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FEEDBACK CLASSIFICATION OF MULTI-INPUT
NONLINEAR CONTROL SYSTEMS∗

ISSA AMADOU TALL†

SIAM J. CONTROL OPTIM. c© 2005 Society for Industrial and Applied Mathematics
Vol. 43, No. 6, pp. 2049–2070

Abstract. We study the feedback group action on multi-input nonlinear control systems with
uncontrollable mode. We follow slightly an approach proposed in Kang and Krener [W. Kang and
A. J. Krener, SIAM J. Control. Optim., 30 (1992), pp. 1319–1337] which consists of analyzing the
system and the feedback group step by step. We construct a normal form which generalizes, on one
hand, the results obtained in the single-input case and, on the other hand, those recently obtained
by the same author in the controllable case. We illustrate our results by studying the Caltech
Multi-Vehicle Wireless Testbed (MVWT) and the prototype of Planar Vertical TakeOff and Landing
aircraft (PVTOL). We also study the notion of bifurcation of controllability for systems with one
nonzero uncontrollable mode. We first show that the equilibria for those systems is a p-dimensional
submanifold (p equals number of inputs). Provided that one term in their normal form is nonzero,
we show that these systems are linearly controllable, hence stabilizable, at any nearby equilibrium
point of the origin.
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1. Introduction. During the last twenty years the problem of transforming a
nonlinear control system

Π : ζ̇ = f(ζ, u), ζ(·) ∈ R
n u(·) = (u1(·), . . . , up(·))T ∈ R

p

by a feedback transformation of the form

Υ :
ζ̄ = ϕ(ζ),
u = γ(ζ, ū)

to a simpler form has been extensively studied by several authors. Necessary and
sufficient geometric conditions for smooth linearizability, that is, smooth feedback
equivalence to a linear system, have been obtained independently by Hunt and Su
[16], Hunt, Su, and Meyer [17], and Jakubczyk and Respondek [21] among others.
Those conditions turn out to be restrictive, except for the planar case, and a nat-
ural problem that arises is to find normal forms for nonlinearizable systems. Four
basic methods have been proposed to study feedback equivalence problems. The first
method is based on the theory of singularities of vector fields and distributions and
their invariants, and using that method on a large variety of feedback classification
problems have been solved; see, e.g., [4, 6, 10, 17, 18, 21, 22, 23, 31, 36, 39, 51].
The second approach, proposed by Gardner [10], uses Cartan’s method of equivalence
[5] and describes the geometry of feedback equivalence, [11, 12, 13, 35]. The third
method, inspired by the Hamiltonian formalism for optimal control problems, has
been developed by Bonnard [3, 4] and Jakubczyk [19, 20] and has led to a very nice
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description of feedback invariants in terms of singular extremals. Most recently, Kang
and Krener [29] adapted Poincaré’s technique for linearization of dynamical systems
(see, e.g., [1]) to control systems. Their idea consists of analyzing the system Π and
the feedback transformation Υ step by step in order to produce a simpler equivalent
system, also step by step. They first obtained quadratic normal forms under quadratic
changes of coordinates and feedback for single-input control systems with controllable
linearization. Later, Kang [24] generalizes this result to all degrees for the same class
of control systems. He also obtained [25] quadratic normal forms for systems with
uncontrollable linearization. The method introduced by Kang and Krener finds its im-
portance in replacing the solving of partial differential equations by that of algebraic
equations.

Since then many results have followed. Tall [41, 43] and Tall and Respondek [49]
obtained canonical forms and dual canonical forms for single-input nonlinear control
systems with controllable linearization, then normal forms for single-input nonlinear
control systems with uncontrollable linearization [44] (see also Krener, Kang, and
[32]), as well as the corresponding homogeneous invariants. Hence, the feedback clas-
sification of single-input nonlinear control systems is almost complete, and the aim
of this paper is to deal with the multi-input nonlinear control systems. Preliminary
results for two-input control systems, with controllable mode, have been recently ob-
tained by Tall and Respondek [47] and completed by Tall [42] for multi-input systems
with controllable mode. This paper gives a generalization of those results to multi-
input systems with uncontrollable mode.

Motivations for studying normal forms for multi-input systems are underlined
by the huge varieties of applications derived for single-input systems. Indeed, in
the single-input case, the theory of normal forms has proved to be very useful in
analyzing structural properties of nonlinear control systems. It has been used to
study bifurcations and stabilizations of nonlinear systems [7, 14, 26, 27, 28], has led
to a complete description of symmetries around equilibrium [37, 38, 48], and allowed
the characterization of systems equivalent to feedforward forms [45, 46, 50]. The same
approach has been introduced to study observability of control systems [33, 34, 2],
the problem of output regulation, and the model matching problem.

The study of linearly uncontrollable systems is also motivated by the numerous
engineering applications and the fact that the qualitative properties like controllability
and stabilizability are generic, that is, invariant under a small variation of parameters
at a point where the system is linearly controllable. Furthermore, it is known that
local bifurcations at a point where the system is linearly controllable can be removed
or delayed by pole placement. For those systems that are not linearly controllable,
nonlinear phenoma like bifurcations are expected around the critical points.

In this paper we construct a normal form for multi-input nonlinear control systems
with uncontrollable linearization which generalizes the results obtained in the single-
input case [24, 41, 43, 44, 49] and the two-input case [47].

The organization of the paper is as follows. Section 2 deals with basic notations.
In section 3, we construct a normal form for multi-input nonlinear control systems
with uncontrollable linearization. We illustrate our results by two physical examples.
We also discuss the notion of bifurcation of controllability for systems with one nonzero
uncontrollable mode. We first show that the set of equilibria of these systems is a p-
dimensional surface, and at any nearby equilibrium point of the origin, these systems
became linearly controllable. Section 4 deals with the proofs of our results.
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2. Notations and preliminaries. All objects, that is, functions, maps, vector
fields, control systems, etc., are considered in a neighborhood of 0 ∈ R

n and assumed
to be C∞-smooth. Consider the system

Π : ζ̇ = f(ζ, u), ζ(·) ∈ R
n, u(·) = (u1(·), . . . , up(·))T ∈ R

p.

We will assume throughout the paper that the point (0, 0) ∈ R
n×R

p is an equilibrium
point, that is, f(0, 0) = 0, and let

Π[1] : ζ̇ = Fζ + Gu = Fζ + G1u1 + · · · + Gpup

be its linear approximation around the equilibrium point (0, 0) ∈ R
n × R

p, where

F =
∂f

∂ζ
(0, 0), G1 =

∂f

∂u1
(0, 0), . . . , Gp =

∂f

∂up
(0, 0).

We assume that the linear approximation is uncontrollable which means that there
exists a nonnegative integer q ∈ N

∗ such that

span
{
F iGs : 0 ≤ i ≤ n− 1, 1 ≤ s ≤ p

}
= R

n−q.

We will also assume that G1 ∧ . . . ∧Gp �= 0, that is, the n× p matrix whose columns
are G1, . . . , Gp to be of constant rank p.

Let (r1, . . . , rp), 1 ≤ r1 ≤ · · · ≤ rp = r, be the largest, in the lexicographic
ordering, p-tuple of nonnegative integers, with r1 + · · · + rp = n, such that

span
{
F iGs : 0 ≤ i ≤ rs − 1, 1 ≤ s ≤ p

}
= R

n−q.

For the simplicity of the presentation we will suppose that r1 = · · · = rp = r, and we
will show how the general case deduces.

By a smooth linear feedback transformation it is always possible to bring the
pair (F,G) into the Brunovský–Jordan canonical pair (Ã, B̃), where

Ã = diag(J,A1, . . . , Ap), B̃ = (0, B1, . . . , Bp) = diag(0, b1, . . . , bp)

with J the Jordan canonical form of dimension q, (As, bs) the Brunovský single-input
canonical form of dimension rs = r for any 1 ≤ s ≤ p.

For simplicity we will set

A = diag(A1, . . . , Ap), B = (B1, . . . , Bp) = diag(b1, . . . , bp).

We will denote coordinates of R
q × R

n−q by (zT , xT )T , where z = (z1, . . . , zq)
T and

x = (xT
1 , . . . , x

T
p )T with xs = (xs,1, . . . , xs,r)

T for any 1 ≤ s ≤ p. For the fixed value q,
we will denote by Sq(R, 0), the set of all functions, either smooth or formal, depending
on the variables z = (z1, . . . , zq)

T ∈ R
q.

Let h = h(z, x, u) be a smooth R-valued function defined in a neighborhood of
the point (0, 0, 0) ∈ R

q × R
n−q × R

p. By

h(z, x, u) = h[0](z, x, u) + h[1](z, x, u) + h[2](z, x, u) + · · · =

∞∑
m=0

h[m](z, x, u)

we denote its Taylor series expansion at (0, 0, 0) ∈ R
q×R

n−q×R
p with respect to the

variables x and u, where h[m](z, x, u) stands for a homogeneous polynomial of degree m
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of the variables x and u whose coefficients are functions of the variable z ∈ R
q, that

is, in Sq(R, 0).
To fix the ideas, the functions x3

1,1, z
2x3

1,1, cos z x3
1,1, (1−ez)x1,1x

2
2,1, sin z x1,2u

2
2,

and z1z2u
2
1u2 + x1,1x2,1u1 are all polynomials of degree 3.

Choose d ∈ N ∪ {∞} large enough and consider the Taylor series expansion of
order d of the system Π

Π≤d :

⎧⎪⎪⎨
⎪⎪⎩

ż = Jz +
d∑

m=1
g[m−1](z, x, u) + O(z, x, u)d,

ẋ = Ax + Bu +
d∑

m=0
f [m](z, x, u) + O(z, x, u)d+1,

(2.1)

where we already assumed that the linear part is in Brunovský–Jordan form, and the
Taylor series expansion of order d of the transformation Υ,

Υ≤d :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z̄ = ψ(z, x) = z +
d∑

m=1
ψ[m−1](z, x) + O(z, x)d,

x̄ = φ(z, x) = x +
d∑

m=0
φ[m](z, x) + O(z, x)d+1,

u = γ(z, x, ū) = ū +
d∑

m=0
γ[m](z, x, ū) + O(z, x, ū)d+1.

(2.2)

The variables z and z̄ (resp., (x, u) and (x̄, ū)) will be called the uncontrollable vari-
ables associated with the uncontrollable part (resp., controllable variables associated
with the controllable part) of the system.

Above, and throughout the paper, we mean by g[m−1](z, x, u) and ψ[m−1](z, x)
(resp., f [m](z, x, u), φ[m](z, x) and γ[m](z, x, ū)) that each of their components is a
homogeneous polynomial of degree m − 1 (resp., of degree m) of the controllable
variables. Moreover, O(·)k denotes terms of degree k and higher of the controllable
variables.

Notice that although we bring the linear approximation (F,G) of the system into
Brunovský–Jordan canonical form, that is, the uncontrollable part in Jordan form of
dimension q, and the controllable part in Brunovský form of dimension n− q, we still
have terms of degree 0 and degree 1. However, the first jets of these terms is zero at
the origin.

3. Main results. In this section we will establish our main results. We will give,
in subsection 3.1 below, the normal forms we obtain for general control systems. The
results are given in the simplest case where the controllability indices are equal. We
will show that the general case deduces by extended the system. In subsection 3.2,
we will study two physical examples: The Caltech Multi-Vehicle Wireless Testbed
(MVWT) and the prototype of a Planar Vertical TakeOff and Landing (PVTOL)
aircraft. In subsection 3.3, we discuss the notion of bifurcation of controllability for
systems with one nonzero uncontrollable mode. We first show that the set of equilibria
of these systems is a p-dimensional surface, and at any nearby equilibrium point of
the origin, these systems become linearly controllable.

3.1. Normal forms. Let 1 ≤ s ≤ p. We denote

z̄ = (z̄1, . . . , z̄q)
T , x̄s = (x̄s,1, . . . , x̄s,r)

T , and x̄s,r+1 = ūs

and we set x̂s,i = (x̄s,1, . . . , x̄s,i) for any 1 ≤ i ≤ r + 1.
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For any 1 ≤ s ≤ t ≤ p and any 1 ≤ i ≤ r + 1, we also denote

πs
t,i(x̄) = (x̂1,i, . . . , x̂s,i, x̂s+1,i−1, . . . , x̂t−1,i−1, x̂t,i, x̂t+1,i−1, . . . , x̂p,i−1)

T .

For i = 1 the expressions x̂t,i−1 will be taken to be empty. Few examples are given
right after the theorem to make these notations comprehensible.

Our main result for general control systems, that is, for control systems with
uncontrollable linearization is as follows.

Theorem 3.1. For any d ∈ N ∪ {∞}, the system Π≤d, defined by (2.1), with
uncontrollable linearization is feedback equivalent, by a feedback transformation Υ≤d

of the form (2.2), to the following normal form:

Π≤d
NF :

⎧⎪⎪⎨
⎪⎪⎩

˙̄z = Jz̄ + ḡ[0](z̄) +
d∑

m=2
ḡ[m−1](z̄, x̄, ū) + O(z̄, x̄, ū)d,

˙̄x = Ax̄ + Bū +
d∑

m=2
f̄ [m](z̄, x̄, ū) + O(z̄, x̄, ū)d+1,

where for any m,

ḡ[m−1](z̄, x̄, ū) =
q∑

j=1

ḡ
[m−1]
j (z̄, x̄, ū) ∂

∂z̄j

f̄ [m](z̄, x̄, ū) =
p∑

k=1

r−1∑
j=1

f̄
k[m]
j (z̄, x̄, ū) ∂

∂x̄k,j
,

(3.1)

with

ḡ
[1]
j (z̄, x̄, ū) =

∑
1≤s≤p

x̄s,1Rj,s(z̄)

ḡ
[m−1]
j (z̄, x̄, ū) =

∑
1≤s≤t≤p

r+1∑
i=1

x̄s,ix̄t,iP
[m−3]
j,i,s,t (z̄, πs

t,i(x̄))

+
∑

1≤s<t≤p

r+1∑
i=2

x̄s,ix̄t,i−1Q
[m−3]
j,i,s,t (z̄, πt

t,i−1(x̄))

(3.2)

for any 1 ≤ j ≤ q and

f̄
k[m]
j (z̄, x̄, ū) =

∑
1≤s≤t≤p

r+1∑
i=j+2

x̄s,ix̄t,iP
k[m−2]
j,i,s,t (z̄, πs

t,i(x̄))

+
∑

1≤s<t≤p

r+1∑
i=j+2

x̄s,ix̄t,i−1Q
k[m−2]
j,i,s,t (z̄, πt

t,i−1(x̄))

(3.3)

for any 1 ≤ k ≤ p and any 1 ≤ j ≤ r − 1.

Above, the functions P
[m−3]
j,i,s,t , Q

[m−3]
j,i,s,t , P

k[m−2]
j,i,s,t , and Q

k[m−2]
j,i,s,t stand for homoge-

neous polynomials of the indicated controllable variables x̄ and ū whose coefficients
depend on the uncontrollable variable z̄.

To make the notations πs
t,i(x̄) somewhat understandable, suppose p = 3. Then

we have

π1
2,2(x̄) = (x̄1,1, x̄1,2, x̄2,1, x̄2,2, x̄3,1) and π2

2,2(x̄) = (x̄1,1, x̄1,2, x̄2,1, x̄2,2, x̄3,1).

We also have

π1
2,1(x̄) = (x̄1,1, x̄2,1), π2

2,1(x̄) = (x̄1,1, x̄2,1), and π1
3,1(x̄) = (x̄1,1, x̄3,1).
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Notice that the above normal form is a natural combination of the two extreme cases:
that of dynamical systems and that of systems with controllable linearization.

Indeed, if q = n, that is, we deal with a dynamical system, then the coordi-
nates (x̄T

1 , . . . , x̄
T
p )T are not present and the normal form Π≤d

NF reduces to a dynam-

ical system ˙̄z = Jz̄ + ḡ[0](z̄) containing resonant terms only. This is, of course,
Poincaré normal form of a vector field under a formal diffeomorphism. On the other
hand, if q = 0, that is, if the linearization of the system is controllable, the coordi-
nates z̄ = (z̄1, . . . , z̄q)

T are not present and our normal form reduces to

f̄
k[m]
j (x̄, ū) =

∑
1≤s≤t≤p

r+1∑
i=j+2

x̄s,ix̄t,iP
k[m]
j,i,s,t(π

s
t,i(x̄))

+
∑

1≤s<t≤p

r+1∑
i=j+2

x̄s,ix̄t,i−1Q
k[m]
j,i,s,t(π

t
t,i−1(x̄))

for any 1 ≤ k ≤ p and any 1 ≤ j ≤ r − 1, and f̄
k[m]
j (x̄, ū) = 0 otherwise. This

latter case will be summarized in the following corollary. It gives the normal form for
multi-input control systems with controllable linearization (see [42]).

Corollary 3.2. The system Π≤d, defined by (2.1), with controllable lineariza-
tion, is feedback equivalent by a polynomial feedback transformation Υ≤d of the form (2.2),
to the following normal form:

Π≤d
NF : ˙̄x = Ax̄ + Bū +

d∑
m=2

f̄ [m](x̄, ū) + O(x̄, ū)d+1,

where

f̄ [m](x̄, ū) =

p∑
k=1

r−1∑
j=1

f̄
k[m]
j (x̄, ū)

∂

∂x̄k,j
,

with

f̄
k[m]
j (x̄, ū) =

∑
1≤s≤t≤p

r+1∑
i=j+2

x̄s,ix̄t,iP
k[m−2]
j,i,s,t (πs

t,i(x̄))

+
∑

1≤s<t≤p

r+1∑
i=j+2

x̄s,ix̄t,i−1Q
k[m−2]
j,i,s,t (πt

t,i−1(x̄))

for any 1 ≤ k ≤ p and any 1 ≤ j ≤ r − 1.
Particular case p = 2 and r = 3. In this particular case the normal form will

be given by

Π≤d :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄x1,1 = x̄1,2 + f̄
1[2]
1 (x̄, ū) + · · · + f̄

1[d]
1 (x̄, ū) + O(x̄, ū)d+1,

˙̄x1,2 = x̄1,3 + f̄
1[2]
2 (x̄, ū) + · · · + f̄

1[d]
2 (x̄, ū) + O(x̄, ū)d+1,

˙̄x1,3 = ū1,

˙̄x2,1 = x̄2,2 + f̄
2[2]
1 (x̄, ū) + · · · + f̄

2[d]
1 (x̄, ū) + O(x̄, ū)d+1,

˙̄x2,2 = x̄2,3 + f̄
2[2]
2 (x̄, ū) + · · · + f̄

2[d]
2 (x̄, ū) + O(x̄, ū)d+1,

˙̄x2,3 = ū2,
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where for any 2 ≤ m ≤ d and any k = 1, 2 we have

f̄
k[m]
1 (x̄, ū) = x̄2

1,3P
k[m−2]
1,3,1,1 (x̂1,3, x̂2,2) + x̄2

2,3P
k[m−2]
1,3,2,2 (x̂1,2, x̂2,3)

+ x̄1,3x̄2,3P
k[m−2]
1,3,1,2 (x̂1,3, x̂2,3) + x̄1,3x̄2,2Q

k[m−2]
1,3,1,2 (x̂1,2, x̂2,2)

+ ū2
1P

k[m−2]
1,4,1,1 (û1, x̂2,3) + ū2

2P
k[m−2]
1,4,2,2 (x̂1,3, û2) + ū1ū2P

k[m−2]
1,4,1,2 (û1, û2)

+ ū1x̄2,3Q
k[m−2]
1,4,1,2 (x̂1,3, x̂2,3)

and

f̄
k[m]
2 (x̄, ū) = ū2

1P
k[m−2]
2,4,1,1 (û1, x̂2,3) + ū2

2P
k[m−2]
2,4,2,2 (x̂1,3, û2) + ū1ū2P

k[m−2]
2,4,1,2 (û1, û2)

+ ū1x̄2,3Q
k[m−2]
2,4,1,2 (x̂1,3, x̂2,3).

We recall that x̂1,i = (x̄1,1, . . . , x̄1,i) and x̂2,i = (x̄2,1, . . . , x̄2,i). Moreover,

û1 = (x̄1,1, x̄1,2, x̄1,3, ū1) and û2 = (x̄2,1x̄2,2, x̄2,3, ū2).

When the initial system is affine in the control, then in the normal form, the homo-

geneous polynomials P
k[m−2]
j,4,1,1 (û1, x̂2,3), P

k[m−2]
j,4,2,2 (x̂1,3, û2), and P

k[m−2]
j,4,1,2 (û1, û2) are all

zero.
Generalization. Now let us assume that the controllability indices are not equal.

Without loss of generality, we suppose that 1 ≤ r1 ≤ · · · ≤ rp = r. We then define
the sequence of indices d1 ≥ · · · ≥ dp = 0 so that r1 + d1 = · · · = rp + dp = r.

It thus suffices to extend each subsystem, say the kth subsystem of (2.1) given by

Π≤d
k :

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋk,1 = xk,2 +
d∑

m=0
f
k[m]
1 (z, x, u) + O(z, x, u)d+1,

...

ẋk,r−1 = xk,r +
d∑

m=0
f
k[m]
rk−1(z, x, u) + O(z, x, u)d+1,

ẋk,r = uk,

as follows. We define x̃k = (x̃k,1, . . . , x̃k,r) so that

x̃k,dk+1 = xk,1, . . . , x̃k,r = xk,rk and ˙̃xk,1 = x̃k,2, . . . , ˙̃xk,dk
= xk,1.

This means that the kth subsystem is extended as

Π̃≤d
k :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃xk,1 = x̃k,2,
...

˙̃xk,dk
= x̃k,dk+1,

˙̃xk,dk+1 = x̃k,dk+2 +
d∑

m=0
f̃
k[m]
dk+1(z, x̃, u) + O(z, x̃, u)d+1,

...

˙̃xk,r−1 = x̃k,r +
d∑

m=0
f̃
k[m]
r−1 (z, x̃, u) + O(z, x̃, u)d+1,

˙̃xk,r = uk,

where

f̃
k[m]
dk+1(z, x̃, u) = f

k[m]
1 (z, x, u), . . . , f̃

k[m]
r−1 (z, x̃, u) = f

k[m]
rk−1(z, x, u).



2056 ISSA AMADOU TALL

In this case all extended subsystems will have the same controllability index r, and
by Theorem 3.1 the extended system will be equivalent to the normal form Π≤d

NF

given by (3.2)–(3.3) with ḡ
[m−1]
j (z̄, x̄, ū) and f̄

k[m]
j (z̄, x̄, ū) depending exclusively on

the variables z̄, ū and x̄s,ds+1, . . . , x̄s,r (not on the added variables x̄s,1, . . . , x̄s,ds
) for

all 1 ≤ s ≤ p. Moreover, the first dk components f̄
k[m]
1 (z̄, x̄, ū), . . . , f̄

k[m]
dk

(z̄, x̄, ū)
remain zero (see Example 1 for illustration).

3.2. Examples. In this subsection we will illustrate our results by considering
two physical examples: The MVWT and the prototype of a PVTOL.

Example 1. Multi-Vehicle Wireless Testbed. We consider the MVWT, presented
in [8, 9] and we study the normal form of one vehicle. The equations of motion of an
MVWT vehicle (see [8, 9]) are given by⎧⎪⎪⎨

⎪⎪⎩
mẍ = −ηẋ + (Fs + Fp) cos θ,

mÿ = −ηẏ + (Fs + Fp) sin θ,

Jθ̈ = −ψθ̇ + (Fs − Fp)l,

where (x, y) denotes the position of the center mass of the vehicle, θ the angle of
the axis of the vehicle with the horizontal (x-axis), m the mass of the vehicle, J the
rotational inertia, Fs and Fp denote the starboard and port fan forces, respectively,
and l (r in [8, 9]) the common moment arm of the forces. The center mass of the
vehicle and the center of geometry are assumed to coincide. The constants η and ψ
stand, respectively, for the coefficients of viscous friction and rotational friction.

Let us introduce the variables

z1 = y, x1,1 = x, x2,1 = θ, u1 = Fs + Fp,
z2 = ż1, x1,2 = ẋ1,1, x2,2 = ẋ2,1, u2 = Fs − Fp.

The equations of motion of an MVWT vehicle are rewritten as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ż1 = z2,
ż2 = −ηz2 + u1 sinx2,1,
ẋ1,1 = x1,2,
ẋ1,2 = −ηx1,2 + u1 cosx2,1,
ẋ2,1 = x2,2,
ẋ2,2 = −φx2,2 + u2l.

(3.4)

We can notice that the system is affine and its distribution G = span {g1, g2}, where

g1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
sinx2,1

0
cosx2,1

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

and g2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

is involutive and of constant rank 2. An equilibrium point for the system (3.4) is
given by any constant position and orientation

(ze1, z
e
2, x

e
1,1, x

e
1,2, x

e
2,1, x

e
2,2)

T = (z1, 0, x1,1, 0, x2,1, 0)T .
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The linearization of the system (3.4) around an equilibrium (we assume x2,1 = 0) is
given by ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ż1 = z2,
ż2 = −ηz2,
ẋ1,1 = x1,2,
ẋ1,2 = −ηx1,2 + u1,
ẋ2,1 = x2,2,
ẋ2,2 = −φx2,2 + u2l.

It is easy to see that this linear system is not controllable because

span
{
F iGk, 0 ≤ i ≤ 5, 1 ≤ k ≤ 2

}
= R

4,

where

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 −η 0 0 0 0
0 0 0 1 0 0
0 0 0 −η 0 0
0 0 0 0 0 1
0 0 0 0 0 −φ

⎞
⎟⎟⎟⎟⎟⎟⎠

, G1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, and G2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It thus follows that q = 2, and the computation of the controllability matrix shows
that r1 = r2 = 2.

The feedback transformation defined by

u1 =
1

cosx2,1
ū1 + η

x1,2

cosx2,1
and ū2 =

u2

l
+

φ

l
x2,2

takes the system into the following form:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ż1 = z2

ż2 = −ηz2 + ηx1,2 tanx2,1 + ū1 tanx2,1,
ẋ1,1 = x1,2,
ẋ1,2 = ū1,
ẋ2,1 = x2,2,
ẋ2,2 = ū2.

The change of coordinates given by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

z̄1 = z1,
z̄2 = z2 − x1,2 tanx2,1,
x̄1,1 = x1,1,
x̄1,2 = x1,2,
x̄2,1 = x2,1,
x̄2,2 = x2,2

brings the system into the form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̄z1 = z̄2 + x̄1,2 tan x̄2,1,
˙̄z2 = −ηz̄2 − x̄1,2x̄2,2(1 + tan2 x̄2,1),
˙̄x1,1 = x̄1,2,
˙̄x1,2 = ū1,
˙̄x2,1 = x̄2,2,
˙̄x2,2 = ū2.
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Since

x̄1,2 tan x̄2,1 = x̄1,2

∞∑
ν=0

(−1)ν
x̄2ν+1

2,1

(2ν + 1)!
= x̄1,2x̄2,1

∞∑
ν=0

(−1)ν
x̄2ν

2,1

(2ν + 1)!
,

x̄1,2x̄2,2(1 + tan2 x̄2,1) = x̄1,2x̄2,2

(
1 +

∞∑
ν=0

(−1)ν
x̄2ν+1

2,1

(2ν + 1)!

)
,

we conclude that the system is in normal form (compare with Theorem 3.1), with

ḡ
[m−1]
1 (x̄) =

{
x̄1,2x̄2,1Q

[m−3]
1,2 (x̄) = ±x̄1,2x̄2,1

x̄m−3
2,1

(m−2)! if m is even,

0 if m is odd

and

ḡ
[m−1]
2 (x̄) =

⎧⎪⎪⎨
⎪⎪⎩

−x̄1,2x̄2,2 if m = 3,

x̄1,2x̄2,2P
[m−3]
2,2 (x̄) = ±x̄1,2x̄2,2

x̄m−3
2,1

(m−3)! if m ≥ 4 is odd,

0 if m is even.

Example 2. Planar Vertical TakeOff and Landing. In this example we study
a simple toy aircraft of prototype PVTOL presented in [15, 40]. The equations of
motion of the PVTOL (see [15, 40]) are given by⎧⎪⎪⎨

⎪⎪⎩
ẍ = − sin θu1 + ε2 cos θu2,

ÿ = cos θu1 + ε2 sin θu2 − 1,

θ̈ = u2,

where (x, y) denotes the position of the center mass of the aircraft, θ the angle of
the aircraft relative to the x-axis, “ − 1” the gravitational acceleration, and ε �= 0
the (small) coefficient giving the coupling between the rolling moment and the lateral
acceleration of the aircraft. The control inputs u1 and u2 are the thrust (directed out
the bottom of the aircraft) and the rolling moment.

We introduce the variables

x1,1 = y, x2,1 = x, x2,3 = θ, w1 = u1 − 1,
x1,2 = ẋ1,1, x2,2 = ẋ2,1, x2,4 = ẋ2,3, w2 = u2.

The equations of motion of the PVTOL are rewritten as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1,1 = x1,2,
ẋ1,2 = cosx2,3w1 + ε2 sinx2,3w2 + cosx2,3 − 1,
ẋ2,1 = x2,2,
ẋ2,2 = − sinx2,3w1 + ε2 cosx2,3w2 − sinx2,3,
ẋ2,3 = x2,4,
ẋ2,4 = w2.

(3.5)

The system is affine and its distribution G = span {g1, g2}, given by

g1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
cosx2,3

0
− sinx2,3

0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

and g2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
ε2 sinx2,3

0
ε2 cosx2,3

0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,
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is involutive and of constant rank 2. The equilibria is defined by

(xe
1,1, x

e
1,2, x

e
2,1, x

e
2,2, x

e
2,3, x

e
2,4, w

e
1, w

e
2)

T = (c, 0, 0, 0, 0, 0, 0, 0)T ,

where c is any constant. The linearization of the system (3.5) around the equilibria
is given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ1,1 = x1,2,
ẋ1,2 = w1,
ẋ2,1 = x2,2,
ẋ2,2 = −x2,3 + ε2w2,
ẋ2,3 = x2,4,
ẋ2,4 = w2.

It is easy to see that the linear system is controllable with controllability indices r1 = 2
and r2 = 4. Indeed,

span
{
G1, FG1, G2, FG2, F

2G2, F
3G2

}
= R

6,

where

F =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, G1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

, and G2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
ε2

0
1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Since r1 = 2 < r2 = 4 we have d1 = 2 and d2 = 0. Thus we extend the system as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x1,1 = x̃1,2,
˙̃x1,2 = x̃1,3,
˙̃x1,3 = x̃1,4,
˙̃x1,4 = cos x̃2,3w1 + ε2 sin x̃2,3w2 + cos x̃2,3 − 1,
˙̃x2,1 = x̃2,2,
˙̃x2,2 = − sin x̃2,3w1 + ε2 cos x̃2,3w2 − sin x̃2,3,
˙̃x2,3 = x̃2,4,
˙̃x2,4 = w2,

where

x̃1,3 = x1,1, x̃1,4 = x1,2, x̃2,1 = x2,1, x̃2,2 = x2,2, x̃2,3 = x2,3, x̃2,4 = x2,4.

The feedback transformation defined by

w1 =
1

cos x̃2,1
v1 − ε2 tan x̃2,1v2 +

1

cos x̃2,1
− 1 and w2 = v2
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takes the system into the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x1,1 = x̃1,2,
˙̃x1,2 = x̃1,3,
˙̃x1,3 = x̃1,4,
ẋ1,4 = v1,
˙̃x2,1 = x̃2,2,
˙̃x2,2 = − tan x̃2,3v1 + ε2

cos x̃2,3
v2 − tan x̃2,3,

˙̃x2,3 = x̃2,4,
˙̃x2,4 = v2.

The change of coordinates given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄1,1 = x̃1,1,
x̄1,2 = x̃1,2,

x̄1,3 = x̃1,3 − ε2
∫ x̃2,3

0
dt

cos t ,

x̄1,4 = x̃1,4 + x̃1,4 tan x̃2,3 − ε2

cos x̃2,3
x̃2,4,

x̄2,1 = x̃2,1,
x̄2,2 = x̃2,2,
x̄2,3 = − tan x̃2,3,
x̄2,4 = −x̃2,4(1 + tan2 x̃2,3) = ˙̄x2,3

followed by the feedback

ū1 = v1, and ū2 = ˙̄x2,4 = −v2(1 + tan2 x̃2,3) − 2x̃2
2,4 tan x̃2,3(1 + tan2 x̃2,3)

brings the system into⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄x1,1 = x̄1,2,
˙̄x1,2 = x̄1,3,
˙̄x1,3 = x̄1,4,
˙̄x1,4 = ū1,
˙̄x2,1 = x2,2 + x̄1,4x̄2,3,
˙̄x2,2 = x̄2,3 − x̄1,4x̄2,4 + ε2(1 − x̄2

2,3)x̄
2
2,4,

˙̄x2,3 = x̄2,4,
˙̄x2,4 = ū2.

Comparing with Corollary 3.2 we get

f̄
2[2]
1 (x̄) = x̄1,4x̄2,3Q

2[0]
1,4,1,2(x̄),

f̄
2[2]
2 (x̄) = x̄1,4x̄2,4P

2[0]
2,4,1,2(x̄) + x̄2,4x̄2,4P

2[0]
2,4,2,2(x̄),

f̄
2[4]
2 (x̄) = x̄2,4x̄2,4P

2[2]
2,4,2,2(π

2
2,4(x̄)),

where

Q
2[0]
1,4,1,2(x̄) ≡ 1, P

2[0]
2,4,1,2(x̄) ≡ −1, P

2[0]
2,4,2,2(x̄) = ε2, P

2[2]
2,4,2,2(x̄) = −ε2x̄2

2,3.

This means that the system (3.5) is equivalent to the normal form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̄x1,3 = x̄1,4,
˙̄x1,4 = ū1,
˙̄x2,1 = x2,2 + x̄1,4x̄2,3,
˙̄x2,2 = x̄2,3 − x̄1,4x̄2,4 + ε2(1 − x̄2

2,3)x̄
2
2,4,

˙̄x2,3 = x̄2,4,
˙̄x2,4 = ū2.
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Notice that the added variables x̄1,1 and x̄1,2 are not present in the normal form.
We may also notice that in both Examples 1 and 2 the transformations taking the
corresponding systems into their normal forms are smooth, actually they are analytic.
Though little is known about the convergence of the formal transformations taking a
system into its normal form, this gives hope.

3.3. Nearby controllability. In this subsection we generalize a result obtained
earlier in collaboration with Kang et al. [30]. We proved that for systems with one
nonzero uncontrollable mode the set of equilibria is a smooth curve passing by the
origin. Moreover, provided that some term in the normal form is nonzero, the system
becomes linearly controllable at these equilibria (except at the origin). This is called
a bifurcation of controllability and the conclusion drawn from this study is that we
can stabilize the system at any nearby point of the origin.

A parallel analysis could be made for multi-input systems with one nonzero un-
controllable mode. Indeed, consider the system Π≤d defined by (2.1) and assume
that q = 1, i.e., J = λ. The equilibria set of this system is

E =
{

(z, x) ∈ R × R
n−1 such that ∃u ∈ R

p : H(z, x, u) = 0
}
,

where H(z, x, u) = (g(z, x, u), f(z, x, u)) with

g(z, x, u) = λz +
d∑

m=1
g[m−1](z, x, u) + O(z, x, u)d,

f(z, x, u) = Ax + Bu +
d∑

m=0
f [m](z, x, u) + O(z, x, u)d+1.

We will show that E is a surface parameterized by x1 = (x1,1, x2,1, . . . , xp,1)
T . If we

denote by xs = (xs,2, . . . , xs,r)
T for all 1 ≤ s ≤ p and x = (xT

1 , . . . ,x
T
p ), then we have

∂H(z, x, u)

∂(z,x, u)

∣∣∣
(z,x,u)=0

= diag (λ, IdRn−1).

Since λ �= 0, the matrix diag (λ, IdRn−1) is invertible. The implicit function theorem
implies that the equation

H(z, x, u) = H(z, x1,x, u) = 0

has a solution in a neighborhood of the origin parameterized by the variables x1, that
is, there exist functions

z = ze(x1), x = xe(x1), u = ue(x1)

so that for some open neighborhood V of the origin in R
p, we have

H(ze(x1), x1,xe(x1), ue(x1)) = 0 for all x1 ∈ V ⊂ R
p.

We thus deduce that the equilibria set is a surface parameterized by the variables x1.

Let us denote by E0 the subset of E defined by

E0 = { (z, x) ∈ E such that xs,1 �= 0 for all 1 ≤ s ≤ p } .
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Consider the normal form of Π≤d given by (3.1)–(3.3), where (since q = 1) we have

ḡ
[m−1]
1 (z̄, x̄, ū) =

∑
1≤s≤t≤p

r+1∑
i=1

x̄s,ix̄t,iP
[m−3]
1,i,s,t (z̄, πs

t,i(x̄))

+
∑

1≤s<t≤p

r+1∑
i=2

x̄s,ix̄t,i−1Q
[m−3]
1,i,s,t (z̄, π

t
t,i−1(x̄))

for any m ≥ 3.
An analogous result to that given in [30] could be formulated as follows.
Theorem 3.3. Consider the system Π≤d defined by (2.1) for d ∈ N ∪ {∞}

sufficiently large enough. If there are integers 3 ≤ m ≤ d and 1 ≤ s ≤ t ≤ p so that

P
[m−3]
1,1,s,t (z̄, π

s
t,1(x̄))

∣∣∣
z̄=0

= P
[m−3]
1,1,s,t (x̄1,1, . . . , x̄s,1, x̄t,1) �= 0,

then the system Π≤d is linearly controllable at any point of E0.
The proof of this result is straightforward and follows the same steps as in [30].

The domain where the system is linearly controllable could be, of course, larger than
the subset E0, but this will depend on the normal form.

Example 3. Consider the system⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ż = z + x1,1x2,1,
ẋ1,1 = x1,2,
ẋ1,2 = x1,3,
ẋ1,3 = u1,
ẋ2,1 = x2,2,
ẋ2,2 = u2,

which is already in normal form. Its equilibria set is given by

E =
{

(−x1,1x2,1, x1,1, 0, 0, x2,1, 0)T ∈ R
6 : (x1,1, x2,1)

T ∈ R
2
}
.

The system is not linearly controllable at the origin but it is at any other point of E.
Indeed, put

f(z, x, u) = (z + x1,1x2,1, x1,2, x1,3, 0, x2,2, 0)T ,

g1(z, x, u) = (0, 0, 0, 1, 0, 0)T , and g2(z, x, u) = (0, 0, 0, 0, 0, 1)T .

(i) If x1,1 �= 0, we have

span
{
g1, adfg1, ad

2
fg1, g2, adfg2, ad

2
fg2

}
(z, x) = R

6

for all (z, x) �= (0, 0) in E.
(ii) If x2,1 �= 0, we have

span
{
g1, adfg1, ad

2
fg1, ad

3
fg1, g2, adfg2,

}
(z, x) = R

6

for all (z, x) �= (0, 0) in E.
In this example the linear controllability occurs outside the subset E0 for which

we have x̄1,1 �= 0 and x̄2,1 �= 0.
However, if we replace ż = z + x1,1x2,1 by ż = z + x2

1,1x
2
2,1, then the linear

controllability will occur only inside E0.
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4. Proofs of main results. The aim of this section is to prove Theorem 3.1.
The proof of Corollary 3.2 is given in [42].

Consider the system Π≤d defined by (2.1). Following [44] it is possible to show
that the terms f [0](z) and f [1](z, x) can be removed. Thus, without loss of generality
we will assume that the system Π≤d is of the form

Π≤d :

⎧⎪⎪⎨
⎪⎪⎩

ż = Jz + g[0](z) +
d∑

m=2
g[m−1](z, x, u) + O(z, x, u)d,

ẋ = Ax + Bu +
d∑

m=2
f [m](z, x, u) + O(z, x, u)d+1.

(4.1)

We like to study the action of the feedback transformation

Υm :

⎧⎨
⎩

z̄ = z + ψ[m−1](z, x),
x̄ = x + φ[m](z, x),
u = ū + γ[m](z, x, ū)

on the system Π≤d up to some degree. First, remark that the inverse of this transfor-
mation is such that⎧⎨

⎩
z = z̄ − ψ[m−1](z̄, x̄) + O(z̄, x̄)m,
x = x̄− φ[m](z̄, x̄) + O(z̄, x̄)m+1,
u = ū + γ[m](z̄, x̄, ū) + O(z̄, x̄, ū)m+1.

Then the uncontrollable part is transformed as

˙̄z = ż +
∂ψ[m−1]

∂z
(z, x)ż +

∂ψ[m−1]

∂x
(z, x)ẋ

= Jz + g[0](z) + · · · + g[m−1](z, x, u) + O(z, x, u)m

+
∂ψ[m−1]

∂z
(z, x)(Jz + g[0](z)) +

∂ψ[m−1]

∂x
(z, x)(Ax + Bu) + O(z, x, u)m

= Jz̄ + g[0](z̄) + · · · + g[m−1](z̄, x̄, ū) −
(
J +

∂g[0]

∂z
(z̄)

)
ψ[m−1](z̄, x̄)

+
∂ψ[m−1]

∂z
(z̄, x̄)(Jz̄ + g[0](z̄)) +

∂ψ[m−1]

∂x
(z̄, x̄)(Ax̄ + Bū) + O(z̄, x̄, ū)m.

It clearly appears that the terms of degree m − 2 or less of the uncontrollable part
remain unmodified while the terms of degree m− 1 or higher are modified.

Similarly, we can show that

˙̄x = Ax̄ + Bū + f [2](z̄, x̄, ū) + · · · + f [m](z̄, x̄, ū) −Aφ[m](z̄, x̄) −Bγ[m](z̄, x̄, ū)

+
∂φ[m]

∂z
(z̄, x̄)(Jz̄ + g[0](z̄)) +

∂φ[m]

∂x
(z̄, x̄)(Ax̄ + Bū) + O(z̄, x̄, ū)m+1,

which means that the terms of degree m − 1 or less of the controllable part are
preserved while the terms of degree m or higher are modified.

To study the action of the feedback transformation Υm on the terms of degree m
(terms of degree m− 1 of the uncontrollable part and of degree m for the controllable
part) of the system Π≤d, it is enough to study their action on a homogeneous system
of the form

Πm :

{
ż = Jz + g[0](z) + g[m−1](z, x, u),

ẋ = Ax + Bu + f [m](z, x, u).
(4.2)
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The proof of Theorem 3.1 will follow if we show that, by a feedback transformation Υm,
we can take the system (4.2) into the normal form

Πm
NF :

{
˙̄z = Jz̄ + g[0](z̄) + ḡ[m−1](z̄, x̄, ū),

˙̄x = Ax̄ + Bū + f̄ [m](z̄, x̄, ū),

where the components of ḡ[m−1](z̄, x̄, ū) and f̄ [m](z̄, x̄, ū) are given by (3.1)–(3.3).

Indeed, if this is true we then consider the system Π≤d of the form (4.1) and we
first apply a quadratic feedback transformation Υ2 to take it to the form

Π≤d :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̄z = Jz̄ + g[0](z̄) + ḡ[1](z̄, x̄, ū) +
d∑

m=3
g[m−1](z̄, x̄, ū) + O(z̄, x̄, ū)d,

˙̄x = Ax̄ + Bū + f̄ [2](z̄, x̄, ū) +
d∑

m=3
f [m](z̄, x̄, ū) + O(z̄, x̄, ū)d+1,

where the vector fields ḡ[1](z̄, x̄, ū), and f̄ [2](z̄, x̄, ū) are in their normal forms, and
the vector fields g[m−1](z̄, x̄, ū) and f [m](z̄, x̄, ū) stand for the new transformed vector
fields. We thus apply a cubic transformation Υ3 to take the system above into the
form

Π≤d :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̄z = Jz̄ + g[0](z̄) + ḡ[1](z̄, x̄, ū) + ḡ[2](z̄, x̄, ū) +
d∑

m=4
g[m−1](z̄, x̄, ū) + O(z̄, x̄, ū)d,

˙̄x = Ax̄ + Bū + f̄ [2](z̄, x̄, ū) + f̄ [3](z̄, x̄, ū) +
d∑

m=4
f [m](z̄, x̄, ū) + O(z̄, x̄, ū)d+1,

where ḡ[1](z̄, x̄, ū), ḡ[2](z̄, x̄, ū), f̄ [2](z̄, x̄, ū), and f̄ [3](z̄, x̄, ū) are in their normal forms.
The vectors g[m−1](z̄, x̄, ū) and f [m](z̄, x̄, ū), for m ≥ 4 are the new transformed vector
fields. The process continues until the original system is in the desired normal form.

Proof of Theorem 3.1. As stated above, we need to prove that the homogeneous

system Π[m] could be transformed into the normal form Π
[m]
NF by a homogeneous

transformation Υm. The proof will be divided into two parts. In the first part we
will deal with the controllable mode and in the second part we will consider the
uncontrollable mode.

(i) Consider the kth subsystem

Πk[m] :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋk,1 = xk,2 + f
k[m]
1 (z, x, u),

...

ẋk,r−1 = xk,r + f
k[m]
r−1 (z, x, u),

ẋk,r = uk.

Let us denote by Pm(Rq × R
n−q × R

p) the set of all homogeneous polynomials of
degree m in the variables (x, u) ∈ R

n−q × R
p whose coefficients are functions of the

variable z ∈ R
q.

For a fixed j, 1 ≤ j ≤ r − 1 we define the set Fm
j (Rq × R

n−q × R
p) of all
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homogeneous polynomials h[m](z, x, v) ∈ Pm(Rq × R
n−q × R

p) such that

h[m](z, x, v) =
∑

1≤s≤t≤p

r+1∑
i=j+2

xs,ixt,iP
k[m−2]
j,i,s,t (z, πs

t,i(x))

+
∑

1≤s<t≤p

r+1∑
i=j+2

xs,ixt,i−1Q
k[m−2]
j,i,s,t (z, πt

t,i−1(x)).

For simplicity we will just refer to Pm(Rq × R
n−q × R

p) and Fm
j (Rq × R

n−q × R
p)

as Pm and Fm
j , respectively. Denote by Em

j the subspace of Pm so that

P
m = F

m
j ⊕ E

m
j .

We want to prove that the subsystem Πk[m] could be transformed into the normal
form

Π
k[m]
NF :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̄xk,1 = x̄k,2 + f̄
k[m]
1 (z̄, x̄, ū),

...

˙̄xk,r−1 = x̄k,r + f̄
k[m]
r−1 (z̄, x̄, ū),

˙̄xk,r = ūk,

where for any 1 ≤ j ≤ r − 1, the homogeneous polynomial f̄
k[m]
j (z̄, x̄, ū) is of the

form (3.3). Assume that the first j − 1 components f
k[m]
1 (z, x, u), . . . , f

k[m]
j−1 (z, x, u)

of Πk[m] are already in their normal forms and let us focus exclusively on the jth

component f
k[m]
j (z, x, u).

Since f
k[m]
j (z, x, u) ∈ Pm, it decomposes uniquely as

f
k[m]
j (z, x, u) = f̄

k[m]
j (z, x, u) + f̃

k[m]
j (z, x, u),

where f̄
k[m]
j (z, x, u) ∈ Fm

j and f̃
k[m]
j (z, x, u) ∈ Em

j . We may remark that f̃
k[m]
j (z, x, u)

is necessarily affine in u; otherwise its projection on Fm
j will not be zero.

We may also suppose that f̃
k[m]
j (z, x, u) doesn’t depend on u. Indeed, if

f̃
k[m]
j (z, x, u) =

p∑
t=1

utR
k[m−1]
j,t (z, x) + f̂

k[m]
j (z, x)

it suffices to take the change of variable

x̄k,j = xk,j −
∑

1≤t≤p

∫ xt,r

0

R
k[m−1]
j,t (z, x)dε,

to get rid of those terms that depend on u. Of course, in order for the integral to

make sense, the variable xt,r of the polynomial R
k[m−1]
j,t (z, x) will be replaced by the

parameter of integration ε.

Now, if we assume that f̃
k[m]
j (z, x, u) doesn’t depend on u, it suffices to take the

change of coordinates

x̄k,j+1 = xk,j+1 + f̃
k[m]
j (z, x)
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to get the jth component f
k[m]
j (z, x, u) into its normal form. As we now see, the

procedure didn’t modify the previous j−1 components because the change of coordi-
nates involves only the variables xk,j and xk,j+1, which didn’t appear linearly in these
components. For the same reason, it doesn’t modify the other subsystems. This ends
the proof of this part.

(ii) (a) The proof of this part will be done by induction. Consider the subsystem

Π[m−1] : ż = Jz + g[0](z) + g[m−1](z, x, u)(4.3)

with m ≥ 3 and assume that for some 2 ≤ l ≤ r, this system has been transformed
so that

g[m−1](z, x, u) = g̃[m−1](z, x, u) + ĝ[m−1](z, x, u),

where for any 1 ≤ j ≤ q we have

g̃
[m−1]
j (z, x, u) =

∑
1≤s≤t≤p

r+1∑
i=l+1

xs,ixt,iP
[m−3]
j,i,s,t (z, πs

t,i(x))

+
∑

1≤s<t≤p

r+1∑
i=l+1

xs,ixt,i−1Q
[m−3]
j,i,s,t (z, πt

t,i−1(x))

and ĝ[m−1](z, x, u) depends only on the variables z and xs,1, . . . , xs,l for 1 ≤ s ≤ p. We
emphasize here that ĝ[m−1](z, x, u) doesn’t depend on any variable xs,k for k ≥ l + 1.

Each component of ĝ[m−1](z, x, u) could be uniquely decomposed as follows:

ĝ
[m−1]
j (z, x, u) =

∑
1≤s≤t≤p

xs,lxt,lP
[m−3]
j,l,s,t (z, πs

t,l(x))

+
∑

1≤s<t≤p

xs,lxt,l−1Q
[m−3]
j,l,s,t (z, πt

t,l−1(x))

+
∑

1≤t≤p

xt,lR
[m−2]
j,l,t (z, x) + S

[m−1]
j,l (z, x),

where the polynomials R
[m−2]
j,l,t (z, x) and S

[m−1]
j,l (z, x) depend only on the variables z

and xs,1, . . . , xs,l−1 for 1 ≤ s ≤ p.
It then suffices to apply the change of variables given, for any 1 ≤ j ≤ q, by

z̄j = zj −
∑

1≤t≤p

∫ xt,l−1

0

R
[m−2]
j,l,t (z, x)dε,

to get rid of the terms
∑

1 ≤ t ≤ pxt,lR
[m−2]
j,l,t (z, x). For the need of the integral we

replace the variable xt,l−1 in R
[m−2]
j,l,t (z, x) by the parameter of integration ε.

This means that we transform the subsystem (4.3) into the form

Π[m−1] : ˙̄z = Jz̄ + g[0](z̄) + g[m−1](z̄, x̄, ū)

with

g[m−1](z̄, x̄, ū) = g̃[m−1](z̄, x̄, ū) + ĝ[m−1](z̄, x̄, ū),
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where for any 1 ≤ j ≤ q we have

g̃
[m−1]
j (z̄, x̄, ū) =

∑
1≤s≤t≤p

r+1∑
i=l

x̄s,ix̄t,iP
[m−3]
j,i,s,t (z̄, πs

t,i(x̄))

+
∑

1≤s<t≤p

r+1∑
i=l

x̄s,ix̄t,i−1Q
[m−3]
j,i,s,t (z̄, πt

t,i−1(x̄))

and ĝ[m−1](z̄, x̄, ū) depends only on the variables z̄ and x̄s,1, . . . , x̄s,l−1 for 1 ≤ s ≤ p.
This proves the induction argument. If we take l = 2, then ĝ[m−1](z̄, x̄, ū) will depend
only on the variables z̄ and x̄s,1 for 1 ≤ s ≤ p, which means that

ĝ[m−1](z̄, x̄, ū) =
∑

1≤s≤t≤p

x̄s,1x̄t,1P
[m−3]
j,1,s,t (z, πs

t,1(x)).

We thus deduce that

g
[m−1]
j (z̄, x̄, ū) =

∑
1≤s≤t≤p

r+1∑
i=1

x̄s,ix̄t,iP
[m−3]
j,i,s,t (z̄, πs

t,i(x̄))

+
∑

1≤s<t≤p

r+1∑
i=2

x̄s,ix̄t,i−1Q
[m−3]
j,i,s,t (z̄, πt

t,i−1(x̄))

and this achieves the proof of this part.
(ii)(b) When m = 2, the homogeneous vector field g[m−1](z, x, u) is linear with

respect to the variables x and u, that is,

g[m−1](z, x, u) =
∑

1≤t≤p

r+1∑
i=1

xt,iP
[0]
i,t (z),

where P
[0]
i,t (z) =

(
P

[0]
1,i,t(z), . . . , P

[0]
q,i,t(z)

)T
is a vector field that depends exclusively on

the variable z.
The method is to apply first a change of coordinates of the form

z̃ = z −
∑

1≤t≤p

xt,rP
[0]
r+1,t(z)

to annihilate the terms∑
1≤t≤p

xt,r+1P
[0]
r+1,t(z) =

∑
1≤t≤p

utP
[0]
r+1,t(z).

Then, apply a change of coordinates of the form

z̄ = z̃ −
∑

1≤t≤p

xt,r−1P̃
[0]
r,t (z̃)

to annihilate the terms ∑
1≤t≤p

xt,rP̃
[0]
j,r,t(z̃),
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where P̃
[0]
j,r,t(z̃) denotes the new terms obtained after the first change of coordinates.

We keep applying this method until we get

g[1](z, x, u) =
∑

1≤t≤p

xt,1P
[0]
1,t(z).

This completes the proof of item (ii) and that of the theorem.
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