
Southern Illinois University Carbondale
OpenSIUC

Conference Proceedings Department of Electrical and Computer
Engineering

4-2009

Bounding Worst-Case Response Times of Tasks
under PIP
Harini Ramaprasad
Southern Illinois University Carbondale, harinir@siu.edu

Frank Mueller
North Carolina State University at Raleigh

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_confs
Published in Ramaprasad, H., & Mueller, F. (2009). Bounding Worst-Case Response Times of Tasks
under PIP. 15th IEEE Real-Time and Embedded Technology and Applications Symposium, 2009,
RTAS 2009. 183 - 192. DOI: 10.1109/RTAS.2009.28 ©2009 IEEE. Personal use of this material is
permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained from the IEEE. This
material is presented to ensure timely dissemination of scholarly and technical work. Copyright and
all rights therein are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each author's copyright.
In most cases, these works may not be reposted without the explicit permission of the copyright
holder.

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Conference Proceedings by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Ramaprasad, Harini and Mueller, Frank, "Bounding Worst-Case Response Times of Tasks under PIP" (2009). Conference Proceedings.
Paper 91.
http://opensiuc.lib.siu.edu/ece_confs/91

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs/91?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F91&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


Bounding Worst-Case Response Time for Tasks under PIP

Harini Ramaprasad

Dept. of Electrical and Computer Engg.

Southern Illinois University Carbondale

Carbondale, IL 62901

harinir@siu.edu

Frank Mueller

Dept. of Computer Science

North Carolina State University

Raleigh, NC 27695-8206

mueller@cs.ncsu.edu

Abstract

Schedulability theory in real-time systems requires prior

knowledge of the worst-case execution time (WCET) of

every task in the system. One method to determine the

WCET is known as static timing analysis. Determination

of the priorities among tasks in such a system requires a

scheduling policy, which could be either preemptive or non-

preemptive. While static timing analysis and data cache

analysis are simplified by using a fully non-preemptive

scheduling policy, it results in decreased schedulability. In

prior work, a methodology was proposed to bound the data-

cache related delay for real-time tasks that, beside having

a non-preemptive region (critical section), can otherwise be

scheduled preemptively.

While the prior approach improves schedulability in com-

parison to fully non-preemptive methods, it is still conserva-

tive in its approach due to its fundamental assumption that a

task executing in a critical section may not be preempted by

any other task. In this paper, we propose a methodology that

incorporates resource sharing policies such as the Priority

Inheritance Protocol (PIP) into the calculation of data-cache

related delay. In this approach, access to shared resources,

which is the primary reason for critical sections within tasks,

is controlled by the resource sharing policy. In addition

to maintaining correctness of access, such policies strive

to limit resource access conflicts, thereby improving the

responsiveness of tasks.

To the best of our knowledge, this is the first framework

that integrates data-cache related delay calculations with

resource sharing policies in the context of real-time systems.

1. Introduction

Real-time schedulability requires a-priori knowledge of

the worst-case execution times (WCET) of all tasks in the

system. One method to estimate this WCET is static timing

analysis. Static timing analysis is the process of analytically

modeling the architectural features of a system and, using

This work was supported in part by NSF grants CCR-0310860, CCR-

0312695 and CNS-0720496.

these models and the control flow graph of a program, trying

to determine the longest path through the program.

While architectural features such as the data cache im-

prove the performance of computer systems significantly,

they are inherently unpredictable, thereby complicating static

timing analysis. The analysis of data cache behavior for a

single task has been the focus of much research. Several

analytical techniques have been proposed in the recent past.

In prior work [16], we extended the Cache Miss Equations

framework by Ghosh et al. [8] to produce exact data cache

reference patterns. However, this is insufficient since prac-

tical systems have multiple tasks executing in a prioritized

environment.

In recent work, we proposed a framework that calculated

a tight upper bound on the response times of tasks in a

fully preemptive scheduling system [17], [18]. The primary

assumption in that analysis is that all tasks are completely

preemptive. In other words, a task may be interrupted by a

task with higher priority at any time during its execution.

However, this assumption may need to be relaxed for some

tasks. A task may have a period in its execution during which

it executes in a critical section. While a task is in a critical

section, no other task may enter a critical section.

In more recent work, we proposed a methodology to

analyze tasks with a critical section within their execution

[19]. In that work, logical correctness of tasks is maintained

by executing all critical sections as non-preemptive regions

(NPRs). Using that methodology, schedulability of task

sets is improved in comparison to a fully non-preemptive

scheduling policy by allowing (legal) preemptions outside

the NPR. A fundamental assumption there is that a task

executing in a NPR cannot be preempted by any higher-

priority task for the entire duration of the NPR.

The need for a critical section typically arises due to

access of shared resources by multiple tasks. While it is

important to prevent two tasks from accessing a shared

resource at the same time, it is not necessary to disallow

preemptions altogether in such a critical section. In other

words, although a shared resource has to be relinquished

voluntarily by a task that has acquired it (making the

resource non-preemptible), the task holding the resource

may still be preempted. Several resource sharing policies
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have been proposed to control accesses to shared resources

in the context of real-time systems [21]. The fundamental

aim of all these polices is to maintain correctness of all tasks

while maximizing schedulability by reducing the waiting

time for tasks that do not use a particular resource that has

been acquired by some lower-priority task.

In this paper, a framework that incorporates resource shar-

ing policies within the process of estimation of worst-case

response times of hard real-time tasks, in the presence of

data caches, is presented. The use of resource-sharing poli-

cies introduces significant changes to the analysis algorithm

compared to that used in our prior work on non-preemptive

regions [19]. Furthermore, using resource-sharing policies

introduces an additional blocking-related delay component,

resulting in further changes to the algorithm and significant

additions to the mathematical formulation for our approach.

Throughout this paper, we consider a periodic real-time

task model. Every task is assumed to have a deadline less

than or equal to its period. The notation used in the remain-

der of this paper is as follows. A task Ti has characteristics

represented by the 5 tuple (Φi, Pi, Ci, ci, Di). Here, Φi

is the phase, Pi is the period, Ci and ci are the worst-case

and best-case execution times, respectively and Di is the

relative deadline of the task. In the context of a specific task

set, every task has a set of derived characteristics represented

by the 3 tuple (Bi, ℜi, ∆i). Here, Bi is the blocking time

and ℜi is the response time of the task. ∆i is the data-cache

related delay incurred by a task due to interruptions by other

tasks. Ji,j represents the jth instance (job) of task Ti.

The rest of this paper is organized as follows. Section 2

discusses related work. Section 3 gives an overview of our

prior work on data cache analysis. Section 4 discusses our

current framework and Section 5 discusses the calculation

of data-cache related delay. Section 7 presents experimental

results and the contributions of our work are summarized in

Section 8.

2. Related Work

Data cache analysis in the context of real-time systems

has been the focus of much research in the recent past.

Recently, several methods have been proposed to analytically

characterize data cache behavior with respect to a single task

[8], [6], [5]. In prior work [16], we extended the Cache Miss

Equations framework by Ghosh et al. [8] to produce exact

data cache reference patterns.

Several techniques have been proposed to analyze multi-

ple tasks executing in a prioritized manner and calculate the

cache related preemption delay [11], [12], [22], [23]. These

techniques primarily focus on instruction caches. In prior

work, [17], [18] we propose a framework to calculate worst-

case response times of tasks using a significantly different

methodology and in the context of data caches rather than

instruction caches.

The question of whether non-preemptive systems are

better than preemptive ones or not has been debated for

a long time. Several pieces of research provide analysis

and tests for non-preemptive systems [7]. However, in all

that work, the primary assumption is that every task is

completely non-preemptive. Making all tasks fully non-

preemptive significantly decreases schedulability. In order to

overcome this disadvantage, methods have been proposed to

defer preemptions to predetermined points by splitting a job

into sub-jobs [3], [4], [13]. Recent work demonstrates some

flaws in this method [2], [1],

In prior work, we propose a methodology to analyze tasks

that have critical sections during which they are made non-

preemptive, but are allowed to be preempted in other areas,

thereby improving schedulability over fully non-preemptive

systems [19].

In order to address the issue of scheduling tasks with crit-

ical sections in a preemptive environment, several resource-

sharing policies have been proposed. The aim of these

policies is to maintain correctness of accesses to shared

resources while maximizing the schedulability of task sets.

In this paper, we employ one such policy, namely the Priority

Inheritance Protocol [21], to arbitrate accesses to shared

resources.

3. Prior Work

In prior work, we proposed a methodology that bounds

the data cache related preemption delay and the worst-case

response times of hard real-time tasks in a prioritized, fully-

preemptive environment [17], [18]. This analysis consists of

three fundamental steps: 1) Calculation of an upper bound on

the number of preemptions for a task; 2) Identification of the

placement of these preemption points within the execution

of the preempted task; and 3) Calculation of the data-

cache related preemption delay incurred at each identified

preemption point.

In more recent work, we extended our methodology to

allow a task to have a critical section, termed as a non-

preemptive region (NPR), within its execution instead of

being completely preemptive at all times [19]. In that work, a

task is split into three regions, namely r1, r2 and r3. Regions
r1 and r3 are preemptive whereas region r2 is a non-

preemptive one. The complexity of analysis in such a system

arises from the fact that the actual execution time of a task

cannot be accurately determined by static timing analysis,

forcing analysis techniques to provide upper (worst-case)

and lower (best-case) bounds instead. Hence, when a higher

priority task (say T0) is released while a lower-priority task

(say T1) that has a non-preemptive region is executing, there

are three possible scenarios. Case 1: T1 has entered its NPR

(region r2) in both the best and worst cases. In this case,

T0 has to wait for T1 to finish executing its NPR. Case 2:

T1 is still executing region r1 in both best and worst cases
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or has already entered region r3 in both best and worst

cases. In this case, T1 gets preempted and T0 gets scheduled

immediately. Case 3: T1 has entered its NPR in the best

case, but is still executing region r1 in the worst case. In

this situation, our technique considered parallel executions

of worst-case scenarios for individual tasks to provide safe

and tight estimates of the worst-case response times of all

tasks. The incorporation of resource-sharing policies such

as PIP introduces significant changes to the algorithm and

mathematical formulation compared to our prior work.

4. Methodology

In Section 3, we briefly described recent prior work in

which we analyzed tasks with critical sections and, in the

presence of data caches, calculated safe and tight estimates

of the worst-case response times of tasks. That work as-

sumed that, when a task is executing in its critical section,

it cannot be preempted by any other higher-priority task for

the entire duration of its critical section, thereby effectively

making the region a non-preemptive region (NPR).

In this paper, we remove this restrictive assumption and

incorporate resource sharing policies into our analysis to

maximize schedulability while maintaining correctness of

accesses to shared resources. Hence, although the access to a

shared resource is still non-preemptible, the task holding the

resource is now preemptible until contention for the shared

resource arises. In our current implementation, we use the

Priority Inheritance Protocol (PIP) to manage accesses to

shared resources [20]. Although our analysis can conceptu-

ally support different resource sharing policies with minor

extensions to our algorithm, the discussion through the rest

of this paper is in the context of the Priority Inheritance

Protocol for the sake of simplicity.

In PIP, when a task (say T0) with a priority higher than the

currently executing task (say T1) is released, T1 is preempted

and T0 is scheduled immediately. If T0 later requests access

to a shared resource, there are two possibilities. The resource

could be available, in which case it is immediately granted

to T0. Alternatively, the resource could have been acquired

by T1 before it was preempted. In such a case, T1 is

now scheduled again and is allowed to execute until it

relinquishes the required resource. For this duration of time,

T1 executes at the priority of T0. In other words, T1 inherits

the priority of T0 until the required resource is relinquished.

The reason for this is to ensure that T1 cannot be preempted

by tasks with priority between those of T0 and T1, thus

preventing a situation termed priority inversion.

Every task is split into multiple regions, namely regions

that access some shared resource(s) and regions that do not.

A total ordering is assumed among all shared resources in

the system being analyzed. If a task needs multiple resources

simultaneously, it requests them in accordance with the total

order and releases them in the reverse order of request to

avoid deadlocks in the system.

4.1. Motivating and Illustrative Examples

In this section, the methodology is illustrated using ex-

amples. In all examples, the deadline of a task is assumed

to be equal to its period. Consider the task-set shown in

Table 1. The first column indicates task names. The second

and third columns show the phases and periods of tasks,

respectively. The fourth and fifth columns show the worst-

case and best-case execution times (WCET and BCET) of

each of the regions of a task. In this example, every task

has three regions, the second of which is the one in which

resource requests are made. The sixth column indicates the

name of the resource being used in the second region of a

task. Figure 1(a) shows the results obtained for this task set

Task Phase Period WCET BCET Res.
(r1/r2/r3) (r1/r2/r3) in r2

T0 15 20 2/2/1 1/1/1 R2

T1 10 50 2/3/2 2/2/1 R1

T2 0 200 10/14/6 7/9/4 R1

Table 1. Task Set Characteristics - Task Set 1 [RM

policy → T0 has Highest Priority]

using a resource-sharing protocol, specifically the Priority

Inheritence Protocol. This method will henceforth be refered

to as ResourceSharingAnalysis. For the sake of comparison,

for the same task-set, results obtained using the analysis

technique developed in prior work [19], where a critical

section is assumed to be a non-preemptive region, are also

presented. That method is referred to as NPRAnalysis. It

is to be noted that, in NPRAnalysis, a task executing in a

critical section cannot be preempted by any other task. These

results are shown in Figure 1(b). For the sake of simplicity,

data cache related delays are assumed to be zero in these

examples. Calculation of data cache related delays will be

discussed in Section 5.

In both Figures 1(a) and 1(b), the x-axis represents

time. Best-case scenarios and worst-case scenarios for each

individual task are shown below and above the x-axis,

respectively. It is important to note that the timelines do

not indicate an actual schedule, but rather best and worst-

case possibilities for each task. The arrows represent releases

of tasks. Since the deadline of a task is assumed to be

equal to the period of the task, a release of a task serves

as the deadline for the previous release of the task. The

shaded rectangles represent task execution in a preemptive

region where no shared resource is accessed and the hatched

rectangles represent task execution in a region where it

accesses one or more shared resources. Different resources

are depicted using different styles of hatching.
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Figure 1. Best and Worst Case Results for Task Set 1

Instead of examining the entire timeline, the portions of

the timeline that exhibit differences between NPRAnalysis

and ResourceSharingAnalysis are examined. First, consider

time 10. At this time, task T2 is executing and the first

instance of task T1 is released. There is a possibility that

T2 has already finished executing region r1 and has entered

region r2 (best case), but it is not guaranteed to be so (worst

case). In NPRAnalysis (shown in Figure 1(b)), the assump-

tion is that a task executing in its NPR is not preemptible by

any other task. In this situation, the worst-case scenario for

task T1 is that it has to wait for task T2 to finish executing

its NPR. On the other hand, in ResourceSharingAnalysis

(shown in Figure 1(a)), although a shared resource is not

preemptible until a task volutarily relinquishes it, the task

itself can be preempted until some shared resource being

held by it is required by a higher-priority task. Hence, in

this situation, task T1 preempts task T2 in both the best and

the worst cases.

While using ResourceSharingAnalysis (1(a)), at time 12,
task T1 finishes executing region r1 in the worst-case and

enters region r2. On entering region r2, T1 requests access to

resource R1. Since there is a possibility that T2 has already

acquired that resource (best case for T2), the worst case for

T1 is to allow T2 to execute and wait until the resource is

relinquished. On the other hand, since there is a possibility

that the resource R1 has still not been acquired by T2, the

best case for T1 is that it acquires R1 immediately.

At time 15, an instance of task T0 is released. Once again,

in Figure 1(b), since there is a possibility that T2 has already

entered its NPR, the worst case for T0 is for it to wait for the

completion of T2’s NPR. Hence, it is scheduled to start at

time 24. On the other hand, in Figure 1(a), since T2 can be

preempted, T0 gets scheduled immediately in both the best

and the worst cases. Furthermore, in ResourceSharingAnal-

ysis, since T2 never requests resource R1, it can complete

executing all its regions, resulting in a response time equal

to its WCET. This example demonstrates the advantages of

using a resource sharing policy as opposed to assuming that

a task in a NPR is not preemptible at all.

5. Data-Cache Related Delay

In the examples provided in Section 4.1, the data-cache

related delays are assumed to be zero. In this section, calcu-

lation of data-cache related delays is described. As explained

in prior work [18], the data-cache related preemption delay

(D-CRPD) of a task is calculated by identifying the range of

iteration points at which a task is guaranteed to be within at

the time that it is preempted. The delay at each point in this

range is calculated using the access chains for the preempted

task and the maximum among these is assumed to be the

preemption delay at the given preemption point.

When a resource-sharing policy is used to control accesses

to shared resources in a system, a situation may arise where

a task that requests a resource is denied access to the

resource because another lower-priority task has already

acquired the same resource at an earlier point in time. In this

situation, the task requesting the resource gets blocked and

the lower-priority task is scheduled and allowed to execute

until the required resource is relinquished by it. Since the

task requesting the resource has already started its execution,

there is a possibility that it loads some of its data into the

data cache. When it gets blocked and lower-priority tasks

are allowed to execute, some of these data cache lines may

potentially be evicted from the data cache by the lower-

priority tasks. Consequently, when the blocked task resumes

execution at a later point in time, it experiences an additional

delay to reload the evicted data cache lines into the data

cache, similar to that experienced due to preemption. This

delay is termed Data-Cache Related Blocking Delay (D-

CRBD).

Calculations of the D-CRBD of a task are performed in

a manner similar to that of D-CRPD. However, there are

two distinctions. In the case of D-CRPD, the exact point of

execution of the preempted task at the time of preemption is

unknown. Instead, a range of iteration points where the task
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may be is identified. In the case of D-CRBD, since blocking

occurs at the time when a resource is requested, the exact

iteration point of the requesting task at the time is known.

The second distinction occurs in the identification of data

cache lines that may be used by tasks that are responsible

for causing the delay. In the case of D-CRPD, all cache lines

used by all tasks with priority higher than the preempted task

may potentially be candidates for eviction and, hence, need

to be considered as such. On the other hand, in the case of

D-CRBD, only the data cache lines used in specific resource-

usage regions of specific tasks need to be considered.

The algorithm used to calculate the blocking time for a

task that is blocked due to request for a particular resource

is shown in Figure 2. In addition to the resource usage time

remaining for the task that currently holds the requested

resource, nested resource usage must be taken into account.

For example, assume that a task T0 requests a resource R1

and gets blocked on that account by task T1. The blocking

time for task T0 includes the resource usage time remaining

for R1 by task T1 and the blocking times that T1 might

in turn incur due to other resources that it requests while

holding resource R1. The union of data cache lines used in

the regions thus identified forms the set of data cache lines

that may potentially be used while task T0 is blocked and,

hence, may contribute to the D-CRBD experienced by task

T0.

6. Correctness of Analysis

In the context of resource-sharing tasks, response time of

a job is the sum of five components, namely the base WCET

of the task, the execution time of higher-priority jobs, the

D-CRPD incurred due to preemption by higher-priority jobs,

the blocking time incurred due to shared resources and the

D-CRBD incurred due to blocking by lower-priority jobs.

Formulations for each of these components for a job Ji,j

and proofs of their correctness are presented in this section.

The new symbols introduced in this formulation are

explained as follows. nri represents the number of regions

within a task Ti. Cr
i,j represents the WCET of region r of a

job Ji,j . An added superscript of rem represents remaining

WCET of job Ji,j at a given time and a superscript of

base represents its base WCET. reli,j represents the time

of release of job Ji,j , calculated as (φi,j + (j − 1) · Pi).

I represents an interval between two consecutive releases

of higher-priority jobs for Ji,j and trem
I represents the time

remaining before the end of an interval I . ∆I
i,j represents

the data-cache related delay experienced by job Ji,j due to

preemption by the release of a higher-priority job at the end

of an interval I . hp(i, j) and lp(i, j) represent the sets of

jobs that have a higher and lower priority, respectively than

job Ji,j . bstri,j and wstri,j represent the earliest and latest

possible start time, respectively for region r of job Ji,j . ∆
R
i,j

represents the data-cache related delay experienced by job

Ji,j due to blocking by a lower-priority job using a resource

R that is required by Ji,j . δr
i,j represents the delay incurred

by a higher-priority job due to blocking by region r of a

lower-priority job Ji,j . Resi,j represents the set of resources

used by job Ji,j and Resr
i,j represents the set of resources

used by Ji,j in a specific region r. bcreq
R,r
i,j and wcreq

R,r
i,j

represent the best and worst-case request times, respectively

for resource R within region r of job Ji,j . Similarly, bcrel
R,r
i,j

and wcrel
R,r
i,j represent the best and worst-case release times

for R. Resource request and release times are relative to

the start of the region in which they are used. Due to the

usage of resource-sharing protocols, the priority of a job

may be different at different points of time. cpt
i,j represents

the current priority of Ji,j at time t and chp(i, j)t represents

the set of jobs that have a higher priority than job Ji,j at a

time t.

Theorem 6.1: The response time of a job Ji,j , calculated

as the sum of the values produced by Equations 1, 6, 7, 10

and 12, is a safe upper bound on the worst-case response

time of Ji,j in the context of resource-sharing tasks.

The correctness of the theorem is proved using Lemmas

6.2 , 6.3, 6.4 and 6.5.

Lemma 6.2: An upper bound on the execution time of a

job Ji,j , without considering the effects of interference from

other jobs, is given by Equation 1.

Base WCET of Ji,j =

nri∑

r=1

C
base,r
i,j (1)

The calculation of the base WCET of a job is performed

using the static timing analyzer. The correctness of the static

timing analyzer and, hence, that of Lemma 6.2 is assumed

in this paper (see [15], [9], [14], [10] for details).

The execution time of higher-priority jobs within the

response time of Ji,j is calculated by counting the number

of instances of every higher-priority task that may execute

within the response time of Ji,j and multiplying it by

the execution time of the specific job. In the context of

resource-sharing tasks, there may be some lower-priority job

executing at an inherited priority that is higher than Ji,j

and, hence, need to be considered as a higher-priority job.

Calculation of the set of lower-priority jobs that need to be

considered as higher-priority jobs is shown in Equation 2.

Calculation of the execution time of higher-priority jobs is

shown in Equation 3.

setlpi,j = {(m, n)} s.t.((m, n) ∈ (lp(i, j)∩chp(i, j)t))

∧(cpt−1
m,n 6= cpt

m,n),

∀t s.t. (t > reli,j) ∧ (t < ℜi,j) (2)
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function: calculateWaitTime(requesting task, res,
task holding resource, wait time)
wait time ← wait time +
resource usage time remaining for task holding resource

for (every resource other res requested by
task holding resource while holding res) {
wait time res ← 0
checkIfAvailableAndCalculateWaitTimeIfNot
(task holding resource, other res, wait time res)

wait time ← wait time + wait time res
}

function: checkIfAvailableAndCalculateWaitTimeIfNot
(requesting task res, wait time)
acquirers bc ← possible acquirers of res in best case
acquirers wc ← possible acquirers of res in worst case
if (requesting task has not already waited for res) {
if (either acquirers bc or acquirers wc contains tasks) {
for (every task acquirer in acquirers bc)
calculateWaitTime(requesting task, acquirer,
res, wait time)

for (every task acquirer in acquirerswc)
calculateWaitTime(requesting task, acquirer,
res, wait time)

}
}

Figure 2. Algorithm to Calculate D-CRBD

hpexi,j =
∑

(k,l)∈hp(i,j)

(⌈
ℜi,j

Pk

⌉ ·
nrk∑

r=1

Cr
k,l) +

∑

(m,n)∈setlpi,j

(⌈
ℜi,j

Pm

⌉ ·
nrm∑

r=1

Crem,r
m,n ,

∀r s.t. Resr
m,n 6= ∅)

(3)

Since our methodology calculates response times for every

job in the task set, the relative phasing between jobs is

known. Using this information, the calculation in Equation 3

is tightened. After the release of Ji,j , the time during which

no other higher-priority job is released may be calculated

using information about relative phasing as shown in Equa-

tion 4. The execution time remaining after the release of Ji,j

for any higher-priority job released before Ji,j is calculated

as shown in Equation 5.

ati,j = min
(k,l)∈hp(i,j)

[max(⌈
reli,j − φk,l

Pk

⌉ · Pk, 0)

+ φk,l − reli,j ] (4)

remreli,j =
∑

(k,l)∈hp(i,j),relk,l<reli,j

Crem
k,l (5)

The difference between the times calculated in Equations 4

and 5 gives the time for which Ji,j may execute without

being preempted. Equation 6 shows the calculation for

the new, tighter estimate on the execution time of higher-

priority jobs within the response time of Ji,j , performed in

accordance with our methodology.

hpexi,j =

∑

(k,l)∈hp(i,j)

(⌈
ℜi,j − max((ati,j − remreli,j), 0)

Pk

⌉·
nrk∑

r=1

Cr
k,l)

+(
∑

(m,n)∈setlpi,j

(⌈
ℜi,j − max((ati,j − remreli,j), 0)

Pm

⌉

·
nrm∑

r=1

Crem,r
m,n , ∀r s.t. Resr

m,n 6= ∅)) (6)

Lemma 6.3: An upper bound on the execution time of

higher-priority jobs within the response time of a job Ji,j ,

in the context of resource-sharing tasks, is given by Equation

6.

Proof: Assume that max((ati,j − remreli,j), 0) is not

subtracted from the iterative portion of Equation 6. It means

that this time can be stretched due to execution of higher-

priority jobs in between. By definition of (ati,j−remreli,j),
all higher-priority jobs released before Ji,j have completed

execution and no higher-priority jobs have been released yet

after Ji,j . Contradiction. Hence, max((ati,j − remreli,j), 0)
can be subtracted from the iterative portion of Equation 6

without jeopardizing safety of the analysis.

Every release of a higher-priority job is a potential pre-

emption point for Ji,j . Consider an interval between two

such consecutive releases. According to our methodology,

the job release at the end of this interval can be a feasible

preemption point for Ji,j if a) there is a possibility that

Ji,j is scheduled in the interval and b) there is a possibility

that Ji,j has not completed execution before the end of the

interval. These conditions are mathematically represented
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and the preemption delay is given by Equations 7.

conda =
∑

(k,l)∈hp(i,j)

crem
k,l < trem

I

condb =
∑

(k,l)∈hp(i,j)

Crem
k,l + Crem

i,j > trem
I

PDi,j =
∑

∆I
i,j , ∀I s.t. (conda ∧ condb) (7)

Lemma 6.4: An upper bound on the data-cache related

delay experienced by job Ji,j due to preemptions by higher-

priority jobs, in the context of fully preemptive tasks, is

given by Equation 7.

Lemma 6.4 has been proved in prior work [18].

Calculation of the set of regions within a lower-priority

job that could block a higher-priority job Ji,j requesting a

resource R is shown in Equation 8.

setregR
i,j = {r} s.t.R ∈ Resr

k,l∧bstrk,l+bcreq
R,r
k,l < reli,j

∧wstrk,l + wcrel
R,r
k,l > reli,j (8)

The calculation of the blocking time that Ji,j experiences

due to denial of resource R is given by Equation 9 and the

total blocking time for Ji,j is given by Equation 10.

BR
i,j = max

(k,l)∈lp(i,j),R∈Resk,l ,r∈setregR
i,j

[Crem,r
k,l +

∑

R
′
∈Resr

k,l
,req(R′ )≥req(R),rel(R′ )≤rel(R)

BR
′

k,l ]

(9)

Bi,j =
∑

R∈Resi,j

BR
i,j (10)

Due to potential blocking by the regions identified in Equa-

tion 8, job Ji,j experiences data-cache related delay. The

calculation of the data-cache related that Ji,j experiences

due to denial of resource R is given by Equation 11 and

the total data-cache related blocking delay for Ji,j is given

by Equation 12. Note that the formulae for blocking time

and blocking delay are specific to the Priority Inheritance

Protocol.

∆R
i,j = ⊎(k,l)∈lp(i,j),R∈Resk,l ,r∈setregR

i,j
[δr

k,l+
∑

R
′
∈Resr

k,l
,req(R′ )≥req(R),rel(R′ )≤rel(R)

∆R
′

k,l]

(11)

∆i,j =
∑

R∈Resi,j

∆R
i,j (12)

Lemma 6.5: a) An upper bound on the blocking time

that job Ji,j experiences due to lower-priorty jobs holding

resources required by Ji,j is given by Equation 10.

b) An upper bound on the data-cache related delay that

job Ji,j experiences due to all possible blocking scenarios

identified using Equation 10 is given by Equation 12.

Proof: Priority inheritance is transitive. If a job Ji,j is

blocked on resource R by a lower-priority job Jk,l, it is

possible that Jk,l in turn gets blocked on resource R
′

by

Jm,n, which has a priority lower than Jk,l. By definition of

the Priority Inheritance Protocol, Jm,n transitively inherits

the priority of Ji,j and finishes using resource R
′

. Then, it

resumes its initial priority and Jk,l executes at the priority

of Ji,j until it relinquishes R. This transitive property of

PIP proves the recursive part of the calculation shown in

Equations 9 and 11.

The correctness of the direct blocking time and blocking

delay is now proved. Assume region r of Jk,l directly blocks

Ji,j due to resource R.

a) R ∈ Resk,l is a necessary condition since the resource

has to be used in region r in order to block.

b) Assume bstrk,l + bcreq
R,r
k,l >= reli,j . This implies

that, even in the best case, resource R has not yet been

acquired by the lower-priority job Jk,l before the release

of Ji,j . Hence, region r of Jk,l cannot directly block Ji,j .

Contradiction. Hence, bstrk,l + bcreq
R,r
k,l < reli,j .

c) Assume wstrk,l + wcrel
R,r
k,l <= reli,j . It means that,

even in the worst case, resource R has already been re-

linquished by the lower-priority job Jk,l before the release

of Ji,j . Hence, region r of Jk,l cannot directly block Ji,j .

Contradiction. Hence, wstrk,l + wcrel
R,r
k,l > reli,j .

a), b) and c) demonstrate that the three conditions are

necessary in order to ascertain whether a region can directly

block a higher-priority job that requests a particular resource.

Assume region r of Jk,l does not directly block Ji,j due

to resource R. Assume that all three conditions for region r

in Equation 9 are satisfied. It means that there is a possibility

that resource R has been acquired by Jk,l, but no guarantee

that it has been relinquished, before the release of Ji,j .

Hence, region r of Jk,l directly blocks Ji,j . Contradiction.

This proves that the three conditions specified in Equation 9

are sufficient to determine whether a region directly blocks

a higher-priority job. Once the regions that could block job

Ji,j are identified, the data-cache related blocking delay

calculation is a union of delays due to each region.

Proof: Assume that the sum of the values produced

by Equations 1, 6, 7, 10 and 12 is not a safe upper bound

on the worst-case response time of a job. This implies that

the value produced by at least one of the equations is an

underestimation of the specific component represented by

the equation. Lemmas 6.2, 6.3, 6.4 and 6.5 demonstrate the

correctness of each component of the response time of a job

as a safe upper bound. Contradiction. Hence, the sum of the

values produced by Equations 1, 6, 7, 10 and 12 is a safe

upper bound on the worst-case response time of the job.
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7. Experimental Results

The experimental setup used in this paper is similar to

that used in prior work [18] and is omitted due to space

constraints. In all experiments, task sets that have a base

utilization (utilization without considering data cache related

delays) of 0.5 and 0.8 are used. Task sets of different sizes

(2, 4, 6, 8) are constructed for both these utilizations. For

a utilization of 0.8, a task set consisting of 10 tasks is also

constructed.

The characteristics of the task sets constructed are shown

in Table 2 for a base utilization of 0.8. The table indicates the
task IDs, phases (cycles) and periods (cycles) of each task

in the various task sets. The task IDs correspond to those

assigned to tasks in prior work [18]. Task IDs that only have

a single number indicate that the corresponding task does not

use any shared resource. In contrast, IDs of tasks that use

a shared resource are assigned a suffix of a dash followed

by a number. This new ID is used to distinguish between

different resource usage characteristics.

Table 2. Task Set Characteristics for Resource Sharing
Tasks - U = 0.8

# Tasks 2 4 6 8

IDs 27-1, 26-1 28,
13-1,
27-2,
19

21-1, 8-1, 20,
13, 25, 19

8, 26, 20-1, 15-
2, 9, 11, 8, 21

Phases 60K, 0 100K,
70K,
0, 0

60K, 0, 0, 0, 0,
0

27K, 27K, 27K,
0, 0, 0, 0, 0

Periods 300K, 500K 500K,
500K,
1000K,
2000K

400K, 500K,
500K, 1000K,
1000K, 2000K

400K, 500K,
800K, 800K,
1000K, 2000K,
2000K, 4000K

# Tasks=10

IDs 10-1, 8, 15, 9, 5, 11-2, 20-2, 27, 22, 17

Phases 85.2K, 85.2K, 85.2K, 85.2K, 85.2K, 54K, 0, 0, 0, 0

Periods 100K, 625K, 625K, 625K, 1000K, 1000K,
1250K, 1250K, 2500K, 5000K

Table 3 shows the resource usage characteristics for tasks

that use some shared resource. The first column indicates a

task ID that corresponds to task IDs in Table 2. The second

column shows the resource being used and the third and

fourth columns indicate the iteration points at which the

resource is requested and released, respectively. The format

of the iteration point is as follows. Each pair of numbers

within parantheses indicates one loop level, starting with

the outermost level and proceeding inwards. Within each

pair, the first number indicates the number of the loop in

the current level (in case of sequential loop nests) and the

second number indicates the iteration number within that

loop.

Results for the task sets in Table 2, obtained using both the

RM and the EDF scheduling policies, are shown in Figure

Table 3. Resource Usage Characteristics

Task ID Resource Request Iter Release Iter

8-1 R1 (1, 0), (2, 400) (1, 0), (2, 600)
R2 (1, 0), (2, 500) (1, 0), (2, 600)
R3 (1, 0), (2, 800) (1, 0), (2, 850)

10-1 R1 (1, 0), (2, 30) (1, 0), (2, 50)

11-1 R1 (1, 0), (2, 150) (1, 0), (2, 250)

11-2 R1 (1, 0), (2, 150) (1, 0), (2, 200)
R2 (1, 0), (2, 170) (1, 0), (2, 190)

13-1 R2 (1, 0), (2, 300) (1, 0), (2, 450)

15-1 R1 (1, 0), (4, 5), (1, 5) (1, 0), (4, 6, (1, 2)
R2 (1, 0), (4, 8), (1, 2) (1, 0), (4, 9, (1, 8)

15-2 R1 (1, 0), (4, 5), (1, 5) (1, 0), (4, 8, (1, 8)

18-1 R2 (1, 0), (2, 300) (1, 0), (2, 400)

19-1 R1 (1, 0), (2, 350) (1, 0), (2, 500)

20-1 R1 (1, 0), (2, 300) (1, 0), (2, 400)

20-2 R2 (1, 0), (2, 450) (1, 0), (2, 500)

21-1 R1 (1, 0), (2, 300) (1, 0), (2, 400)

23-1 R1 (1, 0), (2, 50) (1, 0), (2, 75)

26-1 R1 (1, 0), (2, 650) (1, 0), (2, 750)

27-1 R2 (1, 0), (2, 450) (1, 0), (2, 650)

27-2 R1 (1, 0), (2, 400) (1, 0), (2, 800)
R2 (1, 0), (2, 650) (1, 0), (2, 750)

3, respectively. For each task set, results using two different

analysis techniques are presented. The first technique is Re-

sourceSharingAnalysis, which employs a resource-sharing

protocol (specifically, the Priority Inheritance Protocol) to

control accesses to shared resources as described in this

chapter. The second technique is NPRAnalysis (discussed

in prior work [19]) and results obtained using this analysis

are shown for the sake of comparison. In the case of

NPRAnalysis, any region where a shared resource is used is

assumed to be a non-preemptive region, i.e., a region during

which a task cannot be preempted by any other task.

The technique presented in this paper extends from NPRs

to resource-sharing protocols without loss of tightness. The

method itself, bounding D-CRPD for resource-sharing tasks,

is without precedence. Hence, no comparison with prior

work can be presented.

From the graphs, several observations may be made. First

of all, RM and EDF exhibit little or no differences. In

cases where they do exhibit differences (some task sets with

utilization = 0.8), the behavior is as expected. The EDF

policy sometimes increases the response times of tasks with

shorter periods (higher priority according to the RM policy)

and sometimes decreases the response times of tasks with

longer periods, compared to the RM policy. This is due to the

fact that the relative deadlines of jobs alter their priorities.

It may be observed from the graphs that tasks with a high

priority sometimes have a higher response time in the case of

NPRAnalysis compared to ResourceSharingAnalysis. This

is expected since NPRAnalysis disallows preemptions alto-

gether when a task is executing in a critical section and

could thereby cause a delay in the start of execution of

190

Authorized licensed use limited to: Southern Illinois University Carbondale. Downloaded on July 21, 2009 at 12:26 from IEEE Xplore.  Restrictions apply. 



(a) # Preemptions for U = 0.8

(b) WCET w/ Delay for U = 0.8

(c) Response Time for U = 0.8

Figure 3. Results for U=0.8 using RM and EDF Policies

some higher-priority tasks. On the other hand, in the case of

ResourceSharingAnalysis, a higher-priority does not have to

wait unless (and until) it requires a resource that has been

acquired by some lower-priority task.

For some higher-priority tasks, however, it may be ob-

served that the response time is higher in the case of

ResourceSharingAnalysis compared to NPRAnalysis. This

is possible due to the fact that, in ResourceSharingAnalysis,

a task may get blocked by a lower-priority task when

it requests a resource and, consequently, may experience

some data-cache related blocking delay. In the case of

NPRAnalysis, although the start of execution of a higher-

priority task may get delayed if a lower-priority task is

executing in its critical section, a higher-priority task can

never get blocked by a lower-priority task once it begins to

execute. Hence, in NPRAnalysis, a task does not experience

data-cache related blocking delay.

Another observation that may be made from the graphs

is that some lower-priority tasks have a higher number

of preemptions in the case of ResourceSharingAnalysis

compared to NPRAnalysis while others have a lower number

of preemptions. Although this may seem contradictory, both

these results are valid. Some lower-priority task might be ex-

ecuting in a critical section when a higher-priority task is re-

leased. In this situation, NPRAnalysis disallows preemption

of the lower-priority task whereas ResourceSharingAnalysis

does not. Hence, the number of preemptions could be more

in the case of ResourceSharingAnalysis. In some cases, due

to relative positioning of jobs and the data-cache related

delays experienced by tasks, lower-priority tasks could have

a lower number of preemptions in ResourceSharingAnalysis

compared to NPRAnalysis.

Based on the above observations, there is no clear answer

to the question of whether using resource-sharing protocols

is a better option than making critical sections completely

non-preemptive when data-cache related delays are taken

into account. The answer is dependent on the characteristics

of the task set at hand. Analysis techniques, such as the ones

presented in prior work [19] and in this paper, may be used

to statically determine which method is better suited for a

given task set.

8. Conclusions and Future Work

In this paper, we have presented a technique to incorporate

resource-sharing protocols into the calculation of the data-

cache related delays and, hence, the worst-case execution

times and the worst-case response times of hard real-time

tasks that may contain critical sections within their exe-

cution. Through experimental results, we demonstrate that

the responsiveness of higher-priority tasks that do not use

a resource that has possibly been acquired by some lower-

priority task is improved compared to making every critical

section non-preemptive. However, we also observe from

experimental results that there is no clear overall choice be-

tween using resource-sharing protocols and making a critical

section non-preemptive when data-cache related delays are

considered. The answer is dependent on the characterisitcs

of the task set being analyzed. The techniques presented

in this paper and in our prior work may be employed to

determine the suitability of each choice, in terms of overall

schedulability, for a specific task set. To the best of our

knowledge, this is the first framework that calculates data-

cache related delay in the context of resource-sharing tasks.

As part of future work, we wish to extend our framework

to incorporate other resource-sharing protocols such as the

Priority Ceiling Protocol, the Stack Resource Protocol, etc.
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