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Abstract - We evaluate the performances of several 
distributed CFAR tests operating in nonhomogeneous 
background conditions. The analysis considers the 
detection of Rayleigh target in Rayleigh clutter With the 
possibility of differing clutter power levels in the test cells 
of' distributed radars. The tests considered include the 
previously defined maximum order statistic detector 
(MOS), belonging to a class of signal-plus- order statistic 
(S+OS) detectors, a new normalized test statistic (NTS), 
also belonging to the S+OS class, the OR and the AND 
fusion rules. Numerical results studied for a two radar 
system show how the false alarm rate of the MOS test 
changes with differences in the clutter power levels of the 
test cells. Results also indicate that, with differing test 
cells' power levels, the OR fusion rule can be quite 
competitive to more complex tests, viz. NTS and MOS. 

I. INTRODUCTION 

For the past several years a considerable amount of 
work C1-41 on single sensor (for example, radar) 
constant false alarm rate (CFAR) signal detection has 
been done. The detection of signals becomes complex 
when radar returns are from nonstationary background 
noise (or noise plus clutter). The probability of false 
alarm increases intolerably when a detection scheme 
employing a fixed threshold is used. Therefore, adaptive 
threshold techniques are required in order to maintain a 
nearly constant false alarm rate. Because of the 
diversity of the radar search environment (multiple 
target, abrupt changes in clutter, etc.) there exists no 
universal CFAR scheme. Typically the adaptive 
threshold of a CFAR scheme is the product of two terms, 
one is a fixed scaling factor to adjust the probability of 
false alarm, and the other is an estimate of the total 
unknown noise (plus clutter) power of the test cell. The 

sample in the test cell is compared to this threshold in 
order to decide the presence or the absence of a target. 
A variety of CFAR techniques are developed according 
to the logic used to estimate the d o w n  noise power 
level. Some examples are, Cell Averaging CFAR (CA- 
CFAR), Ordered Statistics CFAR (OS-CFAR), Greatest 
Of CFAR, Smallest Of CFAR [3], and Selection and 
Estimation test E41. 

Distributed signal detection schemes are needed when 
system performance factors such as speed, reliability, 
and constraint over the communication bandwidth are 
taken into account. In distributed detection techniques, 
each sensor sends either a binary decision or a condensed 
form of information (statistics) about the observations 
available at the sensor to the fusion center, where a final 
decision about the presence of a target is made. Such 
techniques have been applied to CA-CFAR, adaptive 
CA-CFAR, and OS-CFAR. Barkat and Varshney [5] 
considered CA-CFAR detection using multiple sensors 
and data fusion In their approach, each CA-CFAR 
detector transmits a binary decision to the fusion center 
where a final decision based on the AND or the OR 
counting rule is obtained. They have also addressed the 
adaptive CA-CFAR detector problem for parallel and 
tandem distributed networks [6]. Distributed OS-CFAR 
detectors with the AND or the OR fusion rule is 
considered by Uner and Varshney [7]. 

The authors proposed a new distributed CFAR 
detection scheme, called signal-plus-order statistic 
CFAR (S+OS), in [8]. Instead of a binary decision, 
each sensor transmits the sample from the test cell and a 
designated order statistic from the available set of 
reference observations surrounding the test cell to the 
fusion center. At the fusion center, the sum of the test 
samples is compared to an adaptive threshold obtained 
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by the product of a fixed scaling factor and a function of 
the received order statistics, to decide the 
presence/absence of a target. The estimate of the noise 
power level of the test cells is provided by this function. 
Some examples of this function are: minimum of, 
maximum of, linear combination of, or in the case of a 
large number of sensors, an order statistics of the 
variables. The S+OS test that uses the maximum order 
statistic is called the MOS detector. It was shown in [8] 
that MOS provides a considerable performance gain 
over OR or AND fusion rules. In deriving the above 
test, the problem formulation assumes that the test cells 
o€ different sensors all have statistically identical noise 
(clutter), and that if a target is present in the surveillance 
regions, all the test cells have statistically identical target 
returns [8]. What happens if this assumption is 
violated? We therefore examine in section I1 how the 
false alarm probability of MOS changes when power 
levels of clutter at test cells of sensors become different. 
In section 111, we propose a new test, called normalized 
test slatistic (NTS), also in the class of S+OS, but which 
mainlains a constant false alarm rate independent of the 
clutter power variations of the test cells. Section IV 
examines the detection performances of various tests. In 
order to make the comparison reasonable, the MOS test 
is designed so that its test threshold corresponds to a 
value that guarantees the worst case false alarm 
probability (with respect to changes in the clutter power 
levels of the test cells) to be less than or equal to a 
desired value. 

11. MOS TEST AND FALSE ALARM RATE CHANGE 

Consider a collection of n distributed sensors, each 
looking at a search volume consisting of mi+l cells, i = 
1,2, ... U. The leading mJ2 cells and the lagging mi/2 cells 
form the reference window around the test cell of the ith 
sensor. We assume that the samples in the test cells to 
be i.i.d exponential with mean A l i ,  i = 1,. . n under the 
target hypothesis H I  and exponential with mean 
A oi, i = 1,. . n under no target hypothesis Ho (Rayleigh 
target and Rayleigh clutter models). Denote the random 
samples from the reference cells samples as 
q1 ,...., qm# and the test samples as Xi, i = 1,2.. , n .  
In the case of homogeneous background, q,, . . . . , qml 
are i.i.d as an exponential with meanAoi. In the case of 

a nonhomogeneous background, the above random 
variables are still independent and exponentially 
distributed but with a mean value of eitherAoi or 
A oi (1 + CNR, ) , or A oi (1 + INRi ) , depending on 
whether a sample qj is from a noise only region, or from 
a noise plus clutter region, or from an interfering target, 
respectively. Above, for ith sensor, CNRi denotes the 
clutter to noise power ratio and INR,denotes the 
interfering signal strength to noise ratio. 

By denoting the mean of the test sample X ,  as A ,, we 
have 

hoi or hoi(1 + CNRi), 1 hoi(1 + CNRi + SZVRi), 

under HO 

under HI 
hi = hli = hoi(1 + SNRi) or (1) 

where SNR, denotes the signal to noise power ratio of the 
ith sensor. If we assume thatAoi is the same for all i, 
then the MOS test defined below is a CFAR test [8]: 

Hi 

H o  

n 

i=l  

where Y(k,)  is the @order statistic of the reference 

samples Fl,. . , . , qml of the ith sensor. For a two sensor 

system, let 

(3) 

Therefore, the changes in false alarm probability of (2), 
when t is fixed assuming a = 1 and a desiredfalse 
alarm rate of a ,  as a changes, can be investigated. The 
numerical calculation of the false alarm probability 
shows that for 
a d 0 - 6 ,  m1 = 11, m2 = 13, k l  = 8, and k 2  = 9 ,  

the probability can increase up to its largest value of 
and that this largest increase occurs for a being 

close to 0.1 or 10. Also, the greatest change in the false 
alarm probability occurs as a is varied from 0.1 through 
10, which can be seen in Fig. 5. Unfortunately, this 
means that the false alarm rate of (2) is sensitive to small 
variations in a. Also, the maximum of the values of 
false alarm probabilities corresponding to 
a = o anda = 00 is close to 10-5. If the worst case 
increase is to be at and not at lop5, then the t 
value in (2) can be appropriately chosen so as to achieve 
this condition. This is how the MOS test threshold is 

xi t max(r(k-1 i = 1,2,. . , n)  (2) 

a = -  a01 
a02 
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computed while comparing its performance against other 
schemes (see section IV). If a is close to 1, then the 
MOS test performs much better than the OR and the 
AND fusion rules [8]. 

III. NORMALIZED TEST STATISTIC AND OTHER TESTS 

Assume that the data model of the previous section 
holds. For the sake of simplicity, the following 
derivation is based on a two sensor system. Applying a 
likelihood ratio test to the test samples yields 

(4) 

where TL is an appropriate threshold. Eqn. (4) can be 
simplified to yield 

Assuming a homogeneous reference window for each 
sensor (notice that sensor to sensor homogeneity is not 
needed, i.e. Aoi need not be identical for all i), but with 
identical SNRi's, (5)  reduces to 

where T * is an appropriate threshold. 
However, (6) cannot be realized since 

A01 and A02 are unknown. A CFAR test is obtained 
by replacing A01 and A02 by their estimates. Using 
the order statistic of the reference cells of each sensor as 
the estimates, we obtain the normalized test statistic 

(7) 

where t l  is the threshold which can be adjusted to yield 
a desired false alarm rate under homogeneous 
background noise. 

In order to assess the performance under 
nonhomogeneous background conditions involving 
multiple interferers or clutter power transitions within 
the reference cells [3], let us define 

Using P I ,  
mi min(h,mi-bi) j h - j  

h=ki j=max(O,h-bi) v=O w=O 
fsi  (si) = c c c  

[V + (mi - bj - j )  + (W + bi - h + j )  / ~ i ]  

exp{-si[(v + mi - bi - j )  + 7 (9) 
(W + bi - h + j )  / ~ i ] }  

where b,is the number of interfering targets in the ith 
sensor reference window and ci = A,i / oi . Hence, 

k=kl hz=k2 i=max(O,hl-bl) j=max(0,h2-b2) 

j h i - i  h 2 - j  
L E  c c 

v1 = ov2 = o w 1  = O W 2  = 0 

where 
p1 =(VI + ml - - i) + (WI + bl - hl + i) / ~ 1 ,  

P 2  = (v2 + m2 - b2 - j) + ( ~ 2  + b2 - h2 + j) / c2 

PF =1 - FZ(t1). 

The probability of false alarm in homogeneous 
background is given by 

(1 1) 
The probability of detection Po is obtained by replacing 

tl with " in (11). The probability of false 
(1 + SNR) 

alarm under homogeneous background can be obtained 
by setting bi = 0 in (10). 

Since Y(k,)  is not an unbiased estimator of Aoi[9], 
one can substitute a proportionality factor (that corrects 
for the bias) in each of the estimates in (7) and obtain an 
unbiased version of the NTS test: 
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alarm rate of For the AND rule, the two sensor 
thresholds are chosen so that Pfi = Ph = lod3. 

Similarly, appropriate thresholds for MAX andl MIN are 
found so as to achieve a false alarm rate of 101-~  in the 
homogeneous background condition. The threshold for 
the MOS test is fixed as per the discussion at ihe end of 
section 11. In Fig. 1 the probability of detection is 
plotted against SNR, for homogeneous noise background, 
and in Figs. 2 and 3, the probability of detection is 
shown for two interfering target cases. Fig. 4 shows the 
probability of false alarm swing when a clutter transition 
occurs in the middle of reference cells and the test cell is 
in the clutter region. 

In these figures, the curves marked biased and 
unbiased, correspond to the two forms of NTS discussed 
earlier. From these figures, we observe that the OR rule 
is competitive With the normalized test statistic. In 
homogeneous background (Fig. 1). the probability of 
detection of the OR rule is close to that of NTS (biased 
or unbiased). In situation corresponding to Fig.2, the 
NTS performs slightly better than the OR rule, whereas 
in the interfering target situation corresponding to Fig. 3, 
the OR rule even outperforms the biased and the 
unbiased NTS, for b2 5 5 .  Therefore, considering that 
the normalized test requires each sensor to send two real 
numbers, a test cell sample and an order statistic, 
whereas the OR rule requires each sensor to sand only a 
decision to the fusion center, it can be said that the OR 
rule provides a competitive and acceptable performance 
at a low cost. The MOS detector perforniance, in 
interfering target case, is poor as compared to OR ( Figs. 
2,3). The only drawback of NTS and 01R is the 
occurrence of a large increase in false alarm rate during 
a clutter transition in the middle of the reference window 
(Fig. 4). If the homogeneous background noise power in 
all the sensors are nearly identical, then the MOS test 
provides a much better performance than the OR rule 
(and the NTS test) [8]. 

HO 

where w = E(yck1)) . Therefore, (12) and (7) are the 
E(%)) 

biased and unbiased versions, respectively, of NTS. 

MAX and MIN tests defined below. 
Two other tests belonging to the S+OS family are the 

4 

HO 
Hl 

HO 
In the OR (AND) fusion rule [8], each sensor is assumed 
to employ an OS-CFAR detector of the type 

HI 

HO 
The individual sensor decision are combined using the 
OR (AND) Boolean rule. The probability expressions 
for the OR (AND) rule can be found in [5]. All the tests 
discussed in this section maintain a constant false alarm 
even if the ;lei s are not identical for i =1,2. 

Iv. PEiRFORMANCE COMPAFUSON 

For a two sensor network, the following parameters 
are used in our numerical analysis: 
ml = 8,m2 = 16,kl = 6,andk2 = 12 .  In (l l) ,  tl was 
solved through a numerical search to satisfy the 
constraint pf = similarly, for the OR rule, the 
two sensor thresholds t ,  and t2 are solved so that the 
individual sensor false alarms are given 
by Pfi = Pf2 = 5 . 0 ~ 1 0 - ~ .  This gives an overall false 
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Fig. 1 Probability of Detection versus SNR when 
Background Noise is Homogeneous. 
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Fig. 3 Probability of Detection versus b2 when bl=3. 
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Fig. 4 The False Alarm Performance when Test Cells 
are in the Clutter Region. 

Fig. 2 Probability of Detection versus bz when bl=2. 
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Fig. 5 The False Alarm Performance for various values 
of a. 

V. CONCLUSION 

We evaluated the performances of several two sensor 
distributed CFAR tests operating in nonhomogeneous 
environment. A somewhat surprising result is h e  
competitive performance of OR rule as compared to 
some of the detectors in the class of signal-plus-order 
statistic tests. Further investigation is necessary to find 
out if a member of S+OS can significantly outperform 
rules based on decision fusion, such as the OR rule. 
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