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ARTICLE

Chemical and Electrical Approaches to Sedation of Cobia:
Induction, Recovery, and Physiological Responses
to Sedation

Jesse T. Trushenski* and John C. Bowzer

Fisheries and Illinois Aquaculture Center, Southern Illinois University Carbondale, 1125 Lincoln Drive,
Life Science I, Room 173, Carbondale, Illinois 62901-6511, USA

James D. Bowker

U.S. Fish and Wildlife Service, Aquatic Animal Drug Approval Partnership Program,
4050 Bridger Canyon Road, Bozeman, Montana 59715, USA

Michael H. Schwarz

Virginia Seafood Agricultural Research and Extension Center,

Virginia Polytechnical Institute and State University, 102 South King Street, Hampton,
Virginia 23669, USA

Abstract

To support the growing interest in marine fisheries research in areas such as biotelemetry, tagging, and tracking, we
assessed the ability of various sedatives to facilitate this research in juvenile cobias Rachycentron canadum (~300 g),
namely, tricaine methanesulfonate (MS-222; 150 mg/L), carbon dioxide (CO,; ~750 mg/L), eugenol (60 mg/L),
benzocaine (150 mg/L), and pulsed-DC electrosedation (100 V, 30 Hz, 25% duty cycle, 5-s exposure). Induction times
(CO; [z] > benzocaine [y] > eugenol [y] > MS-222 [y] > electrosedation [x]), recovery of equilibrium (CO, [z] >
eugenol [z] > MS-222 [y] > benzocaine [y] > electrosedation [x]), and responsiveness to tactile stimulus (eugenol [z] >
MS-222 [y] > benzocaine [y] > CO, [xy] > electrosedation [x]) differed significantly among the sedative treatments
(treatments with the same letters are not significantly different). Total handling time from initial sedative exposure to
recovery differed among the sedatives as well (CO; [z] > eugenol [y] > benzocaine [x] > MS-222 [x] > electrosedation
[w]), with cumulative means £ SEs of 5.9 £ 0.2 min for CO,, 4.1 &+ 0.2 for eugenol, 2.7 £ 0.2 min for benzocaine
and MS-222, and 1.0 + 0.2 min for electrosedation. Physiological responses differed significantly over time, with
transient increases in plasma cortisol, glucose, osmolality, and lactate that were resolved within 6 h. The overall
magnitude of the physiological responses differed among sedatives, depending on the response variable; however, in
each case, CO, elicited the greatest response. Although variations in induction and recovery times were observed, it
is likely that these differences can be reasonably accommodated within the context of typical research by adjusting
the sedative treatments or allowing for longer induction and recovery times as needed.

The availability of safe and effective fish sedatives is crucial ~ Although the specific constraints differ from one situation to
to fisheries researchers, managers, and aquaculturists. Fisheries  the next, ideally a fish sedative is safe and easy to administer,
professionals sedate or anesthetize fish for a variety of purposes, is effective at low doses (minimizing the amount needed for
ranging from simple handling to invasive surgical procedures. field applications), sedates fish quickly and predictably, has a
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reasonable margin of safety with respect to oversedation, can
be used over a broad range of water chemistries, is inexpen-
sive, and allows for rapid recovery from sedation and its effects
(Bowker and Trushenski 2011). Additionally, in field research,
it is particularly advantageous if sedative use does not require
treated fish to be held to complete a withdrawal period prior to
release (i.e., they can be released immediately).

At this time, there are few legal options for sedating fish,
and those that are available are not always ideal in terms of
their safety, efficacy, and practicality of use. Currently, there is
only one sedative compound that is approved by the U.S. Food
and Drug Administration (FDA) for the temporary immobiliza-
tion of fish: tricaine methanesulfonate (commonly referred to
as MS-222). Two MS-222 products are currently approved in
the United States, but the use of these products is restricted
to ictalurid, salmonid, esocid, and percid fishes (though they
are approved for other fishes in laboratory or hatchery settings
only) treated at water temperatures >10°C. Use of MS-222 is
further restricted by the 21-d withdrawal period deemed nec-
essary to allow for drug residue depletion prior to releasing
treated fish into the wild (or otherwise making them available
for human consumption). Although not approved by the FDA,
carbon dioxide (CO,) is considered a drug of “low regulatory
priority” (USFDA 2011) and its use allows fish to be released
immediately after sedation. However, CO, can be difficult to ap-
ply uniformly and is typically slow-acting; adverse effects have
also been reported (Neiffer and Stamper 2009). There are at least
two additional drugs currently being investigated for use as fish
sedatives, specifically, benzocaine and eugenol. These drugs can
currently be used under the Investigational New Animal Drug
exemptions held by the U.S. Fish and Wildlife Service with an
associated 3-d withdrawal period. In the meantime, there is an
effort by the drug sponsors and researchers to gain FDA ap-
proval of one or both of these compounds as immediate-release
fish sedatives. Another option which is not subject to the rigors
of FDA animal drug oversight is the use of electricity to se-
date fishes. Electrofishing has been used for decades as a field
technique in fisheries, but only recently has it been modified
specifically for sedating/anesthetizing fish and commercialized
(Zydlewski et al. 2008; Hudson et al. 2011; Trushenski et al.
2012a, 2012b).

Each of the aforementioned sedatives has positive and
negative attributes associated with its use, including approval
status (approved, low regulatory priority, or Investigational
New Animal Drug status), allowable use patterns (immediate-
release versus 3- and 21-d withdrawal periods), disposal
considerations, cost, ease of use, and efficacy. Additionally,
each of these sedatives has proven effective in numerous
freshwater fish (Trushenski et al. 2012a, 2012b; J. D. Bowker,
U.S. Fish and Wildlife Service, unpublished data). However,
it is unclear whether these approaches can be effectively
applied to marine species with the same degree of safety and
efficacy. Furthermore, it is unclear whether the differences
in physiological responses to sedation observed in freshwater
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taxa extend to marine fishes. Traditionally, marine species have
received less attention in terms of sedatives research: a recent
review of MS-222, CO,, eugenol and related compounds, and
benzocaine research reported studies of 10 freshwater taxa and
only 5 marine taxa (Trushenski et al. 2012a). This is particularly
true in the case of strategies for electrical immobilization,
which is generally less effective in brackish and saltwater than
in freshwater. This is a particularly critical information gap,
given the growing interest in biotelemetry and other tagging
and tracking approaches to marine fisheries research and man-
agement efforts (Silbert and Nielsen 2001) and the concomitant
demand for effective sedatives to facilitate this type of research.
Accordingly, we evaluated the effectiveness of Finquel (MS-
222; 100% tricaine methanesulfonate; Argent Laboratories,
Redmond, Washington), AQUI-S E (50% eugenol; AQUI-S
New Zealand, Ltd., Lower Hutt, New Zealand), Benzoak (20%
benzocaine; Frontier Scientific, Inc., Logan, Utah), CO,, and
pulsed-DC electrosedation in sedating juvenile cobias Rachy-
centron canadum. The metrics measured included induction and
recovery times and physiological responses to sedation. Cobia
was selected as a model species for this assessment because it
is found in warm coastal waters throughout the world except
for the eastern Pacific Ocean (Shaffer and Nakamura 1989)
and is commonly targeted in assessments of commercial and
recreational marine fisheries (Lucy and Bain 2000; Williams
2001; Smith et al. 2003; Mahon and McConney 2004).

The terms “sedation,” “anesthesia,” and “immobilization”
are used somewhat interchangeably with respect to fish, but
they have distinct meanings: Ross and Ross (2008) define anes-
thesia as “a reversible, generalized loss of sensory perception
accompanied by a sleep-like state induced by drugs or by physi-
cal means” and sedation as “a preliminary level of anesthesia, in
which response to stimulation is greatly reduced and some anal-
gesia is achieved, but sensory abilities are generally intact and
loss of equilibrium does not occur.” “Immobilization” generally
refers to prevention of movement, and does not imply any status
regarding the acuity of sensory perception. However, the defini-
tions of Ross and Ross differ somewhat from the medical pro-
fession’s understanding of sedatives and anesthetics; according
to the Medline Plus Medical Dictionary, a sedative is an agent
or drug “tending to calm, moderate, or tranquilize nervousness
or excitement,” whereas an anesthetic is a substance that causes
the “loss of sensation and usually of consciousness without loss
of vital functions,” specifically substances that “block the pas-
sage of pain impulses along nerve pathways to the brain” (NLM
2012). Both sources appear to agree that sedation and anesthe-
sia represent progressions in the loss of the ability to perceive
and respond to stimuli, but they disagree regarding the issue of
pain. Given the controversy as to whether fish are even capable
of perceiving pain (Rose 2002; Braithwaite and Huntingford
2004), the use of definitions which rely on the relative ability to
do so seem inappropriate. Although one could argue that none
of these terms or definitions perfectly describe the processes we
evaluated in the present work, “sedative” (at least as defined by
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TABLE 1. Water quality in experiments 1 and 2. The values are the means of composite samples collected by combining aliquots collected from the sedative
baths before and after use and analyzed in duplicate along with water samples collected from the holding recirculation system at the beginning and end of the study
period.

Sedative
Parameter Holding system Eugenol Benzocaine CO, MS-222 Electrosedation
Temperature (°C) 27 27 27 27 27 27
Dissolved oxygen (mg/L) 6.2 6.2 6.2 6.2 6.2 6.2
Alkalinity (mg/L) 88 97 103 104 98 45
Hardness (mg/L) 3,650 3,390 3,245 3,520 3,540 280
Salinity (%o) 20 20 20 20 20 0
Conductivity (mS) >1,999 >1,999 >1,999 >1,999 >1,999 700
(over range) (overrange)  (overrange)  (over range)  (over range)

pH 9.5 9.2 9.0 8.2 8.9 8.9

the medical community) seems the best choice. Thus, for con-
sistency, we have elected to use the term “sedation” throughout
this article.

We hypothesized that each of the sedatives assessed would
be effective but that cobias would respond differently to each in
terms of their induction and recovery times and physiological
responses to exposure.

METHODS

All of the procedures described below were conducted under
the guidance and approval of the Southern Illinois University—
Carbondale Institutional Animal Care and Use Committee
(IACUC; protocol 10-028).

Experiment 1: induction and recovery times.—Juvenile co-
bias were obtained as eggs from a commercial vendor (Trout-
lodge Marine Farms LLC, Vero Beach, Florida) and cultured at
the Virginia Seafood Agricultural Research and Extension Cen-
ter until they reached an advanced fingerling stage. Feed was
withheld for 24 h prior to the experiment. Individual fish (297
+ 9g,38.0 £ 0.5 cm total length [mean + SE]) were trans-
ferred from holding tanks in a brackish-water (20%o salinity)
recirculating aquaculture system (Table 1) and placed into a se-
dation chamber (142-L cooler for electrosedation, 30-L cooler
for all others) filled to a depth of approximately 8 cm. Although
the fish had been held in several separate tanks within the recir-
culation system, they were from the same population of fish that
had been arbitrarily stocked among the holding tanks approxi-
mately 24 h prior to starting the experiment. The electrosedation
chamber was filled with freshwater, whereas the chemical seda-
tion baths were prepared using aerated culture water from the
holding system (see the description of water quality testing be-
low; Table 1). Sedation treatments were prepared as described in
Table 2. To avoid the potential variability associated with differ-
ent sources for the chemical sedatives, a single lot was used for
each product. The chemical sedative concentrations and elec-
trosedation settings were chosen based on our previous experi-
ence to achieve a level of sedation appropriate for basic handling

(see the description of sedation procedures below) in less than
5 min. We chose concentrations of MS-222, eugenol, and ben-
zocaine and an electrosedation protocol that have achieved the
desired effect in freshwater taxa, though we employed a higher
concentration of CO, (~750 mg/L, compared with ~400 mg/L)
in this case to compensate for the reported difficulties in achiev-
ing sedation with CO, in saltwater. The chemical sedatives were
not tested with cobias beforehand, but we tested the electrose-
dation protocol prior to experimentation to ensure that the set-
tings would yield appropriate levels of sedation. Although the
culture water used to prepare these baths was aerated prior to
use, the baths were not aerated following the addition of the
chemical sedative or during use. Fresh chemical sedative baths
were prepared after treating 5 individual fish; however, the wa-
ter in the electrosedation unit was not exchanged during the
treatment of individual fish. After extended use, sedative baths

TABLE 2. Sedative treatments in experiments 1 and 2.

Sedative Preparation details

Eugenol 120-mg/L solution of AQUI-S E (60 mg/L
eugenol)

Benzocaine 750-mg/L solution of Benzoak (150 mg/L
benzocaine)

CO, ~750-mg/L solutions prepared according
to the sodium bicarbonate—sulfuric acid
method described by Post (1979)
(analytically verified as 736 £+ 21 mg/L
[mean + SE of replicate baths])

MS-222 150-mg/L solution of Finquel (150 mg/L
tricaine methanesulfonate)

Electrosedation  Pulsed direct current (100 V, 30 Hz, 25%

duty cycle, 5-s exposure) delivered via
Portable Electroanesthesia System
(Smith-Root, Inc., Vancouver,
Washington)
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can “wear out” as the sedative agent is absorbed by the fish or
otherwise dissipated. Also, debris (e.g., mucus, scales, feces)
and dissolved wastes (i.e., ammonia) can accumulate in the seda-
tive bath and affect fish during sedation. Although it is unlikely
that the loss of sedative efficacy or substantial waste accumu-
lation would have occurred after treating the relatively small
numbers of fish used in our study (J. T. Trushenski and J. D.
Bowker, unpublished data), we exchanged the bath treatments
to avoid that possibility altogether. Dissolved oxygen (measured
with the YSI-85 dissolved oxygen—temperature meter; Yellow
Springs Instruments, Yellow Springs, Ohio), conductivity, pH,
salinity (Multi-Parameter PCSTestr 35; Oakton Instruments,
Vernon Hills, Illinois), hardness, and alkalinity (digital titrator
and reagents; Hach, Inc., Loveland, Colorado) were maintained
within the ranges appropriate for cobia culture throughout the
experiment (Table 1). Although the freshwater conditions in the
electrosedation chamber would not be considered appropriate
for culturing cobias, the fish were only exposed to freshwater for
the short period of time associated with electrosedation (~30—
45 s elapsed from stocking to completion of induction); the fish
then recovered in a brackish water bath identical to that used
during the recovery of fish sedated with the chemical sedatives.

During sedation, each fish was monitored to determine the
time (from the time of sedative exposure) at which stage IV
of sedation (Summerfelt and Smith 1990) was achieved. Stage
IV is associated with the total loss of equilibrium, muscle tone,
and responsiveness to visual and tactile stimuli but maintenance
of a steady, though reduced, opercular ventilation rate. After
the loss of equilibrium, fish were continually challenged with
tactile stimuli (manual stimulation of the buccal cavity). Fish
were considered induced to stage IV when they no longer re-
sponded to this stimulus but the opercular rate remained slow
but steady. In the case of the electrosedation treatment, a tremor
was observed following electrical exposure; although fish were
not responsive during this tremor (and were perhaps temporarily
in stage V or VI of sedation), induction was considered com-
plete after the tremor ceased. After induction, fish were weighed
(to the nearest 0.1 g) and measured to determine total length (to
the nearest 0.5 cm) and then transferred to a static recovery tank
filled with aerated culture water (exchanged at the same time
as in the sedative baths). In the recovery tank, fish were mon-
itored using the techniques mentioned above to determine the
time to recovery of normal equilibrium and tactile responses.
When fish exhibited normal equilibrium and began responding
to the tactile stimulus (by apparent attempts to dislodge the re-
searcher’s finger from the buccal cavity), they were considered
fully recovered. Recovered fish were returned to a holding sys-
tem and monitored for survival for 24 h. Since the assessment
of induction and recovery can be somewhat subjective, bias was
minimized by having the same observers make all assessments.

Experiment 2: physiological responses to sedation.—In this
experiment, sedative baths were prepared as previously de-
scribed. Single working baths of benzocaine, eugenol, and MS-
222 were used to sedate all groups of fish in experiment 2. How-
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ever, fresh baths of CO, were prepared to sedate each group of
fish in this treatment because of the volatile loss of CO; likely
to be exacerbated by fish movement during group sedation. As
with the chemical sedatives, the freshwater used in the electrose-
dation chamber was not exchanged during experiment 2. Water
samples were prepared by collecting aliquots from the sedative
baths before and after each use and combining these (50:50) to
create a single composite water sample for each sedative treat-
ment. Each of the composite water samples was analyzed in du-
plicate as described for experiment 1, along with water samples
collected from the holding recirculation system at the beginning
and end of the study period. With the exception of the salin-
ity of the freshwater electrosedation bath (to which fish were
only exposed temporarily), all measured values were within
the ranges acceptable for cobia culture (Rodrigues et al. 2007;
Atwood et al. 2008; Benetti et al. 2008; Chen et al. 2009; Ta-
ble 1). Additional fish from the population used in experiment
1 (i.e., from the same cohort) were used in experiment 2 (fish
were not reused in either experiment). Groups of five fish (286
+ 7 g,37.0 £ 0.5 cm total length) were transferred from the
holding tanks in the brackish-water recirculating aquaculture
system previously described for experiment 1 and placed into
the sedation chamber and sedated en masse. Immediately after
induction to stage IV, one fish per group was transferred to a
bath of metomidate hydrochloride (Aquacalm; Western Chemi-
cal, Ferndale, Washington; ~3-5 mg/L for ~30s). Although the
fish sampled at the start of the experiment did not require further
sedation in order to collect blood samples, sedation was required
to facilitate blood sampling at later time points in compliance
with our [ACUC-approved animal care and use protocol. Using
a secondary sedative in addition to the other sedatives tested
did present a potential confounding effect, i.e., our observa-
tions would essentially represent the responses of fish treated
with two sedatives (metomidate hydrochloride plus the sedative
of interest). We considered several alternative approaches, in-
cluding blood sampling without sedation and repeat use of the
test sedative. However, these approaches were deemed unsuit-
able because they would likely have a confounding influence
on the responses (i.e., fish sampled under sedation at time 0
but not at subsequent data points or fish exposed to protocols
that were inconsistent among treatments and through time). Us-
ing a distinct, secondary sedative for blood sampling was the
preferred approach and would facilitate the most direct com-
parison among treatments. Metomidate hydrochloride is known
to block corticosteroid synthesis in some fish species (Mattson
and Riple 1989; Olsen et al. 1995; Davis and Griffin 2004).
Consequently, it can be a useful sedative for stress physiology
experiments because it may minimize the effects of handling and
sample collection on circulating cortisol levels. For consistency,
all fish sampled, including those sampled immediately after se-
dation, were transferred to a solution of metomidate hydrochlo-
ride. After exposure to the metomidate hydrochloride bath for
approximately 30 s, fish length and weight were measured
and a blood sample was collected from the caudal vasculature
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using heparinized, evacuated blood collection assemblies (Vacu-
tainer; Becton Dickinson and Co., Franklin Lakes, New Jersey).
Although metomidate hydrochloride was used, in part, as a po-
tential corticosteroid blocker, all blood samples were collected
within 5 min of capture (<5 min elapsed from netting the fish to
placing the blood sample on ice) to minimize the possibility of
other confounding responses of handling and sampling via the
caudal vasculature as acute stressors. The remaining four fish
in each group were returned to a holding tank in the recircula-
tion aquaculture system. One fish was then sampled from each
group at 0.5, 1, 2, and 6 h postsedation. After blood collection,
fish were euthanized by immersion in an ice water bath until all
voluntary and involuntary movement ceased and disposed of in
the local landfill. Every 2 h during the sampling period, three
fish were sampled from the reference population to represent
untreated, resting conditions. These fish were also treated with
metomidate hydrochloride to facilitate blood sampling. These
fish did not represent true controls (which would not have been
treated with any sedative whatsoever) but were intended to pro-
vide a reference by which the effects of the test sedatives could
be qualitatively assessed.

Necessary hematological testing equipment was not avail-
able at the Virginia Seafood Agricultural Research and Ex-
tension Center, so the tubes containing blood samples were
kept on wet ice during transport from Hampton, Virginia, to
Carbondale, Illinois (total time between collection and anal-
ysis, <36 h). Subsamples of whole blood were used for the
determination of hematocrit (Statspin centrifuge; Fisher Scien-
tific, Pittsburgh, Pennsylvania). Whole blood samples were then
centrifuged (3,000 x g for 45 min at 4°C), and the resultant
plasma was stored at —80°C until further analysis. Plasma sam-
ples were analyzed to determine glucose (glucose test reagent;
Pointe Scientific, Inc., Canton, Michigan; test adapted for 96-
well plates using external standards), lactate (Accutrend lactate
meter; Roche, Mannheim, Germany), osmolality (Vapro 5520;
Wescor, Inc.; Logan, Utah), and cortisol (EIA 1887; DRG Inter-
national, Mountainside, New Jersey). Although the portable me-
ters, such as the one we used to measure lactate, have been shown
to slightly underestimate metabolite levels in fish blood relative
to laboratory methods, they are considered precise and reliable
for use in generating comparative data (Wells and Pankhurst
1999; Venn Beecham et al. 2006). The cortisol kit used has a
range of 0—-800 ng/mL with a sensitivity of 2.5 ng/mL for human
samples and has been validated and used successfully to mea-
sure cortisol in samples from a variety of fish species (Delaney
et al. 2005; Woods et al. 2008; Owen et al. 2009; Sepici-Dingel
et al. 2009).

Statistical analyses.—In experiment 1, individual fish were
considered the experimental units (n = 10). Induction and
recovery times were analyzed by one-way analysis of variance
(ANOVA; PROC MIXED) using SAS, version 9.1 (SAS
Institute, Cary, North Carolina) to detect significant differences
among the sedatives relative to induction and recovery times.
For parameters exhibiting significant treatment effects, post
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hoc Tukey’s honestly significantly different (HSD) tests were
used for pairwise comparisons of the least-squares means. Fish
weight and length were assessed as potential covariates (PROC
CORR), but no significant correlations between body size and
induction and recovery times were observed. In experiment 2,
replicate groups of fish were considered the experimental units.
Although each sedative was applied to triplicate groups (each
comprising five fish), it was determined that groups, not indi-
viduals, should serve as the experimental units. By definition,
experimental units represent independent observations. We
determined that individuals sedated in the same group could not
be considered fully independent observations because the pres-
ence and/or position of other fish within the sedation chamber
could affect the general behavior of the group or, in the case of
electrosedated fish, alter the way in which the waveform was
applied to individuals. Thus, to maintain a reasonably conserva-
tive statistical approach, sedation group was used as the level of
replication or experimental unit for each statistical procedure (n
= 3). Thus, fish sampled at each time point represented repeated
observations made on the same experimental unit (i.e., sedation
group or tank). Accordingly, physiological data were analyzed
by one-way, repeated-measures ANOVA (PROC MIXED; SAS
9.1). For parameters exhibiting significant treatment effects,
treatment least-squares means were compared at individual
time points using post hoc Tukey’s HSD tests for pairwise com-
parisons. In all cases, differences were considered significant
at P < 0.05 and no data were transformed prior to analysis.

RESULTS

Induction times differed significantly among the sedatives
evaluated (CO; [z] > benzocaine [y] > eugenol [y] > MS-222
[y] > electrosedation [x]; treatments with the same letters are
not significantly different; Figure 1). Briefly, the induction time
using CO, was 2.7 £ 0.1 min, those for benzocaine, eugenol,
and MS-222 ranged from 1.2 to 1.4 £ 0.1 min, and that for elec-
trosedation was 0.2 £ 0.1 min (least-squares means + SEs).
Recovery of equilibrium (CO; [z] > eugenol [z] > MS-222
[y] > benzocaine [y] > electrosedation [x]) and responsiveness
to tactile stimulus (eugenol [z] > MS-222 [y] > benzocaine
[y] > CO; [xy] > electrosedation [x]) also differed signifi-
cantly among the sedative treatments. With the exception of
fish treated with CO,, which exhibited a more protracted recov-
ery and regained tactile responsiveness before equilibrium, the
general recovery pattern was to regain equilibrium, then tactile
responsiveness in rapid succession. All benchmarks of recovery
were achieved most rapidly in the electrosedation treatment:
the mean times to regain equilibrium and tactile responsive-
ness were 0.6 = 0.1 min and 0.8 £ 0.1 min postinduction,
respectively. Equilibrium was regained among fish treated with
benzocaine in 1.2 &+ 0.1 min; the values for the other treatments
were as follows: MS-222, 1.3 + 0.1 min; eugenol, 2.7 £ 0.1;
and CO;,, 3.2 £ 0.1 min. Tactile responsiveness was regained
among fish treated with CO, in 1.0 £ 0.1 min; the values for the
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Schematic illustrating mean times to induction and various stages of recovery of cobias sedated to stage IV of anesthesia using various chemical

sedatives or electrosedation (n = 10). Note that events are shown in terms of total elapsed time, i.e., event times reported in the text are displayed in an additive

fashion in the figure.

other treatments were as follows: benzocaine, 1.4 + 0.1 min;
MS-222, 1.5 £ 0.1 min; and eugenol, 2.9 + 0.1 min. Total
handling time, from initial sedative exposure to recovery, dif-
fered among the sedatives as well: CO, [z] > eugenol [y] >
benzocaine [x] > MS-222 [x] > electrosedation [w]), with a
total of 5.9 £+ 0.2 min for CO,, 4.1 &+ 0.2 min for eugenol, 2.7
+ 0.2 min for benzocaine and MS-222, and 1.0 & 0.2 min for
electrosedation.

Physiological responses differed significantly among the
sedatives evaluated and over time (Figure 2; Table A.1 in the ap-
pendix). Plasma cortisol concentrations increased within 0.5 h
after sedation but began returning to resting levels within 1 h
postsedation for all sedatives except CO,, which remained ele-
vated through 2 h postsedation. Similar response patterns were
observed for osmolality and lactate, though lactate levels re-
mained somewhat elevated 2 h after sedation with pulsed-DC
electricity and CO,. Plasma glucose levels increased following
sedation, in most cases peaking between 0.5 and 1 h postse-
dation, though a second, higher peak was observed among the

electrosedated fish at 2 h postsedation. Nonetheless, glucose
gradually decreased following the peak response in each treat-
ment, returning to near-resting levels within 6 h of sedation.
The overall magnitude of the physiological responses differed
to a greater (cortisol, lactate, glucose) or lesser (glucose) degree
among the sedatives tested; however, in each case, CO; elicited
the greatest response. Although a significant time effect was
observed for hematocrit, reflecting a generalized decline from
0-0.5 h to the end of the sampling period, differences were not
observed between the sedatives.

Several anecdotal observations were made during the course
of the experiments with respect to behavioral responses to the
sedatives. Fish exhibited opercular flaring, fin extension, and
body rigidity during electrosedation, but posture returned to
normal after resolution of the postexposure tremor. Blanching
of the skin was observed among some fish sedated with CO,,
particularly among electrosedated fish. During exposure to CO,
fish were hyperactive and observed to pipe at the water surface.
Although some hyperactivity was observed during sedation with
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benzocaine, it was less pronounced than that associated with
CO; (not all fish exhibited hyperactive swimming and those
that did were not as agitated as those exposed to CO;). There
were no mortalities during the two experiments, which involved
the sedation and handling of 125 individuals.

DISCUSSION

Our results suggest that, despite taxonomic, biological, and
physiological differences, cobias respond to chemo- and elec-
trosedation in a manner broadly similar to that observed in large-
mouth bass Micropterus salmoides (Trushenski et al. 2012b),
hybrid striped bass (white bass Morone chrysops x striped bass
M. saxatilis [Trushenski et al. 2012a]), grass carp Ctenopharyn-
godon idella (Bowzer et al. 2012; Gause et al. 2012), and other
species tested using similar sedation protocols (i.e., walleyes
Sander vitreus [Bowker, unpublished data] and shovelnose stur-
geon Scaphirhynchus platorynchus [Trushenski, unpublished
data]). Although a relatively small number of individuals were
involved in the present work (n = 10 for experiment 1, and n =
3 for experiment 2), the results are nonetheless compelling. The
pattern of induction observed in our study was strikingly similar
to the induction patterns observed for larger hybrid striped bass
and largemouth bass (~500 g) sedated using similar sedative
approaches (hybrid striped bass: 60 mg/L eugenol; 150 mg/L
benzocaine; 150 mg/L MS-222; ~400 mg/L CO,; electroseda-
tion = 60 V, 30 Hz, 25% duty cycle, 3-s exposure; largemouth
bass: 60 mg/L eugenol; 150 mg/L benzocaine; 150 mg/L MS-
222;~400 mg/L CO,; electrosedation = 100 V, 30 Hz, 25% duty
cycle, 3-s exposure): fish were sedated to stage IV in 0.2 min
using electrosedation; in 1.3—1.9 min using eugenol, benzo-
caine, or MS-222; and in 2.5-3.6 min using CO, (Trushenski
etal. 2012a, 2012b). Although the walleyes tested were smaller
(~50 g), similar protocols (60 mg/L eugenol; 150 mg/L benzo-
caine; 150 mg/L MS-222; ~400 mg/L CO,; electrosedation =
100 V, 30 Hz, 25% duty cycle, 5-s exposure) yielded similar
induction times for this species as well: fish were sedated to
stage IV in 0.1 min using electrosedation; in 0.7-0.9 min us-
ing eugenol, benzocaine, or MS-222; and in 2.1 min using CO,
(Bowker, unpublished data).

Similar times to induction to stage IV (referred to as “stage
IIT” by the authors but equivalent to stage IV as defined by Sum-
merfelt and Smith 1990) were observed in a study by Gullian and
Villanueva (2009). In their study, two size-classes of juvenile co-
bia (~5 and ~14 g) were sedated using various concentrations of
clove oil (the product contained ~88% eugenol; 20—-100 mg/L)
and MS-222 (40-120 mg/L). The authors found that, regardless
of fish size, the time to induction with MS-222 ranged from
1.15 to 1.25 min and that with 60 mg/L clove oil from 1.70 to
2.22 min, the latter being slightly longer (0.49-1.01 min) than
that observed in our study. The slower induction times observed
by these authors may be attributable to the difference in eugenol
purity between AQUI-S 20E and clove oil and the corresponding
decrease in effective eugenol concentration (~53 mg/L versus
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60 mg/L). Taken together, all of these experiments represent dif-
ferent fish sizes (~5-500 g), temperatures (~19-27°C), salini-
ties (~0-39%o), and a broad taxonomic range (Rachycentridae,
Centrarchidae, Moronidae, and Percidae). Thus, it would appear
that the sedative approaches we investigated in cobias yield rel-
atively consistent results in terms of induction to stage IV of
sedation across a range of scenarios. The apparent consistency
in safety and efficacy across a range of conditions and taxa
is encouraging for fisheries professionals attempting to perform
routine handling procedures such as those involved in collecting
biometric data, tagging, or harvesting tissue noninvasively (e.g.,
fin clips and spines) in various research scenarios. Although
sedative safety and efficacy have not been quantitatively demon-
strated for all taxa, the data we generated assessing these seda-
tive approaches in cobia and various other taxa suggest that with
a modicum of experience researchers could apply the sedatives
to most, if not all, fish without substantial risk of adverse effects.
Nonetheless, when preparing to sedate an untested taxon or life
stage, we advise researchers to conduct a preliminary test using
a few individuals to determine appropriate sedation protocols.

Recovery of equilibrium and tactile responsiveness also dif-
fered among the sedatives evaluated, with complete recovery
occurring most rapidly among electrosedated fish, followed by
fish sedated with benzocaine or MS-222 and fish sedated with
eugenol or CO,. With the exception of CO,-treated fish, which
progressively regained tactile responsiveness and then equilib-
rium (2.2 min elapsed between benchmarks), sedated cobias re-
gained equilibrium first, followed quickly by tactile responsive-
ness (12 s elapsed between benchmarks). Despite differences in
the process and pattern of recovery of equilibrium and tactile re-
sponsiveness, the differences in induction times were essentially
repeated in terms of recovery and total handling time: induction
and recovery were fastest among electrosedated fish and slowest
among fish sedated with CO,, with the other sedatives yielding
intermediate times.

The present results are somewhat different from those ob-
served in previous evaluations of these sedatives: the current and
previous studies differ in terms of the range of handling times
observed (~1-7 min, depending on the sedative and taxon),
which sedative was associated with the longest total handling
time (eugenol or CO,, depending on the taxon), whether equi-
librium or tactile responsiveness were regained first (variable
among sedatives and taxa), and whether benchmarks of recov-
ery were achieved slowly or in rapid succession (variable among
sedatives and taxa; Trushenski et al. 2012a, 2012b). Despite rel-
atively consistent results in terms of induction times, it seems
there is considerable variability in the pattern and process of
recovery among sedative types and among different fishes se-
dated using these approaches. This variation may be attributable
to biological differences among taxa, differences in fish body
size, or differences in abiotic factors such as water tempera-
ture or pH (Ross and Ross 2008). However, given the circum-
stances under which fish sedatives are most likely to be used
(i.e., by experienced fisheries professionals familiar with what is



COBIA SEDATION

considered normal behavior for different fishes), it is likely that
the variation among different taxa could be readily accommo-
dated by adjusting the sedative dose and/or the amount of time
allowed for recovery prior to release.

The transient changes in circulating cortisol, glucose, and
lactate and the degree of osmolality that we observed indicate
that cobias undergo an acute stress response following seda-
tion. Depending on the sedative concentrations used, transient
primary and secondary stress responses have been observed in
fish following sedation with MS-222, CO,, benzocaine, various
clove derivatives, and pulsed-DC electricity (Davidson et al.
2000; Wagner et al. 2002; Davis and Griffin 2004; King et al.
2005; Bolasina 2006; Zahl et al. 2010; Trushenski et al. 2012a,
2012b). Although sedatives are often used with the intention of
reducing handling stress (Sandodden et al. 2001; Finstad et al.
2003; Iversen et al. 2003; Wagner et al. 2003; Cooke et al.
2004; Small 2004; Pali¢ et al. 2006), sedatives can elicit mild
to moderate stress responses, particularly if their application is
accompanied by changes in water chemistry (i.e., pH shifts as-
sociated with CO, and MS-222; Trushenski et al. 2012a). The
increases in cortisol, glucose, lactate, and osmolality occurring
0.5-2 h postsedation are consistent with induction of the gen-
eralized stress response in fish, including both the primary (i.e.,
elevated cortisol) and secondary (i.e., elevated glucose, lactate,
and osmolality) responses to stressor exposure (Mazeaud et al.
1977; Barton 2002). The time course of physiological responses
is consistent with the responses of juvenile cobias exposed to
other acute stressors, such as a 1-min air exposure challenge
(Cnaani and McLean 2009; Trushenski et al. 2010) or 15-min
low-water challenge (Trushenski et al. 2010); in both cases, the
glucose and cortisol responses peaked within 2 h of stressor
exposure and were largely resolved within 6 h. Additionally,
the range of peak cortisol, glucose, lactate, and osmolality re-
sponses observed following sedation shows considerable over-
lap with the range of responses reported by Trushenski et al.
(2010) in association with acute air exposure and low-water
challenges (cortisol: ~190—450 versus ~130-230 ng/mL; glu-
cose: ~50-190 versus ~130-190 mg/dL; lactate: ~4—13 versus
~1-9 mmol/L; and osmolality: ~420-450 versus ~400-450
mOsm/kg), though higher lactate responses were associated
with CO, and higher cortisol responses were associated with
CO,, electrosedation, and eugenol.

Generally, the magnitude of the physiological stress response
is considered indicative of stressor severity. Therefore, the
greater magnitude and duration of the cortisol, glucose, lac-
tate, and osmolality pulses observed among cobias sedated with
CO,; suggests that this drug is the most stressful of those we
evaluated. This is also anecdotally supported by the observation
of skin blanching in this treatment, which has been associated
with stress in fish (Y. Iger and colleagues, abstract presented at
the International Conference Aquaculture Europe, 2001). This is
not surprising, as the pH of the CO, sedative baths was markedly
lower than that of the culture water (8.2 versus 9.5). Induction
times were also significantly longer for CO,, and slower-acting
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sedatives have been linked to greater stress responses (Chiba
et al. 2006; Trushenski et al. 2012a). Additionally, higher lactate
responses have been previously linked to stressors that interfere
with gas exchange (i.e., air exposure; Trushenski et al. 2010);
given the inhibitory effects of environmental hypercapnia on
CO, release and O, uptake at the gill, rapid transition to anaer-
obic respiration and lactate accumulation following sedation
with CO, may be expected. Electrosedation was conducted in
freshwater and was associated with the second highest cortisol
response. It is possible that exposure to freshwater exacerbated
the cortisol response to electrosedation in the same manner that
low pH likely induced a greater response among fish sedated
with CO,. However, it is possible that the extremely short in-
duction times associated with electrosedation limited the effects
that freshwater exposure might have otherwise had on the sec-
ondary stress response parameters. A control treatment in which
cobias were exposed to freshwater but not electrosedation would
be necessary to parse the physiological response of these fish
into the distinct effects of exposure to pulsed-DC electricity
and freshwater. Regardless, it is important to note that all mea-
sured physiological perturbations, including the more marked
responses associated with CO,, were resolved within 6 h postse-
dation. Consequently, it seems unlikely that singular or periodic
sedation of juvenile cobias using any of the approaches we eval-
uated would be sufficiently stressful to elicit the tertiary effects
of stress (e.g., decreased growth, survival, or reproductive ca-
pacity) or other negative consequences in the near or long term.

One shortcoming of our study is that we did not assess fish
for vertebral abnormalities or other internal lesions postseda-
tion, which have been observed following exposure to pulsed-
DC electrosedation in some (Gaikowski et al. 2001; Zydlewski
et al. 2008) but not all fishes (Vandergoot et al. 2011). The
occurrence of injuries such as vertebral compressions or frac-
tures and hemorrhages appears to be highly dependent on the
type and strength of the waveform used as well as the morphol-
ogy and size of the fish involved. We cannot say whether such
injuries occurred in the cobias we electrosedated. However, re-
searchers who have reported injuries associated with pulsed-DC
electrosedation have generally concluded that these injuries are
relatively minor (e.g., occurring in a relatively small percentage
of individuals or not resulting in delayed mortality) or may be
avoided by modifying the electrosedation protocol to suit the
circumstances. A second shortcoming is that we did not assess
the behavior, physiological status, general performance, or sur-
vival of treated fish after completion of the 24-h observation
period. To unequivocally demonstrate that these treatments do
not negatively influence fish when used in an immediate-release
context, it would be necessary to treat fish, release them, and
monitor their performance poststocking. Given the withdrawal
periods currently required for MS-222 (21 d), benzocaine, and
eugenol (3 d), this was not readily possible. However, we antici-
pate that any adverse events associated with treatment will most
likely occur immediately or shortly following sedation and that
serious long-term effects are less likely. In previous studies, we
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have held and observed fish for 2 d to several weeks following
sedative treatment (Trushenski et al. 2012a, 2012b; Trushen-
ski and Bowker, unpublished data). Excluding a few incidental
mortalities, adverse effects of sedative treatment (e.g., abnor-
mal behavior, histological pathologies, and mortality) were not
generally observed in these studies, and in no case were they
observed to develop or increase after 24 h. Based on this infor-
mation, we think that using the sedatives tested in an immediate-
release context is unlikely to yield long-term, adverse effects not
quantified as part of our study.

Selecting an appropriate sedative can be challenging, partic-
ularly when several methods may be used to achieve the desired
level of sedation. Choosing the appropriate sedative is generally
a matter of the cost and logistics associated with the intended
application. Although there are numerous scenarios in the fish-
eries profession requiring the use of sedatives, some generaliza-
tions can be made regarding the practical use of the sedatives
described in this paper. For example, chemical sedatives are
inexpensive in the short term compared with electrosedation,
which requires a relatively high initial investment. However,
purchasing an electrosedation unit is a one-time investment,
and lower-cost alternatives to commercially available units may
be an option for some users (Hudson et al. 2011). If large num-
bers of fish are being sedated regularly, an electrosedation unit
may be more economical than chemical sedatives, but chem-
ical sedatives may be more appropriate and cost-effective for
small numbers of fish or infrequent sampling. Electrosedation
is uniquely suited to field applications because it reliably and
quickly sedates a variety of taxa without concerns about chem-
ical disposal or withdrawal periods. Chemical sedatives may be
more suited to research and hatchery facilities due to the need for
proper chemical disposal and holding fish during the currently
required withdrawal periods. By considering the effects of the
different types of sedatives on the fish along with their costs and
the intended application, fisheries professionals can make more
informed decisions concerning which sedative to use. However,
all of these generalizations are subject to change as costs change,
new sedatives become available or are approved, or withdrawal
periods are modified.

In conclusion, benzocaine, MS-222, eugenol, CO,, and
pulsed-DC electrosedation were all effective in sedating juvenile
cobias to stage IV of sedation for the purposes of basic handling
and morphometric measurement. Variations in induction and
recovery times and physiological responses to sedation were
observed. These differences can be reasonably accommodated
within the context of typical field or laboratory research, though
further research would be necessary to assess the relative suit-
ability of the different sedatives for more invasive procedures.
Although CO; and electrosedation may be tenable immediate-
release options for some scenarios, these options may not be
practical or advisable in other circumstances. We recommend
that a greater range of immediate-release sedatives be made
available to fisheries professionals so that they may select the
sedative best suited to their application and collect the highest-
quality data possible.

TRUSHENSKI ET AL.

ACKNOWLEDGMENTS

We wish to thank Smith-Root, Inc., for providing access
to a Portable Electroanesthesia System and Jack Wingate and
Mike Holliman for providing training and technical support in
using the PES unit. Additionally, we thank Brendan Delbos and
Steve Urick for their assistance in conducting the experiments
described herein.

REFERENCES

Atwood, H. L., S. P. Young, J. R. Tomasso, and T. I. J. Smith. 2008. Resistance of
cobia, Rachycentron canadum, juveniles to low salinity, low temperature, and
high environmental nitrite concentrations. Journal of Applied Aquaculture
15:191-195.

Barton, B. A. 2002. Stress in fishes: a diversity of responses with particular ref-
erence to changes in circulating corticosteroids. Integrative and Comparative
Biology 42:571-525.

Benetti, D. D., B. Sardenberg, A. Welch, R. Hoenig, M. R. Orhun, and I.
Zink. 2008. Intensive larval husbandry and fingerling production of cobia
Rachycentron canadum. Aquaculture 281:22-27.

Bolasina, S. N. 2006. Cortisol and hematological response in Brazilian codling,
Urophycis brasiliensis (Pisces, Phycidae) subjected to anesthetic treatment.
Aquaculture International 14:569-575.

Bowker, J. D., and J. T. Trushenski. 2011. AFS policy statement regarding
the need for an immediate-release anesthetic/sedative for use in the fisheries
disciplines. Fisheries 36:132-135.

Bowzer, J. C., J. T. Trushenski, B. R. Gause, and J. D. Bowker. 2012. Effi-
cacy and physiological responses of grass carp to different sedation tech-
niques: II. Effect of pulsed DC electricity voltage and exposure time on seda-
tion and blood chemistry. North American Journal of Aquaculture 74:567—
574.

Braithwaite, V. A., and F. A. Huntingford. 2004. Fish and welfare: do fish have
the capacity for pain perceptions and suffering? Animal Welfare 13:S87—
S92.

Chen, G., Z. Wang, Z. Wu, B. Gu, Z. Wang, Z. Wang, and Z Wu. 2009. Effects
of salinity on growth and energy budget of juvenile cobia, Rachycentron
canadum. Journal of the World Aquaculture Society 40:374-382.

Chiba, H., T. Hattori, H. Yamada, and M. Iwata. 2006. Comparison of the effect
of chemical anesthesia and electroanesthesia on plasma cortisol levels in the
Japanese eel Anguilla japonica. Fisheries Science 72:693-695.

Cnaani, A., and E. McLean. 2009. Time-course response of cobia (Rachycentron
canadum) to acute stress. Aquaculture 289:140-142.

Cooke, S. J., C. D. Suski, K. G. Ostrand, B. L. Tufts, and D. H. Wahl. 2004.
Behavioral and physiological assessment of low concentrations of clove
oil anaesthetic for handling and transporting largemouth bass (Micropterus
salmoides). Aquaculture 239:509-529.

Davidson, G. W., P. S. Davie, G. Young, and R. T. Fowler. 2000. Physiological
responses of rainbow trout Oncorhynchus mykiss to crowding and anesthesia
with AQUI-S. Journal of the World Aquaculture Society 31:105-114.

Davis, K. B., and B. R. Griffin. 2004. Physiological responses of hybrid striped
bass under sedation by several anesthetics. Aquaculture 233:531-548.

Delaney, M. A., P. H. Klesius, and R. A. Shelby. 2005. Cortisol response of
Nile tilapia, Oreochromis niloticus (L.), to temperature changes. Journal of
Applied Aquaculture 16:95-104.

Finstad, B., M. Iversen, and R. Sandodden. 2003. Stress-reducing methods for
releases of Atlantic salmon (Salmo salar) smolts in Norway. Aquaculture
222:203-214.

Gaikowski, M. P., W. H. Gingerich, and S. Gutreuter. 2001. Short-duration
electrical immobilization of lake trout. North American Journal of Fisheries
Management 21:381-392.

Gause, B. R., J. T. Trushenski, J. C. Bowzer, and J. D. Bowker. 2012. Efficacy
and physiological responses of grass carp to different sedation techniques: 1.
Effects of various chemicals on sedation and blood chemistry. North Ameri-
can Journal of Aquaculture 74:560-566.



COBIA SEDATION

Gullian, M., and J. Villanueva. 2009. Efficacy of tricaine methanesulphonate and
clove oil as anaesthetics for juvenile cobia Rachycentron canadum. Aquacul-
ture Research 40:852-860.

Hudson, J. M., J. R. Johnson, and B. Kynard. 2011. A portable electronarcosis
system for anesthetizing salmonids and other fish. North American Journal
of Fisheries Management 31:335-339.

Iversen, M., B. Finstad, R. S. McKinley, and R. A. Eliassen. 2003. The efficacy
of metomidate, clove oil, Aqui-S and Benzoak as anaesthetics in Atlantic
salmon (Salmo salar L.) smolts, and their potential stress-reducing capacity.
Aquaculture 221:549-566.

King, W., B. Hooper, S. Hillsgrove, C. Benton, and D. L. Berlinsky. 2005.
The use of clove oil, metomidate, tricaine methanesulphonate and 2-
phenoxyethanol for inducing anaesthesia and their effects on the cortisol
stress response in black sea bass (Centropristis striata L.). Aquaculture Re-
search 36:1442-1449.

Lucy, J. A., and C. M. Bain. 2000. Virginia game fish tagging program an-
nual report. Virginia Institute of Marine Science, Sea Grant, Gloucester
Point.

Mahon, R., and P. McConney. 2004. Management of large pelagic fisheries
in CARICOM countries. Food and Agriculture Organization of the United
Nations, Rome.

Mattson, N. S., and T. H. Riple. 1989. Metomidate, a better anesthetic for cod
(Gadus morhua) in comparison with benzocaine, MS-222, chlorobutanol, and
phenoxyethanol. Aquaculture 83:89-94.

Mazeaud, M. M., F. Mazeaud, and E. M. Donaldson. 1977. Primary and sec-
ondary effects of stress in fish, some new data with a general review. Trans-
actions of the American Fisheries Society 106:201-212.

Neiffer, D. L., and M. A. Stamper. 2009. Fish sedation, anesthesia, analgesia,
and euthanasia: considerations, methods, and types of drugs. ILAR (Institute
for Laboratory Animal Research) Journal 50:343-360.

NLM (National Library of Medicine). 2012. Medline plus medical dictionary.
Available: http://medlineplus.gov. (September 2012).

Olsen, Y. A., I. Einarsdottir, and K. J. Nilssen. 1995. Metomidate anaesthesia in
Atlantic salmon, Salmo salar, prevents plasma cortisol increase during stress.
Aquaculture 134:155-168.

Owen, M. A. G,, S.J. Davies, and K. A. Sloman. 2009. Light colour influences
the behaviour and stress physiology of captive tench (Tinca tinca). Reviews
in Fish Biology and Fisheries 20:375-380.

Pali¢, D., D. M. Herolt, C. B. Andreasen, B. W. Menzel, and J. A. Roth. 2006.
Anesthetic efficacy of tricaine methanesulfonate, metomidate and eugenol:
effects on plasma cortisol concentration and neutrophil function in fathead
minnows (Pimephales promelas Rafinesque, 1820). Aquaculture 254:675—
685.

Post, G. 1979. Carbonic acid anesthesia for aquatic organisms. Progressive Fish
Culturist 41:142-144.

Rodrigues, R. V., M. H. Schwarz, B. C. Delbos, and L. A. Sampaio. 2007. Tox-
icity and sublethal effects of ammonia and nitrite for juvenile cobia Rachy-
centron canadum. Aquaculture 271:553-557.

Rose, J. D. 2002. The neurobehavioral nature of fishes and the question of
awareness and pain. Reviews in Fisheries Science 10:1-38.

Ross, L. G., and B. Ross. 2008. Anaesthetic and sedative techniques for aquatic
animals, 3rd edition. Blackwell Scientific Publishing, Oxford, UK.

Sandodden, R., B. Finstad, and M. Iversen. 2001. Transport stress in Atlantic
salmon (Salmo salar L.): anaesthesia and recovery. Aquaculture Research
32:87-90.

Sepici-Dingel, A., A. Caglan Karasun Benli, M. Selvi, R. Sarikaya, D. Sahin, I.
Ayhan Ozkul, F. Erkog. 2009. Sublethal cyfluthrin toxicity to carp (Cyprinus
carpio L.) fingerlings: biochemical, hematological, histopathological alter-
ations. Ecotoxicology and Environmental Safety 72:1433-1439.

Shaffer, R. V., and E. L. Nakamura. 1989. Synopsis on biological data on the
cobia Rachycentron canadum (Pisces: Rachycentridae). NOAA Technical
Report NMFS 82.

649

Silbert, J. R., and J. L. Nielsen. 2001. Electronic tagging and tracking in marine
fisheries. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Small, B. C. 2004. Effect of isoeugenol sedation on plasma cortisol, glucose,
and lactate dynamics in channel catfish Ictalurus punctatus exposed to three
stressors. Aquaculture 238:469—481.

Smith, T. I. J., W. E., Jenkins, M. R. Denson, and M. R. Collins. 2003. Stock
enhancement research with anadromous and marine fishes in South Car-
olina. Pages 175-190 in Y. Nakamura, J. P. McVey, K. Leber, C. Neidig, S.
Fox, and K. Churchill, editors. Ecology of aquaculture species and enhance-
ment of stocks. Proceedings of the 30th U.S.-Japan meeting on aquaculture.
U.S.-Japan Cooperative Program in Natural Resources, Technical Report 30,
Sarasota Florida.

Summerfelt, R. C., and L. S. Smith. 1990. Anesthesia, surgery, and related
techniques. Pages 213-272 in C. B. Schreck and P. B. Moyle, editors. Methods
for fish biology. American Fisheries Society, Bethesda, Maryland.

Trushenski, J. T., J. D. Bowker, B. R. Gause, and B. L. Mulligan. 2012a. Chem-
ical and electrical approaches to sedation of hybrid striped bass: induction,
recovery, and physiological responses to sedation. Transactions of the Amer-
ican Fisheries Society 141:455-467.

Trushenski, J. T., J. D. Bowker, B. L. Mulligan, and B. R. Gause. 2012b. Induc-
tion, recovery, and hematological responses of largemouth bass to chemo-
and electrosedation. North American Journal of Aquaculture 74:214-223.

Trushenski, J. T., M. Schwarz, R. Takeuchi, B. Delbos, and L. A. Sampaio. 2010.
Physiological responses of cobia Rachycentron canadum following exposure
to low water and air exposure stress challenges. Aquaculture 307:173-177.

USFDA (U.S. Food and Drug Administration). 2011. Enforcement priorities
for drug use in aquaculture. USFDA, Center for Veterinary Medicine,
Program Policy and Procedures Manual 1240.4200, Silver Spring,
Maryland.  Available: http://www.fda.gov/downloads/Animal Veterinary/
GuidanceComplianceEnforcement/PoliciesProceduresManual/UCMO046931.
pdf. (September 2012).

Vandergoot, C. S., K. J. Murchie, S. J. Cooke, J. M. Dettmers, R. A. Bergstedt,
and D. G. Fielder. 2011. Evaluation of two forms of electroanesthesia and
carbon dioxide for short-term anesthesia in walleye. North American Journal
of Fisheries Management 31:914-922.

Venn Beecham, R., B. C. Small, and C. D. Minchew. 2006. Using portable lactate
and glucose meters for catfish research: acceptable alternatives to established
laboratory methods? North American Journal of Aquaculture 68:291-295.

Wagner, E., R. Arndt, and B. Hilton. 2002. Physiological stress responses, egg
survival and sperm motility for rainbow trout broodstock anesthetized with
clove oil, tricaine methanesulfonate or carbon dioxide. Aquaculture 211:353—
366.

Wagner, G. N., T. D. Singer, and R. S. McKinley. 2003. The ability of clove
oil and MS-222 to minimize handling stress in rainbow trout (Oncorhynchus
mykiss Walbaum). Aquaculture Research 34:1139-1146.

Wells, R. M. G., and N. W. Pankhurst. 1999. Evaluation of simple instruments
for the measurement of blood glucose and lactate, and plasma protein as stress
indicators in fish. Journal of the World Aquaculture Society 30:276-284.

Williams, E. H. 2001. Assessment of cobia, Rachycentron canadum, in the
waters of the U.S. Gulf of Mexico NOAA Technical Memorandum NMFS-
SEFSC 469.

Woods, L. C., D. D. Theisen, and S. He. 2008. Efficacy of Aqui-S as an anes-
thetic for market-sized striped bass. North American Journal of Aquaculture
70:219-222.

Zahl, I. H., A. Kiessling, O. B. Samuelsen, and R. E. Olsen. 2010. Anesthe-
sia induces stress in Atlantic salmon (Salmo salar), Atlantic cod (Gadus
morhua), and Atlantic halibut (Hippoglossus hippoglossus). Fish Physiology
and Biochemistry 36:719-730.

Zydlewski, G. B., W. Gale, J. Holmes, J. Johnson, T. Brigham, and W. Thorson.
2008. Use of electroshock for euthanizing and immobilizing adult spring Chi-
nook salmon in a hatchery. North American Journal of Aquaculture 70:415—
424.



650 TRUSHENSKI ET AL.

APPENDIX: PHYSIOLOGICAL RESPONSES

TABLE A.l. Physiological responses of cobias following sedation to stage IV of anesthesia using various chemical sedatives or electrosedation. The values
are least-squares means £ SEs of triplicate samples for each time point—treatment combination (n = 3). For given time points, means with different letters are
significantly different (P < 0.05); means with common letters or no letters are not significantly different. The P-values generated by repeated-measures ANOVA
are provided for each parameter.

Sedative

Parameter Time (h) Eugenol Benzocaine CO, MS-222 Electrosedation
Cortisol (ng/mL) 0 25 + 54 43 + 54 37 + 54 80 + 54 29 + 54

0.5 302 £ 54yz 192 4+ 54yz 444 + 547 143 + 54y 370 £ 54 yz
Sedative P = 0.018 1 52 + 54y 120 £+ 54y 450 + 54z 38 &£ 54y 75 + 54y
Time P < 0.001 2 56 + 54 63 £+ 54 145 4+ 54 29 + 54 43 + 54
Sedative x Time P = 0.002 6 150 + 54 111 £+ 54 20 + 54 21 + 54 76 + 54
Glucose (mg/dL) 0 15 + 21 4 + 21 17 + 21 3+ 21 20 + 21

0.5 142 + 21 28 + 21 101 £ 21 29 + 21 75 + 21
Sedative P = 0.001 1 102 £ 21 yz 52 + 21y 187 &+ 21z 70 + 21y 31 £ 21y
Time P < 0.001 2 113 £ 21 51 £ 21 140 £+ 21 62 + 21 118 £ 21
Sedative x Time P = 0.037 6 37 + 21 23 + 21 54 + 21 26 + 21 49 + 21
Hematocrit (%) 0 41 + 4 27 + 4 44 + 4 46 + 4 39 + 4

0.5 44 + 4 41 + 4 46 + 4 35 £ 4 47 + 4
Sedative P = 0.523 1 33+ 4 34 + 4 44 + 4 28 £ 4 31 + 4
Time P = 0.001 2 27 £ 4 32 +£4 35 £ 4 37 £ 4 31 £ 4
Sedative x Time P = 0.060 6 37 + 4 38+ 4 27 + 4 27 £ 4 34 + 4
Osmolality (mOsm/kg) 0 412 £ 7 411 £+ 7 402 £ 7 414 £ 7 412 + 7

0.5 430 + 7 428 + 7 447 £ 7 422 + 7 434 + 7
Sedative P = 0.014 1 409 + 7y 417 £ 7y 455 £ 7z 400 + 7y 407 £ 7y
Time P < 0.001 2 409 £+ 7 405 £ 7 421 £ 7 402 £ 7 410 + 7
Sedative x Time P = 0.015 6 397 £ 7 398 + 7 391 £ 7 388 + 7 394 + 7
Lactate (mmol/L) 0 25+ 14 21 £ 14 23+ 14 28 £ 14 32+ 14

0.5 40 + 14 50+ 14 105 + 1.4 62+ 14 6.7+ 14
Sedative P = 0.009 1 24 + 14y 27 + 14y 135+ 14z 25 + 14y 39 + 14y
Time P < 0.001 2 1.9 £ 14y 1.6 £ 14y 98 £ 14z 1.8 £ 14y 38 + 14yz
Sedative x Time P = 0.018 6 14+ 14 23+ 14 1.1 £ 14 06 + 14 1.9 £ 14
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