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Christopher Jaynes 
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Distributed Chess Game Using Java and RMI 

When trying to determine a topic for my thesis project, I tried to keep two main 

factors in mind. I wanted to choose a topic that would help me learn as much as possible 

about the topic, and that would also be at least somewhat useful. I had recently been 

working on a project for another class that was written in the programming language 

Java. I enjoyed programming in Java, and also enjoyed the object oriented development 

scheme that is used by the language, where physical or logical objects are represented in 

your program by independent program modules. I talked with Dr. Robert McGlinn in the 

CS department about my desire to learn more about Java, and he introduced me to RMI, 

Remote Method Invocation. RMI is just one implementation of a concept known as 

object reference brokering. This is an object oriented programming concept in which two 

programs running on two different computers can make references to each other's 

components. This makes each prograrn capable of interacting with certain parts of the 

other program, without having to duplicate the entire program on both computers. Dr. 

McGlinn and I started discussing projects that I could work on that would use Java and 

RMI. I decided to write a chess game because I have been a long time fan of the game, 

and because the complexity of the game would allow me an excellent opportunity to get 

more familiar with Java. A chess game also lent itself quite well to the RMI concept, as 

each player could run the chess program from a different computer, and simply make 

references to each other through a server. 

I had learned the basics of object oriented development in earlier courses, so the 

basic design concepts were familiar to me. I started this project by getting out my 

chessboard and trying to determine what objects I was going to need to represent in my 

program. I made a list of all of the objects involved in a chess game, and divided them up 

and categorized them. I envisioned a board object on which rested various types ofpiece 



objects, such as kings, bishops, or pawns. A board could be represented as a matrix with 

eight rows and eight columns. If each piece were given an index number, those index 

numbers could be stored in the matrix that represented the board. Then I had to develop 

relationships between the different objects. These could be represented by methods 

contained in the objects. For example, the board would have to know how to move 

pieces around, so it would have a movePiece method. You tell it which row and column 

you want to move a piece from, and which row and column to move it to. Each piece 

would be aware of its own rules of movement, so the board would have to check with that 

piece to make sure that the move was valid. Each method would take a set of inputs, and 

then return some kind of output, or perform an action. All of the relationships like this 

had to be worked out ahead of time, so that the objects could later be seamlessly merged 

into a working project. Unfortunately, finding all of those relationships and determining 

all of those methods is much easier to do after the program is completed. 

Once I felt I had a fairly comprehensive working model to build upon, I began my 

implementation. I gathered up several Java books from the library and the bookstores, 

bookmarked several Java tutorials on the Internet, and read through all of the RMI 

documentation Dr. McGlinn could give me. The first step was to implement the client

server relationship needed for RMI to function. I created two dummy programs, a client 

and a server, which could simply connect to one another over a network, and send 

messages back and forth. Then I added the chessboard matrix and a few piece objects to 

the server program. The client programs could send messages to the server to move 

pieces on the board, and the server could send the piece locations back to the client. All 

of this was just done in plain text, like an Internet chat program. At this point only a few 

of the pieces were represented, and there were no rules to govern piece movement, but 

everything was still following my original design quite nicely. Once I had each different 

piece introduced to the board, I began working on the graphical user interface. I drew 

each chess piece on the computer using a paint program, and then realized that I had no 



idea how to include those pictures in my project. This is where the Internet resources 

became my most valuable assets. I couId find very little about graphics in any of the 

books I had available. I scoured the net for any examples or tutorials, and was able to 

piece together little bits and pieces of information about which Java commands and 

objects are used to manipulate image files. I converted the text messages I had been 

sending back and forth into usable Java commands that would move little images of 

pieces around on the screen, and voila, several weeks later I had a working user interface. 

I could move a piece around on the client program using the user interface, and the server 

would register the move and update the actual game board. Unfortunately, it quickly 

grew boring to move pieces about on the board randomly, especially with only one 

player, so I had to move on to the next step, and begin implementing the rules of the 

game. 

It was in implementing the rules of chess that I realized that my planning had been 

done a little too hastily. I had overlooked how complex the game really is, and how 

many nuances there are to capture in order to really re-create the game in the digital 

realm. I found myself writing several dozen lines of code to implement individual rules. 

A king moves a certain way, and a rook moves a certain way. Rules like that are fairly 

easy to program. You can figure out the mathematical relationships between the rows 

and columns you are trying to move between, and check them against sets of equations. I 

had planned for this. But when a player decides to perform the move known as 'castling' 

both a king and a rook are involved. This was not part ofmy original design. I had 

forgotten that sometimes it is necessary to move two pieces on the same tum. I had also 

forgotten that castling can only be done if neither the king nor the rook involved had been 

moved. To implement this I had to go back and add a property to both of those piece 

objects to keep track of whether they had moved or not. So I had written interfaces that 

would allow any piece to move according to its own rules, and then had to go back and 

modify the entire system, practically rewriting it, just to accommodate one special 



circumstance. This happened several times throughout the project. I would have a 

system that worked perfectly with a partial set of rules, and then when I added the next 

rule to the game, it would change the way the program flowed, and modifications to 

existing code were almost always necessary. My planning had not been inaccurate, but it 

had been drastically incomplete. 

In the long run my lack of foresight did cost me something. I was unable to 

implement all of the features that I had originally planned on. I have included almost all 

of the basic rules of the game, but one rule remains to be implemented. A pawn that 

makes it to the opposing player's back row does not transform into another piece the way 

it should. This is an oversight on my part that I did not have time to correct before the 

project had to be finished. I spent several hours testing the program, and was able to fix 

several bugs, but Dr. McGlinn gave the program to some students to test, and they were 

able to find other programming errors, although I have been unable to find and fix them 

as yet. I also would have liked to make the software generally available, and to have a 

server running for SIUC students to log on to and play chess, but this too was out of reach 

due to my own time constraints. 

Although I was not able to reach all of my goals, I still feel that the project was a 

personal success. I definitely enhanced my knowledge of the Java programming 

language, and even just in general programming concepts. This was really the largest 

individual piece of software that I've ever written, and it taught me a lot about software 

development. I also learned about RMI and object reference brokering, which I found 

very interesting, and should prove to be quite useful. 

Most importantly, I learned the importance of proper planning. I had always 

known it was important to outline a program before I started writing it, but through the 

course of this project I discovered that the basics aren't necessarily what need to be 

planned for most precisely. It is the exception to the general rule that makes computer 

programming difficult. Computers live by very strict rules, and it is when you want to 



bend or break these rules that you have to make a special case, and that means extra work 

for your program to do. The next time I sit down to plan a program, I am going to write 

out the basic outline of the project as I always do, but then I will try to think ofanything 

that might be at all different from the way I planned it originally. 
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