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ABSTRACT

We consider the detection of direct-sequence
spread spectrum signal received in pulsed noise
jamming environment. The Expectation-
Maximization Algorithm is used to estimate the
unknown jammer parameters and hence obtain a
decision on the binary signal based on the es-
timated Itkelthood functions. The probability of
error performance of the algorithm is simulated for
a repeat code and a (7,4) block code. Simulation
results show that at low signal to thermal noise
ratio and high jammer power, the EM detector per-
forms significantly better than the hard limiter and
somewhat better than the soft limiter. Also, at low
SNR, there is little degradation as compared to the
maximum-likelthood detector with true jammer
parameters. At high SNR, the soft imiter outper-
forms the EM detector.

I. INTRODUCTION

Spread-spectrum communication systems offer
an inherent advantage of reducing interference.
The reduction achieved depends on the processing
gain, Pulsed, but broadband, noise jamming may
cause considerable degradation in performance of
a direct-sequence spread spectrum system [1]. The
performance of the system may be further im-
proved by using additional techniques [2-5].

We consider here’ the performance of a
maximum-likelihood detector for the following
detection problem {1]. Let the r’s represent the
outputs of the direct-sequence ~correlator, cor-
responding to different sy13bols transmitted as DS-
BPSK and let {6, #=l..m, & ¢ @},
Je(1,..,2"=M) be one of the code vectors of a given
(m,k) block code.

Choose one of the following M hypotheses,

code, {e’l 1=1,2,..,m} are known sequences for every
§. In the case of repeat code, the same bit of infor-
mation 1is transmitted m times, ie. 6= 8,

1=1,2,....,m. The detection problem (1) reduces to

H;:0=-1vs.H,: 0=+1 3
Perfect interleaving is assumed so that the prob-
ability that a symbol is jammed is independent of
any other symbol being jammed or not. Let p be
the duty cycle of the pulse jammer n ({t) with two
sided power spectral density N J/ 2p) afld n{t) be the
thermal noise with two sided power spectral den-
sity N_/2." Both the noises are assumed to.be
indepe%dent, zero mean Gaussian. With an equitv-
alent baseband representation for direct-sequence
carrelator, n, is a zero-mean white Gaussian noise
with known variance o’=N /2, J; is. zero-mean
Gaussian jamming noise e N./(2p).
Z's ¢ (0,1) denote whether the {~ & is
jammed or not. They are independent random
variables with P(Z =1)=p. n, J,. and: Z'1 are all
mutually independént. Z,, p and’NJ/2 are typically
unknown. Assuming these parameters are known,
we construct an optimal (but practically
unrealizable) detector in section III. - When'Z's are
known, the r's are Gaussian and when {Zi's afe un-
known, the r,’s are samples from a mixture density
as shown below. The signal level, s,’Is assumed
known. There may be situations where s cannot
be determiried easily and the discussions in this
paper do not apply to those situations [2].  The
Expectation-Maximization (EM) algorithm is used
in order to obtain the estimates of p-and 0% = ¢* +
N./(2p). The likelthood function with ted
3 parameters is maximized to obtain‘a deci-
sion on the hypotheses for the ‘testing problem in

{H, J=1,2,.. M} (1). A complete discussion of the EM algorithm can

] be found in (6]. Recently, the EM algorithm has

H;:o= ej i=1,2,....m. ‘ ) been applied to other types of détectionand es-
y1 1 timation problems {7),{8]. ‘ T

servatio In section II we discuss how the EM algorithm

grven the ob " can be applied to the testing problém: outlined

H; 1 ois 0, Z, @ above. In section I, simulation results are

The significance of varfous variables appearing in
(2) are explained below. For a given (m,k) block

35.1.1

presented for the repeat and block coding cases.
The performances of the EM detector are compared
to those of hard and soft limiters, an optimal detec-
tor, maximum likelihood and linear detectors. In
section IV we discuss the results.
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II. DIRECT SEQUENCE DETECTION AND EM
ALGORITHM

Consider the detection problem stated in (1) and
(2) with the observations being the sum of the data
signal, the channel noise and the jammer noise.
When Z's are unknown, the sum of the channel
noise and the jammer component may be viewed
as a variate from a mixture of two normal distribu-
tions with zero means, varlances ¢* and ¢?, and
mixing ratios 1-p and p respectively. In" other
words, the interference is from channel noise alone
with probability 1-p and from channel plus jammer
with probability p. The observations (2) are dis-
tributed as

Hj: - ﬂri) = (l-p)t'l(ri) + pfz(rl) 4

where

£,(x) = (1/VBRolexpl-tr; 0}8)* /20%) ®)

f,ir) = (llﬁ;rcj)exp(-(rl-ejls)’/% %) ©

D ﬂﬁe m?arameter vector @ = (Q'.c’ .p), where é=
( 189

m)' The log-likelihood function is given by

Lol = ig‘lln ﬂri). Then the proposed detector for

8, which we shall call the EM detector, maximizes
L{@11) using the estimates of o& and p obtained via
the EM algorithm.
A. Repeat Codes

Using the procedure in (11}, the maximum-
likelihood estimates of 8, 0%, and p can be obtained
as the simultaneous solution to the set of following
equations:

9 = arg max (L@Ip), 0e(+1,-1)
]

Y]
m 2
foo E1p 609 )/
m .
£ pf(x fix)

)

m
a z
p= |I=

e

p.f.r, )/AIK) T b )/
p. £ (r, r p. £ (r, T,
1 171 i=|___1 21 1

m Rl )

There may be several solutions to (7), (8), and (9),
and the one which maximizes L(@!r) has to be
picked. Equations (7), (8). and (9) are used to
provide the following iteration scheme. However,
as explained later, the solution obtained via the
iterations does not necessarily correspond to the
global um of L($!7).

thLet _d_zp denote the estimate of @ at the
p iteration, p=21.

35.1.2

0®*Y _ 41 or -1 whichever maximizes L(Q(p) o

(10

c&tp+l)= 1&“ - ol Plgy2, fz( 1’)(rl)/(‘p)(rl)
1?1 f‘zp) ry r£? &) @)
"3 oW £, P( /P a2)

p(p+1) = 1=1

m

where l(lp)(rl), 1=1,2 , and ‘lp()lﬂl) are the density
ﬁfﬁ:tmns evaluated atr, and @~ . A starting value,
@, is required. The ltgraﬂon scheme is insensi-
tive to these initial values and any reasonable set
cap be ed [10].  For example we assume
pm=0.5.o’m:l.O,ande(ﬁ=0.inallthesimulations.
Although 8 1s not a allowed value for 6, it is used
as an unbiased starting value for the EM algo-
rithm, The decision on @ given by the EM detector
will always be +1 or -1 since these are the only al-
lowed values in subsequent iterations.
B. Block codes
A A A

Let the coded vector be é Then §'= (o B
.,sm) is the maximum-likelihood estimate of @ given
by

&= arg max Li21D)
e
The maximium of L{@!1) is to be searched over the

M valid codes. The maximum-likelihood estimate
of the jammer variance has to satisfy

(13)

m g2
3: = é 1 P.(l‘l - ls) 'f2(ri)/ﬂﬁl (14)

m
(B P 0/

The only difference between equation (8) and equa-
tion (14) s the index 1 on 0 as they are no longer
the same for each 1. The equations for the
maximum-likelihood estimate of p for the block
codes remain the same as for the repeat code, al-
though £, (r) and f,(r)), as in equations (5) and (6),
will have]thie appro%r}ate al:?or each 1.

The EM algorithm has been shown to result in a
nondecreasing likelthood at each successive step
and, under some conditions, to converge to a
maximum-likelihood estimator [6,9]. However, in
general the algorithm will converge to a compact
set of stationary point(s).
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11, SIMULATION PERFORMANCE

In this section,stmulated performances of the
EM detector, maximum-likelihood detector with
known jammer parameters, the linear, hard-
limiter, and soft limiter [1,4,5] are studied. The
clipping level of the soft-limiter is set at s. If s is
also unknown, the resulting EM detector would be
the linear detector which would also be the
maximum-likelthood = detector because the
maximum-likelihood estimate of the common mean
of the mixture of two normal distributions is the
sample mean [12].
A. Repeat Coding Perforinance

The bit energy for a repeat code is given by E, =
m.s*, where m=7 is the code length assumed.
the case of repeat code, we look at an optimal, but
unrealizable, detector for performance comparison
purposes.

Optimal Detector; With Z_ known, the likelthood
ratio for the testing problem (3) is given by

(1/+v2n0) exp( - (xl- 8)*/20%)
AP =0 X

' (1/v2% o) expl-x,+8)* /20%)
(1/¥376 { expl - (vi-s‘)’ /20%)

(15)

I
! (1/vBRe ) expl-y,e)* /203)

wherer=y, lffhesymbollsjammedandr=x if it

is not. l!.‘qulvalenﬂy a test based on the nflood
ratio is given by
0=+1
=+
-5 5 o ue
a® o2 AS
J 6=-1
In order to uni:lement this detector, value of o2,

and whether each sample is jammed or not, ai‘le

needed. In this sense it is an ideal detector and
the required information is usually not available.
Let k be the number of jammed samples. The error
probability of the optimal detector is given by

m

m m-k
SNCE k:o(k)p“u-p) Pl 07)

where e
P t(elk) = Q(s.vim-K) /o’ + k/(c*+N J/2pl),
aB8'Q(.) 1s one mimis the standard ndrmal cdf.
TheEMdetectordesg‘lbedmsectignIIAis
simulated for at least 10” and upto 10 trials for
each probabtlity of error estimation. Each trial
creates a realization of r--(rl.rz.....r ) as in equation
(2). The stopping criterion used [or the EM algo-
rithm iterations is the following rule of convergence
of the likelihood functions:

35.1.3

Stop iterations and obtain the current decision
on 8 if

abs (@™ 19-Le® Vip/Le® Vip) < 0.01
or if the number of iterations exceeded 30.
(18)
A benchinark for the performance of the algorithm

is the simulated. performance of the maximum--

likelthood .detector with known ¢ and p, but
unknown jammer state, that is, the maximum-
likelihood detector based on the mixture density
(4. : ‘
B. (m.k) Block Coding Performance )

The energy per information bit for a (m.X) block
code is given by Eb:- m.s*/k. A (7,4) block code'is
assumed and hence a single error correcting
capability is available. The hard limiter detector
makes a decision .on each bit of the coded word
and a word decision error is made if the hard
limiter makes an error in more than one bit. The
soft limiter detector computes :

arg max (8= T cr) o),

L =1
ol Pobrig # output of the soft-limiter. The EM
detector for the block coding case as described in
section II B is simuilated for 100,000 trials for each
Eb/N 0%

The error pfobabﬂ!t;e‘s of these detectors are

shown in Figs. 1-2 against p for various s, o*, and -

E, /N values, and in Figs. 3-6 against E /N, for
various s, ¢°, and p values, ‘

IV. DISCUSSION AND CONCLUSIONS

Comparing the proposed EM detector with other
schemes in terms of the probability of error perfor-
mance as a function of p for different’s, ¢*, atid
E /N values, it is observed that at low- signal to
thermal noise ratio (SNR=s’/c”) ‘there is little
degradation in performance as-compared to ‘the
maximum-likellhood ‘detector with known jammer

parameters (Fig, 1). At high SNR, the EM-detector
performance is considerably poorer ‘than the '

maximum-lkelthood detector (Fig. 2), specially at
low p values. The gdp between the peiformances of

the optimal (unrealizable) and the EM detector is

considerable for large SNR values: (Figs. 1-2). The

same relative performances of ‘the EM, - the
maximum-likelihood, and the optimal detectors are
also observed when the probability of error is
plotted as & function of E, /N . for different s, o”,
and p values (Figs. 3-4). For {7:4) block code also,
the EM and maximum likelilicod: detectors exhibit

close probability of error performances at low SNR -

(Figs. 5.6).

When the EM detector performance is close to
that of the maximum-likelihood detector, the es-
timate of the  likelihood function ‘does not

Authorized licensed use limited to: Southern lllinois University Carbondale. Downloaded on May 30, 2009 at 16:24 from IEEE Xplore. Restrictions apply.
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necessarily correspond to the true iikelthood func-
tion. It was observed that, after the EM algorithm
had converged according to (18), the estimated
Jammer parameters did not converge to the true
Jjammer parameters at all even when the probabil-
ity of error curves for the EM and the maximum-
likelihood detectors were close., With such a small
sample size as 7, parameter convergence is not ex-
pected. The convergence of the EM algorithm is
observed to be quite rapid. Very few times (ranging
from single digits to a maximum of 50 out of
100,000 for all simulations) did the algorithm fail
to converge according to (18) and had to exit after
30 iterations.

Comparing the performance of the EM detector
to the other detectors, it is seen that it performs
consistently better than the hard limiter detector at
low SNR (Figs.1,3,4). Compared to the soft limiter,
the EM detector performs better at low SNR and
high jammer power levels. For high SNR condit-
fons, the soft limiter outperforms the EM detector
(Fig. 2). In general, the (7,4) block code performs
better than the length seven repeat code at equiv-

alent signal and noise conditions.
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