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Abstract - We consider the problem of signal parameter 
estimation using a collection of distributed sensors. Each 
sensor quantizes its data to one-bit information and sends 
it to a fusion processor for the estimation of the 
parameter. Estimation of a constant signal in additive 
noise is considered. Since the emphasis is for the case of a 
moderately large number of sensors, we consider in this 
study two cases of estimation with 8 sensors and 20 
sensors. We formulate several estimators based on one-bit 
sensor data and evaluate their mean squared error 
performances through simulation studies. Two parametric 
noise densities are simulated to ascertain the eficacies of 
various estimators. Results from this study show that 
robust estimation of parameter is possible by using a 
moderately large number of one-bit quantized sensor data. 

1. Introduction 

Fusing data from multiple sensors has been done in radar 
imaging, radar target detection and tracking, process 
control in industries, and structural health monitoring. For 
the past two decades, researchers have worked on multiple 
sensor data fusion for target detection application (see 
review articles [I-21, books [3-41 ). There has been limited 
research in the area of parameter estimation using 
quantized data from multiple sensors. Distributed 
estimation using unquantized data from multiple sensors 
has been analyzed in a number of applications. Chong, 
Mori et.al. have considered target tracking with multiple 
sensor data [5-61. Ming, Cheng, and Viswanathan [7] have 
considered the fusion of several local estimates to obtain a 
final estimate of a parameter. A local estimate is obtained 
from a small group of sensor data. In that paper, the mean 
squared error performances of some fusion rules were 
evaluated. Mahajan, et.al. [SI developed a generic fusion 
model using a Fuzzy Inference System (FIS) to fuse 
redundant data from three different sensors attached on a 
cantilever beam which was actuated by a pair of 
piezoceramic patches. The fusion scheme uses additional 
information on the sensor’s performance characteristics 
(e.g. temperature, frequency range, life cycles, etc.) rather 
than simple numerical estimation and probabilistic models, 
though these can also be used to further enhance the 
model. 
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With recent interests in wireless sensor networks, there 
is a need for design of low-complexity encoding schemes 
for wireless sensor networks [9]. In future sensor 
networks, sensor dynamic range and resolution may be 
severely limited due to either physical limitations in sensor 
design, or power and bandwidth constraints in 
communication link back to the central site. In such cases, 
optimal encoding of sensor data for transmission to central 
site becomes important. In this paper we consider the 
estimation of parameter representing a physical quantity 
using one-bit quantized data from multiple sensors. A 
moderately large number of sensors measure the parameter 
under investigation and report to a central site whether 
each measured value exceeds its pre-set threshold value or 
not. Based on the one-bit information from these sensors, 
the fusion center estimates the value of the parameter. It is 
assumed that the fusion center has the knowledge of 
threshold values used by each sensor. Several 
nonparametric estimation schemes are proposed and their 
performances are evaluated using mean .squared error 
criterion. Whereas we assume the data at sensors to be 
statistically independent, future work is planned to 
consider correlation among sensor data. In section 2 we 
state the estimation problem and propose several 
nonparametric estimators for one-bit quantized sensor 
data. Section 3 presents the performance evaluation of 
these estimators through simulation study. We conclude 
our paper in section 4. 

- 

2. Parameter Estimation Using 
Multiple Quantized Data 

Consider a large number of sensors of similar types. For 
the moment, let us assume that the reliability and 
confidence level of each sensor is known. Assume that this 
collection of sensors (presumably inexpensive) monitor 
certain physical quantities denoted by O i .  Denote the 

observed quantity at sensor i as Y,.=8,+Xi, i=l,2, ..., L, 

where X i  accounts for the reliability and the noise 

affecting i ‘h sensor measurement. A sensor observation is 
assumed to be statistically independent of other sensors’ 
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observations. In certain situations where sensors may be likelihood function can then be maximized to obtain the 
placed in Close proximity, it iS conceivable to approximate maximum likelihood estimate (MLE) of 6 based on the 
all 8; to be a constant 8. Based on the sensor sensor decisions [lo]. For example, sensor noise under 
observations the problem could be to 
(i) estimate 8 or 
(ii) decede on a hypothesis involving 8 ,  
for example, H,: 8 =eo VS H,: 8 =el .  In a 

monitoring (health or a process) application, 8, may 

correspond to normal operating conditions whereas 8, 
may indicate a failure or an abnormal situation. 
Hypothesis testing problems involving sensor data or 
sensor decisions have been widely studied in the literature 
on decentralized detection and decision fusion [1-4]. 

Our approach here explains how it may be possible to 
obtain robust and reliable estimate of 8 based on one-bit 
information from each sensor. As pointed out earlier, 
generation of one-bit information is motivated by either 
physical limitations in sensor design or the need to achieve 
extremely simple signal processing circuitry at a sensor or 
the need to reduce the volume of data emanating from 
each sensor. For simplicity let us assume a l l x i  to be 

most conditions may be assumed to be Gaussian 
distributed. In such cases, for a given set of threshold 
values, for each of the possible 2L combinations of U, the 
likelihood hnction can be maximized off-line and the 
corresponding estimates stored in a look-up table. 
However, in some situations, . the density of sensor 
observations may be unknown and therefore, a 
nonparametric estimation procedure would be useful. Here 
we consider few nonparametric procedures based on one- 
bit decisions. Estimator 1 is given by 

where M ,  = median(t, 1 M ,  = median(t,) 

If no sensor noise is present, the actual parameter 8 
would fall in the interval 

( 6 = max(t, ), 4 = min(tj )). Because the noises at 

all,,. =O all,,. =I 

all =I ui 

distributed with a density p( . ) ,  having mean and sensors are statistically independent, it is possible that Wl 

variance Olz. To illustrate the reliability aspect of sensor 
pack networks, let us consider the following situation. All 
sensor reliability and measurement noise are identical, 
leading to all Oz2 being identical to a constant. Sensor i 
makes one-bit quantization based on its own observation 
as follows: Set a variable ui = 1 if >ti  , otherwise set 

ui = 0. Since U,. is a binary variable, it can be 
conveniently described as a decision as to whether the 
sensor i data exceeded its threshold or not. Here ti 

denotes the threshold of sensor i. Even though the 
observations at all sensors have identical distribution, in 
order to estimate 8, the sensors judge their observations 
against non-identical thresholds. Similar non-identical 
thresholds have appeared in decision fusion problems [ 1 - 
41 and in an estimation problem [6] (In [6] the authors 
employ multi-bit quantization, but the quantization with 
fixed thresholds is carried out after adding a dithering 
noise to the sensor signal). Each sensor sends their 
decisions to a central processing site where these decisions 

may exceed V, and vice-versa. 
Estimator 2 based on this criterion could be 

Estimator 1 uses the average of the two medians of the 
thresholds in the sets of all 1 decisions and all 0 decisions, 
respectively. Median as an estimator of parameter is 
usually preferred when the additive noise happens to have 
a heavy tail density function. However, the choice of 
medians of thresholds, which are indexed by one-bit 
decisions, may be overly conservative in terms of noise 
effects and therefore, may lead to inaccurate estimates 
under a majority of conditions. This motivates us to 
examine Estimator 3 shown in Table 1, which depends on 
the variables , W, defined earlier and on 

v, =second largest (t, ), W, =second smallest (t, ) 

C, = Cardinality(al1 ), c, = CardinaIity(al1 ). 

3. Performance of Estimators are fused to produce an estimate of 8. 
If the density function of the sensor observation, p( . )  

is known, except for the parameter 8 ,  it would be In order to estimate the performances of different 
possible to obtain the robability distributions estimators, we wrote a MATLAB simulation program. 

p j  = p(uj)= p(y, , I e and hence the likelihood Two representative noise distributions, namely, Gaussian 
and double exponential (Laplace) are considered in the 
simulation study. Laplace noise was included to represent 

function (6 = n P;' (l-  P j  1'"' The the situations where sensors may encounter heavy tail 
noise disturbances. L sensors ( L  = 8 or 20) 

P 
L 

j=1 
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Table 1 Algorithm for Esimator 3 

5 -  

Zondition I Estimator 

M), 0 25,0.5,1,1.5,2 5,355.5 
(Non-uniform spacing) 

Estimator 1 

c, = o  

c, =1 

c, = o  

c, =1 

c, 2 2  
c, 2-2 

I value 

I (w' + w2g 

I (w,+w2A 

I (v2 + w2x 

w, < v, < w, < v, 

(w, +W2) L v, < w, < w, < v, 

;- 
generate iid samples from a noise distribution with mean 
8 and variance 6,. Two choices for sensor thresholds 
were considered, including a uniform spacing and a non- 
uniform spacing, where the spacing between thresholds is 
increased as the threshold values increase in magnitude. 
Without any loss of generality, it is assumed that the 
sensor thresholds are all different (the case of two sensor 
thresholds being same can be handled by assuming one 
sensor threshoid to be extremely close to the other ). Mean 
squared errors (MSE) of different estimators were 
obtained by simulating sensor samples over 1000 
iterations. This large sample size of 1000 ensures a good 
accuracy in the estimation of MSE values. 

Figures 1-8 show the MSE performances of different 
estimators for the Gaussian noise case and Figures 9-1 2 
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Figure 1. MSE Performance of Estimators for Gaussian 
Noise 

71 I I I I I I R Number of sensorsl 
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Figure 2. MSE Performance of Estimators for Gaussian 
Noise 

show corresponding graphs for the double exponential 
case. Gaussian case has results for L = 8 , 20 , two noise 
variances of 1 and 8 ,  and for two threshold sets, namely, 
uniform spacing and a non-uniform assignment. For 
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Figure 3. MSE Performance of Estimators for Gaussian 
Noise 
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Figure 4. MSE Performance of Estimators for Gaussian 
Noise 

Laplace, we show results for L = 20 only. The unknown 
parameter value is assumed to be in the range (0.5, 5). 
In Gaussian case, by looking at Figures 1-8, we can make 
the following observations. For uniform threshold spacing 

2.5 

L 

1.L 

U] 
v) 
E 

1 

0.1 

\ 

. .  , I .  

Number of s e n s o ~ 2 0  
Number of iterations4000 
Variance4 
t=O, 0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7, 
3 3 3  36,3.9,4.2,4.5,4.0,5.1,5.4,5.7 

\Vnioim' sbacing) Estimator 1 

1 1.5 2 2.5 3 3.5 4 4.5 5 
THETA 

Figure 5 .  MSE Performance of Estimators for Gaussian 
Noise 
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Figure 6. MSE Performance of Estimators for Gaussian 
Noise 

and low noise variance, among the three estimators based 
on one-bit data, Estimator 3 performs the best over most of 
the range of 8. For large noise variance, Estimator 2 
performs better than Estimator 3 over medium values of 
8. Certainly, the sample mean (denoted Estimator 4 in 
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Figure 7. MSE Performance of Estimators for Gaussian 
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Figure 8. MSE Performance of Estimators for Gaussian 
Noise 

these figures) based on all the samples performs the best 
for the Gaussian case. Recall that the sample mean is a 
uniformly minimum variance unbiased estimator for 
estimating the mean of Gaussian. Of course, this does not 
preclude some estimators to have lower MSE than the 

1.5 t \ A 

0.5 1 1.5 2 2.5 3 3.5 4 4 5 5 
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Figure 9. MSE Performance of Estimators for Laplace 
Noise 

Estimator 1 Number of lerations=1000 
Vanance4 
t=O,01 ,02 ,03 ,05 ,07 ,09 ,1  1 ,15 ,1  9, 

1 2  23,28,33,38,44,5,58,66,74,82 
(Nowunlform spacing) 

1 -  

g 0.8 - 
Estimator 3 / I  

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 
THETA 

Figure 10. MSE Performance of Estimators for Laplace 
Noise 

sample mean at some values of 8 (see Estimator 1 in 
Figures 3-8 and Estimator 3 in Figures 7-8). The MSE of 
sample mean is the ratio variance to sample size, which, 
for unity variance, is 0.5 for a size of 2 , 0.25 for a 
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Figure 12. MSE Performance of Estimators for Laplace 
Noise 

sample size of 4 ,  and 0.05 for a sample size of 20. For 
uniform sampling, when we compare the MSE of 
Estimator 3 with a sample mean estimator based on 4 
samples, we observe that the Estimator 3 performs 

264 

uniformly better (see Figures 1-3,5-7). If one assumes that 
a 12 bit quantization produces a good representation of a 
sample, then 4 samples require 48 bits for 
representation of all. Comparing this with L = 20, we 
observe that we are able to obtain better accuracy 
estimation with 20 bits of information through Estimator 
3 and an appropriate choice of threshold. With uniform 
threshold spacing, all the observations we have made for 
the Gaussian case also hold good for the Laplace case 
(Figures 9,11). 

When we make comparison between the two threshold 
choices, namely, uniform spacing and a non-uniform 
assignment as shown, we observe that, in general, the 
uniform spacing produces lower MSE for Estimators 2 and 
3. If we consider very large values of L , say in hundreds, 
then the average MSE for all random choices of thresholds 
could be of interest. Certainly, such an asymptotic analysis 
for MSE would be interesting and usehl for wireless 
sensor system with a very large number of sensors. 

Extensions of the above-simplified situation are many, 
such as: 
(i) Reliability of each sensor could be different. This is 
captured by differences in the variances of sensor 
observations. In this case, a sensor observation needs to be 
normalized with the standard deviation of reliability of 
sensor before the threshold comparison is carried out. 
(ii) Sensors may be measuring slightly different physical 
quantities. Differences in Oi s account for this. Knowledge 
of the model of the quantities observed may provide 
additional information about the relations among Oi. 
(iii) Optimization of sensor thresholds. This is in general a 
difficult problem because of the dependence of 
performance on several parameters. Expected range of 8 
as well as the knowledge of the variance of sensor noise 
can be used to determine the range over which the 
thresholds are to be assigned. 
(iv) Large sample (very large L ) performance, as well as 
the effect of sensor data correlation on the performances of 
different estimators. 

4. Conclusions 

In this paper we considered a signal parameter estimation 
based on one-bit quantized data from L multiple sensors. 
Attention was restricted to constant parameter estimation 
in additive sensor noise. Data at various sensors are 
assumed to be statistically independent. The mean squared 
error performances of various estimators reveal that 
Estimators 2 and 3 give robust performances over a wide 
range of parameter values. Future work may involve 
asymptotic analysis, sensor noise correlation, non-constant 
signal estimation, and estimation with sensors of different 
reliability. 
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