1 ∗ 6 ∗ R3 −
Rx,4 xS F R4 S F B4 1 2 6 ∗ R4 S F

Rx,5 x− R5 − B5 1 2 ∗ ∗ R5 F

Rx,6 xF S R6 S F B6 1 2 3 ∗ R6 −
R7 − B7 ∗ 2 3 ∗ R7 S F

R8 S B8 4 2 3 ∗ R8 −
R9 S F B9 4 2 3 5 R9 S F

R10 − B10 4 ∗ 3 5 R10 −
R11 S F B11 4 6 3 5 R11 S

R12 − B12 4 6 ∗ 5 R12 S F

SFx SF -skeleton of SFx reverse of (b)

(a) (b) (c) (d)

Fig. 10: An SF -array, its SF -skeleton, and the corresponding potential tight scccd(9, 4);
the reverse of the SF -skeleton of SFx.

We must now add on the elements in T2 = {7, 8, 9}; each is introduced twice, and
appears in f2 = 4 blocks.

See Fig. 11(a). Without loss of generality start element 7 in B2, then 7 ∈ B3; for, if
not, then both 7 and 5 finish in B2, a contradiction. Without loss of generality start 8 in
B3; this produces (a).

See Fig. 11(b). Now either 7 ∈ B4 or 8 ∈ B4. If 7 ∈ B4 then (because 7 ∈ T2 and
f2 = 4) 7 must start once more in a block containing elements 3, 4, and 9 because pairs
{7, 3}, {7, 4}, and {7, 9} will not have been covered, but this is impossible; hence 8 ∈ B4.
Further, we have (b) by similar reasoning to the above.
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See Fig. 11(c). Now if 8 ∈ B7, then pair {8, 9} will be covered twice; so 7 ∈ B7 and 7
must occur for 2 successive blocks because f2 = 4 and it has already occurred in 2 blocks.
To finish we must have 8 ∈ B10 and 9 ∈ B12, producing Fig. 11(c).

Let U1 denote this tight scccd(9, 4, 12); clearly, by its construction, it is unique up to
labelling.

B1 1 4 6 5 B1 1 4 6 5 B1 1 4 6 5
B2 1 7 6 5 B2 1 7 6 5 B2 1 7 6 5
B3 1 7 6 8 B3 1 7 6 8 B3 1 7 6 8
B4 1 2 6 ∗ B4 1 2 6 8 B4 1 2 6 8
B5 1 2 ∗ ∗ B5 1 2 9 8 B5 1 2 9 8
B6 1 2 3 ∗ B6 1 2 3 9 B6 1 2 3 9
B7 ∗ 2 3 ∗ B7 ∗ 2 3 9 B7 7 2 3 9
B8 4 2 3 ∗ B8 4 2 3 ∗ B8 4 2 3 7
B9 4 2 3 5 B9 4 2 3 5 B9 4 2 3 5
B10 4 ∗ 3 5 B10 4 ∗ 3 5 B10 4 8 3 5
B11 4 6 3 5 B11 4 6 3 5 B11 4 6 3 5
B12 4 6 ∗ 5 B12 4 6 ∗ 5 B12 4 6 9 5

U1, scccd(9, 4, 12)
(a) (b) (c)

Fig. 11: Extending a potential tight scccd(9, 4) to a tight scccd(9, 4).

In general, for a given (v, k) with v > 2k, let S denote the set of SF -arrays that
satisfy Criteria (1)–(10) and let SFx and SF ′

x be two arbitrary SF -arrays in S. We define
an equivalence relation ∼ on S as follows:

SFx ∼ SF ′
x if and only if

SFx appears as consecutive rows
in the SF−skeleton determined by SF ′

x.

But, because the skeleton determined by an arbitrary SF -array in S is unique, we can
redefine ∼ as:

SFx ∼ SF ′
x if and only if

the SF−skeleton determined by SFx

is a cyclic shift of the SF−skeleton determined by SF ′
x.

It is straightforward to prove that ∼ is an equivalence relation.
Each equivalence class of SF -arrays gives rise to one SF -skeleton; we say that this SF -

skeleton represents the class. Instead of attempting to extend all SF -arrays (or, rather,
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their SF -skeletons) from a particular equivalence class to tight designs, we need only
attempt to extend the SF -skeleton that represents this class. (Also, if two SF -skeletons
represent different classes, and both can be extended to tight designs, then these designs
are non-isomorphic.) However, a single SF -skeleton can be extended to non-isomorphic
designs, see Fig. 14.

The remaining 2 SF -arrays for (v, k) = (9, 4) are shown in (a) and (b) of Fig. 12; they
form another equivalence class. The SF -skeleton of (b) is (c) which extends uniquely (up
to labelling) to the tight scccd(9, 4, 12) shown in (d); call it U2. The SF -arrays (a) and (b)
each occur 3 times each amongst the t1 = 6 SF -arrays of U2. This tight design contains
k − 1 = 3 persistent pairs, which, by the comments at the end of §8, is the maximum
number allowed in a tight scccd(v, k) with v > 2k.

Rx,1 xS F xS R1 S B1 1 9 5 6
Rx,2 xF xS F R2 S F B2 1 2 5 6
Rx,3 x− xF → R3 F B3 1 2 7 6
Rx,4 xS x− R4 − B4 1 2 7 8
Rx,5 xS F xS R5 S B5 1 2 3 8
Rx,6 xF xF S R6 S F B6 1 2 3 4

R7 F B7 9 2 3 4
R8 − B8 9 7 3 4
R9 S B9 5 7 3 4
R10 S F B10 5 6 3 4
R11 F B11 5 6 8 4
R12 − B12 5 6 8 9

SF -skeleton of (b) U2, scccd(9, 4, 12)
(a) (b) (c) (d)

Fig. 12: The remaining 2 SF -arrays for (v, k) = (9, 4), which form another equivalence
class; the SF -skeleton which represents this class and the corresponding tight scccd(9, 4).

Now, because the SF -skeletons from which U1 and U2 were formed represent different
equivalence classes, we have U1 6∼= U2. This gives us:

Theorem 9.1. There are 2 non-isomorphic tight scccd(9, 4, 12)s, namely U1 and U2

shown above.
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As mentioned at the end of §4, the reverse of a scccd(v, k, b), B, is another scccd(v, k, b),
rev(B); and, if a scccd C is tight then rev(C) is also tight. Hence, from Theorem 9.1,
rev(U1) ∼= U1 or U2.

For an arbitrary scccd C, to obtain the SF -skeleton of rev(C) from the SF -skeleton
of C we reverse the order of its rows and switch S ↔ F .

The SF -skeleton of U1 is shown in Fig. 10(b) and the SF -skeleton of rev(U1) in
Fig. 10(d); it is a cyclic shift of the SF -skeleton of U1. Hence, because the extension of
the SF -skeleton of U1 to a tight design is unique up to labelling, we have rev(U1) ∼= U1.
Thus U1 and U2 are self-reverse.

(v,k)=(10,4) We now construct all non-isomorphic tight scccd(10, 4, 15)s.

Equation (2) of §7 yields the three solutions: (t1, t2, t3) = (7, 1, 2), (6, 3, 1), and
(5, 5, 0). Here f3 = 3, so Lemma 7.1(iii) with j = 3 disposes of the first solution. For
the remaining two let V be a tight scccd(10, 4, 15).

(i) (t1, t2, t3) = (6, 3, 1). We could use SF -arrays here but, for variety, we prefer the
following approach which is justified by the result: there are 2 non-isomorphic tight
scccd(10, 4, 15)s, both of which can be constructed by ‘expanding’ U2 of Fig. 12(d).

First some definitions, see §7 of [2]. For any scccd(v, k, b), B = {B1, . . . , Bb}, and for
any i = 1, . . . , b− 1 let Ui be the subset of k− 1 elements which survives from Bi to Bi+1;
we call Ui the unchanged subset at location i. Also, let Ub be the subset of k − 1 elements
which survives from Bb to B1, the unchanged subset at location b.

As before, let T1 = {1, 2, 3, 4, 5, 6} and T2 = {7, 8, 9}, and so T3 = {10}. Now, because
f3 = 3, each time element 10 is introduced into a block it is immediately changed. So
the arrangement of blocks shown below must occur 3 times, at the pairs of consecutive
locations: `1, `1 +1, and `2, `2 +1, and `3, `3 + 1. We have shown the arrangement at the
pair of locations `, ` + 1 for any ` ∈ {`1, `2, `3}.

`

B` x1 x2 x3 x4 ↙ U` = {x2, x3, x4}
B`+1 10 x2 x3 x4

B`+2 x5 x2 x3 x4 ↖ U`+1 = {x2, x3, x4}
` + 1

Here U` = U`+1, i.e., the two unchanged subsets for this arrangement of blocks are
equal. Hence, each of the 3 pairs of locations produces an unchanged subset which survives
through the pair of locations; and, because V is tight, these 3 unchanged subsets partition
the set {1, 2, . . . , 9}.
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Now if we remove the 3 blocks B`1+1, B`2+1, and B`3+1 that contain element 10 from
V we obtain a tight scccd(9, 4, 12) with 3 unchanged subsets which partition {1, 2, . . . , 9},
i.e., with an expansion set of locations, see §7 of [2]. Of U1 and U2, only U2 has an
expansion set of locations, in fact it has two:

{1, 2, 7} at location 3, {1, 2, 8} at location 4,
{9, 3, 4} at location 7, and {7, 3, 4} at location 8,
{5, 6, 8} at location 11, {5, 6, 9} at location 12.

Expanding U2 at the first expansion set above with element 10 gives us the tight
scccd(10, 4, 15), V1 shown in Fig. 13(a); and, V2 in (b) comes from using the second ex-
pansion set.

B1 1 9 5 6 S S1F2 B1 1 9 5 6 S S1F2

B2 1 2 5 6 S F S1F1 B2 1 2 5 6 S F S1F1

B3 1 2 7 6 F S2F1 B3 1 2 7 6 F S2F1

B4 1 2 710 − S3F3 B4 1 2 7 8 − S2F2

B5 1 2 7 8 − S2F2 B5 1 210 8 − S3F3

B6 1 2 3 8 S S1F2 B6 1 2 3 8 S S1F2

B7 1 2 3 4 S F S1F1 B7 1 2 3 4 S F S1F1

B8 9 2 3 4 F S2F1 B8 9 2 3 4 F S2F1

B9 910 3 4 − S3F3 B9 9 7 3 4 − S2F2

B10 9 7 3 4 − S2F2 B10 10 7 3 4 − S3F3

B11 5 7 3 4 S S1F2 B11 5 7 3 4 S S1F2

B12 5 6 3 4 S F S1F1 B12 5 6 3 4 S F S1F1

B13 5 6 8 4 F S2F1 B13 5 6 8 4 F S2F1

B14 5 6 810 − S3F3 B14 5 6 8 9 − S2F2

B15 5 6 8 9 − S2F2 B15 5 610 9 − S3F3

V1, scccd(10, 4, 15) V2, scccd(10, 4, 15)
(a) (b)

Fig. 13: The 2 non-isomorphic tight scccd(10, 4)s with (t1, t2, t3) = (6, 3, 1), their SF -
skeletons and complete SF -skeletons. Both of these designs come from expanding U2 of
Fig. 12(d).

Now we show that V1 and V2 are non-isomorphic even though their SF -skeletons are
cyclic shifts of each other.
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See Fig. 13. Consider the complete SF -skeleton shown to the right of the SF -skeletons.
In any block of a scccd one element starts and one finishes. Suppose that an element from
Tj starts and that one from Tj′ finishes, then the corresponding row of the complete
SF -skeleton is Sj Fj′ . Thus, the complete SF -skeleton includes start-finish information
about all elements in [v], not just those in T1. Clearly, if two designs are isomorphic, then
their complete SF -skeletons must be cyclic shifts of one another; this is not so for V1

and V2, hence V1 6∼= V2. So there are exactly 2 non-isomorphic tight scccd(10, 4, 15)s with
(t1, t2, t3) = (6, 3, 1), namely V1 and V2.

The reverse of a tight scccd(v, k), C, is another tight scccd(v, k), rev(C). Moreover,
for j = 1, . . . , A, we have equality amongst the sets Tj for C and rev(C), and so equality
amongst the numbers tj for C and rev(C).

So rev(V1) also has (t1, t2, t3) = (6, 3, 1), and thus rev(V1) ∼= V1 or V2. Now if
rev(V1) ∼= V1, then the complete SF -skeleton of rev(V1) must be a cyclic shift of the
complete SF -skeleton of V1, but this is not the case. Hence, rev(V1) ∼= V2. So V1 is not
isomorphic to its reverse, similarly for V2.

For two scccds, B and B′, we write B rB′ if B 6∼= B′, but rev(B) ∼= B′ (or, equivalently,
rev(B′) ∼= B). Thus V1 rV2.

(ii) (t1, t2, t3) = (5, 5, 0). There are 32 SF -arrays that satisfy Criteria (1)–(10), and 8
equivalence classes of SF -arrays, 6 of size 5 and 2 of size 1.

The SF -skeletons of the 8 classes are shown in Fig. 14; underneath each is the number
of its extensions to non-isomorphic designs, and the names of the designs.

So there are 10 non-isomorphic tight scccd(10, 4)s with (t1, t2, t3) = (5, 5, 0), namely
Vm for 3 ≤ m ≤ 12. We also have: V3 rV5, V4 rV6, V7 rV8, V9 rV10, and V11 rV12.

The 2 designs from the previous case give us:

Theorem 9.2. There are 12 non-isomorphic tight scccd(10, 4)s, namely Vm for m =
1, . . . , 12.
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S F − S F − S F F S F S F

F − F F F − F −
− S F − − − − − −
F − − − − − − S F

− F S F S F S S F − −
− F − F F F S −
S F − F − F − S F S F

− − − − − − − −
− S F − S − S − −
S − S − S S S S F

S − S F S F S F F S −
− S − − − − F −
S F − − − − − F S F

− S S S − S − −
− S F − S F S S F − −

2 2 1 1 1 1 0 2
V3, V4 V5, V6 V7 V8 V9 V10 V11, V12

Fig. 14: The 8 SF -skeletons which represent the 8 equivalence classes of SF -arrays for
(v, k) = (10, 4) and (t1, t2, t3) = (5, 5, 0). Underneath each SF -skeleton is the number of
its extensions to non-isomorphic designs, and the names of the designs.

10. Non-existence of some tight designs

In this section we consider three parameter sets for (v, k):
(i) {(3k − 3, k): k even and ≥ 2};
(ii) {(3k − 2, k): k even and ≥ 2};
(iii) {((i + 1)2/4, (i2 + 7)/8): i odd and ≥ 3}.

Every (v, k) in (i), (ii), and (iii) above satisfies the division requirement 2(k−1)|v(v−1)
for a tight design to exist; however, for (i) and (ii), tight designs only exist when k = 2 or
4, and, for (iii), only when i = 3 or 5.

Using the notation of [5], we denote by SCD(v, k, b) a single-change (non-circular)
covering design on [v] with b blocks of size k. We let f(v, k) be the smallest b for which
there exists a SCD(v, k, b). The function f(v, k) is studied in [5], [4], and [3].

Now a scccd(v, k, b) is also a SCD(v, k, b). In particular, a minimal scccd(v, k, b∗(v, k))
is a SCD(v, k, b∗(v, k)), so we have f(v, k) ≤ b∗(v, k). (There are many (v, k)s for which
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equality holds.)
In §§5 and 6 we considered F and G, two families of tight scccd(v, k)s for v = 2k − 2

and 2k − 1 respectively. In the following two theorems we consider v = 3k − 3 (case (i)
above) and 3k − 2 ((ii) above) respectively.

Theorem 10.1. A tight scccd(3k − 3, k, (9k − 12)/2) exists only when k = 2 or 4.

Proof. Here k is even. Consider the pair (3k − 3, k) for k ≥ 6, from Theorem 3.3 of [5]
we have f(3k − 3, k) = 5k − 8. If a tight scccd(3k − 3, k, (9k − 12)/2) exists then we must
have 5k − 8 ≤ (9k − 12)/2, a contradiction. Thus a tight scccd(3k − 3, k) does not exist
for k ≥ 6.

For k = 2 we have a tight scccd(3, 2, 3), Y2, and for k = 4 a tight scccd(9, 4, 12), e.g.,
U1.

So we have infinitely many pairs (v, k) = (3k − 3, k) where k is even and ≥ 6, for
which 2(k − 1)|v(v − 1) but a tight scccd(v, k) does not exist, e.g., a tight scccd(15, 6, 21)
does not exist.

Similarly for v = 3k − 2:

Theorem 10.2. A tight scccd(3k − 2, k, (9k − 6)/2) exists only when k = 2 or 4.

When k = 2 we have a tight scccd(4, 2, 6) and k = 4 a tight scccd(10, 4, 15), e.g., V1.
Theorems 10.1 and 10.2 can also be proved using SF -arrays.

The final result in this section, Theorem 10.4, will, for variety and interest, be proved
using the following lemma, although it can also be proved in a similar manner to the above.

Lemma 10.3. Let C be a tight scccd(v, k) with v > 2k, x ∈ T1, t1 = |T1|, and f1 =
v − k + 1. Then
(i) the total number of symbols in any r successive rows of SFx is ≤ r + 1;
(ii) t1 ≤ f1.

Proof.
(i) A straightforward proof by induction on r.
(ii) For any x ∈ T1, the SF -array SFx has f1 rows, hence ≤ f1 + 1 symbols. But, by

Criterion (4), it has exactly t1 + 1 symbols. Hence t1 ≤ f1.

The inequality t1 ≤ f1 is sharp for both of the tight scccd(9, 4, 12)s U1 and U2 of §9.

Let C be a tight scccd(v, k). From Observation (2) we have 2f1 ≤ b +1, with equality
if and only if C ∈ F or G. So, for tight designs other than those in F or G, we have 2f1 ≤ b.
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We now classify tight designs with 2f1 = b, so v ≥ 2k.

Theorem 10.4. A tight scccd(v, k, b) with 2f1 = b is a tight scccd(4, 2, 6) or a tight
scccd(9, 4, 12).

Proof. Let D be a tight scccd(v, k) with 2f1 = b and v ≥ 2k.

We have 2(v−k+1) =
v(v − 1)
2(k − 1)

, i.e., v = (4k−3+
√

(8k − 7))/2. So let k = (i2 +7)/8

where i is odd and ≥ 3. Hence, (v, k) = ((i + 1)2/4, (i2 + 7)/8) ((iii) above), and f1 =
(i2 + 4i + 3)/8.

Equation (2) from §7 then gives f3 = (v − 1) − 3(k − 2) = (21 + 4i − i2)/8. So, for
i ≥ 7, we have f3 ≤ 0 < 3. Thus, from Lemma 7.1(ii) with j = 3, we have t` = 0 for ` ≥ 3,
i.e., every element in D is introduced once or twice. So, equation (2) yields:

t1 + t2 = v =
(i + 1)2

4
; t1 + 2t2 = b =

(i2 + 4i + 3)
4

.

This gives t1 = (i2 −1)/4. Now, for i ≥ 7 we have v > 2k, so, via Lemma 10.3(ii), we must
have t1 ≤ f1; but this is false when i ≥ 7. Thus, a tight scccd((i + 1)2/4, (i2 + 7)/8) does
not exist for i ≥ 7.

For i = 3 a tight scccd(4, 2, 6) exists and for i = 5 a tight scccd(9, 4, 12) exists.

11. Perfect designs; column-regular designs; element-regular designs

Again, let B = {B1, . . . , Bb} be an arbitrary scccd(v, k, b), and, for each i = 1, . . . , b,
let sf(Bi) be the standardized form of its i-th cyclic shift Bi, see §4.

Now consider sf(Bi) for any fixed i = 1, . . . , b; its first block is (1, 2, . . . , k). For
r = 1, . . . , k, let its r-th column be the column beginning with r, and let ηi,r be the number
of elements introduced into this column. Now let Ai be the ordered k-tuple [ηi,1, . . . , ηi,k];
call this the column-array of sf(Bi).

Consider again E = {B1, . . . , B8}, the scccd(6, 3, 8) from Fig. 3(a) and its standardized
form sf(E1) = {L1, . . . , L8} from Fig. 3(b) shown again in Fig. 15(a); we have A1 =
[3, 2, 3]. Now consider Fig. 15(b), which shows sf(E5), the standardized form of E5 =
{B5, B6, B7, B8, B1, B2, B3, B4}, this design has A5 = [1, 4, 3]. So, for a fixed B, we may
have different Ai for different i.
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1 2 3
1 2 4
1 5 4
1 6 4
7 6 4 1 2
7 8 4 1 3

L1 1 2 3 1 2 3 7 3 4 4 3
L2 1 2 4 1 2 4 7 3 5 5 3
L3 1 5 4 1 5 4 8 3 5 5 2
L4 1 6 4 1 5 2 6 3 5 1 2 3 5 1
L5 3 6 4 6 5 2 6 2 5 1 2 4 4 1
L6 3 6 5 6 5 3 6 2 8 1 5 4 4 5
L7 2 6 5 6 4 3 1 2 8 3 5 4 4 2
L8 2 6 3 6 1 3 1 2 7 3 5 2 3 2

sf(E) sf(E5) scccd(8, 3, 14) rsf(Y3) scccd(5, 2, 10)
A1 = [3, 2, 3] A2 = [1, 4, 3]

(a) (b) (c) (d) (e)

(c) the representative standardized form of a perfect scccd(8, 3, 14): each Ai is a permu-
tation of A1 = [4, 5, 5],

(d) rsf(Y3): each Ai is a permutation of A1 = [2, 1, 2], not perfect, element-regular with
µ = 1,

(e) scccd(5, 2, 10): column-regular with η = 5, perfect, element-regular with µ = 2.

Fig. 15: Standardized designs and their column-arrays, and other properties.

A standardized scccd(v, k, b) B = {B1, . . . , Bb} is perfect if each of the unchanged
elements between Bb and B1 is in the same column in Bb as in B1. So, the two ends of
a perfect standardized scccd can be ‘joined-up’ to give a circular version of requirement
(4) in the definition of standardization (§4). For any B, all of its b standardized forms are
perfect or none are. Hence, a standardized B is perfect if and only if rsf(B) is perfect. The
standardized form of Y3 (from Fig. 1(b)) is shown in Fig. 15(d); this is also rsf(Y3), it is not
perfect. See Fig. 15(c) for the representative standardized form of a perfect scccd(8, 3, 14).
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An interesting property of perfect standardized scccds is:

Theorem 11.1.
Let A1, . . . , Ab be the column-arrays of a perfect standardized scccd(v, k, b). Then each Ai

is a permutation of A1, for i = 1, . . . , b.

Proof. For any fixed r = 1, . . . , k, consider the r-th column in a perfect standardized
scccd(v, k, b) B = sf(B1) = {B1, . . . , Bb}. The elements in this column in Bb and B1 are
either the same, or different if the single-change between Bb and B1 occurs in this column.
In either case, we may write the elements of this column in a circle. Then η1,r, the number
of introductions in this column, is counted starting at B1; this number is fixed no matter
where on the circle we start. Now let sf(B2) be formed from B2 = {B2, B3, . . . , Bb, B1}
by a permutation of [v] and a permutation φ of [k], i.e., of the columns. Then η2,r, the
number of introductions in column r of sf(B2), is equal to the number of introductions
in column φ−1(r) of sf(B1) when starting counting at B2, which is the same as starting
at B1; this number is η1,φ−1(r). Thus η2,r = η1,φ−1(r) for r = 1, . . . , k. That is, A2 is a
permutation of A1, and so on for Ai, i = 3, . . . , b.

For example, in the perfect standardized scccd(8, 3, 14) in Fig. 15(c), each Ai is a
permutation of A1 = [4, 5, 5]. The scccd(5, 3, 5) shown in Fig. 15(d) is rsf(Y3). Each
column-array of this design is a permutation of A1 = [2, 1, 2], even though it is not perfect,
so the converse of Theorem 11.1 is not true.

Consider sf(Bi) for a fixed i, if the number of introductions into each column is the
same, then we say that sf(Bi) is column-regular , see §4 of [2]. So ηi,r = η = b/k for each
r = 1, . . . , k, and Ai = [η, . . . , η]. Also, B itself is column-regular if sf(Bi) is column-regular
for each i = 1, . . . , b. So a scccd(v, k, b) is column-regular if each of its b standardized forms
is itself column-regular.

Although we have defined a column-array only for a standardized scccd we can also
define it for a column-strict scccd. So, the column-array of a column-strict scccd(v, k, b),
B, is the ordered k-tuple [η1, . . . , ηk] where ηr is the number of elements introduced into
the r-th column of B, for each r = 1, . . . , k.

The definitions of ‘perfect’ and ‘column-regular’ can also be carried over to column-
strict scccds; and a scccd(v, k, b), B = {B1, . . . , Bb}, is column-regular if the column-strict
representation of each Bi is itself column-regular.

We can now prove:

Theorem 11.2. A standardized column-regular scccd(v, k, b) is perfect.

Proof. Let B = sf(B1) = {B1, . . . , Bb} be a standardized column-regular scccd(v, k, b),
and let η = b/k. Now B1 = (1, . . . , k), without loss of generality let element 1 be introduced
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in B1 and let 1′ be changed from Bb, and suppose that 1 and 1′ are in different columns;
let 1′ be in the s-th column where s 6= 1. Now B is column-regular and so the column-array
of the column-strict representation of each Bi is A1 = [η, . . . , η].

Now consider the column-strict B2 = {B2, B3, . . . , Bb, B1}, where the elements in B2

are in the same order as they were in B, element 1 is now in the same column as 1′, the
s-th column; hence the s-th element in the column-array of the column-strict B2 is η + 1,
a contradiction. So 1 and 1′ are in the same column in B.

Now consider element r for any fixed r ∈ {2, . . . , k} = B1 ∩ Bb; let it be changed
first from Bir (i.e, r ∈ B1, . . . , Bir ), and replaced by r′ in Bir+1. See the column-strict
arrangement Bir+1 = {Bir+1, . . . , Bb, B1, . . . , Bir} in Fig. 16(a); elements r′ and r lie in
the same column by the previous argument.

Bir+1 r′ r′

· · ·
· · ·
· · ·
Bb · r

B1 · r

· · "

· · "

· · "

Bir r r

(a) (b)

Fig. 16: Figure for Theorem 11.2.

Now, r ∈ Bb and r ∈ B1, . . . , Bir , so we have Fig. 16(b). We can retrieve B =
{B1, . . . , Bb} from (b) without changing the columns in which r and r′ appear. Hence, in
B, the r ∈ B1 lies in the same column as the r ∈ Bb, and, because r was arbitrarily chosen
from B1 ∩ Bb, so B is perfect.

Combining Theorems 11.1 and 11.2 we have the following theorem in which all designs
are assumed to be column-strict.
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Theorem 11.3. Let B = {B1, . . . , Bb} be an arbitrary scccd(v, k, b). Then
(i) if B is perfect the column-array of Bi is a permutation of the column-array of B for

each i = 1, . . . , b;
(ii) if B is column-regular then B is perfect.

An arbitrary scccd(v, k, b), B, is element-regular if each of the v elements from [v] is
introduced the same number of µ = b/v times. In the notation of §7 we have tµ = v.

If C is tight and element-regular with µ = 1 then v = b = 2k − 1, and so C is a
scccd(2k − 1, k, 2k − 1) and, by Theorem 6.2, is isomorphic to Yk ∈ G.

Our final example is shown in Fig. 15(e). It is the representative standardized form
of a tight scccd(5, 2, 10) which is column-regular with η = 5, and so perfect, and element-
regular with µ = 2.

Fig. 17 gives some of the numbers of non-isomorphic tight scccd(v, k)s for v ≤ 10.

Fig. 17 here. Please contact the author for the latest version

Fig. 17: Table showing some of the numbers of non-isomorphic tight scccd(v, k)s for v ≥
2k − 2 and v ≤ 10, (k = 2, v ≥ 3). The number of perfect designs is shown in parenthesis
(). For k ≥ 3 the 1 in column v = 2k − 2 corresponds to Xk ∈ F , and for k ≥ 2 the 1 in
column v = 2k − 1 to Yk ∈ G. The symbol − means that 2(k − 1) 6 | v(v − 1) and so a
tight design with parameters (v, k) cannot exist. The missing numbers are currently being
computed.

Thank you to Donald A. Preece for reading, and commenting upon, an early version
of this paper.
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