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KNOT FACTORING

MICHAEL C. SULLIVAN

1. INTRODUCTION

A knotis a closed loop embedded in a three dimensional space. Two knots
are regarded as equivalent if one can be gradually deformed into the other.
An unknot or trivial knot is any knot that is equivalent to the unit circle in
the real plane.

In Figure 1 the first two knots are distinct, but the second two are equiv-
alent. In fact, the first knot is an unknot. The middle and right knots are
trefoil knots. There is a notion of combining knots called the connected sum.
An example is in Figure 8. The connected sum of any knot with the unknot
is itself, so the unknot serves as an identity. Although we call this operation
a sum, it behaves more like multiplication in the following sense. There is
a notion of prime knots and, just as with the positive integers there is a
prime factorization theorem, Theorem 8, discovered by Horst Schubert in

D &-

FIGURE 1. Some knots.

\

The goal of this paper is to present a proof of Schubert’s theorem at a
level accessible to advanced undergraduates, perhaps in the context of a
supervised reading course. Before we proceed we develop some background
material. The reader can probably accept much of this material as intuitively
plausible. A rigorous development of low dimensional topology is beyond
the scope of this paper, but our proof of Schubert’s Theorem is complete.

Proofs of Schubert’s Theorem can be found in the graduate level texts
[4] and [11]; our proof follows the one in [4] for the most part. Background
material on transversality and the theory of surfaces is rigorously developed
in [7] and [12]. In the last few years several undergraduate texts on knot
theory have come out: [1], [5], [8].

Date: July 26, 1999.
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After the proof of Schubert’s Theorem we give an application of it in the
study of knotted periodic orbits in flows. This uses a new area of mathe-
matics called template theory.

2. BACKGROUND

We now define some standard topological spaces and related notions.

Spheres: A one dimensional sphere, also called a 1-sphere or a circle,
is any topological space homeomorphic to {(z,y) € R?|z? + ¢? = 1},
which is conventionally denoted by S!. Likewise, two and three dimen-
sional spheres are defined by S? = {(z,y,2) € R¥|2? + y% + 22 = 1} and
S3 = {(w,z,y,2) € R*|w?+ 22 +9y2+22 = 1}, respectively. Two topological
spaces are homeomorphic if there is an continuous bijection with the inverse
continuous.

Balls or Disks: An n dimensional ball (or disk) is any topological space
homeomorphic to {(z1,...,7,) € R*|z? + --- + 22 < 1}, denoted by B"
(or D). The boundary of B" is S"~!, written as B™ = S"~!, where “9”
means “boundary of”. Balls are closed, but open balls can be defined in
the obvious way. The word disk means a 2-ball and the word ball, by itself,
means a 3-ball.

Just as one can build S? by gluing two disks along their boundaries, one
can form S3 by gluing two balls along their boundaries. This gives a very
useful way to view S°. Imagine that one of the balls is a neighborhood of 0
and the other is a neighborhood of co. In a sense that can be made rigorous,
53 is R3 plus a special point called oco.

Surfaces: A surface is a topological space where every point has a neigh-
borhood that is homeomorphic to an open disk. Thus a 2-sphere is a surface,
and so is the plane. A 2-disk is not quite a surface by this definition. It is,
however, a surface with boundary, where the boundary is the set of points
with a neighborhood homeomorphic to {(z,y) € R? | z2+y% < 1 and y > 0},
an upper half disk. This definition of boundary is consistent with the bound-
ary of a ball introduced above. The boundary of a surface S is denoted by

0S. The interior of surface S is S\0S and is denoted by g‘; the same defini-
tion and notation are used for the interior of a ball. The following result is
very important: The boundary of every surface with boundary is a disjoint
collection of circles. Try to construct a counterexample! A closed, bounded
surface without boundary is called a closed surface.

We are concerned only with orientable or two-sided surfaces. Nonori-
entable or one-sided surfaces include the M6bius band and the Klein bottle.

Every closed orientable surface is homeomorphic to one of the countable
list of surfaces depicted in Figure 2. The first is of course the sphere. The
second is the torus, then the double-torus and so on. The torus, denoted
by T or T?, plays a special role in knot theory. It is useful to view it as
a rectangle with opposite sides identified. The number of “tunnels” in a
surface is the genus of the surface. The word genus just means type or kind.
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FIGURE 2. Standardly embedded surfaces.

For a surface with boundary, one can attach a disk along each boundary
circle and form a closed surface. The genus of the resulting closed surface is
regarded as the genus of the original surface with boundary. This definition
is unambiguous, though this is by no means obvious.

Euler Characteristic: One way to make a surface is to glue together
triangles along their boundaries. Call such a surface a triangular surface.
The Euler characteristic of a triangular surface T'is x(T) =V — E + F,
where V is the number of vertices, E is the number of edges, and F is the
number of faces. If two triangular surfaces are homeomorphic then they
have the same Euler characteristic. For any surface S, it can be shown that
there exists a triangular surface 7' that is homeomorphic to S. Thus, the
Euler characteristic of a surface may be defined. The reader should try to
show that x(S5?) =2, x(D?) = 1, and x(T?) = 0.

The formula

(1) QZI—T,

where b is the number of boundary components, connects the Euler charac-
teristic of a surface with its genus. Check this for some examples.

Embeddings: An embedding is a homeomorphism of one space onto its
image in another. We assume that all our embeddings are smooth, though
we do not give a precise meaning to this term; rely on your intuition. If
we embed a circle, S', into a 2-sphere, S2, then S?\S! consists of two open
disks; this fact is the Jordan Curve Theorem. If we embed S? into S° then
S$3\S? consists of two open balls. This fact is Schonflies’ Theorem. Note:
Schonflies Theorem requires the embedding to be smooth, but the Jordan
Curve Theorem does not.

The surfaces show in Figure 2 are the standard embeddings. If we tied a
knot in one tube of the double-torus we would have a different embedding
of the same surface type.

Knots and Arcs: A knot is an embedding K : S' — S2 or R%. Often the
symbol K is used both for the map and for the image K (S'). We normally
assign an orientation to our knots. This is just a preferred direction and
is indicated by placing an arrowhead on a drawing of a knot; see Figure 1.
Two disjoint knots are linked if they cannot be pulled apart, or, equivalently,
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if there is no 2-sphere that separates them. In Figure 3 the pair of knots to
the left is unlinked while the other pair is linked.

o

FIGURE 3. Links.

~

An arc is an embedding of D' = [—1,1] into any higher dimensional
space. Figure 4 shows two embeddings of arcs in 3-balls such that the end
points of the arcs are in the boundary of the balls and no other points of the
arcs are in the boundary of the balls. Now suppose we glue the two 3-balls
together with a homeomorphism between their boundaries, which takes the
end points of the each arc to the other arc’s end points. The result is an
unoriented knot in a 3-sphere.

OICRT:

FIGURE 4. A “sum” of two arcs.

It can be shown that for any given knot K there is an orientable surface
S with boundary K, called a Seifert surface of K. For example, if K is an
unknot we could take S to be a disk. Of course we could also use any closed
surface with an open disk removed. For the other knots the situation is not
quite so easy. Figure 5 shows an orientable surface whose boundary is a
trefoil. One can show, though not easily, that the surface is a torus with a
disk removed. However, the attaching of the disk is abstract in the sense
that the resulting closed surface is not embedded is any three-dimensional
space. In general, given any knot K, one finds a Seifert surface of least
genus that bounds the knot. The genus of this surface is the genus of the
knot. While this idea is a hard one to grasp, it is explained well in the
undergraduate texts [1], [5], and [8]. The unknot has genus zero while the
trefoil has genus one. The unknot is the only knot with genus zero because
it is the only knot that bounds a disk.

Transversality: The intersection of two arcs in the plane is transverse
if the qualitative features of the intersection set are preserved under small
perturbations. Perhaps the best way to understand transversality is through
examples. Figure 6 shows pairs of arcs embedded in the plane. The first
pair of arcs is not transverse, while the pair in the middle is transverse.
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FI1GURE 5. Surface with trefoil as boundary.

What about the third pair? If the middle pair were to be regarded as being
embedded in R? the arcs would no longer meet transversely. Why?

©
Vs

FIGURE 6. Non-transverse arcs (left), transverse arcs (cen-
ter), disjoint arcs (right).

The concept of transversality is of immense importance in several areas of
mathematics. It can be extended to intersections of surfaces: see [7, p. 30].
The reader should think hard about the following claim: If the intersection
of two closed surfaces is transverse then it is a finite disjoint collection of
circles. Is the converse true?

One can also apply transversality to the intersection of knots or arcs and
surfaces. If an arc meets a surface in a finite number of points at which it
passes clear through the surface then most very small deformations do not
change the number of intersection points. In this case the intersection is
transverse. If at an intersection point the arc does not pass from one side
of the surface to the other then it can be removed by a small deformation.
Thus, such an intersection is not transverse. Also, if an arc meets a surface
in infinitely many points a small deformation can be found that removes all
but finitely many of them. Again, such an intersection is not transverse.
Note: this last case holds only for arcs of finite length and surfaces of finite
area.

We give an application. A torus knot is a nontrivial knot K embedded in
a torus T' that has been embedded in S2 in the usual manner.

Lemma 1. Ewvery torus knot is equivalent to a torus knot that wraps around
the torus p times meridianally (short way around) and q times longitudinally
(long way around), where p and q are relatively prime. Such a knot is called
a (p, q)-torus knot.

Proof. Represent the torus as a rectangle in the plane with opposite edges
identified. We may assume without loss of generality that K is transverse
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to these edges. Why? Thus, K may be divided into at most finitely many
arcs. Again, why? We give a procedure for deforming K to a (p,q)-torus
knot. In Figure 7 we show a example giving a (5,3)-torus knot.

Step 1. Push each arc that connects an edge to itself through that
edge, starting with innermost arcs and working out as needed.

Step 2. If there is only one “arc” left, it is really a loop and hence the
knot is trivial. Assume this is not so. Straighten each remaining arc
into a line segment.

Step 3. Choose an edge point close to the origin (the lower left corner)
and slide it over so that its segment starts at the origin. Adjust other
segments as needed.

Step 4. Space the end points of the segments out evenly.

The reader should ponder why p and ¢ must be relatively prime and what
would happen if they were not. O

U

N ]

A

FIGURE 7. Straightening a torus knot.
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3. FacTtorING KNOTS

Now we are ready for our main topic. In Figure 8 we show how to “add”
two knots. Our first task is to formalize this idea.

&y (H-0X

FIGURE 8. The connected sum of two knots.

Definition 2 (Connected Sums). Let K; and Ky be knots in distinct 3-
spheres S? and S3, respectively. Pick points a; € K7 and ay € Ks. Choose
small balls, B; and Bs, centered at a; and as, respectively, such that B; N K;

can be deformed to an axis of B;, for i = 1,2. Form a union S} \B; U S5 \ B,
using a gluing homeomorphism that matches K1 N dB; to Ky N 0By with
the exiting end points going to the entering end points. Thus, we have a
new 3-sphere containing a new knot called the connected sum of K1 and Ko,
which we denote by Ki# K.

The reverse operation is called factoring.

Definition 3 (Factoring). Let K be a knot is S%. Let S? be a 2-sphere that
meets K, transversely, in exactly two points. Then S? divides S2 into two
open balls whose closures we call By and By. Let o be any arc on 52 that
joins the two point of K N S?. Let K; = (B;NK)Ua, for i = 1,2. Then we
say that K has been factored into K; and Kjs; see Figure 9. By Definition 2
we have K = K1#Ko.

FI1GURE 9. Factoring a knot.

We claim that Definition 2 is independent of the choice of the points
a1 and as, and that the knot types of K; and K» are independent of the
choice of « in Definition 3. It is clear that K#U = K. Commutativity,
K1#K2 = K24#K]1, is demonstrated in Figure 10. The idea is to make
one factor very small and then pass it through the other. Associativity,
(Ki#Ko)# K3 = K1#(Ko#K3), is also easy.
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F1GURE 10. Commutativity of Connected Sums.

Definition 4. A nontrivial knot is prime if its only factors are itself and the
unknot. Otherwise, a nontrivial knot is composite. The unknot is neither
prime or composite.

Theorem 5. Torus knots are prime.

Outline of Proof. Let K be a torus knot. Suppose that K is composite and
that S? is a cutting sphere for K. We may assume that S$? and T2 are
transverse. Why? Thus $? NT? is a finite union of disjoint circles.

Let A C SNT be a circle. Suppose A is a meridian or a longitude. Then
if we orient the knot K it is clear from Lemma 1 that K passes into and out
of S at least twice. Since this is plainly impossible we must assume that A is
neither a meridian nor a longitude of T'. Suppose A is some other (p, g) curve
on T (|p| > 1 or |g| > 1). Form a “ribbon” R in $? whose core is A\. One can
check that the two boundary components of R are linked, but a linked pair
of curves cannot be embedded in a sphere. So, it must be that A is a trivial
loop in T: it bounds a disk in the surface T'; this is more restrictive than
being a trivial knot. Without loss of generality, we may assume K meets .
But then we see that the factor “inside” A is an unknot; see Figure 11. This
is a contradiction. O

Remark 6. It is known that the genus of a (p, g)-torus knot is

g=@P-1(g-1)/2
Thus, there are prime knots of any genus.

Theorem 7. Let K = K 1#Ky. Then g(K) = g(K1) + g(K2).
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A

FIGURE 11. Factor is unknotted.

The proof uses the following result due to Neuwirth, which we only il-

lustrate. Let F' be a Seifert surface for a knot K. Let A be a loop in FO’,
the interior of F'. Suppose that there is no disk A C F with A = A, but

that there is a disk D in the 3-sphere with 0D = A\ and lo) NF = ¢. Then
the surface F' can be replaced by another Seifert surface with smaller genus.
Figure 12 gives an example showing how to reduce the genus of a Seifert
surface of a trefoil.

SO

P

FIGURE 12. Reducing the genus of a Seifert surface.

Proof of Theorem 7. Let g1 = g(K1), g2 = g(K2), and g = g(K).
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Part 1: First we show that g; +go > g. Let F} and F5 be Seifert surfaces
for K1 and Ky, respectively. Assume that they have minimal genus and
have been triangulated. Figure 13 shows how to construct a Seifert surface
F for K by connecting F; and F, with a strip.

Problem 1. Use the Euler characteristic and formula (1) to show that
9(F) = g1 + ga.

Since we do not know that the surface F' has minimal genus we can
conclude only that g1 + g2 > g.

FIGURE 13. Joining two Seifert surfaces.

Part 2: Let F' be a Seifert surface for K = K;# Ko with minimal genus
g. Let S be a 2-sphere that factors K into K; and K. We study F NS,
which we take to be transverse. Clearly F'N.S contains an arc that connects
the two points of K NS, but F NS may also contain some loops. Let n be
the number of loops in F'N S.

Suppose n = 0. The sphere S divides the 3-sphere into two open balls
whose closures we denote by By and By, where K; C B;, for + = 1,2. Let
F; = FNB;. Then F; is a Seifert surface for K;. Each of the F; has minimal
genus by Part 1. By Problem 1, g1 + g2 = g.

Now suppose n > 0 and assume that the result holds for Seifert surfaces
with fewer than n loops. Let A be a loop in F N S that is innermost. Thus
there is a disk D in S with boundary A that does not meet F anywhere
except A. By Neuwirth’s result we know that A must also bound a disk A
in F. Thus we can form a new surface F’ by removing A from F, gluing
in the disk D, and then pushing off S; see Figure 14. Thus, F’ is a Seifert
surface for K with minimal genus that has fewer than n loops in F'NS. O

Theorem 8 (Schubert). Let K be a nontrivial knot. Then K can be fac-
tored into primes and any two prime factorings of K are the same up to
order.
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FI

FIGURE 14. Reducing the number of intersection loops.

We leave the proof of the first claim as an exercise. It is essentially a
corollary of Theorem 7. Think about the genus of K and of any of its
factors.

The proof of uniqueness is accomplished in a series of lemmas. We first de-
fine a decomposing sphere system for a knot K. This is a rather complicated-
looking definition but the example that follows should help make the ideas
clear.

Definition 9. Let S = {S1,..., S} be a collection of disjoint spheres in S°
such that K N.S; is two points (and is transverse) for j = 1,...,m. We use
these spheres to factor K. If each factor is prime we say S is a decomposing
sphere system or dss for K.

To show that this definition is precise, we show how the factoring is to
be done. Let B}“ and B}’“t be the respective closures of the two components
of $3\S;. We also renumber these balls as By, ..., Bay,, and let c(j) be the

index of the ball B, = 53\Bj. Now, for each 7 = 1,...,m choose an arc

c(j
a; C S; that joins the two points of K N S;. Let R; = B\ (UBichBZ)'

Let K; = KN R;. Let K; be the knot formed from the union of the arcs K
and the arcs {;|S; C B;}. We say B; or R; determines the factor K.

Note that different balls can determine the same factors. If fact this must
happen if m > 1 as there are 2m balls and only m+1 factors; see Lemma, 11.
It is therefore convenient to renumber the regions, (R1,..., Ry+1), and the
corresponding factors, (Ki,..., Kpi1).

Example 10. Figure 15 shows a dss with three spheres for a knot K with
four prime factors. The following list shows which ball determines which
factor.
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B®» — R DK,
B — Ry D Ky
B — Ry D Ky
B$" — Ry D K,
B — Ry D K; redundant

Bgut — Ry D Ky

redundant

We also give, in Figure 16, a set of spheres that do not form a dss for the
knot shown. In fact there are three thing wrong with Figure 16. Find them,
and then construct a valid dss.

FIGURE 15. A decomposing sphere system.

Lemma 11. Let S be a dss for K with m spheres. Then the factoring has
m + 1 prime knots: K = Ki# -+ #Kpi1-

Proof. The result is clear for m = 0 and m = 1. Suppose this is so for all
n < m. Let B; be an innermost ball, i.e., B; contains none of the other balls.
Replace the arc K] = K N B; with the arc a; C S; = 0B, forming a new
knot K, i.e., K = (K\K;) U o;. By Definition 3 we have K = K#K;. Let
S = S\{Si}; S is a dss for K. By the induction hypothesis, K is decomposed
by S into m factors, K = Ki#---#K,,. Thus S gives the factorization
K = K\# - #K,,#K;, which has m + 1 terms, as required. O

Definition 12. Let S and S’ be dss’s for the knot K. Then S ~ S’ if they
determine the same factorizations of K.

Lemma 13. Let S = {S1,...,Sn} be a dss for K. Let By be an outermost
ball within B;. Then B.(;) and B; determine the same knot.
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FiGURE 16. Not a valid dss.

We leave the proof to the reader. The point is to show that the associated
regions are the same in each case. When we say that By is outermost in B;,
we mean that there is no other ball B, such that By C B, C B;.

The next lemma gives us an operation that allows us to change one dss
into an equivalent one.

Lemma 14 (Switching Move). Let S = {S1,...,Sn} be a dss for K. Let

S be another 2-sphere in S3, disjoint from each S € S, that bounds B Let
= (S\{S; })U{S }. Suppose Bj is outermost in B and that B determines

the same knot K (relative to S) as Bj does (relatwe to'S). Then S ~ S.

A~

Proof. We suggest that the reader draw the extra sphere, S;, in Figure 15
and refer to it while reading the proof.
By hypothesis B; and B; determine the same factor K;. Hence the region

R; = B,\U BiCB B determines an unknot. Thus, B,;) and Bc(]) determine
the same factor K, ()"

Now let ¢ # j and suppose B; C B ; the other case, B; C BC(J),
If B; is not outermost within Bj;, i.e., there is a k such that B; C By C By,
then both B; and B.; determine the same factors, K; and K.y, with
respect to both systems SAand S.

If B; is outermost in B; then B; still determines K; in both systems.

is similar.

But B,y determines K; with respect to S. But Lemma 13 ensures that
Keti) = Kefj)s
same and so S ~ S. O

which is determined by Bc(j). Thus, the factorizations are the

Lemma 15. Let S and S’ be dss’s for K. Let B; (or B.) be innermost with
respect to S and S'. Suppose S;NS' = ¢ (or S;NS =¢). Then S ~ S'.
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Note. We abuse notation a bit by regarding S and S’ both as finite sets of
spheres and as the union of the sets of points that form the spheres.

Proof. Use induction on m +m’. The theorem is clear for m +m' = 0, since
then K is prime and S = S’ = ¢. Suppose that m +m' = M and that the
theorem is true for m +m' < M.

The sphere S; = 0B; is outermost within some S} with respect to the &'
dss; draw some pictures to see this. In S', replace S} with S;, call this S”.
Lemma 14 then implies that S” ~ S’.

Let K = (K\B;)Uo;. Then K = K#K;. Let S = S\S;, and §” = 8"\ S;.
These are dss’s for K. By the induction hypothesis S~ 8" , and thus they
give the same factors K = K1# - --#K,,. Then by Definition 3, S and S”
give K = K1# - #K,#K;. Hence, S ~S" ~ §'. O

Theorem 16. Let S and S’ be dss’s for K. Then S ~ S'.

Proof. If SN'S’ has zero components use Lemma 15. Let n be the number
of components of S NS’ and assume the theorem is true if there are fewer
components.

Let B; be an innermost ball with respect to S and S'. Let A\’ be an
innermost curve of S;- ns; if S;- NS = ¢ use Lemma, 15. Thus there exists a

disk D' C 8} with D' = X and D' NS = ¢.
Now X C S; for some S; € S. Either D' is in BI* or B", so just write
D' C B;. Because X is innermost, D'CB;, so D' divides B; into two balls,

B;; and B;s. One of these determines the factor K; and the other determines
an unknot.

FIGURE 17. Replace B; with B;;.

Without loss of generality, let B;; determine K;. Let S* be the boundary
sphere of an slightly shrunken copy of B;; that is transverse to the other
spheres. Replace S; with S* forming S* = (S\S;) U S*. By Lemma 14,
S* ~ S. But S*HS} does not contain )\, so S*NS' has fewer components. [
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4. APPLICATION: KNOTS ON TEMPLATES

A template is like a surface with boundary but we allow “branching”.
That is, sheets can merge together along branch lines. Figure 18 shows what
is perhaps the simplest example of a template, known as the Lorenz template.
A template also has a flow on it. The flow on the Lorenz template goes
downward from the branch line and then wraps around along the two bands
and then comes back in to the branch line again. The flow of a template
contains closed orbits, which may be regarded as knots. We sometimes abuse
notation and use the name of a template to denote the set of knot types on
it. For more on template theory see [10].

FI1GURE 18. The Lorenz template with trefoil orbit.

The study of templates grew out of a desire to understand flows associ-
ated with the solutions of differential equations in three dimensions. The
Lorenz template was proposed as a model of the Lorenz system of differential
equations. It is conjectured that every knotted closed orbit in the Lorenz
system is contained on the Lorenz template. Thus, it is natural to ask just
what knots appear on the Lorenz template. In 1983 Williams showed that
the Lorenz knots (i.e., knots on the Lorenz template) are prime. Earlier,
Birman and Williams [3] conjectured that for any template 7 there is an
upper bound on the number of prime factors for closed orbits in 7. For the
Lorenz template the bound is one. They proposed this bound as a measure
of the complexity of the system being modeled.

We call a template Lorenz-like if it has two bands, which may have twists
in them. We denote by L(m,n) the template with m half twists in the
left band and n half twists in the right band; see Figure 19. Thus the
Lorenz template is £(0,0), which at times we denote by £. The Lorenz-like
templates model other differential equations. What can we say about the
prime factors of Lorenz-like knots?

Williams showed in [18] for n > 0 that £(0,n) has only prime knots.
However, he found an example of a composite knot on £(0,—1), which is
shown in Figure 20. As a graduate student working under Williams, I studied



16 MICHAEL C. SULLIVAN

FIGURE 19. Lorenz-like templates.

L£(0,—2) for a time. At one point I was sure I had a proof that all its knots
are prime. But no, I eventually found that it, too, had composite knots.
One is shown in Figure 21; it is the connected sum of two trefoils [14].

AN

Negative
full

twist

N/

FIGURE 21. A composite knot on £(0, —2).
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We now show that for all n < 0 the templates £(0,n) contain composite
knots [14]. The proof of the next lemma is given in Figure 22. The boxes
mean, “insert the indicated number of half twists.”

Lemma 17. As sets of knots, £L(0,n) C L(0,n — 2).

FIGURE 22. Proof!

Theorem 18. For n <0, the template £(0,n) has composite knots.
Proof. Use Lemma 17 and the examples of Figures 20 and 21. O

Problem 2. Show that £(0,—4) C £(0,—1). Hint: cut £(0,—1) along the
closed orbit that makes just one trip around on the twisted branch. This
gives a new template, which contains the same knots as £(0,—1). (The
linking of the new boundary orbit with the other orbits is different, but the
knots are unchanged.) Now, show that £(0,—4) fits inside the “surgeried”
L£(0,-1); see [14]. [Remark: My 7th grade math teacher showed us what
happens when you cut a M6bius band down the middle. This problem shows
that you actually do use what you learn in school!]
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It is now natural to ask if we can find a bound on the number of prime
factors of knots on the templates £(0,n) for negative n. Thus far all our
examples have had just two prime factors. Before answering, we state a
theorem of this type but for a different template, H, shown in Figure 23a.

Theorem 19. The knots in the template H have at most two prime factors.
The proof is in [16]. There is some evidence for the following.

Conjecture 20. For m and n both greater than zero £(m,n) has at most
two prime factors.

On the other hand, if we switch the crossings of one of the loops in #,
producing the template I/ in Figure 23b, we get a very different result, see
[15].

Theorem 21. For every n > 0 there is a knot on the template U with n
prime factors.

Rob Ghrist was able to push this result considerably further [9].
Theorem 22. The template U contains all knots and all links!

FIGURE 23. The templates H and U.

A template is universal if it contains all knots and all links; there are,
however, no known examples of templates that contain all knots that do not
contain all links. It is shown in [16] that &/ C £(0,—2). Thus, for n < 0 it is
easy to show that the £(0,n) templates are universal. Just apply Problem 2
and Lemma 17.

We have seen that the Birman-Williams conjecture has failed. However,
the purpose behind making a conjecture is not to show that mathematicians
have crystal balls, but to stimulate research. In this sense the Birman-
Williams conjecture has succeeded.

There is a common feature in the examples where the Birman-Williams
conjecture holds. In each case, all the crossings on the template are of the
same type. Crossings of an oriented knot (or link) come in two types, left-
handed (or positive) and right-handed (or negative). In Figure 24 if you
point your left thumb in the direction of the over crossing arc of the left
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crossing with the palm of hand down facing the page, your fingers, if you
curl them under your palm, point in the direction of the under-crossing arc.
For the crossing on the right, you can do this with your right hand. No
matter how it is rotated or even flipped over, the handedness of a crossing
is the same. Thus, crossings are either left-handed or right-handed.

/N
g RN

Left-handed Right-handed

FiGUrE 24. Crossing types.

In all of the templates we examined, where there is a bound on the number
of prime factors, all of the crossings are of the same type. We call such
templates positive templates, though it would make more sense to call them
uniform templates. None of the universal templates are positive. And, every
template where a bound on the number of prime factors has been established
is positive. Perhaps, this is just a coincidence. However, in Williams’ proof
that Lorenz knots are prime, the positivity of the templates is used, though
not explicitly. In trying to construct a proof of Theorem 19, one of the more
important revelations came when I saw that Williams really was, perhaps
unknowingly, using the positiveness of the templates. These observations
form the basis for the following conjecture.

Conjecture 23. Let 7 be a positive template, meaning that all the cross-
ings of the orbits are the same type. Then there is an integer n such all the
knots on 7 have n or fewer prime factors.

5. FACTORING POSITIVE BRAIDS

A braid presentation is a knot diagram in which any arc in the knot goes
counter-clockwise with respect to a common central point called the braid
axis; Figure 25 gives two examples. It has long been known that every knot
has a braid presentation that is easy to construct; see [4]. If a knot k has a
braid presentation in which all of the crossings are of the same type, then
we say that k is a positive braid. Peter Cromwell has developed a simple
method for factoring positive braids [6], which we now describe.

Note: There exist knots with diagrams with all positive crossings but
for which any braid presentation has mixed crossings. In fact, there is an
example of such a knot with just five crossings. The problem of proving that
a knot cannot be presented as a positive braid is nontrivial; see [17].
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e=

FIGURE 25. Two braided knots.

Every braid can be described by a braid word as follows. If the braid has
n strands, number the gaps between them 1,...,n—1. Now follow the braid
counter-clockwise around the braid axis and list the number of the gap in
which each crossing occurs. But, if the crossing is negative put a bar over
the number. Thus, the braid word of the braid in Figure 25a is 111 while
that of the braid in Figure 25b is 1212.

Cromwell’s procedure goes as follows. Assuming we have a positive braid
diagram, write down its word. If every number appears more than once then
the knot is prime. If a number appears only once, delete that crossing and
thus factor the knot. It is easy to detect if a positive braid is the unknot.
(Figure out a clear criterion for this.) If a factor is trivial throw it away; if
both are trivial the original braid was the unknot. We repeat the procedure
with each nontrivial factor until we have only prime factors left.

Problem 3. Show that Cromwell’s produce can fail for braids with mixed
crossing types.

Problem 4. Use Cromwell’s procedure to give an easy proof of Williams’
theorem that Lorenz knots are prime.
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