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Abstract

A zeta function for a map f : M — M is a device for counting
periodic orbits. For a topological flow however, there is not a clear
meaning to the period of a closed orbit. We circumvent this for flows
which have positive templales by counting the “twists” in the stable
manifolds of the periodic orbits.
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1 Introduction

We study smooth flows in S® (or R?) which have one dimensional hyperbolic
chain-recurrent sets. See [BW-II, section 2] or [F] for details. A point z € S®
is in the chain-recurrent set of a flow ¢; if for any 7" > 0 and any ¢ > 0
there exist points in S®, * = g, ..., 7, = x, and real numbers tg,...,t,_1, all
greater than 7', such that d(¢y,(z;),x;41) < e for ¢ = 0,...,n — 1. Here d is a
given metric. S? can be replaced by any manifold. The points of any periodic



orbit are in the chain-recurrent set. The chain-recurrent set is compact and
invariant under the flow.

An invariant set is said to be hyperbolic, or to have a hyperbolic structure,
if each orbit has a stable manifold consisting of itself and any other orbits
that are attracted to it, and an unstable manifold consisting of itself and any
other orbits repelled from it. Thus, in three dimensional flows, each orbit is
either an attractor (with a three dimensional stable manifold), a repeller (with
a three dimensional unstable manifold) or the stable and unstable manifolds
are each two dimensional sheets, as shown in figure 1.1. The notions of chain
recurrence and hyperbolicity can also be defined for maps [F].

The chain recurrent set can be divided into a finite number of transitive
pieces, meaning they contain a dense orbit, called basic sets. A basic set may
consist of a single closed orbit or it may contain an infinite mesh of orbits. In
the later case, the periodic orbits form a dense subset and all orbits have two
dimensional stable and unstable manifolds. The periodic orbits form infinitely
many distinct knot types [FW].

If such a basic set is one dimensional, as is the case for Smale flows, its
periodic orbits can be modeled with a template which is a branched 2-manifold
with a semi-flow (see definition 3.1). That is the knotting and linking struc-
tures in the basic set can be identified with those in the template. Templates
have been used to study a variety of flows [BW-I, BW-II, HW, H1, H2,
H4, Sul, Su2]. Here we use templates to model not the knotting of periodic
orbits but the twisting of their stable manifolds. See figure 1.2. (This isn’t
quite true, we will use a nonstandard notion of twist which does incorporate
some knot theoretic information.)

The difficulty in applying zeta function theory to flows is that for a topo-
logical flow there is not a clear meaning to the period of a closed orbit. We
circumvent this for one dimensional hyperbolic chain-recurrent sets by using
the twist of a closed orbit as a canonical period. That is we shall define a
rational function whose logarithmic series expansion will allow us to count the
number of periodic orbits with any given amount of twist, much the way a
zeta function for a map counts the periodic orbits. This is done is section 5.

Unfortunately, for many templates the number of periodic orbits with a
given amount of twist can be infinite. But we will show in lemma 4.2 that
this is not the case for positive templates, where only one type of crossing is
allowed, and so we will restrict our attention to them.



2 Review of Zeta Functions
For general references to zeta functions see [F, chapter 5] or [Sh, chapter 10].

Definition 2.1 The zeta function of @ map f: M — M is the exponential
of a formal power series in t,

=01
i =exp (3 Lvurr),
m=1 m
where N, is the cardinality of the fixed point set of f™, the m-th iterate of f.

If f has a hyperbolic chain recurrent set then the N, are all finite and (f(¢)
is a rational function. Hence a finite set of numbers determine all the V,,.
If O; is the number of periodic orbits of length [ then

N,. =310,

l|m
We can recover O; by the Mébius inversion formula [Sm, page 765]:
1
O = 7 Z/‘(m)Nl/mv
m|l
where p is the function defined by

1 ifm=1,
p(m) = 0 if 3 a prime p 3 p*|m,
(=1) if m=p,...,p,, for r distinct primes.

When a map’s chain-recurrent set is hyperbolic and zero dimensional, as
is the case for subshifts of finite type, there exists a square matrix A of non-
negative integers such that N,, = tr A™. Then (;(¢) = 1/det I — tA.

3 Knots, Braids and Templates

Standard texts on knots include [B], [BZ] and [R]. The principal references
for templates are [BW-I] and [BW-II].



Definition 3.1 A template is a compact branched 2-manifold with a smooth
expansive semi-flow.

We give an example of a template, known as the Lorenz template, in figure
3.1. The semi-flow goes down from the branch line and then around either of
the two branches back to the branch line. This is a semi-flow since backward
orbits are not unique and since many orbits exit the template. Figure 3.1
shows a periodic orbit. Its knot type is that of the left-hand trefoil. The Lorenz
template has been used to model the Lorenz equations (whose hyperbolicity
is still conjectural) [BW-I].

A knot is a smoothly embedded 1-sphere in a 3-sphere. We can give a
knot an orientation, which for us will just be the flow direction. A link is a
disjoint union of knots. Any link can be placed (ambiently isotoped) in a braid
form, where it wraps around a braid axis (a straight line). This was proven by
Alexander, [B]. The same is true of templates [FW]. That is, any template
can be isotoped so that all the closed orbits form braids. Figure 3.2 shows how
to braid the Lorenz template.

The crossings in a link, or a template, come in two types, left-handed
and right-handed, which we shall call positive and negative, respectively. The
crossings of the orbits in the Lorenz template are always positive. Knots
and links which can be presented as positive braids are called positive braids,
and templates which contain only positive braids are called positive templates.
There are many knots which cannot be presented as positive braids, for exam-
ple the figure-8 knot, and which therefore do not occur in the Lorenz template.

Of course theorems about positive braids and templates usually carry over
to “negative” braids and templates. All our results will do so. One can think
of positive braids and templates as including all braids and templates with
a presentation that has only one crossing type. Perhaps the name uniform
braids would be better, but this is not the custom.

Templates are constructed by collapsing out stable manifolds of a flow’s
chain recurrent set. This process preserves the periodic orbits and how they
are linked and knotted. But, it is also the case that the unit normal bundle
of a periodic orbit on a template is isotopic to the intersection of a tubular
neighborhood of the orbit and its stable manifold in the original flow. The
idea is to use the twisting in these ribbons as a canonical period for the orbits.

Definition 3.2 Given a template we construct its ribbon set as follows. Re-
move all orbits which eventually exit the template. Call what is left the orbit
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set of the template. We attach to each of these orbits a ribbon defined by each
orbit’s unit normal bundle. This whirling collection of ribbons is the ribbon
set.

We shall construct zeta function which is invariant with respect to ambient
isotopy of the ribbon set of a template embedded in S3. This is weaker than
just isotopy of the template. The invariance also holds under the two “template
moves” in figure 3.3, as they do not disturb the orbit set, compare [BW-II,
figure 2.4].

4 Positive Ribbons

A closed ribbon, or ribbon for short, is an embedded annulus or Mébius band
in §%. In this section we shall define three notions of twist for ribbons. These
are, the usual twist 7, [K, section V], the modified twist 7,,,, and the computed
twist 7.

Like knots and templates, ribbons can be braided. A ribbon which has a
braid presentation such that each crossing of one strand over another is positive
and each twist in each strand is positive, will be called a positive ribbon. The
core and boundary of a positive ribbon are positive braids.

We will use the following notation. If R is a ribbon and b(R) is a braid
presentation of R, let ¢ be the sum of the crossing numbers of the core of R,
using +1 for positive crossings and —1 for negative ones. Let ¢ be the sum of
the half twists in the strands of b(R) and let n be the number of strands of
the core.

Definition 4.1 Let 7, =c+1t/2, 7, =n—14+1/2 and 7. = 2n + .

Lemma 4.1 7, is an isotopy invariant of ribbons over all braid presentations.
Tm and 7. are isotopy invariants of positive ribbons over positive braid presen-
tations.

Proof: The proof uses linking numbers and the genus. These are standard
invariants of knot theory [BZ], [R]. The linking number of two components
of a link is the sum of the crossing types as one of the two knots passes under
the other. For an embedded annulus the linking number of the two boundary
components is ¢ + t/2. The same formula gives one half the linking number



of an embedded Mobius band’s boundary with its core. In both cases we get
that 7, is an invariant.

The genus of a knot or link is the minimum genus of orientable surfaces
whose boundary is the knot or link in question. It was shown in [BW-I,
Theorem 5.2] that for positive braids the genus is given by,

c—n-+1

9= 9

The invariance of 7, for positive ribbons follows from checking that
T = Ty — 29,
where ¢ is the genus of the core of R. Lastly we see that 7. = 2(7,,, +1).

For the trefoil orbit in figure 3.1 the reader can check that ¢ =1 and that
its unit normal bundle has 7, =6, 7,, = 4 and 7. = 10.

Visually, the conversion of a positive full twist to a loop or writhe decreases
t by 2 but creates an extra strand. Since doing this to a negative full twist
would increase t by 2 while creating an extra strand, it is easy to show that
the invariance of 7,, and 7. fail for ribbons with mixed crossings. This is a
second, and in a sense a more serious, reason for the restriction to positive
templates. We also note that 7, = 7,, is equivalent to ¢ = 0, which in turn is
true if and only if the core of the ribbon is unknotted.

The proof of the next lemma will require the use of Markov partitions. We
shall give a brief review, but refer the reader to [Sh, Chapter 10] for details. In
our context a Markov partition is a finite, disjoint collection of line segments
transverse to a template’s semi-flow. Each orbit that does not exit the template
must pass through some element of the Markov partition in forward time. The
flow induces a first return map on the partition elements. This map has the
property that each Markov partition element is mapped onto any partition
element that its image meets. The thickened line segments in figures 4.1 and
5.1 represent the elements of Markov partitions for the templates shown. Note
however, that Markov partition elements do not have to be contained in branch
lines.

Lemma 4.2 For positive templates the number of closed orbits with a given
computed twist is finite.



Proof: Given a positive template we put it into a positive braid form and
construct a Markov partition. Let x be the number of partition elements and
label the elements sq,...,s,. Then each closed orbit is now represented by a
cyclic sequence in these symbols, up to cyclic permutations. Because the semi-
flow on the template is expansive it is well known that this representation is
one-to-one on a subset of bi-infinite symbol sequences [BW-1, Section 2.4].
Thus the number closed orbits of a given least cycle length (usually called the
word length) is finite.

Given 7. choose n so that 7. < 2n. Because the template is braided, a
closed orbit that meets any one partition element n times must have wrapped
around the braid axis at least n times. Since there are no negative half twists
such an orbit’s computed twist is bigger than or equal to 2n. If w > zn, then
any closed orbit with word length w must have traveled around the template’s
braid axis at least n times. Thus, any closed orbit with computed twist 7, has
word length less than zn. There can only be finitely many such orbits. B

The computations in the proof of lemma 4.1 show that lemma 4.2 holds
for 7,, and 7, as well as 7.. This is clear for 7,. For 7,, use the fact ¢ > 0
implies 7, > 7.

5 Counting Twisted Ribbons

Definition 5.1 For a given positive template let T be the number of closed
orbits with computed twist q'. Let T, = 37,1, qTy. Then we define the zeta
function of the template to be the exponential of a formal power series:

(= (£75).

Theorem 5.1 ( is an invariant of ambient isotopy of the ribbon set for posi-
tive templates. It terms of positive templates ( is invariant under isotopy and
the two moves shown in figure 3.3.

Proof: This is just a corollary of lemma 4.1. B

Given a positive template we can put it in positive braid form and consider
a Markov partition of the orbit set. We now define a twist matriz, A(t), whose
entries are nonnegative powers of ¢ and 0’s by considering the contribution to



7. as an orbit goes from one element of the partition to other. Let A;; = 0 if
there is no branch going from the i-th to the j-th partition element. A;; = %
if the is such a branch, where the ¢;; is the amount of computed twist orbits
pick up as they travel from the i-th to the j-th partition element. It is easy to
see that we can, if necessary, isotope the template so that ¢;; is always integral.
This problem could arise if some of the partition elements are outside of the
branch lines. (Note: We can always choose the partition so that at most
one branch goes from the i-th element to the j-th element for each ¢ and j.
However, if one wishes to be more general, we can use polynomials in A(t)
instead of just powers of .)
For example, the template and partition in figure 4.4 give

0 0 0 ¢t ¢t
0 0 0 1 1
Aty=10 ¢ 2 0 0
22 2 00
B 200

Theorem 5.2 For any template and any allowed choice of A(t) we have ((t) =
1/ det(I — A(t)). Thus, the zeta function is rational.

Before proving theorem 5.2 we work through a example. The template in
figure 5.1 has been used to model an embedding of the suspension of Smale’s
horseshoe map and has been extensively studied. See [BW-II, Secion 3],
[HW], [H1] [H2] and [H4].

Using the two element Markov partition indicated by the thick lines in
figure 5.1, we have

t? ¢
A(t) = [ t3 tS ] ’
and so,
1/det I — A(t) =1/(1 —* —1°).

We apply a standard matrix identity (see lemma 5.2 of [F] or proposition
10.7 of [Sh]) to get

s = oo (XA, (+



Let us analyze the first three terms of

2 tr AT 4 205445 15+ 37 4 38 + ¢°
Z n T + 2 + 3

n=1

There are five closed orbits which pass through the Markov set three or
fewer times. All are unknotted, so 7,, = 7,. We label each with a word using
x and y as the symbols for the left and right partition elements respectively.
The five orbits are z, y, zy, zzy, and zyy (up to cyclic permutations).

The t* and the #° of the first term of the sum correspond to the orbits z
and y respectively. In the second term, x and y are counted again, by ¢* and °
respectively, but they have been traversed twice. The 2¢° corresponds to zy,
where the 2 is the product of number of orbits that pass through the Markov
set twice (just 1 in this case) and 2, the number of passes.

The reader should check that 3¢7 corresponds to zzy and 3t® to zyy. The
t® and the ¢? again count x and y respectively, this time making three trips on
each. In general the exponents give the 7. times the “trip number.” It is worth
noting that tr (A(1))” is the number of intersection points of the Markov set
with the link of closed orbits which meet the Markov set n’ times, where n’
divides n.

Proof of theorem 5.2: Since equation (*) applies to any twist matrix all
that is left to do is rearrange the terms of the infinite sum by collecting the
powers of ¢.

Let 1}, be the number of closed orbits with 7. = ¢’ that pass through the
Markov set n’ times, i.e those orbits whose symbol sequence has least period
n'. We shall set T, = 0 if either index is nonintegral.

If
My
tr (A(t))n = Z Pant?,

q="mn
for some positive integers M,, and m,,, then

!
Pgn = Z n' Ty,

n'|n

where ¢’ = %’q. Note that ¢/¢" = n/n’ is the “trip number”, when ¢’ is an
integer.



That is, p,, is the number of points in the intersection of the Markov set
with those closed orbits that meet the Markov set n’ times for some n'|n and
whose 7. divides ¢. This can be proved by induction on n as in lemma 2 of
[BL].

We can rewrite this as

Pgn = Z n/Tq’n’a
a'lg

where now n' = Ln.

q

Now we show that for a fixed ¢ only finitely many of the p,, are nonzero.
Let « be the number of elements in the Markov partition. Let N > xn for
some n > ¢q/2. Allowed symbol sequences of (not necessarily least) period
N represent orbits that have traveled around the braid axis at least n times,
taking the number of “trips” into account. Thus the smallest exponent of
tr (A(t))" is bounded below by 2n. (This can be thought of as an application
of lemma 4.2.)

If we let .
* pqn
T'=q>, ==
n=1

then
Sy ST,

n=1 n q=2

It is only left to show that 7° = 7,.

Dan n' q' 1
> % =>.> Ay = 220 Ty =320 Tyw.
n moq'lq gy 4 Doy n

But, n’ = q7q,. As n ranges over all positive integers so does #, since ¢/¢

is an integer. This allows us to write
Z Tq,TL/ - Z Tq’TL - Tq’.

Thus, 7 = 7, and the proof is complete. B
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6 Applications

We regard two templates as equivalent if one can be taken to the other by a
combination of isotopy through 3-space and a finite number of the two template
moves depicted in figure 3.3. This implies their respective ribbon sets are
isotopic and we conjecture that the converse is true as well.

Distinguishing between different templates or telling if one template is a
subtemplate of another can be a highly nontrivial affair [Su2]. However, for
positive templates at least, the twist approach makes the task much easier.

Let L(m,n) denote a Lorenz-like template, which is similar to the Lorenz
template, except that the left branch has m half twists and the right branch
has n half twists. The corresponding zeta functions, for m,n > 0 are

Conn = 1/(1 —7™H2 742,

This distinguishes between these templates except that (., = (um. The
reader can check that L(m,n) is equivalent to L(n,m) via a 180° rotation.

Template A in figure 6.1 contains the Lorenz template as a subtemplate;
just consider those orbits which do not make use of the lower loop on the left.
Is it possible that A is also a subtemplate of L(0,0) ? The answer is no, since
A has three loops with 7,, = 0 while the Lorenz template has only two. It
was the generalization of this observation that led to the discovery of our zeta
function for positive templates. In fact there are infinitely many orbits of A
which are not to be found on L(0,0). Table 1 lists some of them.

In [Sul] and [Su2] it was shown that certain templates with mixed crossing
types contained themselves as proper subtemplates. This represents a self-
similarity structure in these systems. For positive templates such a situation
is impossible. There would be infinitely many isotopic copies of every orbit in
the template. But, the number of orbits of a given modified twist number is
finite, by lemma 4.2.

Alas, the next example shows our zeta function is not a complete invariant.
Template B shown in figure 6.2 has the same zeta function as A. However,
they are distinguishable in at least two ways. While they both have three
closed orbits of zero twist, in A these are all in the boundary, but one of B’s
is in its interior. In [Su2] it was shown that all the knots in A are prime while
B contains composite knots.

Robert Ghrist has pointed out to us that positive templates arise in the
setting of forced oscillators. Let & = g(x, &,1), where ¢ is smooth and periodic

11



| 7 | L(0,0) [ L(0,1) [ A ]
0 2 1 3
: 0 1 0
1 1 0 2
2 0 1 0
2 2 0 5
2 0 1 0
3 3 1|10
: 0 1 0
4 6 1 [
5 0 1 0
5 9 1[50
510 2 0

Table 1: Number of orbits listed by 7, for different templates.

in t. This can be converted to a first order autonomous system:

T =y
j = g(x,2,t)
i =1

?

with phase space the real plane cross a circle. The chain-recurrent set, however,
will live in a solid torus. The condition & = y causes the twisting in the
flow to be monotonic. Thus if the flow can be modeled by a template, the
template will be positive. This is the case for the Duffing equation, where
g = 6 + x — 2 + ycoswt, and is very likely the case for the Josephson
equation, where ¢ = é& — sinx + v — 3 coswt, for certain parameter values

[H3).

7 Future Work

In many applications one is not concerned with how the template is embed-
ded in 3-space. For example, the mapping torus of a suspension flow can be
embedded with any number of full twists. As long as the template exists and
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is positive we can define ( for any particular embedding. However, it seems
reasonable to define A(t) only up to multiplies of even powers of t. Then
{det I — t**A(t)|n > 0} is an invariant that doesn’t change with (positive)
embedding.

More generally, different embeddings of a template can only change the
twisting in the branches by full twists. Thus we redefine A(t) taking the
powers of ¢t to be 0 or 1 as the number of half twists is even or odd. The
reciprocal of det I — A is no longer a zeta function, but it is an invariant
for positive templates and we strongly suspect that it is a general template
invariant, though perhaps it is necessary to compute the determinant mod ¢2.

In [PS] B. Parry and D. Sullivan show that det / — A(1) is a flow invariant.
The key idea in their paper is the invariance of det / — A(1) when one adds
a new element to a Markov partition that is parallel, in the sense of the flow,
to an already existing element. This would change the usual zeta function
1/det I —tA(1) since the number of passes orbits make through the Markov
partition has changed.

Intuitively, their invariant works because while it keeps track of whether
an orbit is periodic, it does not compute the period. That is it “knows” if you
can get from one element of the Markov partition to another, but it does not
“remember” how many partition elements a closed orbit goes through, since
1x1 = 1. Invariance arises by suppressing information. In our case, invariance
arises by adding information about the behavior of the orbits between elements
of the partition.

Let a + bt = det [ — A(t) computed mod ¢*. How should a and b be inter-
preted? They seem to be telling us something about the orientation preserving
and reversing “parts” of the flow, respectively. Can this rather vague intuition
be made more precise?

Applying this function to the Lorenz-like templates we see that they fall
into just three classes, up to embedding. These can be represented by L(0,0),
L(0,1) and L(1,1), whose invariants are, respectively, —1, —t and 1 — 2¢. Or
as ordered pairs in ¢ and b, (—1,0), (0,—1) and (1, —2), respectively. Notice
that they all have the same Parry-Sullivan invariant, —1.

In another vein, we notice the apparent contrast in the growth rates in table
1. This warrants further study. In particular we hope to define a consistent
notion of entropy for flows with positive templates.
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Figure 1.1: Stable and Unstable manifolds for an orbit.
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Figure 1.2: Stable manifold for a closed orbit with a full twist.
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Figure 3.1: Lorenz template with a trefoil orbit shown.
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Figure 3.2: Lorenz template in braid form.
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Figure 3.3: Template moves; portions of template outside boxes unchanged.
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Figure 4.1: A template with a Markov partition indicated by thick lines.
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Figure 5.1: The Horseshoe template with a Markov partition (thick lines).
The periodic orbits x, y, xy, xxy, and xyy are shown.
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Figure 6.1: Template A.
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Figure 6.2: Template B.
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