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Abstract 

Naturally occurring stable isotope and trace elemental markers in otoliths have emerged 

as powerful tools for determining natal origins and environmental history of fishes in a 

variety of marine and freshwater environments.  However, few studies have examined the 

applicability of this technique in large river-floodplain ecosystems.  This study evaluated 

otolith microchemistry and stable isotopic composition as tools for determining 

environmental history of fishes in the Middle Mississippi River, its tributaries, and 

floodplain lakes in Illinois and Missouri, U.S.A.  Fishes were collected from 14 sites and 

water samples obtained from 16 sites during summer and fall 2006 and spring 2007.  

Otolith and water samples were analyzed for stable oxygen isotopic composition (δ18O) 

and concentrations of a suite of trace elements; otoliths were also analyzed for carbon 

isotopic composition (δ13C).  Tributaries, floodplain lakes, and the Mississippi and Lower 

Missouri Rivers possessed distinct isotopic and elemental signatures that were reflected 

in fish otoliths.  Fish from tributaries on the Missouri and Illinois sides of the middle 

Mississippi River could also be distinguished from one another by their elemental and 

isotopic fingerprints.  Linear discriminant function analysis of otolith chemical signatures 

indicated that fish could be classified back to their environment of capture (Mississippi 

River, floodplain lake, tributary on the Illinois or Missouri side of the Mississippi River, 

or lower Missouri River) with 71-100% accuracy.  This study demonstrates the potential 

applicability of otolith microchemistry and stable isotope analyses to determine natal 

origins and describe environmental history of fishes in the Middle Mississippi River, its 

tributaries, and floodplain lakes.  The ability to reconstruct environmental history of 

individual fish using naturally occurring isotopic markers in otoliths may also facilitate 

efforts to quantify nutrient and energy subsidies to the Mississippi River provided by 

fishes that emigrate from floodplain lakes or tributaries. 
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Introduction 

Understanding fish use of large rivers, their tributaries, and floodplain lakes 

throughout their life history is important for the management of riverine fish populations 

and the habitats they depend upon.  Many riverine species are believed to require 

connectivity of large rivers and floodplain habitats for spawning and larval nursery 

(Bayley & Li, 1992; Gozlan et al., 1998; Nunn et al., 2007a), foraging (Nunn et al., 

2007b), and winter refuge (Knights et al., 1995; Raibley et al., 1997).  However, there are 

currently several hypotheses regarding the primary source habitat (floodplain lakes, 

tributaries, and river channel) for fishes in large, regulated rivers.  Larval fishes are 

common in many floodplain lakes, with rheophilic taxa comprising an increasing 

proportion of fish assemblages in lakes as river-floodplain connectivity increases 

(Scheimer, 2000); larval fishes are also known to frequently drift into and out of 

connected floodplain lakes (Grift et al., 2003; Csoboth & Garvey, 2008).  Tributary 

streams may also contribute to fish assemblages in large rivers, at least near their 

confluences (Brown & Coon, 1994; Robinson et al., 1998; Kiffney et al., 2006).  Larval 

fishes are sometimes abundant in the main channel of large rivers, suggesting that main 

channels may be more hospitable as larval nursery areas than previously thought; species 

composition of larval fishes in the main channel is often distinct from that of off-channel 

habitats (Holland, 1986; Dettmers et al., 2001).  Nearshore, slack-water habitats may 

provide the primary nursery area for rheophilic fishes in some rivers (i.e., the “inshore 

retention concept”, Scheimer et al., 2001; Keckeis & Scheimer, 2002).  Additionally, 

spawning of some species of riverine fishes does not appear to coincide with the annual 

flood pulse, but occurs primarily under non-flood conditions within the river’s main 

channel (Humphries et al., 1999).  Uncertainty regarding the relative importance of 

source habitats (floodplain lakes, tributaries, and river channel) for fishes in large, 

regulated rivers such as the Mississippi River and the presence of fishes of commercial, 

recreational, and conservation importance in these highly modified ecosystems 

demonstrates a need for techniques to facilitate identification of recruitment sources for 

large river fishes. 

Ultrasonic and radio telemetry have provided valuable insights into movement 

and habitat use of fishes in the Mississippi River and tributaries (Zigler et al., 2003; 

Vokoun & Rabeni, 2005; DeGrandchamp et al., 2008).  However, this technique is 
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limited primarily to large bodied species and older individuals.  Tracking tagged fish can 

also be labor intensive and sample sizes are often limited due to cost or large study areas 

and rapid movement of tagged fish (Winter, 1996).  Much uncertainty remains regarding 

the principle recruitment sources and environments used during early life stages for 

several fishes that inhabit the Mississippi River, including species of recreational and 

commercial interest (e.g., ictalurids, centrarchids, Ictiobus spp.), conservation concern 

(e.g., shovelnose sturgeon Scaphirhynchus platorynchus, paddlefish Polyodon spathula, 

blue sucker Cycleptus elongatus, and chubs Macrhybopsis spp.) and invasive species 

(e.g., bighead carp Hypophthalmichthys nobilis and silver carp H. molitrix).  Improved 

knowledge of natal habitats and environmental history of early life stages of Mississippi 

River fishes would be valuable for their conservation and management. 

Microchemical and stable isotopic analyses of fish otoliths offer the potential to 

provide new insights into the relative importance of river channel, floodplain lake, and 

tributary habitats as source environments for fishes large, regulated rivers.  Application of 

otolith trace element and isotopic compositions as natural tags has emerged as an 

effective technique for addressing questions regarding environmental history of 

freshwater fishes (e.g., Wells et al., 2003; Brazner et al., 2004; Dufour et al., 2005; 

Munro et al., 2005; Feyrer et al., 2007; Whitledge et al., 2007; Schaffler & Winkelman, 

2008).  Trace element and stable isotopic compositions of otoliths often reflect those of 

environments occupied by a fish (e.g., Kennedy et al., 2002; Wells et al., 2003; Dufour et 

al., 2005; Whitledge et al., 2006) and are unaltered metabolically following deposition 

(Campana & Thorrold, 2001).  Thus, association of otolith biochronology with isotopic 

and elemental composition enables retrospective description of fish environmental 

history when an individual has resided in chemically distinct locations for a period of 

time sufficient to incorporate the signature of those sites (Kennedy et al., 2002).  Crook & 

Gillanders (2006) demonstrated the applicability of otolith microchemistry for identifying 

common carp recruitment sources in the Murray River, Australia, and Zeigler & 

Whitledge (2010) confirmed that stable isotopic signatures in otoliths can be used to 

reliably identify environment of origin (river, floodplain lake, or tributary) for fishes in 

the Illinois River, Illinois.  However, the applicability of otolith trace element and stable 

isotopic signatures as natural markers of fish environmental history in the Mississippi 

River and associated water bodies has not been assessed.   
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The goal of this study was to assess whether otolith microchemistry and stable 

isotopic analyses may be useful tools for determining environmental history of fishes in 

the Middle Mississippi River in Illinois and Missouri, U.S.A.  Specific objectives were to 

determine whether water trace elemental and stable oxygen isotopic compositions 

differed among floodplain lakes, tributaries, and the Middle Mississippi River, to 

determine whether fish otolith microchemistry and isotopic compositions reflected those 

of environments (floodplain lakes, tributaries, and the Mississippi River) in which they 

were captured, and to determine the accuracy with which individual fish could be 

classified back to their collection locations based on otolith elemental and stable isotopic 

signatures. 

 

Study Area 

The Middle Mississippi River is defined as the unimpounded section of the river 

extending from the mouth of the Missouri River to the Ohio River confluence.  Our study 

area included the entire Middle Mississippi River and extended upstream into lower 

portion of the Upper Mississippi River (pool 25).  Fish and water samples were collected 

from 14 Mississippi River main stem, tributary, and floodplain lake locations (Fig. 1).  

These sites included the Upper Mississippi River at Batchtown, Illinois, Middle 

Mississippi River at Thebes, Illinois, five tributaries of the Mississippi River on the 

Missouri side (Apple Creek, Cuivre River, Headwater Diversion Channel, Meramec 

River, and Missouri River), four tributaries of the Mississippi River on the Illinois side 

(Big Muddy River, Clear Creek, Illinois River, and Kaskaskia River), and four 

backwater/floodplain lakes (Grand Tower Chute, Middle Swan Lake, Prairie Pond, and a 

pond at the Middle Mississippi River Wetlands Field Station).  One lake (Middle Swan 

Lake) is adjacent to the Illinois River, but is close (about 7 km) to the Illinois River-

Mississippi River confluence.  Water samples were also collected from two additional 

tributaries of the Mississippi River, including one on the Missouri side (River Aux Vases) 

and one on the Illinois side (Mary’s River).  Sample collection locations included all 

major tributaries and floodplain lakes along the Middle Mississippi River. 
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Methods 

Two water samples were collected from each of the 16 sites (Fig. 1), including 

one for stable oxygen isotope analysis and one for analysis of concentrations of a suite of 

twenty major, minor, and trace elements (including Ca, Sr, Ba, Mg, and Mn).  Both water 

samples were collected at all sites during summer and fall 2006 and again in spring 2007 

to assess seasonal changes in stable isotopic and elemental compositions within the 

Mississippi River, tributaries, and floodplain lakes.  Water samples for stable oxygen 

isotope analysis were collected in scintillation vials containing minimal air space and 

sealed with Parafilm to curtail evaporative loss and fractionation (Kendall & Caldwell, 

1998).  Water samples were analyzed for stable oxygen isotopic composition using a 

Thermo Finnigan Delta Plus XL® isotope ratio mass spectrometer.  Stable oxygen isotope 

ratios were expressed in standard  notation, defined as parts per thousand deviation 

between the isotope ratios of a sample and standard material (Vienna Standard Mean 

Ocean Water):  

18O (‰) = [(Rsample / Rstandard) – 1] x 1000 

where R represents 18O/16O.  Mean standard deviation of replicate measurements of water 

δ18O was 0.23‰ (n = 3 replicates per sample).  Water samples for elemental analysis 

were collected using a syringe filtration technique described in Shiller (2003).  Samples 

for analysis of elemental concentrations were stored on ice or refrigerated until overnight 

shipment and analysis by high-resolution, inductively coupled plasma mass spectrometry 

(HR-ICPMS) at the Center for Trace Analysis, University of Southern Mississippi.  

Elemental concentration data were converted to molar element:calcium ratios 

(mmol/mol).  Mean standard deviations of replicate measurements of water Sr:Ca, Ba:Ca, 

Mn:Ca, and Mg:Ca were 0.03 mmol/mol, 0.02 mmol/mol, 0.02 mmol/mol, and 0.02 

mol/mol, respectively (n = 2 replicates per sample).  

Fishes were collected from each of 14 sites during summer or early fall 2006.  Up 

to thirty individuals were collected from each site.  Centrarchids (largemouth bass 

Micropterus salmoides, spotted bass M. punctulatus, green sunfish Lepomis cyanellus, 

bluegill L. macrochirus, orangespotted sunfish L. humilis, longear sunfish L. megalotis, 

and black crappie Pomoxis nigromaculatus) were collected where possible due to their 

recreational importance and widespread availability, however temperate basses (yellow 

bass Morone mississippiensis and white bass M. chrysops) and freshwater drum 
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(Aplodinotus grunniens) were collected where sufficient numbers of centrarchids could 

not be found since they are also common in riverine, tributary, and floodplain lake 

habitats.  A recent analysis of otolith and water chemistry data from the Mississippi and 

Illinois Rivers found that there were no significant differences in relationships between 

water and otolith stable oxygen isotopic compositions (δ18O) or Sr:Ca ratios among the 

fish species collected in this study (Zeigler and Whitledge 2010).  Fishes were captured 

by alternating current (AC) or direct current (DC) electrofishing or trap netting at sites 

where a boat could be launched.  At sites without boat access, fish were captured by 

seining and angling.  Fishes were euthanized with MS-222, placed on ice for transport to 

the laboratory, and stored frozen until otolith removal.   

Sagittal otoliths were removed from each fish using non-metallic forceps, rinsed 

with distilled water, and stored dry in polyethylene microcentrifuge tubes until 

preparation for analysis.  From each fish one otolith was analyzed for stable isotopic 

composition.  One otolith from each fish was analyzed for stable oxygen and carbon 

isotopic composition.  Material from the outer edge of otoliths > 1 mg was subsampled 

and pulverized, as this portion of the otolith reflects a fish’s most recent environmental 

history.  Otoliths < 1 mg were pulverized whole with a mortar and pestle due to the 

difficulty of obtaining a sufficient edge subsample.  Otoliths were analyzed for stable 

oxygen and carbon isotopic composition using a ThermoFinnigan Delta plus XP isotope 

ratio mass spectrometer interfaced with a Gas Bench II carbonate analyzer.  Stable 

oxygen and carbon isotope ratios for otolith samples were expressed in standard  

notation (18O or 13C, ‰); mean standard deviation for replicate measurements (n=2 

replicates per sample) was 0.8‰ for 18O and 0.4‰ for 13C. 

The second sagittal otolith from each fish was used for analysis of trace 

element:calcium ratios (e.g., Sr:Ca, Ba:Ca, Mg:Ca, Mn:Ca).  Otoliths for trace element 

analysis were embedded in Epo-fix epoxy, sectioned in the transverse plane using an 

ISOMET low-speed saw, and then sanded and polished to reveal annuli.  Otolith thin 

sections were prepared for analysis under a class 100 laminar flow hood and handled only 

with nonmetallic acid-washed forceps. Thin sections were mounted on acid-washed glass 

slides using double-sided tape, ultrasonically cleaned for 5 min in ultrapure water, and 

dried for 24 h under the laminar flow hood.  Mounted and cleaned thin sections were 

stored in acid-washed polypropylene Petri dishes in a sealed container until analysis.  
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Otolith thin sections were analyzed for 88Sr, 137Ba, 24Mg, 55Mn, and 44Ca using a Perkin-

Elmer ELAN 6000 inductively coupled plasma mass spectrometer (ICPMS) coupled with 

a CETAC Technologies LSX-500 laser ablation system.  The laser ablated a transect 

along the long axis of the otolith section from one side of the otolith core to the edge of 

the opposite side of the otolith (beam diameter = 25 µm, scan rate = 10 µm/s, laser pulse 

rate = 10 Hz, laser energy level = 9mJ, wavelength = 266 nm).  A standard developed by 

the U. S. Geological Survey (MACS-1, CaCO3 matrix) was analyzed every 12-15 

samples to adjust for possible instrument drift.  Each sample analysis was preceded by a 

gas blank measurement.  Isotopic counts were converted to elemental concentrations 

(µg/g) after correction for gas blank, matrix, and drift effects.  Mean limits of detection 

for 88Sr, 137Ba, 24Mg, and 55Mn were 0.06, 0.35, 0.66, and 0.75 µg/g, respectively; 

concentrations of these elements in all otoliths were well above detection limits.  Otolith 

elemental concentrations were calculated from integrations over the final 10 s of laser 

ablation transects, as the outer portion of the otolith reflects a fish’s most recent 

environmental history.  Trace element concentrations were normalized to calcium (Ca) 

concentration based on the consideration of Ca as a pseudointernal standard (Bickford & 

Hannigan, 2005; Ludsin et al., 2006); data are reported as element:Ca ratios (mmol/mol). 

 Both univariate and multivariate approaches were used to assess differences in 

water and otolith trace element and stable isotopic signatures among sites and site types 

(floodplain lakes, Mississippi River tributaries on the Illinois side of the river, Mississippi 

River tributaries on the Missouri side of the river, the Upper Mississippi River, the 

Middle Mississippi River, and the lower Missouri River).  One way analyses of variance 

(ANOVAs) followed by Tukey’s HSD test for multiple comparisons were used to assess 

differences in individual water and otolith chemistry parameters among sites and site 

types.  Individual otolith chemistry parameters that differed significantly among sampling 

locations were entered into a multivariate analysis of variance (MANOVA) and a 

canonical discriminant analysis (CANDISC procedure in SAS) to characterize the 

multivariate otolith chemistry signatures of the Mississippi River, its floodplain lakes, 

tributaries on the Missouri and Illinois sides of the Mississippi River, and the lower 

Missouri River; a plot of the first two canonical variates was used to visually depict 

differences among site types.  Pillai’s trace statistic was used to assess significance of 

differences in multivariate otolith chemistry signatures among site types.  Additionally, 
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linear discriminant function analysis with a leave-one-out jackknife procedure was used 

to determine the accuracy with which individual fish could be classified back to their 

environment of capture (the Mississippi River, its floodplain lakes, tributaries on the 

Missouri and Illinois sides of the Mississippi River, or the lower Missouri River) using 

multivariate otolith chemistry signatures (Brazner et al., 2004).  P-values ≤ 0.05 were 

considered significant for all analyses.  

 

Results 

Mean water18O differed among sites (ANOVA, F=2.11, df=15,32, p=0.0376) 

and site types (ANOVA, F=4.15, df=5,42, p=0.0062) with floodplain lakes generally 

being more enriched in 18O than the Missouri and Mississippi rivers (Fig. 2a).  Water 

Sr:Ca exhibited differences among individual sites (ANOVA, F=13.17, df=15,32, 

p<0.0001, Fig. 2b) and site types (ANOVA, F=8.81, df=5,42, p<0.0001), with one 

floodplain lake (Grand Tower Chute) and the Missouri River having the highest mean 

water Sr:Ca values.  Water Ba:Ca also differed significantly among individual sites 

(ANOVA, F=16.94, df=15,32, p<0.0001, Fig. 2c), with Grand Tower Chute and the 

Meramec River possessing the highest mean water Ba:Ca values and Middle Swan Lake, 

the Big Muddy River, and the Illinois River having the lowest mean water Ba:Ca values.  

Mean water Mn:Ca and Mg:Ca differed among individual sites (ANOVAs, F=2.96, 

df=15,32, p=0.006 and F=17.37, df=15,32, p<0.0001, respectively) but neither water 

Mn:Ca nor Mg:Ca differed among site types (ANOVAs, F=0.65, df=5,42, p=0.66 and 

F=0.66, df=5,42, p=0.66, respectively)  

 Mean otolith 18O values were significantly different among sites (ANOVA, 

F=27.21, df=13,128, p<0.0001) and site types (ANOVA, F=32.62, df=5,136, p<0.0001), 

with otoliths of fish from floodplain lakes enriched in 18O compared to those of 

individuals collected from  the Mississippi and Missouri rivers (Fig. 3a).  Fish collected 

from smaller tributaries to the Mississippi River displayed intermediate otolith 18O 

values.  Mean otolith 13C also exhibited differences among sites (F=52.88, df=13,128, 

p<0.0001) and site types (F=87.03, df=5,136, p<0.0001), with otoliths from fish collected 

in most floodplain lakes and the Missouri River being more enriched in 13C than those 

from fish captured in the Mississippi River and its smaller tributaries (Fig. 3b).  
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 Mean otolith Sr:Ca displayed significant differences among individual sites 

(ANOVA, F=23.86, df=13,124, p<0.0001), such as fish from Grand Tower Chute having 

a higher mean otolith Sr:Ca value than fish from all other floodplain lakes (Fig. 3c).  

Otolith Sr:Ca also exhibited significant differences among site types (ANOVA, F=10.10, 

df=5,132, p<0.0001) with fish from the Missouri River having higher otolith Sr:Ca 

compared to fish collected in the Mississippi River and smaller tributaries that enter the 

Mississippi River in Missouri.  Fish from floodplain lakes and tributaries entering the 

Mississippi River in Illinois had intermediate otolith Sr:Ca values that varied among 

individual water bodies.  Mean otolith Ba:Ca was significantly different among fish from 

individual sites (ANOVA, F=9.00, df=13,124, p<0.0001, Fig. 3d) and among site types 

(ANOVA, F=7.93, df=5,132, p<0.0001).  Fish from one floodplain lake (Grand Tower 

Chute) had the highest mean otolith Ba:Ca value, while otolith Ba:Ca values were lowest 

for fish from the Big Muddy River and the Illinois River.  Mean otolith Mg:Ca differed 

among sites (ANOVA, F=7.90, df=13,124, p<0.0001) and site types (ANOVA, F=11.39, 

df=5,132, p<0.0001).  Mean otolith Mn:Ca differed among individual sites (ANOVA, 

F=4.81, df=13,124, p<0.0001), but did not differ among site types (ANOVA, F=2.09, 

df=5,132, p=0.08).  Otolith Mg:Ca and Mn:Ca were not included in subsequent 

multivariate and discriminant function analyses because relationships between otolith and 

water Mg:Ca and Mn:Ca values for individual fish were non-significant (Mg:Ca: r2 = 

0.0455, p = 0.3285; Mn:Ca: r2 = 0.0334, p = 0.4037).  In contrast, otolith 18O, Sr:Ca, and 

to a lesser degree, Ba:Ca of individual fish were correlated with corresponding water 

values for each of these markers (18O: r2 = 0.62, p<0.0001; Sr:Ca: r2 = 0.73, p<0.0001; 

Ba:Ca: r2 = 0.21, p<0.0001). 

Multivariate analysis of otolith data incorporating 18O, 13C, Sr:Ca, and Ba:Ca 

indicated that the Mississippi and Missouri Rivers, Mississippi River tributaries, and 

floodplain lakes possessed significantly different otolith chemistry signatures (Pillai’s 

Trace Statistic=1.67, F=14.52, df=16, 324, p<0.0001). A plot of the first two canonical 

variates from the CANDISC procedure in SAS depicts distinct otolith chemistry 

signatures among site types (Fig. 4).  The first discriminant function (CAN1) and second 

discriminant function (CAN2) from this model accounted for 61% and 28% of the total 

dispersion in the dataset, respectively.  Otolith carbon (13C) and oxygen (18O) isotopic 

compositions, and Sr:Ca and Ba:Ca compositions were correlated with CAN1 
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(correlation coefficients of 0.99, 0.41, 0.31, and 0.26 respectively; p<0.05).  Otolith 18O 

and Sr:Ca were also correlated with CAN2 (correlation coefficients of 0.72 and -0.43 

respectively; p<0.05), however 13C and Ba:Ca were not associated with CAN2 (p>0.10).  

Thus, 13Cand18O appeared to be the most important markers in defining otolith 

chemical fingerprints in multivariate discriminant space; however, otolith Sr:Ca and, to a 

lesser extent, Ba:Ca also contributed to differences in multivariate otolith chemistry 

signatures among site types.   

Linear discriminant function analysis of otolith chemistry data incorporating 18O, 

13C, Sr:Ca, and Ba:Ca with a leave-one-out jackknife procedure indicated that fish could 

be classified back to their environment of capture (the Middle Mississippi River, Upper 

Mississippi River, floodplain lakes, tributaries on the Missouri and Illinois sides of the 

Mississippi River, or the Lower Missouri River) with 71-100 % accuracy (Table 1).  

Most classification errors occurred among fish collected from small tributaries of the 

Mississippi River, although some of these individuals were misidentified as having been 

collected in small tributaries on the opposite side of the Mississippi River (in Illinois or 

Missouri) from their location of capture.  Two fish from the Upper Mississippi River 

were erroneously assigned to tributaries that enter the Mississippi River on its eastern 

side (tributaries that enter the Mississippi River from the state of the Illinois).  All fish 

captured in the Lower Missouri and Middle Mississippi Rivers were correctly assigned to 

the environment in which they were collected.  Neither the addition of otolith Mg:Ca   

nor otolith Mn:Ca data to the linear discriminant function analysis improved 

classification accuracy.   

     

Discussion 

 Results indicated that fishes from the Mississippi River, floodplain lakes, and 

tributaries in both Illinois and Missouri, including the lower Missouri River, could be 

distinguished with a high degree of accuracy based on multivariate otolith chemical 

signatures.  The naturally-occurring markers that best discriminated among environments 

and fish from the water bodies sampled in this study (18O, 13C, Sr:Ca and Ba:Ca) have  

frequently been among the most useful indicators of fish origin in other geographic 

locations (Gao et al., 2001; Wells et al., 2003; Brazner et al., 2004; Bickford and 

Hannigan, 2005; Dufour et al., 2005; Whitledge et al., 2007; Whitledge, 2009).  
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Classification success rates for individual fish to environment of capture in this study 

were comparable to or greater than those of published studies that used microchemistry 

and stable isotopic composition as indicators of source location for fishes in freshwater 

(Bronte et al., 1996; Wells et al., 2003; Brazner et al., 2004; Clarke et al., 2007; Schaffler 

& Winkelman, 2008; Whitledge, 2009; Zeigler & Whitledge, 2010), marine (Campana et 

al., 1995), and estuarine (Thorrold et al., 1998; Gillanders & Kingsford, 2000) 

environments.  Most classification errors occurred among fish collected from small 

tributaries of the Mississippi River, although some of these individuals were 

misidentified as having been collected in small tributaries on the opposite side of the 

Mississippi River (in Illinois or Missouri) from their location of capture.  These 

classification errors are potentially less serious given that they are confined to a similar 

habitat type (small tributaries).  Only one fish from a floodplain lake was inaccurately 

classified to a tributary of the Mississippi River in Illinois and no fish collected from the 

Middle Mississippi and Missouri Rivers were misclassified as having come from other 

environments, reflecting the distinct otolith chemistry signatures of the environments 

sampled during this study.  

Differences in water 18O among rivers and streams sampled in this study can be 

attributed principally to regional and continental-scale variations in the 18O values of 

precipitation, with the Missouri and Mississippi Rivers having more negative water 18O 

values compared to local tributaries because these large rivers convey isotopically 

depleted waters from the distant upstream portions of their watersheds (Coplen & 

Kendall, 2000; Winston & Criss, 2003; Hoefs, 2004).  Distinct water 18O signatures of 

floodplain lakes and the Mississippi River are likely due primarily to the greater 

opportunity for evaporative fractionation (Hoefs, 2004) to be expressed in floodplain 

lakes as a result of their longer water residence times compared to the river.  Whitledge et 

al. (2007) observed similar differences in water hydrogen isotopic composition (δ2H, 

which undergoes similar fractionation processes in the hydrologic cycle) between 

floodplain ponds and the upper Colorado River due to higher evaporation rates of pond 

water.  Persistent differences in water 18O between the Illinois River and its floodplain 

lakes have also been documented (Zeigler & Whitledge, 2010).  Otolith 18O is 

influenced by water 18O and temperature (Kalish, 1991); geographic differences in water 

18O can thus potentially lead to corresponding differences in otolith 18O that can be 
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used to identify natal origins of fishes (Dufour et al., 2005).  Otolith 13C also differed 

between fish from the middle Mississippi River and its smaller tributaries and fish 

collected in floodplain lakes, with otolith 13C values for fish from floodplain lakes 

enriched in 13C compared to fish collected in riverine environments; this pattern has 

previously been observed in the Illinois River and its floodplain lakes (Zeigler & 

Whitledge, 2010).  Mechanisms responsible for observed differences in otolith 13C 

among environments sampled in this study are unknown.  Otoliths incorporate both 

dissolved inorganic carbon (DIC) and metabolically-derived carbon (Kalish, 1991; 

Solomon et al., 2006).  Observed differences in otolith 13C likely reflect differences in 

13C of DIC between floodplain lake and riverine habitats.  Although 13C of DIC was 

not measured, it is conceivable that floodplain lake DIC could potentially be enriched in 

13C compared to DIC in the Mississippi River due to higher rates of photosynthesis by 

aquatic primary producers in floodplain lakes (yielding higher photosynthesis:respiration 

ratios and enriched 13C values of DIC; Quay et al. 1986) or because the longer water 

residence time in floodplain lakes may enable equilibration of DIC with atmospheric CO2 

(Hoefs, 2004).  Remineralization of particulate organic carbon in sediments is also a 

major source of DIC (Quay et al., 1986).  Otolith 13C of fish collected in the Missouri 

River was enriched in 13C compared to otolith 13C values of fish collected from the 

Mississippi River, likely reflecting differences in 13C of DIC of these two rivers (Fry & 

Allen, 2003).  Higher 13C values of river DIC are associated with more mineral 

carbonate weathering and a relatively low contribution of isotopically light respired 

carbon (Hoefs, 2004).  Differences in water and otolith Sr:Ca and Ba:Ca among locations 

sampled in this study are likely due primarily to variation in bedrock geology (Wells et 

al., 2003), such as occurs between tributaries on the Illinois and Missouri sides of the 

Mississippi River or between the Missouri and Upper Mississippi River basins.   

 Regardless of the mechanisms responsible for differences in water and otolith 

elemental and isotopic compositions among sampling locations, multi-parameter 

chemical “fingerprints” in otoliths established in this study will be useful for 

distinguishing among fishes from the Middle Mississippi River, its tributaries (including 

the Lower Missouri River), and floodplain lakes if observed differences in environmental 

signatures persist in future years.  Several studies have reported interannual stability in 
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otolith isotopic and trace elemental signatures in some freshwater environments 

(Zimmerman & Reeves, 2002; Wells et al., 2003; Dufour et al., 2005; Munro et al., 2005; 

Ludsin et al., 2006; Whitledge et al., 2007; but see Schaffler & Winkelman, 2008).  Mean 

water 18O values for the Middle Mississippi, Lower Missouri, Illinois, Big Muddy, and 

Meramec Rivers during this study were within the ranges of water 18O values reported 

for these rivers in prior studies (Frederickson & Criss, 1999; Coplen & Kendall, 2000; 

Winston & Criss, 2003), suggesting that 18O signatures of these rivers exhibit some 

stability across years.  The Middle Mississippi River, its floodplain lakes and tributaries 

possessed distinct isotopic and elemental signatures that were reflected in fish otoliths 

despite some seasonal variation in water chemistry.  Substantial inter-annual variation in 

environmental signatures may preclude the use of otolith chemistry for identifying natal 

origins of fishes during some years or may require that a “library” of environmental 

signatures be developed for multiple years and different classification models applied to 

fish from different year classes (Ludsin et al., 2006; Schaffler & Winkelman, 2008). 

 Otoliths from ten fish species (primarily centrarchids) were analyzed in this study, 

raising the possibility that inter-site differences in otolith chemistry may have been 

influenced by differences in relationships between water and otolith chemistry among 

species.  However, differences in mean otolith 18O, Sr:Ca, and Ba:Ca among collection 

sites incorporating data from individuals of all species reflected differences in water 

18O, Sr:Ca, and Ba:Ca among water bodies despite minor differences in species 

composition among collection sites.  Additionally, Zeigler & Whitledge (2010) 

determined that there were no significant differences in relationships between water and 

otolith δ18O and Sr:Ca signatures among the fish species collected in this study, 

consistent with the findings of some prior studies (Patterson et al., 1993; Whitledge et al., 

2007).  Differences in mean otolith δ13C values between fishes from lake and riverine 

habitats were also consistent among species in the present study and in prior studies 

(Whitledge et al., 2007; Zeigler & Whitledge, 2010).  Zeigler & Whitledge (2010) did 

find significant differences in relationships between water and otolith Ba:Ca among some 

of the fish species sampled in the present study; freshwater drum exhibited elevated 

otolith Ba:Ca values compared to several species of centrarchids.  Species-specific 

incorporation of trace elements (Mg, Mn, Sr, and Ba) into otoliths has been noted in other 

studies (Swearer et al., 2003; Hamer & Jenkins, 2007).  However, otolith Ba:Ca was the 
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least informative of the four natural chemical markers used in this study, as few 

significant differences in otolith Ba:Ca were present among our collection sites.  Thus, 

available evidence suggests that distinct multivariate otolith chemical fingerprints for the 

Middle Mississippi River, its tributaries, and floodplain lakes were driven primarily by 

differences in elemental and isotopic compositions among water bodies and were not an 

artifact of differences in fish species composition among our collection sites. 

 The accuracy with which fish were classified back to their environment of capture 

using linear discriminant function analysis demonstrates the potential applicability of 

multivariate otolith chemical signatures as indicators of recruitment sources and 

environmental history of fishes in the Middle Mississippi River, its tributaries, and 

floodplain lakes.  Otolith microchemistry or stable isotopic compositions have been 

successfully applied to distinguish fish of floodplain lake and riverine origin in other 

river systems (Crook & Gillanders, 2006; Whitledge et al., 2007; Zeigler and Whitledge, 

2010).  Estimating the relative contributions of floodplain lake, tributary, and riverine 

habitats to fish populations in the Middle Mississippi River appears feasible via analysis 

of naturally occurring chemical signatures in otoliths.  Potential specific applications of 

otolith chemistry in the Middle Mississippi River may include identification of the 

principle recruitment sources for fish species of recreational and commercial interest 

(e.g., ictalurids, centrarchids, Ictiobus spp.), species of conservation concern (e.g., 

shovelnose sturgeon Scaphirhynchus platorynchus, paddlefish Polyodon spathula, blue 

sucker Cycleptus elongatus, and chubs Macrhybopsis spp.), and invasive species (e.g., 

bighead carp Hypophthalmichthys nobilis and silver carp H. molitrix).  However, 

characterization of relationships between water and otolith chemical signatures for 

species not sampled in this study will be required.  The ability to reconstruct 

environmental history of individual fish using naturally occurring isotopic markers in 

otoliths may also facilitate efforts to quantify nutrient and energy subsidies to the Illinois 

River provided by fishes that immigrate to the river from floodplain lakes or tributaries 

(Polis et al., 1997).       
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Table 1.  Results of linear discriminant function analysis (LDFA) showing classification accuracy (determined by jackknife 

procedure) for individual fish to environment of collection based on otolith 18O, 13C, Sr:Ca, and Ba:Ca.  Only fish with data for all four 

otolith chemistry parameters were entered into the LDFA. 

 

 

                                       Assigned Location 

Source 

Location 

Floodplain  

Lakes 

Illinois 

Tributaries 

Missouri 

Tributaries 

Upper 

Mississippi 

River  

Rutaries 

Middle 

Mississippi 

River 

Missouri 

River 

% 

Correct 

Floodplain Lakes 16 1 0 0 0 0 94 

Illinois Tributaries 0 22 5 4 0 0 71 

Missouri Tributaries 0 2 22 2 1 0 82 

Upper Mississippi  

       River 

0 2 0 10 0 0 83 

Middle Mississippi 

       River 

0 0 0 0 11 0 100 

Missouri River 0 0 0 0 0 10 100 
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List of Figures 

 

Fig. 1.  Map of study area showing sampling locations distinguished by site type 

(floodplain lakes, tributaries, and large rivers).  Sites include UMR (upper Mississippi 

River near Batchtown, Illinois), MMT (middle Mississippi River near Thebes, Illinois), 

ACK (Apple Creek), CVR (Cuivre River), DVC (Headwater Diversion Channel), MMR 

(Meramec River), MOR (Missouri River), BMR (Big Muddy River), CCK (Clear Creek), 

IRG (Illinois River), KSR (Kaskaskia River), GTC (Grand Tower Chute), MSL (Middle 

Swan Lake), PRP (Prairie Pond), and BPT (a pond at SIU’s Middle Mississippi River 

Wetlands Field Station). 

 

Fig. 2.  Mean water (a) 18O, (b) Sr:Ca, and (c) Ba:Ca values (SE) for collection sites 

grouped by site type (floodplain lakes, tributaries, and large rivers).  Sites include UMR 

(upper Mississippi River near Batchtown, Illinois), MMT (middle Mississippi River near 

Thebes, Illinois), ACK (Apple Creek), CVR (Cuivre River), DVC (Headwater Diversion 

Channel), MMR (Meramec River), MOR (Missouri River), BMR (Big Muddy River), 

CCK (Clear Creek), IRG (Illinois River), KSR (Kaskaskia River), GTC (Grand Tower 

Chute), MSL (Middle Swan Lake), PRP (Prairie Pond), and BPT (a pond at SIU’s Middle 

Mississippi River Wetlands Field Station). 

 

Fig. 3.  Mean otolith (a) 18O, (b) 13C, (c) Sr:Ca, and (d) Ba:Ca values (SE) for 

collection sites grouped by site type (floodplain lakes, tributaries, and large rivers).  Sites 

include UMR (upper Mississippi River near Batchtown, Illinois), MMT (middle 

Mississippi River near Thebes, Illinois), ACK (Apple Creek), CVR (Cuivre River), DVC 

(Headwater Diversion Channel), MMR (Meramec River), MOR (Missouri River), BMR 

(Big Muddy River), CCK (Clear Creek), IRG (Illinois River), KSR (Kaskaskia River), 

GTC (Grand Tower Chute), MSL (Middle Swan Lake), PRP (Prairie Pond), and BPT (a 

pond at SIU’s Middle Mississippi River Wetlands Field Station). 

 

 



 25 

Fig. 4.  Multivariate otolith chemical fingerprints for fish from the Mississippi River, its 

tributaries, and floodplain lakes based on the first two canonical variates obtained 

through linear discriminant function analysis including 18O, 13C, Sr:Ca, and Ba:Ca.  
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