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POSITIVE KNOTS AND ROBINSON’S ATTRACTOR

MICHAEL C. SULLIVAN

ABSTRACT. We study knotted periodic orbits which are realized in an
attractor of a certain ODE. These knots can be presented so as to have
all positive crossings, but may not be restricted to positive braids.

1. INTRODUCTION

In [8] Clark Robinson analyzes the flow arising from the system ordinary
differential equations below.

T =y
§ = z—-2"+ay+ fry+yz (1)
5 = —yz+02°

He shows that there is a transitive attractor similar to that of the geometric
model for the attractor of the Lorenz equations developed by Williams [10,
11] for parameter values, @« = —0.71, § = 1.8690262, § = 0.1, and v = 0.6.
This means that the periodic orbits of the attractor are smoothly isotopic
to closed orbits that arise in a semi-flow on a branched 2-manifold [1]. Such
a branched 2-manifold is called a template for the system. Robinson shows
that the template for (1) has two bands each with a half twist. Using
Mathematica the author has confirmed that the orientation of the twists are
as depicted in Figure 1a. For convenience we isotopically embed the interior
of this template into the template show in Figure 1b. The later template is
denoted by L(—1,—1) in the notation of [12]. All of the periodic orbits in
the attractor of (1) are in L(—1,—1), but not vice versa.

a b.

FIGURE 1. a) Template model of attractor, b) L(—1,—1)

In order to organize our study of the knots in L(—1,—1) we shall use
words in the symbols z and y for each closed orbit. Every time an orbit
passes through the left half of the branch line we record an z and for each
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pass through the right half we record a y. For example, z2y? corresponds to
the orbit show in Figure 2. Because the semi-flow is expanding it is known
that each word corresponds to just one closed orbit. This correspondence is
one-to-one modulo cyclic permutations of the words [1].

FIGURE 2. A closed orbit with word z2y?

2. PosiTivE KNOTS

Definition 2.1. A knot is positive if it has a presentation where the cross-
ings are all of the same type. A knot is a positive braid if it has a braided
presentation with all crossings of the same type.

Theorem 2.2. All the knots in L(—1,—1) are positive, but they are not all
positive braids.

Proof. We perform a type of surgery on L(—1,—1). We cut open along an
exiting orbit and then isotope the template as shown in Figure 3. The details
of this now standard procedure can be found in [3]. The point is that the
knot types of the closed orbits have not been altered. From Figure 3 it is
clear that each closed orbit can be presented so as to have only one type of
crossing.

Now consider the orbit with word zy*z?yz*y?. It can be presented as the
following braid on four strands, (322332322214)2. A calculation shows that
its Conway polynomial has leading coefficient 3. Hence it is not a positive
braid by [9]; see also [2]. O

Corollary 2.3. The L(—1,—1) template does not contain all knots.

Proof. 1t is known that nonpositive knots exist. The figure-8 knot is an
example. See [2]. O

Remark 1. A template is said to be universal if it contains all knots and
all links. Rob Ghrist has proved the existence of universal templates and
studied many examples [4]. He has also shown that L(—1,—1) does not
contain all links, by computing a bound of the linking number [3, page
93]. Until now all known examples of templates not containing all knots
were either positive braids (i.e. all the knots were positive braids) or all the
knots were satellites of a nontrivial knot. Thus, the positivity of L(—1,—1)
represents a new type of obstruction to universality for templates.
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FIGURE 3. Surgery on L(—1,—1)

3. COMPOSITE KNOTS

The L(—1,—1) template seems strange in another way. It contains com-
posite knots. Figure 4 gives an example. The knot is shown on the final
template of Figure 3. Its word on L(—1,—1) is z*y*. We conjecture, how-
ever, that the range of composite knots on L(—1,—1) is rather narrow. To
explain what we mean by this a couple of definitions are needed.

A word of a closed orbit on L(p, q) is always a concatenation of syllables of
the form z£™y™. The trip number of a closed orbit is the minimum number of
syllables of words in the permutation class of words representing the closed
orbit. Thus, the trip number is the number of times an orbit pierces the zz-
plane in the canonical coordinate system. We conjecture that all composite
knots in L(—1,—1) have trip number one.

The template L(—1,—1) is a branched double cover of L(0,1). See Fig-
ure 8. The L(0,1) template has been studied extensively as it arises in the
study of a suspension flow of Smale’s horseshoe map [7, 6, 5]. The knots
on L(0,1) are often called horseshoe knots. It is known that they are prime
positive braids [12]. For trip one horseshoe knots we can also report the
following.

Lemma 3.1. Trip one horseshoe knots are torus knots.

Proof. First, notice that the knot type of z™y™ (on L(0,1)) is independent
of m. Henceforth, we will only work with words of the form zy™. Let v be
such a closed orbit. Let ¢ be the point where the orbit with word y meets
the branch line. Let y1, ..., ¥i, Yi+1, ---» Yn be the n points where ~ intersects
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5)

)

FIGURE 4. The connected sum of two trefoils

the right half on the branch line. Assume the ordering is consecutive with
y1 left most, y, right most, and y; < § < y;+1. From y, the orbit v heads
back to the left half on the branch line. It is also clear that in order to have
a complete circuit, v must land on y; or y;+1 when coming around the left
band to the right half of the branch line.

To aid in visualization we have split the template open along the y orbit.
See Figure 5.

We will divide the proof into two cases, n even and n odd. Suppose
n is even. Then as v comes around on the left band it must land on y;.
In Figure 6 we have deleted parts of the template that are not used by ~.
Figure 6 also shows how to place (isotopically embed) this portion of L(0,1),
which is not branched, into a torus. Hence, y is a torus knot.

Now, suppose n is odd. Then as vy comes around on the left band it must
land on y;y1. In Figure 7 we have deleted parts of the template that are
not used by «. Next, since only one arc of «y passes around the left band on
L(0,1), we can replace the loop indicted in Figure 7 with a loop of different
twist without changing the knot type of . This too is shown in Figure 7.
The new surface, which is unbranched and supports v can then be placed
into a torus as is shown in the last part of Figure 7. Hence, v is a torus
knot. U
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FIGURE 5. L(0,1) split along y
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FIGURE 6. Surface fits around a torus
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FIGURE 7. Modified surface fits around a torus
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The trip one knots on L(—1, —1) are connected sums of trip one horseshoe
knots of the form zy™. Thus, we conjecture that the composite knots on
L(—1,—1) have only two prime factors, each of which is a torus knot. If so,
then the same is true of the knotted orbits in Robinson’s attractor.
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FIGURE 8. Template on the right, L(—1, —1), is seen to be
a double branched cover of L(0,1).
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