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On SNR as a Measure of Performance for Narrowband Interference Rejection in Direct Sequence Spread Spectrum Systems 

Arif Ansari and R. Viswanathan 
Department of Electrical Engineering 

Southern Illinois University 
Carbondale, IL 62901 

Abstract We simulate a nonlinearized Kalman [5 ] ,  Kalman and a 
modified Kalman (linear) filter for suppressing a narrowband 
Gaussian interference in direct sequence spread spectrum receiver 
and examine the suitability of Signal-to-Noise Ratio (SNR) of the 
test statistic as a measure of performance of the receiver. We 
consider Gaussian autoregressive interference with a peaked 
spectrum and the three cases: small processing gain (PG) and short 
pseudonoise (PN) sequence, small PG and long PN sequence, and 
moderate PG and PN sequence. Based on the simulations, we 
conclude that for the two cases corresponding to small processing 
gain, if the thermal noise variance is small and the interference is 
strong, the Gaussian approximation to the test statistic does not 
yield the correct BER for any of the receivers. For small PG and 
short PN sequence, even though the SNR corresponding to 
nonlinear filter is significantly higher than the SNRs of the two 
linear filters, the BER of the non-linear is higher than that of the 
linear receivers. SNR is not a useful measure in these situations. 

I Introduction 
Processing the received signal prior to correlating with the PN 
sequence has been employed to improve the suppression of 
narrowband interference[ 11. Linear least squares estimation 
techniques to estimate and subtract the narrowband interference 
have been studied in [2]-[4]. Nonlinear techniques for interference 
suppression in spread spectrum have been investigated in [5]. 
Signal-to-noise ratio (SNR) at the output of the interference 
rejection filter has been used for evaluating the performance of 
spread spectrum systems. Theoretical and simulated SNR 
improvements are given in [2]. SNR improvement factor resulting 
from narrowband interference suppression has been calculated in 
[3]. BER performance has been evaluated by applying a Gaussian 
assumption to the calculated SNR and also through simulations. 
Derivations of BER expressions for transversal filters and 
maximum-likelihood receivers are given in [4,6]. Performances of 
Kalman filter and a nonlinear modification have been examined in 
[5] using simulated SNR improvement as a measure of 
performance. 

we study the suitability of SNR as a 
measure of BER performances of direct sequence spread spectrum 
systems employing Kalman filter, or a linear modification, or the 
non-linear modification of [5] for narrowband interference 
rejection. Simulations of these filters are carried out for estimating 
the SNRs at the filters' output ,which are sequences at the chip rate, 
SNR's of the test statistics, and BER's of the receivers. 

In this paper, 

1.1 Model for the received signal 
A direct-sequence modulation waveform is given by 

N - l  

m(t> = z c ,  4 ( r - b c )  
k=O 
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where N is the length of PN sequence, zc is the chip interval, ck is 
the kth chip of the PN sequence, and q(t) is a rectangular pulse of 
duration zc starting at t=O. Let the message bit duration be 
Tb=Lzr In the sequel, we assume two cases, a whole PN sequence 
embedded in each bit (L=N) and several bits with a small 
processing gain covering a long FW sequence (L< < N). 
The total transmitted signal may be expressed as 

s ( t ) =  x d ,  m(t-l?',) (2) 
1 

where ( d l ]  is the i.i.d. binary message sequence, dl E 

{-l,l}. The received signal is of the form 

z ( t ) = a s ( t - z ) + n ( t ) + i ( t )  

where CL is the signal amplitude, 7 is a delay, n(t) is white 
Gaussian noise and i(t) is narrowband interference. Assuming a=l 
and z=O, and that the received signal has been chip matched filtered 
and sampled at the chip rate of the PN sequence, the following 
samples are obfained 
z, = s, + nk + tk 

Here sk=dc, where d denotes the message sequence. Even though 
the message bit can change every T, seconds, with a little abuse of 
notation, we denote the message sequence as d. This is especially 
convenient later on when we consider the decision statistic for a 
given bit. {nk} is i.i.d. zero mean, variance 02, Gaussian random 
sequence. The narrowband interference, t i k ] ,  is modeled as a 
Gaussian autoregressive process of order p and variance of. 

(3) 

(4) 

(5 )  

where {ek} is white excitation noise and the autoregressive 
parameters, q ' s ,  are known to the receiver. The sequences (sk} ,  
{nk} and {ik] are mutually independent. 

II Filtering for Narrowband Interference Rejection 
The filtering structure for narrowband interference rejection and the 
bit decision procedure for the direct sequence receiver are shown in 
Fig. 1. The output of the filter, E,, is the input to the PN correlator. 
The output of the correlator gives the test statistic TS. The bit 
decision is obtained as follows. 

+1 
> 

-1 

L-I 

Ts= k = O  x E k c k  < (6) 

where, without any loss of generality, k=O is assumed to correspond 
to the first chip of the data bit under investigation. The per chip 
SNR at the output of the filter is defined as[5] 
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E (si 1 
E ( I E, - Sk I2 ) 

SNR, = 

The test statistic SNR is defined as 

E' (T S) SNR, = - 
Vor (T S) 

Since interference rejection filter cannot eliminate the narrowband 
interference completely, its output E, has some residual correlation 
from chip to chip, specially when the interference is strong. Hence 
SNRTS cannot be estimated from 9 v R o  unless the residual 
correlations and any signal distortion are accounted for. 

When the filter used for stationary narrowband 
interference rejection is a K h a n  filter. which is asymptotically (as 
time increases without bound) a Wiener filter, due to a large fiiter 
memory, the test statistic for the current bit is affected by a number 
of previous bits. Since the fiiter is linear, this effect maybe studied 
by applying superposition. LetfA.) be the function of the present 
and all past observations defiiing the Kalman filter operation. The 
test statistic corresponding to this filter maybe written as 

, .  

L-1 
Defiie f, = x[dck - f,(dc,)]c, as the contribution of the signal 

component to the receiver test statistic. 
The test statistic of a receiver employing Kalman fiter is 

conditionally Gaussian given all the bits in the filter memory that 
affect the current test statistic. In the case of a two-sided 
transversal filter with tap length less than the processing gain, the 
current test statistic is affected by the previous and the next bit. 
The true error rate is the average of the four conditional error rates 
given the four possible combinations of the two neighboring bits 
[6]. Hence the variable rs for this transversal filter, given the true 
bit value, has a density consisting of four impulses. In a similar 
way, the density of rs for the Kalman filter provides a measure of 
the IS1 effect on the test statistic . A large variance for tS indicates 
that the interference from previous bits in affecting the current test 
statistic is significant Hence if the averaged test statistic SNR is 
used to estimate the BER instead of averaging the conditional error 
rates, the estimate of BER can be significantly different from the 
true BER for certain interference and noise variances. 

If we assume the PN sequence to be truly random, then SR 
can be regarded as a random variable taking values +1 and -1 with 
equal probability. In this case 2, can be regarded as ik received in 
Gaussian mixture, sk+nE Hence, a nonlinear fiiter is optimal for 
estimating the narrowband interference in this setting [5] .  The test 
statistic corresponding to a nonlinear filter is, in general, non- 
Gaussian and its distribution is required in order to estimate the 
BER. Moreover, any inference on the comparative performance of 
linear and non-hear filters based on test statistic SNR could be 
misleading. This maybe specially true for low BER , since the 

k-0 

nature of the tail of the test statistics' densities of linear and 
nonlinear filters maybe different. 

In order to veaify the observations in the preceding two 
paragraphs, the following comparisons are made of various 
quantities obtained through simulations at different noise and 
interference variances. 
(i) For the two linear fiters, the BER estimate obtained from the 
test statistic SNR ,by assuming the test statistic to be Gaussian, is 
compared to the BER of the system from simulations. 
(ii) The test statistic SNR estimate of the nonlinear filter and its 
BER estimate are compared to the respective estimates for the 
linear fiiters to study the adequacy of 9 v R  in the comparisons of 
linear and nonlinear fiiters. 
(ii) The test statistic SNR estimate is compared to the SNR of the 
test statistic obtained from the estimate of the SNR at the output of 
the filter, neglecting any residual correlation. 
The densities of r, for the Kalman filter and TS for a l l  the three. 
filters are also estimated in order to draw inferences regarding the 
use of test statistic SNR. Simulations are carried out for the three 
cases of small processing gain / short PN sequence, moderate 
processing gain / moderate length PN sequence, and small 
processing gain / long PN sequence. The first two cases comspond 
to a whole PN sequence embedded in each bit. 

Ill Kalman F'ilter, Nonlinear Filter, and a Modified Linear 
Filter. 
The received signal (4) with i, as in (5) can be represented in the 
state space with the following model 

where 
x,  = @ xk-l + Wk (10) 

P ... ... ... ... ... 
10 0 - * -  1 0 J 

w,=[e ,  0 O I r , H = [ 1  0 * e *  01, V, =S, + II,. , I, = H x ,  + v1 
The f i s t  component of the state vector is the interference. The first 
component of the estimated state, therefore, gives an estimate of 
the interference which can be subtracted from the received signal. 
Minimum mean squared m o r  estimates are the conditional 
expectations which give the fitered and predicted estimates , 
respectively, 

where Z k  denotes all past observations ( z,}. Linear minimum 
mean square estimates are same as optimal estimates if the 
observations are Gaussian. Linear minimum mean square estimates 
are obtained recursively using the Kalman Bucy filtering equations 
[5 ] .  Viewing vk as a variate from a mixture of two Gaussian 
densities with means +1 and -1, an approximate conditional mean 
(ACM) filter is derived in [5] .  The ACM filter update equations are 
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identical to those in the Kalman filter while the measurement 
equations involve correcting the predicted value by a nonlinear 
function of the prediction residual. 

3.1 A Modified Linear Filter 
A different linear fiitcr is obtained by modifying the state space 
model of the received spread spectrum signal as follows. 

x,  = [ i ,  i,..l ... i,-,+, 4'. 

. . . . . . . . . . . . . . . 

0 0 ..- 0 0 j ,  

0, k # O  
={*lwithequalpmbability,k=O 

H ,  = [l 0 

Above, j,= 1 for k # 0 is used to represent the fact that bit 
contribution to each chip within a bit is the same. The first chip in 
a new bit comesponds to k=O and in this case j ,  =O is assumed, 
since the true contribution(which is either +1 or -1) is unknown. 
Equations (12)-(15) with H, Q and d replaced by q, Q, and dk 
respectively are the filtering equations for this modified state space 

0 c,] , X ,  = 9, x, -~  + w, , zk = H ,  xI  + n, 

representation, 

.=I 019ui={1,k=0 O , k # O  

... 

IV Slmulatloa 
Computer simulations of the K h a n  fdter and its linear and 
nonlinear modifications are carried out. The interference is 
modeled as 
it = 1.98i,-, - 0.9801i,-, +e, (13) 
where (ek) is a zero mean white Gaussian noise. The spectrum of 
this interfering signal is sharply peaked. 

Simulations are caxried out to estimate the two SNR's and 
the BER as follows. For a given interference power and thermal 
noise power, the received signal samples are obtained according to 
(4). The bit value is set at +1 or -1 with equal probability. IC,) is a 
maximal length PN sequence. The following three combinations of 
processing gain (L) and PN sequence length (N) are considered: 
(i) L= N=7 (ii) L=7, N=1023 (iii)L=N=63 

The signal (4) thus generated is the input to the three filters 
described in the previous section. The IMSL routine DKALMN is 
used far simulating the filters. The regular Kalman filter and its 
linear modification are directly available from this routine. The 
nonlinear filter uses only the time update of the routine while the 
measurement update is done by a separate subroutine. For 
estimating SNRo and WRm. 1OOO samples of E,, and sample mean 
and variances of 1000 test statistic samples are averaged over 10 
trials. At least 10' and upto lo" bit decisions are simulated to 
estimate BER. 

The simulation results and some related calculations are 
shown in Table I (L=N=7), Table 11 (L=7,N=1023) and Table JII 
(L=N=63) for various values of the thermal noise and interfewnce 
~ariances, 0: and 0: respectively. For all the three filters, the 
estimate of S N R n  and the BER estimate obtained through 
simulations are shown as T and P,* respectively. Also, if the test 
statistic is assumed to be Gaussian. another estimate of the BER is 
obtained as 

P,' = Q t f i )  (14) 
where e(.) is one minus the standard normal cdf. In addition, for 
the case L=N=7 (Table I), the test statistic W R  obtained as L times 
the estimate of SNRo (this ignores residual chip carrelation and 

signal distortion) is shown as ys and the BER estimate obtained 
from this SNR as 

The estimates of the densities of rs 6) for three sets of parameters 
(L=N=7.0? = 0.01 and 0; =lO.OOO). 
(L=N=7.0? = 1.0 and 0: =lOOO). and 
(L=7, N=1023,0? = 0.01 and 0; =lO.OOO) 
were obtained by providing the IMSL routine DDESPL with 5000 
samples of ts. 

V Discussion 
A. Small Processing Gain a d  Short PN Sequence (L=N=7) 

For the two linear filters, comparing yI and T (Table I), it 
is seen that when the thermal noise variance is small and the 
interferenceis strong (of=O.Oland~=lO,OOO), the two estimates 
differ . This is because for these parameters the residual correlation 
at the filter output is significant. Also, far the two linear filters, the 
estimate of BER from the test statistic SNR, PZ+, agrees with the 
BER estimate P,* for weak interference and relatively large thermal 
noise variance due to low variance of r, and hence low IS1 (Fig. 2). 
when the interference is strong and thermal noise variance is small 
(Figs. 3) the variance of fs is large and the density estimate clearly 
shows the IS1 effect (Fig. 3). The contribution of the signal 
component to the test statistic, fs, is strongly dependent on the 
previous bit and this IS1 causes the two BER estimates to be 
different. If we estimate the conditional S N R n ,  , conditioned on 
the previous bit 1, and obtain an mor estimate 

e(fill,ci = +I), this estimate agrees with the BER estimate 
I d - l J }  

P,*. 
When the filter is nonlinear, the test statistic is in general 

non-Gaussian and its SNR cannot be used to estimate the BER of 
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the receiver. However, when the interference is not strong and 
thermal noise variance is relatively high, (oi'=lOOO, o:= 0.1 or 
l.O), the Gaussian approximation to the test statistic of the 
nonlinear filter also yields the correct BER (Table I). In general, it 
may not be reasonable to infer BERs of linear and non-linear filters 
based on test statistic SNR. A heavier tail in the density of the non- 
linear filter test statistic may lead to a higher BER even when its 
test statistic SNR is higher compared to that of a linear filter. 
Although the test statistic SNR of the nonlinear filter is much larger 
than that of the modified linear fiiter (Table I, u;=O.Ol and 
ui~loooO),  the BER of the nonlinear fiter is also higher. For 
another set of noise parameters (Table I, 0;=0.1 and o:=looOO), 
the test statistic SNRs of all three filters are comparable but the 
BER for the nonlinear filter is higher than the BERs of the two 
linear filters. 
B. Small Processing Cain and Long PN Sequence (L=7, N=1023) 

For the Kalman filter, the BER estimates P,* and Pb* 
(Table 11) disagree for weak thermal noise and strong interference 
(0: = 0.01 and 0: = 10,000). This is due to the non-Gaussian nature 
of ts as shown by its density estimate (Fig. 4). For the modified 
linear filter, these estimates agree for all the parameters considered. 

The nonlinear filter performs equally well or better than 
both the linear filters. For weak thermal noise and strong 
interference, the nonlinear filter shows an error rate about two 
orders lower than those of the linear filters. The PN sequence being 
long, it can be regarded as truly random and the density of vk is 
approximated well by a weighted sum of two Gaussian densities, 
warranting the use of nonlinear filter [6]. However, the 
disagreement between P,* and P,* indicates that S N R  is not a 
reliable measure even when long PN sequences are used. For 
(0,2=0.01 , of=lOOOO), the test statistic S N R  estimate (T) for the 
nonlinear filter is almost 10 dE3 higher than that of the nonlinear 
predictor, but the BER estimates (Pb*) are almost the same. The 
BER estimate of the Kalman filter is two orders higher than that of 
the nonlinear filter, while the estimate T is almost 2odB higher for 
the nonlinear filter. In Gaussian curve, 2OdB SNR would translate 
to much faster decrease of the error rate than two orders. 
C. Moderate Processing Gain and PN Sequence (L=N=63) 

For moderate processing gain, the simulations had to be 
restricted to not too small thermal noise variances in order to 
observe enough errors and obtain an estimate of the BER. For all 
the parameters considered (Table m), P,* and Pb* estimates 
agree. Also, it is observed that all the three types of filters exhibit 
nearly the same bit error rate. 

In conclusion, the estimate of SNR should be used with 
caution as a measure of performance of a direct sequence spread 
spectrum system employing narrowband interference rejection 
filters. In particular, the following remarks are made. 
(i) The test statistic SNR corresponding to a linear filter is only 
conditionally Gaussian for small processing gains, short PN 
sequences, low thermal noise and strong interference, given all the 
bits in the filter memory that significantly affect the current bit test 
statistic. This IS1 should be accounted for 6y averaging the 
conditional BERs. For a long PN sequence and small processing 
gain, the test statistic corresponding to the Kalman filter is non- 

Gaussian. Therefore, test statistic SNR does not yield the correct 
BER through application of Gaussian assumption. 
(ii) Any conclusions regarding comparative performance of linear 
and nonlinear fiiters based on SNR of the test statistics can be 
misleading, as shown by a situation (low thermal noise, strong 
interference) where the SNR of the nonlinear fiiter is much higher 
than those of the linear filters, but its error rate is also higher than 
the other two error rates. Even the comparison of two nonlinear 
filters based on SNR wuld be misleading as in the case of nonlinear 
predictor and fiiter showing almost same BERs but differing in 
SNRs by almost 10 dB. 
(iii) The SNR of the chip rate sequence at the output of the fiiter 
does not lead to a good estimate of the test statistic SNR when the 
narrowband interference is strong, because of significant residual 
chip correlation. 
(iv) For moderate processing gain and PN sequence, SNR provides 
reasonably accurate error estimates for all the filters and parameters 
that were tested. These error estimates are close for all three fiiters. 
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Table I 
SNR and BER Estimates 

precision 

Table 11 
S N R  and BER Estimates 

**Zen, up to machine precision 

Table III 
BWEstimates 
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