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Abstract In this paper we discuss the question of 
information and accuracy attainable in distributed 
processing as compared to central processing. An example 
is presented where distributed detection suffers zero loss in 
performance as compared to central detection. In the same 
example, if the problem considered is one of estimation 
rather than detection, then it is shown that distributed 
estimation suffers a loss as compared to central estimation. 
This shows that the distributed detection and the distributed 
estimation problems cannot be considered on an equivalent 
footing. Some comments regarding an accuracy bound in 
detection problems are also provided. 

I. INTRODUCTION 

In recent years, signal processing with distributed 
sensors is gaining importance. The relatively low cost of 
sensors, the inherent redundancy possible with multiple 
sensors, the availability of high speed communication 
networks and increased computational capability have 
spurred great research interest in this topic. Each sensor 
in a distributed sensor network (DSN) processes its 
observations and transmit only some condensed data to 
the fusion center. Therefore, it is expected that a 
distributed detection or estimation scheme suffers some 
loss in performance as compared to an optimal central 
scheme. In several situations, the loss happens to be 
small[l]. However, it is of interest to know what accuracy 
is attainable in a distributed scheme in relation to a 
central scheme. First an example is presented where 
distributed detection suffers zero loss in performance. In 
the same example, if the problem considered is one of 
estimation rather than detection, then it is shown that 
distributed estimation suffers a loss as compared to central 
estimation. This shows that the distributed detection and 
the distributed estimation problems cannot be considered 
on an equivalent footing. Next some comments regarding 
an accuracy bound in detection problems are provided. 

n. A GENERAL RESULT IN DISTRIBUTED DETECTION 

Let Y ~ , Y ~ , . . , Y w  denote the order statistics obtained 
lroin the observations { X1 ,X2,..Xn }, where Xi, i=1,2 ,.., n 
dcnotcs the obscrvation in the ith sensor of a DSN. Let us 

consider the situation where some inference concerning a 
real parameter 8 is to be made. Consider the foIlowing 
hypotheses: 

H ~ :  e E Q l  vs. H ~ :  e a O  (1) 

where QlandQo are some intervals on the real line. 
Point null hypotheses can be approximated by a 
vanishingly small interval. Consider the situation where 

for a given f X 1 , X 2  ,.., x,( ,,.., le), the optimal (according 
to some criterion such as Baye's or Neyman-Pearson) 
central test is given by 

Decide H1 iff Y j  > t (2) 

where t is some threshold that satisfies the chosen 
criterion. 
Lemmal: 
The distributed test equivalent to the central test in (2) is 
given as follows. Set 

1 i f X i > t  
0 or else and let the fusion center 

Ui  = 

The proof follows from the observation that the sets { Yj > 

t )  and cui 2 n - j + l  areonetoone. r i=l I 
The optimal central test (2) implies that the order 

statistic Yj is a sufficient statistic. In order to construct a 
test equivalent to the optimal central test, only the 
information whether Y.  exceeds t or not is required and 
not the sufficient statistic itself. As seen, the required 
information is obtainable from the [ Vi I .  It should be 
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noted that (2) and (3) are equivalent irrespective of 
w?ether the { Xi } are statistically in&pendent or not. As 
R J  application of lemma 1, let us consider the following 

Moreover, the performance loss depends on the choice oft 
in relation to the parameter 8 which is unknown!. Let 

example. T = m-ud (8) 

+- (9) 

i 
2.1 An example 

0, 8 ), 8 > 0, and consider the test: 

T 
nt 

Consider the observations ( Xi ] to be iid uniform on ( 

H ~ :  e=eo VS H ~ :  e a o  (4) 

The largest order statistic is Micient for 8 and a 
uniformly most powerful size a test based on { Xi ) is 
given by [ 21: 

decideH1 iff Y , > t  (5) 

where t, chosen to achieve size a, is given by 
t =eo G. According to lemma 1, the Boolean OR 
rule that declares hypothesis H1 if at least one of the Ui's 
equals one, is also UMP. 

Consider the same model as in the above example but 
consider the problem to be the estimation of 8. Treating 
8 as an unknown constant, let US try to find an estimate 
of the parameter with some good properlies such as 
unbiasedness and small variance[2]. Since Yn is sufficient 
and complete, the uniformly minimum variance unbiased 
estimator of 8 is given by 

Hence (6) is a central estimator which is UMVUE. 
Simple calculation gives the variance of the estimator (6) 
as 

Var (e;) e2 
(n  + 2)n 

1 
Above $; is an estimator of -. Straight forward but 

careful calculation shows the following: 
e 

The mean square error (MSE), which is the sum of the 
square of bias and variance , is given by 

MSE = 

(7) A too conservative choice oft leads to one or the other 
kind of loss. For example if t is too close to 0, it is more 
likely that t is less than 8 and therefore the variance of 
the estimator will be large, and if t is too large, there will 
be a penalty in terms of the him. Of course, nothing 
better could be expected with such a coarse quantization 
of one bit. On the contrary, the same coarse quantization 
does not lead to any loss in the case of hypothesis testing, 

In the case of dishibuted estimation, a reasonable estimate 

of - is more easily obtained than an estimate of 8. If an 1 
e 

1 
e 

because of the existence of one to one mapping between 
(2) and (3). Another way to explain the difference in 

estimate of - is to be obtained from the set of one bit 

quantized information ( Vi I ,  some loss in performance 
as compared to a central estimator is certainly expected. 

nature of the two problems (estimation and testing) is the 
following: in testing, we wonder whether 8 is greater 
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than eo or not, whereas in estimation, we aim for the 
exact value of the parameter. Certainly in the former 
case, a coarser quantization may not be bad at all. This 
example also shows that in distributed estimation, a much 
finer quantization of sensor data would be required for 
better performance. Also, the one to one mapping 
between an optimal central test and a distributed test is 
rare. One example is lemma 1. In general there will be 
loss in performance in a distributed system as compared to 
a central system. A bound on this loss would determine 
the information and accuracy obtainable in a distributed 
system. 

IV. INFOWTION AND ACCURACY A'ITAINABLE IN 
DISTRIBUTED DETECTION? 

Consider a binary hypothesis testing problem where a 
parameter 8 under question belongs to two mutually 
exclusive intervals on the real line. Let the ith sensor 
observation be Xi, and let ( Xi } be iid with a probability 
mass function (discrete case), or a continuous density 

function, denoted by f( ; e). For the sake of convenience 
the continuous case is treated below. Identical results for 
the discrete case are obtained by replacing the integrals 
with summations. Let Z be a sufficient statistic and let 

v(Z) E [o, 13 be the non randomized central test and let 

U( )E [O,1], not a one to one mapping of y(Z), be 
the distributed test based on the 0/1 decision variables Vi 
of the sensors. Then the probability of disagreement 
between y and U ,  P ,  is given by 

The probability P can be considered as a measure of 
closeness of performances of a distributed scheme and a 
central scheme. It is observed that P is a function of the 

parameter e .  Since z is sufficient, f u I z (  ) is 

independent of e .  Assuming that the derivative of P with 
respect to 8 exists and assuming that the regularity 
conditions in the Cramer-Rao lower bound on an unbiased 
estimator of 8 are satisfied [3], 

where I(f) is the Fisher's information given by 

Because Z is sufficient, the Fisher's information of a 
sufficient statistic is same as the information in the whole 
sample[4]. I f f )  determines the sensitivity of a distribution 
to 8 and (15) provides an inequality between P and its 
slope. Large changes in slope can happen only in regions 
where P is sufficiently large according to (15). The utility 
of (15) is somewhat limited because of the occurrence of P 
on either side of (15). Numerical evaluation of Pas a 
function of 8 and that of the bound (15) can be done for 
specific examples. However, we have not carried out such 
an evaluation yet. 
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Applying Cauchy-Schwartz inequality to (14), we obtain 
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