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The marsh rice rat (Oryzomys palustris) inhabits wetlands that are often fragmented and isolated 29 

by upland cover types.  Persistence of marsh rice rat populations and metapopulations likely 30 

depends on their ability to enter and traverse the upland matrix, yet basic information, such as 31 

home-range size and landcover use patterns, is lacking.  Our goal was to quantify home-range size 32 

and habitat selection by marsh rice rats in southern Illinois.  Between March and November 2011, 33 

we radio-collared 21 male rice rats (8 subadults and 13 adults)  that were each located 7 to 24 34 

times each via triangulation and homing.   We estimated home-range size, compared landcover 35 

composition within kernel home ranges to what was available in the surrounding landscape, and 36 

quantified daily movement distances.  Mean (+ SE) home ranges were 3.53 ± 0.66 ha based on 37 

95% kernel isopleths and 1.85 ± 0.49 ha based on minimum convex polygons.  Home ranges were 38 

largest for individuals followed in early summer, but home-range sizes were similar for adults and 39 

subadults.  Rice rats' use of emergent wetland vegetation was greater than availability, indicating 40 

they preferred emergent wetlands habitat at the home-range level.  However, upland cover types 41 

made up >40% of each home range, on average.  Daily movements averaged 46.6 ±3.4 m 42 

(maximum: 396 m), and rice rats were located up to 464 m from the nearest wetland. Based on by 43 

far the largest sample size (in individuals and locations per individual) available for space use of 44 

the marsh rice rat, our findings support the characterization of male rice rats as highly vagile, and 45 

suggest that rice rats move through upland cover more frequently than previously described.    46 
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   Home range is a spatial measure that represents the area in which individuals regularly 52 

move in search of resources and mates (Burt 1934, Mohr 1947).  Often, home ranges are used to 53 

illustrate landscape-level habitat selection (Johnson 1980), and the extent of an animal’s 54 

movement through the landscape (Bowman et al. 2002, Schooley and Branch 2006).  A home 55 

range must contain all necessary resources for an individual's daily living, so comparing 56 

landcover composition of home ranges with the broader landscape (i.e., second-order selection; 57 

Johnson 1980) can provide information about which resources are most important or limiting. 58 

Also, the size and distribution of movements that make up an individual’s home range can 59 

characterize the vagility of the species and predict the potential for long-distance dispersal 60 

(Bowman et al. 2002, Revilla et al. 2004).  Identifying the landcover use and movement potential 61 

of a habitat specialist can help predict the persistence of a species in a highly-fragmented 62 

landscape (Fahrig and Merriam 1994). 63 

 Home ranges can shift in size and position over time due to fluctuations in resources and 64 

risk (Cameron and Spencer 1985, Byrne and Chamberlain 2011).  Many small mammals expand 65 

their home range in the summer, coinciding with mating, resource foraging, and population 66 

recruitment (Gaines and McClenaghan 1980).  In hispid cotton rats (Sigmodon hispidus), home 67 

range was largest during the breeding season (May-August) as male and female territories began 68 

to overlap (Cameron and Spencer 1985).  Conversely, Cranford (1976) found that home ranges of 69 

dusky-footed wood rats (Neotoma fuscipes) expanded between November and December as 70 

animals foraged further for rare resources.   71 

 Home-range size and composition can change with age, especially if animals exhibit 72 

territorial behavior or natal dispersal (Burt 1934, Gaines and McClenaghan 1980).  For many 73 

small mammals, younger individuals are pressured to seek out new territory through aggression 74 
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by older, more dominant animals (Gaines and McClenaghan 1980, Eiris and Barreto 2009).  75 

Subadults tend to have smaller home ranges in territorial species, as established adults leave few 76 

suitable areas unoccupied (Cranford 1976).  In round-tailed muskrats (Neofiber alleni), home 77 

range was larger in reproductive than non-reproductive males and increased with body mass 78 

(Schooley and Branch 2006).  Additionally, Spencer et al. (1990) found hispid cotton rats 79 

exhibited similar daily home ranges across all age classes, but linear movements and elongated 80 

home ranges were more common in adults.  Identifying the age class that exhibits the highest 81 

movement potential can help predict the life stage at which dispersal is most likely to occur 82 

(Hanski 1994, Gaines and McClenaghan 1980). 83 

The marsh rice rat (Oryzomys palustris, hereafter rice rat) is a medium-sized rodent for 84 

which published information on home range is limited.  As it is a specialist to emergent wetlands 85 

(Wolfe 1982), most research on the rice rat has taken place in the Gulf Coast and Florida 86 

Everglades. However, rice rats are found as far north as southern Illinois in the Midwest and New 87 

Jersey on the Atlantic coast (Wolfe 1982).  Using capture locations within trapping grids in 88 

Brenton Island, Louisiana, Negus et al. (1961) estimated home-range size for rice rats at 0.33 ha 89 

for males and 0.21 ha for females.  Birkenholz (1963) reported similar home-range sizes for rice 90 

rats (0.23 ha for males and 0.29 ha for females), again using simple grid trapping.  McIntyre et al. 91 

(2009) presented much smaller home-range estimates (averaging about 0.06 ha) based on grid 92 

trapping in Brazoria County, Texas, but including animals with as few as 2 recaptures may have 93 

skewed the results.  The only known study to use radio telemetry to characterize home ranges of 94 

rice rats was conducted at a reclaimed surface mine west of Harrisburg, Illinois (Hofmann and 95 

Gardner 1992).  These workers estimated an average home range of 0.73 ha using the convex 96 
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polygon method (Mohr 1947), but the study suffered from short duration (two nights of tracking), 97 

frequent collar detachment, and few relocations.   98 

Rice rats are believed to be highly vagile for their size (W-olfe 1982, Wolfe 1985, Forys 99 

and Dueser 1993). In a controlled swimming-chamber experiment, Esher et al. (1978) found rice 100 

rats moving > 200 m in a single night, 10 times farther than hispid cotton rats exposed to the same 101 

conditions.  Rice rats also have been reported moving into adjacent upland cover in response to 102 

flooding (Wolfe 1982, Kruchek 2004), wetland draw-downs (Smith and Vrieze 1979), and peaks 103 

in population density (Wolfe 1985).  Different age classes may move differently through the 104 

landscape, and Kruchek (2004) captured subadults in uplands at a higher rate than their adult 105 

counterparts.   106 

No study has quantified habitat selection by rice rats at the home-range level, although 107 

several larger-scale habitat assessments of the species have been published. Rice rats are 108 

associated with tidal marshes, estuaries, coastal wetlands, palustrine emergent wetlands, 109 

palustrine scrub-shrub wetlands, palustrine aquatic beds, and riverine aquatic beds (Cowardin and 110 

Golet 1995, Wolfe 1982, Hofmann et al. 1990).  Additionally, rice rats have been captured in 111 

matrix types such as sawgrass (Cladium spp.) prairies (Smith and Vrieze 1979), cordgrass 112 

(Spartina spp.) uplands (Kruchek 2004), pine plantations (Miller et al. 2004), and lowland brome-113 

dominated (Bromus spp.) meadows (McLaughlin and Robertson 1951).  In southern Illinois, 114 

Eubanks et al. (2011) found that wetlands surrounded by upland grasses were more likely to be 115 

occupied by rice rats than those surrounded by upland forests and human development.  Eubanks 116 

(2009) also found that wetlands surrounded by bare ground or agriculture rarely were occupied by 117 

rice rats and may be more isolated than wetlands surrounded by native plants.  Visual obstruction 118 

< 0.5 m and herbaceous cover were the best predictive variables for occupancy, indicating that 119 
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rice rats tend to persist in wetlands surrounded by dense ground cover.   Rice rats have not 120 

previously been reported in row crop agriculture fields or in upland deciduous woodlots (Goertz 121 

and Long 1973; Wolfe 1985, Franz et al. 1998).  Areas of open water (Forys and Dueser 1993) 122 

and wet, vegetated ditches (Hofmann et al. 1990) may serve as dispersal corridors. 123 

Rice rat conservation and recovery efforts would benefit from accurate estimates of home-124 

range size and composition to identify landscape-scale habitat selection and rank landcover 125 

preference. The objectives of our study were to quantify home-range size and movement 126 

distances, test whether movement and home-range size differed across age and season, and 127 

characterize habitat selection by rice rats in a wetland complex in the northern portion of the 128 

species' range.  We expected that movement rates and home-range sizes would be greater for 129 

subadults than adults and during periods of fluctuating water level. 130 

 131 

MATERIALS AND METHODS 132 

Study area.—Our study took place from 30 March to 7 November 2011 within the 133 

Burning Star 5 Natural Wildlife Area, a 3400-ha reclaimed coal mine located 5 km east of 134 

DeSoto, Illinois, USA (37º 50’ 21” N, 89º 10’ 56” W; Fig. 1).  During this period, Burning Star 5 135 

was owned by CONSOL Energy (Consolidation Coal Company, Elkville, Illinois, USA) and 136 

managed by the combined efforts of the Illinois Department of Natural Resources, the National 137 

Wild Turkey Federation, and the Cooperative Wildlife Research Laboratory at Southern Illinois 138 

University Carbondale.  Located along the Little Muddy River, Burning Star 5 was composed of 139 

approximately 1600 ha of cropland, 800 ha of timber, 400 ha of grassland, and 560 ha of lakes 140 

and wetlands (Illinois Department of Natural Resources 2011).  Landcover was diverse 141 

throughout Burning Star 5, with mature oaks (Quercus spp.) and hickories (Carya spp.) 142 
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dominating bottomland forests; tall fescue (Festuca spp.), switchgrass (Panicum virgatum), and 143 

big bluestem (Andropogon gerardii) within grasslands; and corn (Zea mays), soybeans (Glycine 144 

max), sorghum (Sorghum spp.), and wheat (Triticum spp.) grown in croplands (Delahunt 2011).   145 

Collaring and relocation – We placed radio transmitters on rice rats captured in 11 146 

trapping grids in 4 wetlands during an ongoing study of matrix permeability (Cooney 2013), 147 

collaring adult and subadult male rice rats in equal proportion.  We only tracked one sex to 148 

increase statistical power with a limited number of transmitters, and because we anticipated 149 

higher capture success for males (Bloch and Rose 2005).  Captured animals were handled in 150 

accordance with an approved protocol (Southern Illinois University Carbondale, Institutional 151 

Animal Care and Use Protocol 10-009), which included anesthetizing rice rats by inhalation of 152 

isoflurane (Isothesia, Fisher Scientific, Pittsburgh, Pennsylvania, USA).  We assigned age classes 153 

based on body mass criteria modified from Negus et al. (1961), who grouped rice rats < 30 g as 154 

juveniles, between 30-50 g as subadults, and > 55 g as adults (Wolfe 1985).  We also placed 155 

considered rice rats between 50 g and 55 g to be adults if they exhibited adult breeding conditions 156 

(descended testes in males and perforated vaginas in females), otherwise they were considered 157 

subadults (Wolfe 1985).  While each rat was under anesthesia, we attached a radio transmitter 158 

(Model SOM 2038; Wildlife Materials Inc., Murphysboro, Illinois, USA) around the neck using a 159 

0.5-cm black cable tie.  Transmitter mass (2.3-2.6 g) constituted 2.7-8.7% of body mass at 160 

capture.  After tightening the cable tie to a snug fit and removing the excess portion, we allowed 161 

rats to recover from the anesthesia within a Sherman trap (H. B. Sherman Traps, Tallahassee, 162 

Florida, USA).  Once we confirmed the frequency of the radio transmitter with a digital receiver 163 

(Communications Specialist Inc., Orange, California, USA), we released the animal at its point of 164 
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capture and recorded the location with a handheld global positioning system (GPS) device (Model 165 

60 CSX, Garmin Inc., Olathe, Kansas, USA).   166 

We relocated each collared rice rat up to 6 times per week for up to 6 weeks, alternating 167 

between nighttime triangulation (2000-2359 hr Sunday, Tuesday, and Thursday) and daytime 168 

homing (0800-1159 hr Monday, Wednesday, and Friday).  We alternated relocations of collared 169 

rice rats to include both nesting (diurnal) and activity (nocturnal) locations in home-range 170 

estimates.  For triangulation, we used a 6-element Yagi antenna and digital receiver to record 3-4 171 

intersecting bearings for each transmitter from points about 50 m from the wetland boundary, 172 

spaced >50 m apart, and taken within a 15-minute time frame.  To minimize bearing error, we 173 

discarded readings ≤ 10 degrees from the previously recorded azimuth and took a new bearing 174 

from a different location.  We later entered the Universal Transverse Mercator geographic 175 

coordinates (UTMs) and compass bearings of each reading into Program LOAS (Ecological 176 

Software Solutions LLC, Heymagas, Hungary) to estimate rice rat locations and calculate error 177 

polygons.  We discarded all values with an error polygon > 5000 m² as inaccurate relocations. We 178 

located each collar by triangulation up to 18 times over the 6-week period.   179 

For homing, we followed the signal on foot and recorded the location on hand-held GPS if 180 

we found a nest or burrow occupied by the collared rat.  If the collar was found detached from the 181 

animal, we recorded date, location of the collar, and suspected fate of the animal (e.g., collar 182 

removal or animal mortality).  Up to 18 homing locations were recorded for each collar over the 183 

6-week period, producing up to 36 combined relocations from telemetry and homing to generate 184 

home ranges.  If the transmitter signal could no longer be detected after 6 weeks of radio-tracking, 185 

we attempted to recapture the animal to replace or remove the transmitter.  To do so, we deployed 186 

25 Sherman traps in a 50- x 50-m grid surrounding the last known location and continued 187 
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trapping until the rat was captured and the collar removed for up to 21 days or until we found the 188 

collar detached from the animal.   189 

Data analysis –Removing the initial and final locations from each data set, we entered 190 

relocations into ArcGIS version 9.3 (ESRI 2009) and used the Animal Movements extension to 191 

calculate a 100% minimum convex polygon (MCP; Mohr 1947) and kernel home range (fixed-192 

kernel 95% isopleth; Worton 1989) for each individual.  For the fixed-kernel approach, we used 193 

least-squares cross validation to calculate the smoothing parameter (Habbema et al. 1974).  In 194 

addition to home-range estimates, we used the Hawth’s tools Extension in ArcGIS to calculate 195 

step-length (m) between relocations made on different days. We divided each step-length by the 196 

time between relocations to measure daily movement distance.   197 

We used mixed-model two-way ANOVA (McCullough and Searle 2001) to test for the 198 

fixed effects of the categorical variables age class, collaring interval (March-April, May-June, 199 

July-August, September-October), and their interaction on the response variables of home-range 200 

size, average daily movement distance, and percentage of home range located outside of emergent 201 

wetland vegetation (i.e. the matrix).  The trapping grid where each rice rat was captured was a 202 

random variable.  The analysis was carried out using PROC GLM (SAS Institute Inc. 2011). 203 

We used compositional analysis to characterize habitat selection by rice rats at the home-204 

range level (Aebischer et al. 1993).  Using ArcGIS, we calculated used habitat as the percentage 205 

of each rice rat’s kernel home range composed of emergent vegetation, agriculture, forest, 206 

grassland, shoreline, open water, shrub cover, partially inundated ditches and gravel road. We 207 

defined available habitat in 2 ways.  First, we calculated the percentage of each landcover type 208 

within 41.2-m buffers around the 4 study wetlands. This buffer represented the average distance 209 

rice rats traveled from suitable habitat.  Second, we combined all rice rat relocations collected at 210 
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each wetland and used them to generate a composite 95% isopleth, then calculated the percentage 211 

of each landcover type within the composite isopleth.  We replaced zero values with 0.00001, 212 

calculated log-ratios, and used PROC BYCOMP (Ott and Hovey 2004) in SAS version 9.3 (SAS 213 

Institute Inc. 2011) to perform multivariate analysis of variance (MANOVA) to test whether the 214 

composition of rice rat home ranges differed from available (Aebischer et al. 1993).  We then 215 

used t-tests to detect pairwise differences in cover type selection at α < 0.05 (McCullough and 216 

Searle 2001) and ranked cover types from most to least preferred. 217 

 218 

RESULTS 219 

 We collared 8 rice rats during March-April, 8 during May-June, 6 during July-August, and 220 

3 during September-October (Table 1), as capture rate decreased over the course of the season 221 

(Cooney 2013).  One collar was recovered from a recaptured rice rat, 12 collars were discovered 222 

detached from the rice rat, and 12 collars lost their signal and were never recovered (Table 1).  Of 223 

the 12 detached collars, 3 were confirmed predator kills (Table 1).  224 

In total, we collected 319 locations that were usable for analysis with a median error 225 

ellipse area of 518 m
2
.  We homed to rice rats 162 times in emergent wetland habitat, 3 times in 226 

ditches, and 21 times in upland matrix cover, compared to 85 triangulated locations in wetland 227 

habitat and 48 triangulated locations in the matrix.  Of the 21 homed relocations in matrix cover 228 

types, we found rice rats 11 times in grassland cover, 7 times in agriculture cover, 2 times in 229 

forest cover, and 1 time in shrub cover.  Rice rats were most often found in globular nests 230 

constructed from sedge and grass leaves, though we did home to individuals in root masses, 231 

underground burrows, and a pile of corn stalks. 232 

We calculated home-range size and movement parameters using data from 21 rice rats (8 233 
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subadults and 13 adults) that were relocated >7 times (Table 1).  We did not obtain any valid 234 

relocations for 2 subadults whose collars failed or detached.  Home-range sizes estimated from 2 235 

additional subadult rice rats with <7 relocations deviated visibly from the distribution of sizes for 236 

rats with larger sample sizes, so we do not report those estimates. We tracked the 21 rice rats an 237 

average of 32 days (range 13-54 days), collecting an average of 15 (range 7-24) relocations per 238 

rat.  Average (± SE) home-range size was 1.85 ± 0.49 ha for MCP and 3.53 ± 0.66 ha for 95% 239 

kernel home range.  Due to the small sample size (n = 2) of radiocollared rice rats in September–240 

November, we dropped telemetry interval 4 from all ANOVA analyses that included telemetry 241 

interval.  Kernel home-range size was similar (P = 0.88) for subadults (2.9 ± 0.9 ha; least squares 242 

mean + SE) and adults (3.1 ± 0.7 ha), and the interactive effect of age class and telemetry interval 243 

on home-range size was not significant (F2 6 = 2.05, P = 0.21).  However, home-range size 244 

differed among telemetry intervals (F2 9 = 4.42, P < 0.05), being largest for rice rats collared in 245 

May-June (5.12 ± 0.90 ha), followed by July-August (3.66 ± 1.06 ha), and smallest during March-246 

April (1.49 ± 0.84 ha).   247 

The distribution of daily movement distances was approximately exponential (Fig. 2) with 248 

a median of 26.3 m, an average of 46.6 ± 3.4 m, and a maximum of 396 m.  The average distance 249 

rice rats were relocated from wetland habitat was 41.2 ± 6.2 m (maximum = 464 m).  Average 250 

daily movement distance did not vary significantly by age class (F1 12 = 0.32, P = 0.58), telemetry 251 

interval (F2 8 = 0.50, P = 0.62), or their interaction (F2 5 = 1.17, P = 0.38).  We also found no 252 

evidence of interactive effects of age class and telemetry interval on the percentage of home 253 

ranges overlapping the upland matrix (F2 5 = 0.17, P = 0.85).  However, amount of rice rat home 254 

ranges composed of matrix differed among telemetry intervals, being greatest for rice rats collared 255 

during May-June, followed by July-August, and least in March-April.  We found suggestive 256 
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evidence that home ranges of adults contained a higher percentage of upland matrix than did those 257 

of subadults (Table 2).  The interaction of age class and telemetry interval did not affect 258 

percentage matrix overlap (Table 2). 259 

Rice rats showed habitat selection at the home-range level, using availability assessed with 260 

either 41.2-m buffers (Wilk’s Λ = 0.17, F8 15 = 9.19, P < 0.01) and composite 95% isopleths 261 

(Wilk’s Λ = 0.14, F8 15 = 11.4, P < 0.01).  Both measures of availability yielded similar 262 

percentages of the various landcover types. Home ranges of rice rats contained more emergent 263 

wetland and agriculture but less grassland, forest, and shrub cover than either measure of 264 

availability (Table 3).  Wetland (combining emergent wetland vegetation, shoreline, and open 265 

water) composed an average of only 55.9% of rice rat home ranges (Table 3). In pairwise 266 

comparisons, selection for emergent wetland vegetation was greater than for all other available 267 

cover types except partially inundated ditches.  Selection against shrub cover was stronger than 268 

for all cover types except gravel roads, forest, and open water in the buffer analysis, whereas 269 

selection against open water was stronger than for all other cover except grassland and agriculture 270 

in the isopleth analysis. Selection ranking was consistently high for emergent wetland vegetation, 271 

shoreline, and agriculture; and low for open water, gravel roads, and shrub cover (Table 3). 272 

  273 

DISCUSSION 274 

We provide the most extensive and intensive study of home range for this species, and the 275 

average home-range size we estimated was substantially larger than any previous study (Negus et 276 

al. 1961, Hofman and Gardner 1992, McIntyre et al. 2009).  These previous studies likely 277 

underestimated home-range size as a result of grid trapping and few relocations. Nevertheless, 278 

Hofmann and Gardner (1992) believed that rice rats in Illinois move farther to forage for 279 
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resources than their southern counterparts.  Most previous studies of rice rat home range took 280 

place in coastal wetlands and estuaries in the southern United States where suitable habitat is 281 

often contiguous (Negus et al. 1961, Wolfe 1982).  Our study took place near the northern limit of 282 

rice rat distribution (Wolfe 1982), in an area where emergent wetlands are highly fragmented by 283 

upland grasses, forests, and agriculture (Illinois Department of Natural Resources 2011).  Future 284 

work should monitor rice rats occupying contiguous wetlands within the Mississippi and Cache 285 

River watersheds.  Also, studying female movements could provide insight into variation by sex 286 

in home-range size.   287 

Movement distances seen in our study reflected the high vagility of rice rats seen 288 

elsewhere in their range.  Negus et al. (1961) captured rice rats > 600 m from their original home 289 

range in Louisiana, and Forys and Dueser (1993) found that rice rats were capable of crossing > 290 

300 m of open water between Virginia Barrier Islands.  Esher et al. (1978) reported that rice rats 291 

moved an average of 232.8 m per night in a laboratory swimming chamber.  One collared adult in 292 

our study traveled > 300 m in one night, only to return to its home range the following day.  293 

Relative to sympatric species, rice rats were seen making inter-patch movements more frequently 294 

than cotton rats in the Florida Everglades (Smith and Vrieze 1979), and moved up to 10 times 295 

further than cotton rats in an enclosed swimming chamber (Esher et al. 1978).  Rice rats may have 296 

adapted to taking large daily movements in highly fragmented landscapes as a way to combat 297 

habitat isolation.  The ability to frequently make long-distance movements could contribute to the 298 

persistence of rice rat metapopulations in fragmented habitats via gene flow, patch colonization, 299 

and the rescue effect (Hanski 1994, Fahrig and Merriam 1994). 300 

The male rice rats we studied selected emergent wetland vegetation over all other 301 

available cover types.  The vast majority of nesting occurred in emergent vegetation, as rice rats 302 
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occupied woven grass nests (as described in Hofmann and Gardner 1992), underground burrows, 303 

and abandoned muskrat (Ondantra zibethicus) mounds.  Partially-inundated ditches were also 304 

selected slightly more than other cover types, which supports the assertion of Hofmann et al. 305 

(1990) that irrigation ditches and roadside right-of-ways can be used as dispersal corridors.  Rice 306 

rats may find vegetated ditches to be suitable secondary habitat due their similarity to emergent 307 

wetlands in vegetation structure and hydrology (Hofmann et al. 1990, Kruchek 2004).  308 

Additionally, open shorelines may be used by rice rats to move between patches of wetland 309 

vegetation alongside permanent, deep-water lakes. 310 

Although the predominant use of emergent wetland habitat by rice rats in our study was 311 

expected, we also found that > 40% of home-range area extended beyond wetlands into the 312 

purportedly unsuitable upland matrix, including crop fields that made up > 20% of rice rat home 313 

ranges.  Additionally, we homed to rice rats nesting in upland grasses, crop fields, and other 314 

upland land cover. The high amount of home range overlapping the matrix parallels the findings 315 

of our study of matrix permeability (Cooney 2013), which showed that upland areas (particularly 316 

soybean fields) were frequently entered and used by rice rats, presumably for foraging and 317 

dispersal, especially when vegetation cover was available in those fields and rice rats were 318 

abundant.  Smith and Vreize (1979) found that rice rats occupied mesic sawgrass prairies in the 319 

Everglades, but only when hammock habitat was dry.  Additionally, Kruchek (2004) captured 320 

subadult rice rats in upland grasses when adult densities in nearby wetlands were high.  Eubanks 321 

(2009) found that wetlands adjacent to agriculture were less likely occupied by rice rats, but our 322 

findings suggest that mature crop fields facilitate matrix movement in the rice rat.  It should be 323 

noted that we specifically selected wetland study sites that were isolated within the landscape to 324 

study permeability, so habitat fragmentation may have encouraged rice rats to occupy upland 325 
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areas.  Future research comparing habitat selection by rice rats in fragmented and unfragmented 326 

habitats would improve our understanding of the importance of upland to the species. 327 

Wolfe (1982) and Kruchek (2004) noted that grassland may be more suitable to rice rats 328 

than other matrix cover types due to its structural similarity to emergent vegetation.  Grassland 329 

buffers around wetlands could improve the suitability of wetland habitat for rice rats and increase 330 

the probability of rice rat occupancy (Kruchek 2004, Eubanks et al. 2011). We found male rice 331 

rats occupying nests and burrows under mounds of switchgrass (Panicum virgatum) and big 332 

bluestem (Andropogon gerardii) in upland cover.  Although we did not capture rice rats in 333 

grasslands > 15 m from the wetland edge in the permeability study (Cooney 2013), we frequently 334 

radio-tracked rice rats occupying upland grasses and moving > 250 m into grassland patches.  335 

Unlike telemetry research, inferences about landcover use based on trapping rely heavily on 336 

animal trappability, which can differ between seasons and cover types (Balph 1968, Hammond 337 

and Anthony 2006).  Radio-telemetry appears to be a more sensitive tool than trapping transects 338 

for assessing matrix use by rice rats. 339 

During our study of male rice rats, home ranges were largest and overlapped matrix the 340 

most from late May to early July, corresponding with peaks in rice rat abundance and water depth 341 

in wetlands (Cooney 2013).  Small mammals tend to expand their movements when population 342 

density peaks and individuals are forced out of the habitat to avoid intraspecific competition 343 

(Gaines and McClenaghan 1980).  Hispid cotton rats in Texas had larger movement distances in 344 

summer than spring or fall (Spencer et al. 1990).  Larger home ranges may also signal breeding 345 

activity, which is believed to occur from May–October in rice rats (Negus et al. 1961, Eubanks 346 

2009).  For instance, male Key Largo woodrats (Neotoma floridana smalli) had larger minimum 347 

convex polygon home ranges during June–August than in March–May and September–348 
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November, likely as they sought females for mating (McCleery et al. 2006), which may explain 349 

expanded home ranges of males at this time.   350 

Home ranges of adult males overlapped more matrix cover than did subadult males.  351 

Kruchek (2004) found adult rice rats entering grassy uplands during extended periods of flooding, 352 

but we did not find that rice rats at Burning Star 5 entered the matrix at a higher rate during site 353 

inundation (Cooney 2013).  Our concurrent trapping study (Cooney 2013) also showed that adults 354 

were captured in wetland habitat at a higher proportion than their subadult counterparts, which 355 

contrasts with the high amount of matrix overlap in adult home ranges determined by 356 

radiotelemetry.  As Hofmann and Gardner (1992) point out, adult rice rats have a tendency to 357 

shift home ranges and are likely to adopt multiple home-range centers over the course of a season.  358 

Establishing multiple nesting sites is also a common feature of this species, as Smith and Vrieze 359 

(1979) found 89% of rice rats were captured at multiple tree hammocks within the Florida 360 

Everglades.  We observed that 2 adult males dispersed from the wetland where they were 361 

captured and established new home ranges > 100 m away.  Dispersal in rice rats may not be age-362 

biased, as adults, subadults, and juveniles were found dispersing in equal proportion from Cresent 363 

Island, Virginia (Forys and Dueser 1993).  The willingness of adults to move through upland 364 

cover and disperse can stabilize rice rat metapopulations if individuals successfully breed in novel 365 

patches (Hanski 1994, Fahrig and Merriam 1994).  366 

The relatively high dispersal potential of the rice rat should be considered when 367 

developing or conserving habitat that is accessible to this species for colonization.  Using 368 

telemetry, we determined that rice rats can move at least 396 m in a day and may nest 464 m from 369 

wetland habitat.  Partially inundated, vegetated ditches can also provide dispersal corridors by 370 

which rice rats could travel between permanent wetlands where breeding generally occurs (Wolfe 371 
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1985).  Eubanks (2009) noted that improving connectivity between wetland complexes would 372 

facilitate the expansion of rice rats to suitable wetlands in Illinois that currently remain 373 

unoccupied.  Although not a substitute for contiguous habitat, vegetated irrigation ditches can 374 

provide temporary cover for transient rice rats during dispersal (Hofmann et al. 1990). 375 

 The marsh rice rat persists in the southern portion of Illinois, where agricultural practices 376 

and urban development have historically contributed to wetland reduction (Suloway and Hubbell 377 

1994).  Continued wetland mitigation laws – where up to 5.5 ha of wetland must be replaced for 378 

every 1 ha developed – should ensure the availability of suitable habitat for the marsh rice rat in 379 

the near future (Illinois Administrative Code Title 17, Chapter 1, Subchapter C, Part 1090.10-100, 380 

6 May 1996).  Kruchek (2004) proposed that federal wetland protection should extend to adjacent 381 

upland habitat to account for the important role uplands play in providing sink habitat or refuges 382 

for rice rats and other wetland species. Additionally, mine reclamation in southern Illinois has 383 

contributed to the development of novel wetland habitat where none might have existed in the 384 

past (Nawrot and Klimstra 1989).  Provided that wetlands are accessible to potential immigrants, 385 

reclamation sites have the potential to increase the range and stability of the rice rat in Illinois and 386 

similar areas (Nawrot and Klimstra 1989, Eubanks 2009).  387 
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Table 1.  Summary information and home-range and movement characteristics for the 25 radio-collared marsh rice rats (Oryzomys 506 

palustris) tracked during 30 March–7 November 2011 at Burning Star 5 Natural Wildlife Area (DeSoto, Illinois).   507 

 508 
Collaring 

Interval
 

Collar 

Frequency 

Age 

Class 

Days 

Tracked 

Relocations MCP
a 

(ha) 

95% 

Isopleth (ha) 

Average Daily 

Movement 

Distance (m) 

Matrix in 95% 

Isopleth (%) 

Collar Fate 

March-April 149.125 Subadult 21 10 0.91 9.27 46.4 50.4 Detached 

March-April 149.185 Adult 34 10 0.97 1.24 42.5 30.0 Detached 

March-April 149.144 Subadult 40 20 1.11 2.04 60.4 20.9 Recapture 

March-April 149.225 Subadult 39 16 0.28 0.45 19.5 5.5 Detached 

March-April 149.104 Subadult 38 9 0.21 0.16 21.1 0.0 Signal Lost 

March-April 149.304 Adult 25 8 0.81 2.49 22.7 58.3 Detached 

March-April 149.425 Adult 16 8 0.47 2.13 28.7 43.9 Signal Lost 

March-April 149.084 Adult 16 10 0.05 0.13 19.3 37.4 Signal Lost 

May-June 149.245 Adult 16 7 0.83 0.82 76.7 68.8 Detached 

May-June  149.405 Adult 40 24 1.32 3.62 27.6 48.4 Detached 

May-June  149.044 Adult 24 14 6.41 6.52 158.0 83.7 Signal Lost 

May-June  149.204 Adult 38 22 1.31 2.31 30.8 47.2 Signal Lost 

May-June  149.445 Subadult 34 17 2.72 6.84 39.5 67.3 Detached
b
 

 509 

  510 
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Table 1 Continued. 511 

 512 
Collaring 

Interval
 

Collar 

Frequency 

Age Class Days 

Tracked 

Relocations MCP
a 

(ha) 

95% 

Isopleth (ha) 

Average Daily 

Movement 

Distance (m) 

Matrix in 95% 

Isopleth (%) 

Collar Fate 

May-June  149.064 Subadult 36 15 9.26 7.29 84.2 72.1 Detached 

May-June  149.024 Subadult 20 8 2.10 8.40 53.8 51.4 Detached
b 

May-June  149.024
c
 Subadult 4 0 DID NOT CALCULATE  Signal Lost 

July-Aug. 149.385 Adult 42 22 1.86 2.92 38.5 58.8 Signal Lost 

July-Aug. 149.003 Subadult 35 21 2.02 3.92 67.9 58.6 Signal Lost 

July-Aug. 149.285 Subadult 14 4 DID NOT CALCULATE  Signal Lost 

July-Aug. 149.345 Subadult 4 0 DID NOT CALCULATE  Detached
b
 

July-Aug. 149.264 Adult 45 23 0.97 1.81 39.4 38.3 Signal Lost 

July-Aug. 149.325 Adult 44 24 4.36 8.73 64.7 48.6 Signal Lost 

Sept.-Oct. 149.766 Adult 13 7 0.65 2.50 21.1 81.0 Detached 

Sept.-Oct. 149.825 Adult 54 17 0.26 0.50 21.9 56.2 Signal Lost 

Sept.-Oct. 149.604 Subadult 13 3 DID NOT CALCULATE  Detached 

 513 
a
Minimum convex polygon 514 

b
Rat killed by predator 515 

c
Collar found detached, was reused 516 



 

26 

 

Table 2. Mixed model ANOVA for the response variable of percentage home range composed of 517 

upland matrix.  Age class (Subadult and Adult) and collaring interval were categorical fixed-518 

effect variables, while sub-location and wetland site were random effects.  519 

Model Type Effects F-value P-value Parameters Estimate (SE) 

Main effects AGE CLASS 4.44 0.06 Subadult 

Adult 

0.38 (0.07) 

0.55 (0.05) 

 INTERVAL    4.94 <0.05 1
a
 

2
b
 

3
c
 

0.36 (0.07) 

0.63 (0.07) 

0.44 (0.08) 

Interactive AGE CLASS    

  

1.87 0.23 

 

Subadult 

Adult 

0.41 (0.07) 

0.52 (0.06) 

 INTERVAL 4.34 0.08 1 

2 

3 

0.34 (0.07) 

0.62 (0.08) 

0.42 (0.08) 

 AGE CLASS× INTERVAL 0.17 0.85 Subadult 1 

Subadult 2 

Subadult 3 

Adult 1 

Adult 2 

Adult3 

0.27 (0.10) 

0.60 (0.12) 

0.35 (0.13) 

0.42 (0.09) 

0.64 (0.08) 

0.49 (0.10) 

a
 March-May 520 

b
 May-July 521 

c
 July-September 522 
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Table 3.  Compositional analysis of used (within marsh rice rat [Oryzomys palustris] home ranges) and available landcover at Burning 523 

Star 5 Natural Wildife Area (DeSoto, Illinois), March 30 – November 7, 2011.  Used data were compared with 2 measures of available 524 

habitat:  landcover within 41.2-m buffer surrounding wetland patches and within composite 95% isopleth ranges. Compositional 525 

analysis PROC BYCOMP in program SAS ranked landcover types in order of decreasing preference (8-0). 526 

 Used  Available within wetland buffers  Available within composite ranges 

Landcover type Average (±SE) %  Average (±SE) % Selection rank   Average (±SE) % Selection rank  

Emergent wetland vegetation
a
 45.9  (4.3)  30.0  (3.6) 8  28.4  (4.2) 8 

Shoreline 1.3 (0.9)  1.1  (1.1) 5  1.5  (1.5) 7 

Agriculture 21.8  (4.2)  18.3 (11.5) 6  16.5  (7.7) 6 

Partially inundated ditch 0.7  (0.4)  0.5  (0.5) 7  0.7  (0.4) 2 

Grassland 11.0  (2.1)  17.8  (5.3) 4  16.6  (5.7) 5 

Forest 8.3  (2.4)  16.2  (7.4) 3  14.3  (6.0) 4 

Open water 8.7  (2.4)  10.3  (6.1) 2  13.8  (6.8) 0 

Gravel road 2.5  (0.6)  4.3  (1.6) 1  3.2  (0.6) 3 

Shrub cover 1.2  (0.4)  4.4  (3.0) 0  2.4  (1.1) 1 

a
Cover type was used significantly more than would have been expected based on availability  527 
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FIGURE LEGENDS 528 

Fig. 1.  Burning Star 5 Natural Wildlife Area in northwest Jackson County, near DeSoto, Illinois, 529 

USA (inset), showing property boundary and 4 wetlands where marsh rice rats (Oryzomys 530 

palustris) were livetrapped and radio-collared March–October 2011. 531 

 532 

Fig. 2.  Frequency distribution of daily movement distances made by radio-collared marsh rice 533 

rats (Oryzomys palustris) at Burning Star 5 Natural Wildlife Area, (DeSoto, Illinois) between 534 

March 30 and November 7, 2011.   535 
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