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THE PRIME DECOMPOSITION OF KNOTTED PERIODIC
ORBITS IN DYNAMICAL SYSTEMS
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Austin, TX 78712

mike@math.utezas.edu

Abstract

Templates are used to capture the knotting and linking patterns of periodic
orbits of positive entropy flows in 3 dimensions. Here, we study the properties
of various templates, especially whether or not there is a bound on the number
of prime factors of the knot types of the periodic orbits. We will also see that
determining whether two templates are different is highly nontrivial.

Keywords: Dynamical systems, flows, knots, templates.

1 Introduction

The periodic orbits of a flow in a 3-manifold may be knotted. These knots and how
they are linked have been studied with the aid of templates or knot holders, which
are compact branched 2-manifolds with smooth semi-flows, [5, 6, 11, 14, 15, 16, 28].
Reference [15] is expository.

Theorem 1.1 Given a flow ¢y on a 3-manifold M having a hyperbolic structure
on its chain recurrent set, e.g. an Anosov flow, there is a template (T, ¢3), T C M,
such that with a finite number of specified exceptions (usually one or two) the knots
and links in (M, ¢:) correspond one-to-one with those in (T, ¢}) via an ambient
isotopy. (The result can be extended to the pseudo-Anosov case.)

The proof of this theorem as well as the definitions of “hyperbolic” and “chain
recurrent set” can be found in [6]. The idea is that the flow can be collapsed along
“strong stable manifolds” [6] onto the template so as to preserve the knot and link
types of the periodic orbits. This result is not too dissimilar to the collapsing from
a two dimensional diffeomorphism to a one dimensional branched manifold that can
be found in [13, Section 5.5].

In this paper we will study the knots in a variety of flows. In particular, we will
focus on whether or not there is a bound on the number of prime factors of the
knots on a given template. Knots can be factored uniquely into primes, up to order



[19, 7]. This fact makes prime factorization a powerful knot invariant. The relevant
definitions and some examples are below.

Definition 1.1 A knot k C S3 is composite if there exists a tame sphere S?
such that S Nk is just two points, p and q, and if v is any arc on S? joining p to
q, then the knots

k1 = v U (k Noutside of S?) and
ks = v U (k Ninside of 5%),

are nontrivial, (i.e. not the unknot). We call k1 and ko factors of k and write
k = k1#ko.
If a knot isn’t composite then it is prime.

Examples.

& & &

Left-handed Trefoil Right-handed Trefoil Square Knot
Prime Prime Composite

Theorem 1.2 Torus knots are prime [7].

A (p, q)-torus knot is a knot that wraps p times around the longitude of a torus
and ¢ times meridionally. The proof that they are prime involves the study of the
intersection between the torus and a would-be cutting sphere. By assuming the
intersection to be transverse we get a disjoint collection of simple closed curves. We
can choose our cutting sphere so that the number of components in the intersection
with the torus is minimal. After proving that certain types of simple closed curves
can be ruled out one shows that the number of allowed curves can always be reduced.
Hence the intersection is empty.

Figure 1.1: A Torus Knot

Theorem 1.3 (Williams [28]) Lorenz knots are prime.
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Figure 1.2: The Lorenz Template with the z?yzy orbit.

The Lorenz template is a stylized version of the inverse-limit of the Lorenz
attractor. The periodic orbits can be represented symbolically by words in two
symbols. It was developed by Williams [27] to study the periodic orbits in the
solution of the Lorenz differential equations. Its construction is based on computer
images of the Lorenz system. The proof that this template is the inverse-limit of
the attractor was listed by Smale [20] as one of the ten most important unsolved
problems in dynamical systems.

The Lorenz template was studied extensively by Birman and Williams [5]. In
[28] Williams showed that only prime knots could be in it. The proof is similar
to that of Theorem 1.2 in that one studies the intersection of a sphere and the
template, but is much more complex. His techniques will be exploited in section 3
below to find bounds on the number of prime factors that can be possessed by the
knots in several templates.

Before we proceed we establish the following sign convention for knot crossings as
well as twists in template branches: left-handed is positive, right-handed is negative.

/ AN
/ N\

Positive Negative



1.1 Statement of results

(2. (s

Template A Template B

Template C

Template A+ Template B+
Figure 1.3: Templates

Figure 1.3 shows the principle templates to be discussed in this paper. In ad-
dition we will use the notation L(m,n) to denote the Lorenz template with m and
n half twists added to the left and right branches respectively, or just L when
n=m=0.

In [22] it was shown that,

kleAandeEszl#kgeA.

(We have abused notation by considering A and L to represent templates and the
set of knots formed by their periodic orbits.) Thus, there is no bound on the number
of prime factors knots in A can have. In particular, if £ is a knot which factors into
Lorenz knots then k is in A. It was also shown in [22] that A was a subtemplate of
B and that B was in turn a subtemplate of the Birman-Williams template (see [6,
Figure 1.2] or [22, Figure 1]). The Birman-Williams template was shown in [6] to
be the knot holder for the gradient flow in S3 minus the figure-8 knot with Anosov
monodromy. (For an expository and very visual treatment of this flow see [9] or
[10], however, an understanding of it is not necessary for our purposes.) Birman
and Williams had conjectured that it did not contain any knots with more then two
prime factors. Theorems A and B below extend the results in [22].

Theorem A: Template A contains all iterated torus knots.
Theorem B: ky, ko € A =— ki1#ks € A.

Theorem A builds on the proof in [5] that L contains all algebraic knots. The
definitions of torus knots and algebraic knots will be given later.



The proof of Theorem B will be done in three steps:

1. kl,k‘g €A = ]{71#]{72 € B.
2. Template B is a subtemplate of L(0,—2).

3. Template L(0, —2) is a subtemplate of A.
This will give us two corallaries:
Corallary B1: If / is a link then
le A<= leB < leL(0,-2).

Corallary B2: For n < 0 there is no bound on the number of prime factors for
the knots in L(0, n).

Corallary Bl and the proof of Theorem B are surprising and lead us to ask,
how does one tell if two templates are the same, as well as what should “sameness”
mean? Theorems D and E below will, however, allow us to distinguish between
templates AT and Bt. The essential property that enables us do to so, as the
notation suggests, is the uniformity of the possible types of crossings in the later
case.

This distinction is reenforced by Corallary B2, since for n > 0, L(0, n) knots are
all prime [28]. This corallary results from and extends work in [21], where it was
shown that L(0, n) knots were prime iff n > 0.

Template C is a double branched cover of the Birman-Williams template and
was studied in [6]. (Part of my original thesis problem was to show that knots in it
could have at most two prime factors.)

Theorem C: Template A is a subtemplate of template C.

In section 3 we will show that there is a bound on the number of prime factors
in templates AT and B*.

Theorem D: Every knot in template AT is prime.

Theorem E: Every composite knot in template BT is the connected sum of just
two Lorenz knots.

In section 4 we return to algebraic and torus knots and answer some questions

raised in [21].
Theorem F: L(0,n) contains all algerbraic knots if and only if

ne€{20-1,-2,.}



2 Template A

Theorem 2.1 The template A contains all iterated torus knots.

Definition 2.1 Ifk is any knot, then a (p,q) cable about k, where p and ¢ are
relatively prime, is defined as follows. Let N (k) be a solid torus neighborhood of k.
Let | be a preferred longitude of ON(k) for k. Now consider a torus T with a (p,q)
knot on it. Let h : T'— ON be a homeomorphism that takes a preferred longitude
of T to l. The image of (p,q) under this map is said to be a (p,q) cable of k or,
k(p,q). This process can be repeated on the new knot. If the original knot was the
unknot, then the resulting knots are called iterated torus knots and are denoted by

((ph 91)¢ B (pn; Qn))

Before beginning the proof we remark that the set of iterated torus knots is the
same as the set of braids with zero entropy [12, 17]. A braid [3], or more correctly a
closed braid, is a knot or a link that winds around the interior of a torus in such a
way that, for any meridian the standard meridional disk hits the braid n times for
some fixed number n. We call n the number of strands. The entropy of a braid is
the minimal topological entropy [25] of diffeomorphisms of the disk whose mapping
torus respect the braid. For example, a trefoil corresponds to a rotation and so has
zero entropy.

Proof. The proof will be similar to that of Theorem 6.2 of [5]. Let k be any
knot in A and let a and b be relatively prime integers. We may assume a is positive
without loss of generality.

We construct a new knot as follows. Draw a parallel strands to the left of k.
If b > 0 then add b strands around the top (4) loop so that there are now a + b
strands between, «, the left most point of the top branch line and 3, the left most
point where k meets the top branch line. The b left most of these a + b strands are
to wrap around the top loop and land on the b right most of them. The a left most
strands coming in from the back branch are now made to land on the a strands
closest to a.

Y/
> X

Figure 2.1: Add a parallel strands then wrap around an extra b.

Since a and b are coprime, we have a knot (as opposed to a link). If one imagines
k as the core of a knotted torus, then our new knot fits onto this torus. To see
this place the strands parallel to k& along the bottom of the torus and wrap them
meridionally around it [b/a] times and then wrap an additional r strands around,
where [b/a] is the integer part of b/a and r is its remainder.



— =S ———

Figure 2.2: We can place the new knot on a torus.

If b < 0 then we add the extra b strands to the bottom (—) loop. Our result in
either case is an (a, ac+b) cabling of k, where ¢ is the sum of the crossing numbers.
Thus, we can get any (p,q) cabling of k by chosing ¢ = p and b = ¢ — pc. By
starting with an unknotted orbit we can get any iterated torus knot by repeating
this procedure. O

Theorem 2.2 k1&ks € A = k1F#ky € A.
Proof. The proof will be done in three steps:

STEP 1: k1&ky € A = k1#ks € B. This can be seen by studying Figure 2.3.
The shaded regions are copies of template A. See [22] for details.

Figure 2.3: Two copies a A in B.

STEP 2: Template B is a subtemplate of L(0,—2). In [21] it was shown that

the template in figure 2.4 (a) is a subtemplate of L(0, —2). The remaining parts of
figure 2.4 show that B is also.



Figure 2.4: B is in L(0,-2). (Continued on next page.)



Figure 2.4: B is in L(0,-2).

STEP 3: Template L(0, —2) is a subtemplate of A. See Figure 2.5. U

Figure 2.5: L(0,-2) is in A.
Corollary 2.1 Ifl is a link then
l€A < l€B <= 1€ L(0,-2).

Corollary 2.2 Forn < 0 there is no bound on the number of prime factors for
the knots in L(0,n).

Proof. In [21] it was shown that as set on knots L(0,n) C L(0,n — 2) and
L(0,—-4) C L(0,-1). O



Theorem 2.3 Template A is a subtemplate of template C.

Proof. The proof is again pictorial. See figure 2.6 (a-g). U

a) b)

Figure 2.6: L(0,-2) is in A. (Continued on next page.)



Figure 2.6: L(0,-2) isin A.

Corollary 2.3 Template C' contains the figure-8 knot the Whitehead link and
the Borromean rings.

Proof. These can be drawn fairly easily on the version of C' in Figure 2.6
(f). See figure 2.7 (a-c). It is worth noting that despite extensive searching, these
links were not found on the original version of C' and still have not been found on

templates A or B. O

a) b)

SN

Figure 2.7: a) The figure-8 knot. b) The Whitehead link. (Continued on next page.)




S/a

Figure 2.7: ¢) The Borromean rings.

3 Positive Templates

For the templates studied in this chapter a bound on the number of prime factors
has been found. Their distinguishing feature is that all of the of the crossings in
them are positive. The possible implications of this will be discussed in Section 5.

The template AT is similar to A except that the bottom loop now crosses in
front, making all of the crossings positive. Here we shall prove that all the knots are
prime. Template BT is modeled after template B. Again the lower loop has been
changed so as to make all the crossings positive. On template Bt all the composite
knots are the connected sum of two Lorenz knots, which are known to be prime.
Thus, two is the upper bound for the number of prime factors. We will also explore
some variants of these templates.

(It is worth noting that the author spent a great deal of time trying to prove
analogous theorems for templates B and C. It was the failure of these attempts
that produced the previous section.)

The strategy of the proofs is as follows: Suppose k is a composite knot in the
template which violates the hypothesis of the theorem and let S be a cutting sphere
of k. We assume that k£ is “minimal” in the sense that it is to have the smallest
number of symbols in its word of all knots with the necessary properties. (The word
of an orbit can be thought of as its word in the fundamental group.) This means
that there are no “redundant” loops as in the figure 3.1 below.



Figure 3.1: No redundant loops allowed.

If we assume S is normal to the semi-flow then its intersection with the tem-
plate is a one dimensional branched manifold, or, if you like, a graph. Its branch
points lie in the branch lines of the template. We partion the intersection set into
segments whose end points are the branch points and any terminal points where
the intersection meets an edge of the template.

A contradiction is produced by developing an algorithm for tracing out a path
in the graph which has infinitely many distinct segments.

The next section contains several lemmas which are independent of the template
in question. Except for the last of them, they were, in one form or another, first
developed by Williams in [28] for his proof that Lorenz knots are prime.

3.1 Generic Lemmas

Let T be an arbitrary template with semi-flow ¢;. Let [ denote the set of branch
points in 7. Let k& be a minimal composite knot in 7" and S be a cutting sphere
normal to ¢;. It will be helpful to think of the template and hence the knot, as
being rigid and the sphere as being flexible.

We start by requiring S to be a sphere whose intersection with 7" has the smallest
number of segments of all cutting spheres for k. This leads to our first lemma:

Lemma 3.1 SNT contains no trivial loops

Proof. The components of SNT" that do not hit §7'U 3, are called trivial loops.
Let v be an inner most trivial loop in SN 7. The knot k cannot (transversely)
intersect S in such a loop least one of the factors of & be the unknot. The loop
bounds a disk in 7" and two in S. These form two spheres. Only of them can contain
any portion of the knot since the knot cannot pass through the disk v bounds in 7.
Hence, the empty half of S can be homotopied onto this disk which is then pushed
off T. Thus, we have a new cutting sphere for which S NT has fewer segments. U

-

Figure 3.2: Trivial loops can be removed.

The next lemma shows that we can “assume away” three additional types of
segments by just pushing the sphere around a bit.



Lemma 3.2 Segments that join two points on the same branch line from below,
a point on 0T and a point on a branch line from below or, that join two points on
the same segment of 0T can be removed by homotopies of S that reduce the number
of segments is SNT.

Proof. As Figure 3.3 shows these segments can be pushed away without cre-
ating or eliminating any intersection points of k with S or creating any additional
segments. O

Figure 3.3: Push up or out to get rid of segments.

With these segments out of the way we can now smooth out the intersection
to be with the flow except for just above 8. To see this imagine placing a comb
on each branch line and then combing downward, with the flow, straightening out
SNT as you go. Pull the comb around until you arrive just above a branch line.

We now classify the possible segments in S N 7T as follows:

e Those which connect two points of # by traveling around a branch of T'. They
are with the flow except possibly for a short diagonal stretch which is combed
to be just above a branch line.

g

e Those that lie just above a single branch line and connect two of its points will
be called U-joints. A connected collection of U-joints will be called a U-string.




e Those that lie just above a single branch line but connect a point of it to 97T’
are called edge-joints.

e Those that connect two opposite sides of 9T are double edge-joints. They
closely parallel a branch line.

The next lemma requires an additional minimality assumption: the number of
branch points in S N7 must be minimal, relative to those spheres which satisfy the
earlier conditions.

Lemma 3.3 FEvery U-joint and edge-joint must be “guarded” by an arc of the
knot on the branch opposite from it.

Proof. See figure 3.4 below. If we push a guarded segment through the branch
line we will create new intersection points between the knot and the sphere. But if
there is no arc of the knot then pushing the segment through reduces the number of
segments just as it did in Lemma 3.2 or if the U-joint gets split into two edge-joints
we have a reduction it the number of branch points. Thus unguarded U-joints and
edge-joints cannot exist because of the minimality requirements. O

N

Figure 3.4: Unguarded U-joints can be pushed away.
Lemma 3.4 U-strings do not double back.

Remark. The lemma means that situations like that the one below cannot
occur. We do not give the proof here. It can be found in [28].



Figure 3.5: A U-string cannot double back like the ones above.

Lemma 3.5 The normal bundle of any loop in SNT cannot be twisted since it
lies on the sphere S.

Proof. Think of the normal bundle as a closed ribbon perpendicular to T,
attached to it along the loop. The ribbon fits around the sphere since the sphere is
normal to the semi-flow. Thus, it cannot be twisted. O

Lemma 3.6 A U-joint contributes :l:% to the twist of normal bundle of a loop
m SNT. A U-string with an even number of U-joints does not add any twist to a
loop’s bundle while one with an odd number gives only :I:%.

(AN — RO~ )

Figure 3.6: U-strings alternate :l:% twist at each cusp.

Proof. The proof is in Figure 3.6. U

In the sections that follow, a twist calculus for closed loops is developed for the
templates in question. To this end we establish some notation. Segments that travel
around a branch are labeled with the letter that denotes the branch. U-strings with
an even number of U-joints are designated with an N, for neutral. U-strings with an
odd number of U-joints are labeled with an L or an R depending on which direction,
left or right, you would travel if you encountered one while tracing up from just
below a branch line. As an example, the loop below on the Lorenz template would
be denoted LzNy. Notice that it has twist +1/2.

Since any loop with nonzero twist cannot be in the intersection of a sphere and
a template, Lemma 3.6 will give us a great deal of control over the possible forms
of SNT. It is here that the positiveness of the templates is exploited. Since a
positive crossing in the loop produces a full positive twist in the normal bundle and
a U-string can at most cancel out half a twist, we will see that there will only be a
finite number of possible loops. This fails in the templates of Chapter 2.



Figure 3.7: The loop Lz Ny in the Lorenz template.

We now show how to rule out certain twist zero loops on a branch that bounds
a disk and contains only a single branch line.

Figure 3.8: A branch that bounds a disk with only one branch line.

Lemma 3.7 Suppose T' contains a branch, a, of the type shown in Figure 3.8.
Then the following loops cannot appear in S NI if S is a cutting sphere for a
composite knot k: a single a segment, an a segment with a neutral, leftward U-
string,Na, or one with two a segments and two odd, leftward U-strings, Lala.

Proof. We do each case separately.

a: If the loop below misses the knot k& then it can be pushed off T" into the small
disk as shown. But this reduces the number of segments of SN 7T. Thus £ must hit
our loop. This can only happen once. Call this point gq.

Figure 3.9: The a loop slides off into the disk.

Tracing up on k we wrap around and land at p on §. We claim p must be the
point of £ N G closest to the disk. For if it is not one of two things happen. Either
k wraps around some more, producing trivial i.e., nonminimal arcs of &, or another
arc of k comes into 3 in between the disk and p. But in this case the knot exits (or



enters) the cutting sphere twice, which is impossible. This fact referred to in [28]
as the no double entry lemma.

impossible impossible
Figure 3.10: Can’t guard a.

However, we now see that S can be deformed so that k£ misses the loop a alto-
gether. Thus it can be pushed off into the small disk as before.

Na: The requirement that the U-joints of the U-string be guarded force k to
pierce the a segment twice from the same side since the flow is expanding.

Figure 3.11: Can’t guard U-joints.

LaLa: Suppose we have such a loop and let p be the right most point of its
intersection with the branch line. Let ¢ be the left end of the U-string that starts
at p. The a segment coming from ¢ must land between p and ¢, else the next a
segment could not get back to p. See below:

Figure 3.12: You can’t get there from here.



Thus we are left with the situation in Figure 3.13. However, the need to guard

the inner U-joint causes the knot to intersect the sphere four times. This is impos-
sible. O

Figure 3.13: Once again we can’t guard the U-joints.
The next lemma deals with edge-joints.

Lemma 3.8 FEdge-joints on the disk side of a branch that contains only one
branch line cannot be in SNT.

Figure 3.14: These edge-joints can be ruled out.

Remark. The proof is in Section 6 of [28]. We remark only that an edge-joint
on the disk itself violates the minimality of the number of segments while one on
the other branch implies the knot must have a redundant loop.

Lemma 3.9 Let v be a simple closed curve on S that does not meet k. Then
the linking number between v and k is at most one.

Proof. Isotope S minus the two points where it meets k& to a planar annulus.
Push the “knotted parts” of k far below and far above the plane of the annulus.
Now the linking number of the image of v in the annulus with the knot is just its
winding number with the center of the annulus. Since v is a simple closed curve
this must be zero or one, up to sign. U

The strategy of the proofs then proceeds as follows. Pick a point on SNT below
the branch line. Trace “up”, that is against the flow. When we arrive at the branch
line we must choose which branch to continue tracing on. This freedom of choice
is the key. Using these lemmas and by being clever in the choices we make at the
branch line we show how to trace out a path that neither goes off an edge nor forms
a loop. But then it must wind on forever. That is impossible.



3.2 Template A"
Theorem 3.1 All the knots on template AT are prime.

B

Figure 3.15: The AT template with a knot.

Proof. Each branch of AT is denoted by the letter used in the Figure 3.15. In
describing a knot by a symbolic word we will ignore the n. Thus, the knot shown
corresponds to the word a?cbach. It is a (2,5)-torus knot. The two branch lines will
be referred to as Bsop and Bport0m, as indicated in Figure 3.15 also.

Assume that k is a composite knot on At and let S be a cutting sphere that is
normal to A*. We further assume the following minimality conditions:

e The number of symbols in the word for k is the smallest of any composite
knot in AT,

e The number of segments in S N At is the smallest possible relative to the knot
k.

e The number of branch points in S N At is the smallest possible relative to the
first two assumptions.

Pick a point in SN AT just below a branch line and begin tracing up, against
the flow and towards the branch line. Let I' be the path we form.

By Lemma 3.8, S N AT cannot have any leftward edge-joints. Thus, as we trace
out our path, whenever we encounter a branch line we will choose to go straight,
or if we must follow a U-string, take the left-hand turn. We wish to show that I'
contains no loops and hence must end at an leftward edge-joint, which is impossible.

If v is a loop in S N AT then the twist of its normal bundle is

T(y)=a+b+c—1+1U where,
U=Ra—La— Rb+ Lb+ Rc— Lc— Rn+ Ln.



Here, the symbols refer to the number of each type of segment. That is a, means
the number of a segments in 7, Rb the number of Rb type U-strings, etc.

The total number of possible U-strings in v is a + 2b 4 ¢. For the twist to be
zero there must be at least 2(a+ b+ c—1) negative U-strings. Therefore, a+¢ < 2.
We consider the following cases.

CASE: a=2,¢=0(a =0,¢ = 2 is similar): If b = 0 then the only possible loop
is LaLa. But this has been ruled out be Lemma 3.7. Thus b > 0. For the twist
to be zero there must be at least 2 4+ 2b negative U-strings. Thus, there must be
a negative U-joint each time we meet 8. In particular, as we pass from b to n we
must go through a Rn. But this turn is not allowed.

CASE:a=1,¢=0(a = 0,c = 1issimilar): If 6 = 0 then the only possible loops
are @ or Na. But these have been ruled out by Lemma 3.7. (If the Na contained
rightward U-joints, then we would always avoid it.) Thus, b > 0. For the twist to
be zero we need at least 2b negative U-strings. There are three places they could
go: From a to b: But Lb is positive. From b to n: But Ln is positive. From b to a:
La is negative, but this not enough.

CASE: @ = 1,¢ = 1: Clearly, b = 0 is impossible. If b > 0 we get the same
contradiction as before.

CASE: a =0,¢=0: If b > 1 then there must be a negative U-string and it can
only be Rb or Rn, but these are right turns. Thus, we suppose b = 1. There are
three subcases to consider.

SUBCASE: The loop nb: Any strand of k£ that passes over this type of loop must
pierce it on its way back. Thus, by the no double entry lemma only one strand on
k does so. But then we can push the loop off the template as shown. Thus such a
loop in S N AT violates the minimality conditions. This is similar the the first case
of Lemma 3.7.

Figure 3.16: Push the bn loop off into the disk.

SUBCASE: The loop NnNb: Let v be a loop in SN At of type NbNn, with
both U-strings going to the left. S can be deformed so that k N~y = ¢. The
deformations are shown below.



Figure 3.17: Deform loop to miss the knot.

The requirement that the forward U-joints be guarded forces the linking number
of the knot and the loop to be at least two. This contradicts Lemma 3.9. See figure
3.18.

Figure 3.18: Linking number is at least two.

SUBCASE: nNb (Nnb is similar): Suppose we have encountered an nNb loop.
As before we can assume kNnNb = ¢. The strand that guards the left most U-joint
(and there can only be one such strand, least the linking number exceed one) must
originate from the ¢ branch. Otherwise we would have a redundant loop in k. This
contributes +1 to the linking number between k and nNb.

o <
>
[ -
N

1

Figure 3.19: Linking number is at least one.



Let p be the right most point of the U-string. We will show that the segment
of SN AT in the a-branch that contains p must be a type a segment. Assume
not. Since U-strings don’t double back we have either a rightward edge-joint or a
rightward U-joint. In both cases it must be guarded by a strand of the knot. There
are two ways this can be done. In one we have a redundant loop in k, in the other
we force the knot to link the loop at least twice. Both are impossible.

Figure 3.20: Can’t guard a rightward U-joint.

Therefore, we will have to go along the a segment and avoid this type of loop.
We now see that ' never ends and never forms a loop. Thus it contains infinitely
many segments. This concludes the proof. U

If one adds a negative half twist to any one branch of At then there are composite
knots as such a template will contain L(0,n) as a subtemplate for some n < 0.
However, we conjecture that if one adds any number of positive twists to a or ¢
then all the knots are still prime. Note that one looses the prohibition on leftward
edge-joints, and the conjecture, if true, may be more difficult to prove. However, if
one adds positive half twists to the n branch then it is an easy corallary that the
knots are still prime. We call such templates A*(n) where there are n half twists
on the n branch.

We record the following applications.

Corollary 3.1 Every composite knot in B that is factored by the sphere S below
is the connected sum of a knot in At with the mirror image of a knot in AT. Thus,
these knots have just two prime factors and they are fibered knots.

Proof. Figure 3.21 shows that, although the part of the factor outside of S may
not “fit” onto the Lorenz template, it can be (ambiently) isotoped to a periodic orbit
of A*. Thus, it is prime. Similarly the inner factor can be placed on the mirror
image of AT. Both factors are fibered knots because any knot whose crossings are
all the same sign is fibered [5, Theorem 5.2]. Further, the connected sum of two

fibered knots is a fibered knot [7]. U



Figure 3.21: The outside factor can be placed on AT,

Corollary 3.2 Any composite knot on the C' template which is factored by the
sphere S below is the connected sum of a knot on At (1) and a knot on the mirror

image of A*(1).

Proof. See Figure 3.22 (a-j). The strand of the outside factor that enters the
sphere is the left most strand on the twisted branch. We pull it off of this branch
and follow its course along the sphere (not shown) down into the untwisted branch
and then back to the upper branch line (by disregarding the lower flap, this is now
the only branch line). We then (Figure 3.22 d) push the strand into the template,
along the flow in the twisted branch, but from the back. We see that the strand
off the template now comes from the far left end and goes into the branch line
somewhere in the twisted branch. By adding a new branch we create a template
onto which we can isotop our knot, making it a periodic orbit on the new template.
This template is readily seen to be A*(1). O
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Figure 3.22: (g-j), (Continued from previous page.)




3.3 Template B*

Theorem 3.2 All the composite knots on template BT are the connected sum
of two Lorenz knots.

Figure 3.23: Bt with the sphere S.

Lemma 3.10 Let k be a knot in BT that is factored by the sphere S shown
above. Then the factors of k are two Lorenz knots.

Proof. Let k be a knot in BT such that kN S is just two points. Let k; and
ko be the factors of & when it is cut by S. Let k; be the factor outside of S. From
the Figure 3.23 we see that S divides T into two pieces that are “almost” Lorenz;
k1 can be pushed onto a Lorenz flow in this outer piece but for an ezceptional arc.
Let this arc have end points p and ¢ as shown in Figure 3.24.

The next step is easier to see from behind, so we have rotated the outer piece
180°. Now we slide ¢ up along a flow line on the b-branch until we get back to the
branch line. Since we are going against the flow the new point ¢ is closer to the
end point, labeled e. After a finite number of such moves there will be no arcs of
k1 hitting the branch line between p and ¢q. (One could think of this as backing
in towards the repeller.) Now the exceptional arc can be pushed into the template
and then combed onto a periodic orbit, i.e. a Lorenz knot.

The proof for ks is similar. Also, it is trivial is see that if either factor was the
unknot then k£ was Lorenz to begin with. O
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Figure 3.24: S creates Lorenz factors.

We now assume that k is a composite knot on BT that is not factored by S but
rather by some other cutting sphere O. Like before in order to get a contradiction
we make the following minimality assumptions:

e The number of symbols in k is the smallest of any composite knot in B+ that
is not factored by S.

e The number of segments in O N BT is the smallest possible relative to the

knot k.

e The number of branch points in O N BT is the smallest possible relative to
the two assumptions above.

We again trace out a path in O N BT by going against the flow, however, this
time we if we must choose a U-joint we go to the right if we are on Fyo1s0m and left
on B;op. Lemma 3.8 insures that we will not encounter an edge-joint in our travels.
Thus, it only remains to rule out loops.



A loop 7 in O N Bt has a twist number given by

T(y)=a+b+c—14+1U where,
U=Ra—La— Rb+ Lb— Rc+ Le+ Rn — Ln.

Just as before a + ¢ < 2 and we have six cases to check. However, except for the
case, a = ¢ = 0, the proof is virtually the same as for Theorem 3.1.

Suppose a = ¢ = 0. Then b = 1, and we have four possibilities: nb, Nnb, nNb
and NnNb, where the neutral U-strings go to the left or right depending or whether
they are on Bs5p OF Brotsom respectively. They can be deformed so as to insure that
they do not intersect the knot. Figure 3.25 illustrates this for the NnNb loop. The
others are similar.

Figure 3.25: Can deform O so that the loop misses k.

In each case we exploit the fact that since & is not factored by S, at least two
strands of k£ must go from the a-branch over to the e¢-branch (perhaps wrapping
around b one or more times first) before passing back to a. This causes k to link
any of these loops at least twice, i.e., they have linking number greater than one,
which contradicts Lemma 3.9. Figure 3.26 illustrate this.

Figure 3.26: The linking number must be at least two.

The proof is now complete. O



Corollary 3.3 The braid index of a composite knot k in Bt is given by the
number of “syllables” in the word for k of the form a™b™ plus those of the form
bPc! minus one.

Proof. The braid index of a knot is the minimum number of strands needed
to present it as a closed braid. For the trefoil it is two, for the figure-8 knot three.
The braid index is a knot invariant.

The braid index of a knot in the Lorenz template has been shown to be the
number of z™y" syllables [16, page 132]. Since Birman and Menasco [4] have
shown that the braid index is additive minus one under connected sums, we have
our result. O

Corollary 3.4 If we add any number of positive half twists to the n branch of
Bt then all the knots are prime.

Proof. Let B*(p) be BT with p half twists on the n branch. The twist equation
is just the equation for BT plus pn/2. For p > 0 one easily checks that ¢ = ¢ = 0.
The only way a loop without a and ¢ segments could have twist zero would be to
have a right U-string along B;0p and a left one along Bportom. But of course we
choose just the opposite. O

We now know that At and Bt are different since only the latter contains com-
posite knots. However, Figure 3.27 shows us that A*(1) and B*(1) are the same.
The reader can check that

A*(n) = B*(n)

for n odd. For non-zero even n the question is open. In particular, it is known that
B*(2) is the Lorenz template [5, ?]. Thus, we wonder if A*(2) is also.

Filp top loop Rotate about

Figure 3.27: AT(1) = B*(1).



4 Torus and algebraic knots

The goal of this section is to prove the following two theorems. They extend results
arrived at in [21].

Theorem 4.1 For every nonnegative integer n there exists a knot k, such that

k e L(0,2n) but k ¢ L(0,2n+ 2).
Theorem 4.2 L(0,n) contains all algebraic knots if and only if
ne{2,0,-1,-2 ..}

The definition of algebraic knots will be given later. The next three lemmas
prove Theorem 4.1.

Lemma 4.1 For knots in L(0,2n), n > 1, 2g > nb(b— 1), where g is the genus
and b is the braid index of the knot.

Proof. The genus of a knot is the minimum genus of oriented surfaces whose
boundary is the knot. It is a standard knot invariant [7]. The braid indez is the
minimum number of strands needed to display a knot as a braid [3]. For knots
in L(0,2n), n > 1, the braid index is just the number of strands that go down
the twisted branch. See Theorem 6.1.3 and the accompanying note in [16]. From
Theorem 5.2 of [5] we know that, for a braid whose crossings are all the same sign

2g=c—b+1,

where ¢ is the number of crossings when the knot is placed on b strands. We can
see that ¢ is bounded below:

c>2nb(b—1)/24+b—1.
Thus,
c—=b+1>nbb-1),
and we have our result. U
The next lemma was also discovered by David Armstrong [1].

Lemma 4.2 A (p, q)-torus knot, ¢ > p, is in L(0,2n) if and only if ¢ > np.

Proof. There is no loss of generality in assuming ¢ > p since (p, ¢) = (¢, p).
(=): We will use the fact that the genus of (p, ¢) is known to be (p—1)(¢—1)/2
and that the braid index is p. Thus we have

p—Dg—-1)>np(p—1)=>qg>np+1.

(«<): Let ¢ = mp+ r, where m > 0 and 0 < r < p. Figure 4.1 shows us that
(p,q) € L(0,2m). (It is this step that is difficult to extend to the odd cases.)
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Figure 4.1: Torus knot “fits” onto the template.

Now, if ¢ > np then there exist an integer n’ > 0 such that ¢ = (n +n')p+ r.
Thus,
(p,q) € L(0,2(n" + n)) C L(0,2n),

and the proof is done. O

This shows us exactly which torus knots are in L(0, 2n) for every n. To complete
the proof of Theorem 4.1 we need only find a knot which is on L(0, 0) that is not
on L(0,2); both contain all torus knots. The next lemma does this.

Lemma 4.3 There exits a Lorenz knot which is not on L(0, 2).

Braid Notation. Let B, be the braid group for braids on n strands. If b € B,
let b, the closure of b, be the link formed by identifying the top and bottom of b as
show in Figure 4.2.

Each braid b € B,, can be defined by a word in the integers set {1,2,...,n— 1}
according to its crossings. The word for the braid in Figure 4.2 is 12271, Let A,
be the positive half twist on the n strands of B,. All this is standard. See [3]. For
convenlence we will let A = As.

Proof of lemma 4.3. Let b6 = 1323 and k = bA? in Bs. To see that kis a
Lorenz knot we view it on the braid index form of the Lorenz template developed
in [5] and shown in Figure 4.3.



Figure 4.2: Close up braid to form a link.

Figure 4.3: k on L(0,0)

Now suppose k is on L(0,2). Then it is the closure of a braid of the form IA2,
where [ is a Lorenz knot. See Figure 4.4. If [ were a link then {A2 would also be a
link and hence not equivalent to k.



Figure 4.4: Is k on L(0,2) ?

To get a contradiction, we first show that n = 3. But it is clear from a theorem
in [11] that the braid index of k is 3 while the braid index of I/A\TZL is n. Hence n = 3.
Notice that [ cannot equal b since bis composite. Now, there are infinitely many
words in Bs whose closures are Lorenz knots. But, because the geneses of bA? and

EA2 are the same and since these are positive braids, they must have the same
crossing number. Hence [ has letter length six. One can list all of these and check
(T used the two variable Jones polynomial via a computer program) that for no such

lis IA? the same as k. O

We now move on to algebraic knots. Algebraic knots form an important class
of iterated torus knots, that contains all torus knots. That is

torus knots C algebraic knots C iterated torus knots.

Birman and Williams [5] showed that all algebraic knots are in L(
show that this is also true for L(0,2). This is clearly not true for L(
since they do not contain all torus knots.

,0). We will
n

0
0,2n), n > 1,

Definition 4.1 An algebraic knot is an iterated torus knot,

((plaql)a sy (pm Qn))
for which,

pi > 0 fori=1,..n,
g > 0 and,
% > pipi-1¢i-1 fori=2,..,n.

Algebraic knots arose from the study of the solutions to polynomial equations of
two complex variables at an isolated singular point. The above definition is really
a theorem [7].



Lemma 4.4 L(0,2) has all algebraic knots.

Proof. The proof follows the same lines as that of Theorem 6.3 of [5]. Let N, =
((p1,91), .-, (pr, ¢r)) be an algebraic knot. Below we not only see that N1 = (p1, 1)
is on L(0, 2), but that it can have crossing number p;¢;. As an inductive hypothesis
we assume N1 = ((p1,491), .-y (Pr—1,¢r—1)) is on L(0,2) with crossing number is
C=Pr-14r-1-

g

From the proof of Theorem 2.1 we know we can get all cablings of the form
Nr_i1(a,ac+b), where a and b any coprime integers, but now both must be positive.
Thus, in order to get N, we need @ = p, and b = ¢, — p,c. But the definition of
an algebraic knot tells us that b will be positive and so this cabling can be done.
Furthermore, it is clear from the construction in Theorem 2.1 that

e(N,) = C(Nr_l)a2 +ab = p,q,.
This establishes the inductive hypothesis. O

Figure 4.5

It was shown in [16] that L(0,1) does not contain all torus knots. Hence the
same conclusion holds for any number of odd positive twists. The negative cases
all contain all Lorenz knots. This proves Theorem 4.2.

5 Conclusion

An obvious pattern has emerged. A bound on the number of prime factors for the
periodic orbits in a template has been found only is those cases where all the cross-
ings are the same sign. The counter-examples to the Birman-Williams conjecture
occurred on templates with mixed crossings. This leads to



Conjecture 5.1 For all positive templates there is a bound on the number of
prime factors. More precisely, if there is a presentation of a template so that all the
crossings are of the same sign then there is a bound on the number of prime factors
of the periodic orbits.

As a special case we make

Conjecture 5.2 For all positive integers, m and n, the knots in L(m,n) have
at most two prime factors.

The converse of Conjecture 5.1 is most likely false. It may well be possible
to construct a template whose branches are knotted in such a way as to rule out
composite knots, even if both positive and negative crossing occur.

If a knot or link has a diagram with all positive or all negative crossings then it
is known to be fibered. Whitten has shown [26] that determining the primeness of a
fibered knot can be reduced to an algebraic condition. The number of prime factors
of a fibered knot is equal to the rank of a certain subgroup of the commutator
subgroup of the fundamental group of the knot’s complement in S$3. This leads us
to wonder if the theorems in Chapter 3, as well as Williams’ result for Lorenz knots
and perhaps Conjecture 5.1, can’t be proved by purely algebraic means as is the
case with Theorem 1.2, that torus knots are prime [7].

It is now known that flows with entropy zero can only possess periodic orbits
whose knot types are iterated torus knots or their connected sums. In the case where
the flow is a suspension of a diffeomorphism of a punctured disk, then entropy zero
is equivalent to the braid type of the of the diffeomorphism being that of an iterated
torus knot and the periodic orbits can only be iterated torus knots. See [12, 17]

For positive entropy flows we may never have as clear a picture as in the zero
entropy case. However, for flows which possess positive templates, for example
the pseudo-Anosov parts of the suspensions of diffeomorphisms (in the sense of
Thurston’s classification theorem of diffcomorphisms [24]) whose braid types are
positive braids, some head way has now been made. Aside from the work here, a
Zeta function for positive templates has been discovered by the author and will be
the subject of a future paper [23].
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