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Abstract 

Knowledge of habitats used by fish throughout their life history is important for 

management and conservation of riverine fish populations and habitats.  Naturally 

occurring chemical markers in otoliths have recently been used to determine natal origins 

and environmental history of fishes in a variety of marine and freshwater environments.  

However, to our knowledge no studies have examined the applicability of this technique 

in large floodplain rivers in the U.S.A.  We evaluated otolith microchemistry and stable 

isotopic composition as tools for determining origins of fishes in the lower Illinois River, 

its tributaries, and floodplain lakes.  Fishes were collected from eight sites during 

summer 2006 and two additional sites in spring 2007.  Water samples were obtained from 

these 10 sites plus one additional tributary during summer and fall 2006 and spring 2007.  

Otolith and water samples were analyzed for 18O and a suite of trace elements; otoliths 

were also analyzed for 13C.  Tributaries, floodplain lakes, and the Illinois River 

possessed distinct isotopic and elemental signatures, principally driven by differences in 

18O and 13C among floodplain lakes, the Illinois River, and tributary streams.  Otoliths 

reflected differences in water chemistry among habitats.  Relationships between water 

and otolith 18O and Sr:Ca were not significantly different among species, but some 

differences in relationships between water and otolith Ba:Ca among species were 

detected.  Linear discriminant function analysis with a leave-one-out jackknife procedure 

on otolith 18O and 13C indicated that fish may be classified back to environment 

(Illinois River, tributary, or floodplain lake) of capture with 80-98% accuracy.  Otolith 

microchemistry and stable isotope analyses provide a potentially effective means for 

determining recruitment sources and environmental history of fishes in the Illinois River.  

The ability to reconstruct environmental history of individual fish using naturally 

occurring isotopic markers in otoliths may also facilitate efforts to quantify nutrient and 

energy subsidies to the Illinois River provided by fishes that emigrate from floodplain 

lakes or tributaries. 
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Introduction 

Knowledge of habitats used by riverine fishes throughout their life history is 

important for management and conservation of lotic fish populations and the habitats 

upon which they depend (Schlosser, 1991; Fausch et al., 2002).  Many fishes in large, 

regulated rivers are thought to depend on connectivity between the river channel and 

floodplain lakes to access off-channel habitats for spawning and larval nursery (Bayley 

and Li, 1992; Gozlan et al., 1998; Nunn et al., 2007).  Tributary streams may also 

contribute to fish assemblages in large rivers, at least near their confluences (Brown and 

Coon, 1994; Robinson et al., 1998; Kiffney et al., 2006).  Primary and secondary 

channels within the river itself represent another potentially important recruitment source 

and larval nursery habitat for some riverine fishes (Humphries et al., 1999; Scheimer et 

al., 2001; Dettmers et al., 2001; Keckeis and Scheimer, 2002).  Despite evidence that any 

of these habitats (floodplain lakes, tributaries, and river channel) may contribute 

substantially to reproduction and recruitment in riverine fish populations, their relative 

importance as natal environments for fishes in large rivers has not been quantified.  

Uncertainty regarding the relative importance of source habitats for fishes in large, 

regulated rivers indicates a need for new techniques to determine environmental history 

of individual fishes in these ecosystems.          

Like many other large navigable rivers, the Illinois River, which flows from the 

Chicago, IL area southwesterly to its confluence with the Mississippi River near St. 

Louis, MO, historically had much interaction with its floodplain (Starrett, 1971).  

However, levee construction and channelization during the past century separated the 

Illinois River from almost half of its floodplain (Starrett, 1971).  Many lakes that 

historically had at least some connectivity to the Illinois River now exhibit little to no 

connectivity with the river; many of these floodplain lakes have subsequently 

experienced high sedimentation rates (Starrett, 1971).  The Illinois River was one of the 

most productive commercial fisheries in the early twentieth century (Pegg and 

McClelland, 2004).  However, due in part to anthropogenic habitat modifications, Illinois 

River fish populations were greatly reduced (Starrett, 1971; Pegg and McClelland, 2004).  

Some restoration of connectivity between the Illinois River and floodplain lakes has been 

conducted in select locations (Reuter et al., 2005; Schultz et al., 2007), reducing 
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floodplain lake sedimentation and providing fishes with access to these habitats for 

spawning and larval nursery (Csoboth and Garvey, 2008).  However, the extent to which 

fishes produced in these restored floodplain lakes contribute to Illinois River fish 

populations is unknown.  Restoration of river-floodplain lake connectivity may benefit 

both native and exotic fishes; connected floodplain lakes may be important source 

habitats for invasive Asian carps (bighead carp Hypophthalmichthys nobilis and silver 

carp H. molitrix) in the Illinois River (Pegg et al., 2002).  However, Asian carps also 

spawn in the river’s main channel (DeGrandchamp et al., 2007).  Knowledge of the 

relative importance of the river channel and floodplain lakes to early life stages of Asian 

carps would be potentially valuable for developing strategies to control abundance of 

these exotic species that may be negatively affecting condition of native planktivorous 

fishes (Irons et al., 2007). 

Microchemical and stable isotopic analyses of fish otoliths offer the potential to 

provide new insights into the relative importance of river channel, floodplain lake, and 

tributary habitats as source environments for fishes large, regulated rivers.  Application of 

otolith trace element and isotopic compositions as natural tags has emerged as an 

effective technique for addressing questions regarding environmental history of 

freshwater fishes (e.g., Wells et al., 2003; Brazner et al., 2004; Dufour et al., 2005; 

Munro et al., 2005; Feyrer et al., 2007; Whitledge et al., 2007; Schaffler and Winkelman, 

2008).  Concentrations and stable isotopic compositions of some chemical elements in 

otoliths reflect those of environments occupied by a fish (e.g., Kennedy et al., 2002; 

Wells et al., 2003; Dufour et al., 2005; Whitledge et al., 2006) and are unaltered 

metabolically following deposition (Campana and Thorrold, 2001).  Thus, association of 

otolith biochronology with isotopic and elemental composition enables retrospective 

description of fish environmental history when an individual has resided in chemically 

distinct locations for a period of time sufficient to incorporate the signature of those sites 

(Kennedy et al., 2002).  Crook and Gillanders (2006) demonstrated the applicability of 

otolith microchemistry for identifying common carp recruitment sources in the Murray 

River, Australia.  Stable isotopic composition of otoliths may also be useful for 

determining natal origin of fishes in freshwater environments and may distinguish fishes 

from locations that cannot be differentiated using otolith microchemistry (Dufour et al., 
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2005; Whitledge et al., 2007).  However, the applicability of otolith stable isotopic 

signatures as natural markers of fish environmental history in large river-floodplain 

ecosystems has not been assessed.  Additionally, no studies have evaluated the 

applicability of otolith chemistry for identifying recruitment sources of fishes in the large, 

regulated rivers of the Midwestern United States.   

The goal of this study was to determine whether otolith microchemistry and stable 

isotopic analyses may be useful tools for determining environmental history of fishes in 

the Illinois River, Illinois U.S.A.  Specific objectives were to determine if water trace 

elemental and stable oxygen isotopic compositions differed among floodplain lakes, 

tributaries, and the Illinois River, to determine whether fish otolith microchemistry and 

isotopic compositions reflected those of environments (floodplain lakes, tributaries, and 

the Illinois River) in which they were captured, and to determine the accuracy with which 

individual fish could be reclassified to their collection locations based on otolith 

elemental and stable isotopic compositions.  We also assessed whether relationships 

between water and otolith chemistry differed among fish species collected.  Few studies 

have compared water-otolith chemistry relationships among species (Swearer et al., 2003; 

Hamer and Jenkins, 2007; Whitledge et al., 2007). 

  

Methods 

Fish and water samples were collected from 11 sites along the lower Illinois River 

(downstream from Peoria, IL; Fig. 1).  These sites included two locations within the 

Illinois River channel (near Liverpool, Illinois, and Glades, Illinois), three tributaries of 

the lower Illinois River, and six backwater and floodplain lakes.  Floodplain lakes 

included representatives with permanent and intermittent (during flooding) connections 

to the Illinois River and varied in the type of connection to the river (natural channel, 

ditch, or water control structure).   

Two water samples were collected from each of the 11 sites during summer 2006 

and again during both fall 2006 and spring 2007 to assess seasonal changes in stable 

isotopic and elemental compositions.  One sample was collected during each season from 

each site for stable oxygen isotope analysis; a second water sample was collected 

seasonally from each site for analysis of a suite of twenty major, minor, and trace 
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elements (including Ca, Sr, Ba, Mg, and Mn).  Water samples for stable oxygen isotope 

analysis were collected and stored in scintillation vials containing minimal air space and 

sealed with Parafilm to curtail evaporative loss and fractionation (Kendall and Caldwell, 

1998).  Water samples were analyzed for stable oxygen isotopic composition using a 

high-temperature conversion elemental analyzer (TC/EA) interfaced with a Thermo 

Finnigan Delta Plus XL® isotope ratio mass spectrometer.  All stable isotope ratios were 

expressed in standard  notation, defined as the parts per thousand deviation between the 

isotope ratio of a sample and standard material (Vienna Standard Mean Ocean Water):  

18O (‰) = [(Rsample / Rstandard) – 1] x 1000 

where R represents 18O/16O.  Mean standard deviation of replicate measurements of water 

δ18O was 0.23‰ (n = 3 replicates per sample).  Water samples for elemental analysis 

were collected using a syringe filtration technique described in Shiller (2003).  Samples 

for analysis of elemental concentrations were stored on ice or refrigerated until overnight 

shipment and analysis by high-resolution, inductively coupled plasma mass spectrometry 

(HR-ICPMS) at the Center for Trace Analysis, University of Southern Mississippi.  

Elemental concentration data were converted to molar element:calcium ratios 

(mmol/mol).         

Fishes were collected from 10 sites during summer 2006 and spring 2007.   Up to 

thirty individuals were collected from each site.  Centrarchids (largemouth bass 

Micropterus salmoides, spotted bass M. punctulatus, green sunfish Lepomis cyanellus, 

bluegill L. macrochirus, orangespotted sunfish L. humilis, and black crappie Pomoxis 

nigromaculatus) were collected where possible due to their recreational importance and 

widespread availability; temperate basses (yellow bass Morone mississippiensis and 

white bass M. chrysops), and freshwater drum (Aplodinotus grunniens) were also 

collected from several sites.  Fishes were captured by alternating current (AC) and direct 

current (DC) electrofishing and trap netting at sites where a boat could be launched.  At 

sites without boat access, fishes were captured by seining or angling.  Fishes were 

euthanized with MS-222, placed on ice for transport to the laboratory, and stored frozen 

until otolith removal.   

Sagittal otoliths were removed from each fish using non-metallic forceps, rinsed 

with distilled water, and stored dry in polyethylene microcentrifuge tubes until 
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preparation for analysis.  One otolith from each fish was analyzed for stable oxygen and 

carbon isotopic composition.  Otoliths < 1 mg were pulverized whole with a mortar and 

pestle; material from the outer edge of otoliths > 1 mg was subsampled and pulverized, as 

this portion of the otolith reflects a fish’s most recent environmental history.  Otoliths 

were analyzed for stable oxygen and carbon isotopic composition using a 

ThermoFinnigan Delta plus XP isotope ratio mass spectrometer interfaced with a Gas 

Bench II carbonate analyzer.  Stable oxygen and carbon isotope ratios for otolith 

samples were expressed in standard  notation (18O or 13C, ‰); mean standard 

deviation for replicate measurements (n=2 replicates per sample) was 0.8‰ for 18O and 

0.4‰ for 13C.   

The second sagittal otolith from each fish was used for trace element (Sr:Ca, 

Ba:Ca, Mg:Ca, Mn:Ca) analysis.  Otoliths for trace element analysis were embedded in 

Epo-fix epoxy, sectioned in the transverse plane using an ISOMET low-speed saw, and 

then sanded and polished to reveal annuli.  Otolith thin sections were prepared for 

analysis under a class 100 laminar flow hood and handled only with nonmetallic acid-

washed forceps. Thin sections were mounted on acid-washed glass slides using double-

sided tape, ultrasonically cleaned for 5 min in ultrapure water, and dried for 24 h under 

the laminar flow hood.  Mounted and cleaned thin sections were stored in acid-washed 

polypropylene Petri dishes in a sealed container until analysis.  Otolith thin sections were 

analyzed for 88Sr, 137Ba, 24Mg, 55Mn, and 44Ca using a Perkin-Elmer ELAN 6000 

inductively coupled plasma mass spectrometer (ICPMS) coupled with a CETAC 

Technologies LSX-500 laser ablation system.  The laser ablated a transect along the long 

axis of the otolith section from one side of the otolith core to the edge of the opposite side 

of the otolith (beam diameter = 25 µm, scan rate = 10 µm/s, laser pulse rate = 10 Hz, 

laser energy level = 9mJ, wavelength = 266 nm).  A standard developed by the U. S. 

Geological Survey (MACS-1, CaCO3 matrix) was analyzed every 12-15 samples to 

adjust for possible instrument drift.  Each sample analysis was preceded by a gas blank 

measurement.  Isotopic counts were converted to elemental concentrations (µg/g) after 

correction for gas blank, matrix, and drift effects.  Mean limits of detection for 88Sr, 

137Ba, 24Mg, and 55Mn were 0.06, 0.35, 0.66, and 0.75 µg/g, respectively; concentrations 

of these elements in all otoliths were well above detection limits.  Otolith elemental 
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concentrations were calculated from integrations over the final 10 s of laser ablation 

transects, as the outer portion of the otolith reflects a fish’s most recent environmental 

history.  Trace element concentrations were normalized to calcium (Ca) concentration 

based on the consideration of Ca as a pseudointernal standard (Bickford and Hannigan, 

2005; Ludsin et al., 2006); data are reported as element:Ca ratios (mmol/mol).      

 Least-squares linear regressions were used to characterize relationships between 

mean water and otolith signatures for each elemental or stable isotopic marker.  

ANCOVAs with Tukey’s adjustment were applied to determine whether significant 

differences in otolith 18O, Sr:Ca and Ba:Ca were present among species; mean water 

18O, Sr:Ca and Ba:Ca signatures from fish collection sites were used as covariates.  Only 

species represented by ≥ 10 individuals that were collected from floodplain lake, 

tributary, and riverine collection sites were included in ANCOVAs.  To increase sample 

sizes for comparisons of otolith chemistry signatures among species, otolith and water 

18O, Sr:Ca and Ba:Ca data from the nearby middle Mississippi River and upper Illinois 

River drainages were included in ANCOVAs (Whitledge, 2009; Zeigler, 2009). 

Both univariate and multivariate approaches were used to assess differences in 

water and otolith trace element and stable isotopic signatures among individual sites and 

site types (floodplain lakes, tributaries, and the Illinois River).  One way analyses of 

variance (ANOVAs) followed by Tukey’s HSD test for multiple comparisons were used 

to assess differences in individual water and otolith chemistry parameters among sites 

and site types.  Individual otolith chemistry parameters that differed significantly among 

sampling locations in conjunction with inter-site differences in water chemistry were 

entered into a multivariate analysis of variance (MANOVA) and a discriminant analysis 

(CANDISC procedure in SAS) to characterize the multivariate otolith chemistry 

signatures of the Illinois River, tributaries, and floodplain lakes; a plot of the first two 

canonical variates was used to visually depict differences among site types.  Pillai’s trace 

statistic was used to assess significance of differences in multivariate otolith chemistry 

signatures among the Illinois River channel, tributaries, and floodplain lakes.  

Additionally, linear discriminant function analysis with a leave-one-out jackknife 

procedure was used to determine the accuracy with which individual fish could be 

classified back to their environment of capture (Illinois River, tributary, or floodplain 
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lake) based on their otolith chemical signatures.  A p-value of ≤0.05 was considered 

significant for all statistical tests. 

 

Results 

Mean water 18O signatures were significantly different among site types 

(ANOVA, F=4.53, df=2, 29, p=0.022), with floodplain lake waters enriched in 18O 

compared to the Illinois River (Fig. 2a).  Tributary streams had an intermediate water 

δ18O signature that was not significantly different from that of floodplain lakes or the 

Illinois River (Fig. 2a).  Mean water Sr:Ca values did not differ among site types 

(ANOVA, F=1.69, df=2, 29, p=0.21), but differed at the individual site level (ANOVA, 

F=2.73 , df=10, 21, p=0.0251).  One floodplain lake (Spring Lake, Tazewell County, 

Illinois) had significantly lower mean water Sr:Ca than all other sites, but no other sites 

differed among one another in water Sr:Ca.  Mean water Ba:Ca values differed among 

some individual sites (ANOVA, F=3.09  df=10, 21, p=0.0142) and among site types 

(ANOVA, F=17.31 df=2, 29, p<0.0001).  Tributaries had higher water Ba:Ca values than 

floodplain lakes and the Illinois River, but mean water Ba:Ca did not differ between the 

Illlinois River and its floodplain lakes (Fig.3).  Mean water Mg:Ca and Mn:Ca both 

exhibited significant differences among sites (ANOVA, F=2.45 df=10, 21, p=0.0402 and 

ANOVA, F=5.09 df=10, 21, p=0.0008, respectively), and mean water Mn:Ca differed 

among site types (ANOVA, F=5.70 df=2, 29, p=0.0082).  However, we did not consider 

these two markers further due to non-significant relationships between otolith and water 

Mg:Ca and Mn:Ca values (Mg:Ca: r2=0.0455, p=0.3285; Mn:Ca: r2=0.0334, p=0.4037) 

Otolith 18O values were strongly correlated with water 18O values (r2=0.7084, 

p<0.0001; Fig. 4).  Mean otolith 18O values were significantly different among site types 

(ANOVA, F=188.56 df=2, 88, p<0.0001), with otoliths of fishes from floodplain lakes 

enriched in 18O compared to otoliths from fishes collected in the Illinois River and 

tributaries (Fig. 2b).  Mean otolith 13C values also displayed differences among site 

types (ANOVA, F=44.45 df=2, 90, p<0.0001), with otoliths from individuals collected in 

floodplain lakes enriched in 13C compared to otoliths of fishes collected from the Illinois 

River and tributaries (Fig. 5).   
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 Both mean Sr:Ca values (Fig. 6) and mean Ba:Ca values (Fig. 7) in otoliths 

reflected mean water Sr:Ca and Ba:Ca (r2=0.9247, p<0.0001 and r2=0.6178, p<0.0001, 

respectively) signatures.  No significant differences in mean otolith Sr:Ca were detected 

among site types (ANOVA, F=1.17, df=2, 89, p=0.32), although mean otolith Sr:Ca 

values differed at the individual site level (ANOVA, F=12.92, df=9,82, p<0.0001).  Mean 

otolith Sr:Ca was significantly lower for one floodplain lake (Spring Lake) compared to 

all other sampling sites, consistent with differences in water Sr:Ca among sites.  

However, mean otolith Sr:Ca was not significantly different among fish from any other 

individual sites.  Mean otolith Ba:Ca values did not differ among site types (ANOVA, 

F=1.83, df=2, 89, p=0.17), although mean otolith Ba:Ca dffered among some individual 

sampling sites (ANOVA, F=4.28, df=9, 82, p=0.0001).   

 Relationships between water and otolith 18O and Sr:Ca were not significantly 

different among species (p>0.05) for all pair-wise comparisons.  However, relationships 

between water and otolith Ba:Ca differed among some species.  Mean freshwater drum 

Ba:Ca was significantly different (p<0.05) from all other fish species except spotted bass 

(p=0.6616).  Mean Ba:Ca for green sunfish was significantly different from that of 

bluegill (p=0.0019) and orangespotted sunfish (p=0.0357); mean Ba:Ca for largemouth 

bass was significantly different from that of bluegill (p=0.0011), orangespotted sunfish 

(p=0.0081), and yellow bass (p=0.0294).   

Multivariate analysis of otolith data incorporating 18O, 13C, Sr:Ca, and Ba:Ca 

indicated that fishes from the Illinois River, its tributaries, and floodplain lakes possessed 

significantly different otolith chemistry signatures (Pillai’s Trace Statistic: F=13.99 

df=8,138, p<0.0001).  A plot of the first two canonical variates from the CANDISC 

procedure in SAS illustrated the distinct otolith chemistry signatures among site types 

(Fig. 8).  The first discriminant function (CAN1) from this model accounted for 99% of 

the total dispersion in the dataset.  Otolith oxygen (18O) and carbon (13C) isotopic 

compositions were correlated with CAN1 (correlation coefficients of 0.97 and 0.73, 

respectively; p<0.05), whereas otolith Sr:Ca was not associated with CAN1 (p>0.1), but 

was correlated with the second canonical variate (correlation coefficient of 0.89; p<0.05).  

Otolith Ba:Ca was not associated with CAN1 or CAN2 (p>0.05).  Thus, 18O and 13C 

were the most important markers in defining otolith chemical fingerprints in multivariate 
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discriminant space.  Linear discriminant function analysis of otolith data incorporating 

18O and 13C with a leave-one-out jackknife procedure indicated that individual fish 

could be classified back to their environment of capture (Illinois River, tributary, or 

floodplain lake) with 80-98 % accuracy (Table 1).  Neither the addition of otolith Sr:Ca   

nor otolith Ba:Ca data to the linear discriminant function analysis improved classification 

accuracy.   

 

Discussion 

 Results indicated that fishes from the lower Illinois River, adjacent floodplain 

lakes, and tributary streams could be distinguished with a high degree of accuracy based 

on otolith 18O and 13C.  Fishes from a few individual sites also possessed distinct 

otolith Sr:Ca and Ba:Ca signatures.  The naturally-occurring markers that best 

discriminated among fishes from the water bodies sampled in this study (18O and 13C, 

and to a lesser extent Sr:Ca and Ba:Ca) have frequently been among the most useful 

indicators of fish environmental history in other geographic locations (Gao et al., 2001; 

Wells et al., 2003; Brazner et al., 2004; Bickford and Hannigan, 2005; Dufour et al., 

2005; Whitledge et al., 2007; Whitledge, 2009).  Classification success rates for 

individual fish to environment of capture (Illinois River, tributary, or floodplain lake) in 

this study were comparable to or greater than those of published studies using otolith 

microchemistry and stable isotopic composition as indicators of source location for fishes 

in freshwater (Bronte et al., 1996; Wells et al., 2003; Brazner et al., 2004; Clarke et al., 

2007; Schaffler and Winkelman, 2008; Whitledge, 2009), marine (Campana et al., 1995), 

and estuarine (Thorrold et al., 1998; Gillanders and Kingsford, 2000) environments.  

Most misclassifications in this study occurred among fishes from the Illinois River and 

tributaries; only one individual collected in a floodplain lake was incorrectly classified as 

having come from the Illinois River, reflecting the distinct 18O and 13C signatures of 

floodplain lake and lotic environments in this study.  Some misclassifications of fish to 

environment of capture may have been due to the presence of recent immigrants 

(Whitledge, 2009).     

Otolith isotopic and elemental compositions were strongly correlated with 

corresponding water values and reflected differences in water 18O, Sr:Ca, and Ba:Ca 
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among the Illinois River, its tributaries, and floodplain lakes and among individual 

sampling locations.  Significant correlations between water and otolith signatures for 

these three naturally occurring chemical markers are consistent with results of prior 

studies (Patterson et al., 1993; Wells et al., 2003; Walther and Thorrold, 2008).  Observed 

differences in water and otolith 18O between the Illinois River and its floodplain lakes 

are likely due primarily to the greater opportunity for evaporative fractionation (Hoefs, 

2004) to be expressed in floodplain lakes as a result of their longer water residence times 

relative to the Illinois River.  Whitledge et al. (2007) found similar differences in water 

δD (which undergoes similar fractionation processes) between floodplain ponds and the 

upper Colorado River due to higher evaporation rates of pond water.  Otolith 13C also 

distinguished fishes from the Illinois River and its floodplain lakes, with otolith 13C 

values for individuals collected in floodplain lakes enriched in 13C compared to fishes 

collected from riverine environments.  Mechanisms responsible for observed differences 

in otolith 13C among environments sampled in this study are unknown.  Otoliths 

incorporate both dissolved inorganic carbon (DIC) and metabolically-derived carbon 

(Kalish, 1991; Solomon et al., 2006).  Observed differences in otolith 13C likely reflect 

differences in 13C of DIC between floodplain lake and riverine habitats; 13C of DIC in 

the Illinois River and tributaries is unknown, but is likely influenced by isotopically light 

respired carbon (Hoefs, 2004) from upstream municipal wastewater (e.g., from the 

Chicago metropolitan area) and other sources.  Floodplain lake DIC might also be 

enriched in 13C compared to that of the Illinois river due to higher rates of photosynthesis 

by aquatic primary producers or because the longer water residence time in floodplain 

lakes may enable equilibration of DIC with atmospheric CO2 (Hoefs, 2004).  

Mechanisms responsible for the few observed differences in water and otolith Sr:Ca and 

Ba:Ca among locations sampled in this study are also unclear.  Spring Lake’s 

significantly lower Sr:Ca signature is likely due to its unique water source (groundwater 

from the Mahomet Aquifer) compared to other floodplain lakes and tributary streams 

sampled.  Other observed differences in Ba:Ca signatures among sampling locations are 

likely due to local variation in bedrock geology (Wells et al., 2003). 

 Regardless of the mechanisms responsible for differences in water and otolith 

elemental and isotopic compositions among our sampling locations, multi-parameter 
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chemical “fingerprints” in otoliths established in this study will be useful for 

distinguishing among fishes from the lower Illinois River, its tributaries, and floodplain 

lakes if observed differences in environmental signatures persist in future years.  Other 

studies have reported interannual stability in otolith isotopic and trace elemental 

signatures in some freshwater environments (Zimmerman and Reeves, 2002; Wells et al., 

2003; Dufour et al., 2005; Munro et al., 2005; Ludsin et al., 2006; Whitledge et al., 2007; 

but see Schaffler and Winkelman, 2008).  Mean water 18O values for the Illinois River (-

5.9‰ ± 1.0 ‰ SE) and tributaries (-4.3‰ ± 0.7 ‰ SE) during this study was within the 

ranges of 18O values reported by Coplen and Kendall (2000) for the Illinois River and 

other streams in Illinois and Missouri, respectively during November 1984-August 1987; 

these results suggest that the Illinois River and tributary 18O signatures are relatively 

stable across years.  Summer 2006 water 18O values for the Illinois River were enriched 

in 18O compared to δ18O values reported by Coplen and Kendall (2000), perhaps due to 

the relatively warm, dry summer during 2006.  However, floodplain lakes and the Illinois 

River possessed distinct δ18O signatures that were reflected in fish otoliths despite some 

seasonal variation in water δ18O.  Floodplain lakes differed among one another in their 

connectivity with the Illinois River, but all exhibited a distinct multivariate, isotopic 

signature that enabled highly accurate identification of individual fish captured in 

floodplain lakes based on otolith 18O and 13C.  Major floods would likely eliminate 

distinctions between the Illinois River and its floodplain lakes, although the effect of a 

short-duration flood (particularly one that occurs outside of the growing season) on 

otolith chemical signatures may be minimal.  Substantial inter-annual variation in 

environmental signatures may preclude the use of otolith chemistry for distinguishing 

among fish of floodplain lake, tributary, and riverine origin during some years or may 

require a “library” of environmental signatures and separate classification models for 

assigning natal origin to fish from different year classes (Ludsin et al., 2006; Schaffler 

and Winkelman, 2008). 

We found no significant differences in relationships between water and otolith 

δ18O and Sr:Ca signatures among the fish species collected in this study, consistent with 

the findings of some prior studies (Patterson et al., 1993; Whitledge et al., 2007).  

Differences in mean otolith δ18O, δ13C, and Sr:Ca among site types were consistent 
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among species.  Most of the fish species collected in this study were centrarchids, which 

may account for the lack of significant differences in relationships between water and 

otolith δ18O and Sr:Ca among species.  In contrast, species-specific incorporation of trace 

elements (Mg, Mn, Sr, and Ba) into otoliths has been noted in other studies (Swearer et 

al., 2003; Hamer and Jenkins, 2007).  Additional research should assess differences in 

relationships between otolith and environmental stable isotopic and microchemical 

signatures among fish species.  While our findings suggest that models for determining 

environmental history of a particular fish species may sometimes be applicable to closely 

related species, water-otolith chemistry relationships should not be applied broadly across 

taxa without verification of their consistency among species.     

 The accuracy with which we were able to classify fish back to their environment 

of capture (Illinois River, tributary or floodplain lake) demonstrates the potential 

applicability of otolith oxygen and carbon isotopic compositions for determining 

recruitment sources and environmental history of fishes in the lower Illinois River 

drainage.  Otolith microchemistry or stable isotopic composition have been successfully 

applied to distinguish fish of floodplain lake and riverine origin in other river systems 

(Crook and Gillanders, 2006; Whitledge et al., 2007).  Estimating the relative 

contributions of floodplain lake, tributary, and riverine habitats to fish populations in the 

lower Illinois River appears feasible via analysis of naturally occurring chemical 

signatures in otoliths.  Otolith stable isotopic signatures may be useful for identifying 

recruitment sources of both native fishes and exotic species such as bighead and silver 

carp; however, characterization of relationships between water and otolith chemical 

signatures for these species would be required.  The ability to reconstruct environmental 

history of individual fish using naturally occurring isotopic markers in otoliths may also 

facilitate efforts to quantify nutrient and energy subsidies to the Illinois River provided 

by fishes that immigrate to the river from floodplain lakes or tributaries (Polis et al., 

1997).         
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Table 1.  Results of linear discriminant function analysis showing classification accuracy 

(determined by jackknife procedure) for individual fish to environment of collection 

based on otolith 18O and 13C. 

 Assigned Location  

Source  

Location 

Floodplain 

lakes 

Tributaries Illinois River %  

Correct 

Floodplain lakes 53 0 1 98 

Tributaries 0 16 1 94 

Illinois River 0 4 16 80 
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Fig. 1.  Map showing locations where water samples and fishes were collected for this 

study. 

 

Fig. 2.  a) Mean water 18O values (SE) for the Illinois River, tributaries, and 

floodplain lakes and b) mean otolith 18O values (SE) for fish collected from the 

Illinois River, tributaries, and floodplain lakes.  Within each panel, means that are 

marked with the same letter are not significantly different (ANOVA followed by Tukey’s 

HSD test, p>0.05).   

 

Fig. 3.  Mean water Ba:Ca values ( SE) for the Illinois River, tributaries, and floodplain 

lakes.  Means that are marked with the same letter are not significantly different 

(ANOVA followed by Tukey’s HSD test, p>0.05). 

 

Fig. 4.  Linear regression of mean otolith 18O on mean water 18O.   Data points are 

means  SE. 

 

Fig. 5.  Mean otolith 13C values (SE) for fish collected from the Illinois River, 

tributaries, and floodplain lakes.  Means that are marked with the same letter are not 

significantly different (ANOVA followed by Tukey’s HSD test, p>0.05). 

 

Fig. 6.  Linear regression of mean otolith Sr:Ca on mean water Sr:Ca.  Data points are 

means  SE.   

 

Fig. 7.  Linear regression of mean otolith Ba:Ca on mean water Ba:Ca.  Data points are 

means  SE. 

 

Fig. 8.  Plot of the first two canonical variates obtained through linear discriminant 

function analysis including otolith 18O, 13C, Sr:Ca, and Ba:Ca.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 24 

 
 

 

 

 

 

 

 

 



 25 

 



 26 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 29 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 31 

 

 


	Southern Illinois University Carbondale
	OpenSIUC
	2010

	Assessment of Otolith Chemistry for Identifying Source Environment of Fishes in the Lower Illinois River, Illinois
	John M. Zeigler
	Gregory Whitledge
	Recommended Citation


	OLE_LINK1
	BIB22
	OLE_LINK2
	OLE_LINK3

