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Abstract

We define invariants for templates that appear in certain dynamical
systems. Invariants are derived from certain bialgebras. Diagrammatic
relations between projections of templates and the algebraic structures
are used to define invariants. We also construct 3-manifolds via framed
links associated to tamplate diagrams, so that any 3-manifold invariant
can be used as a template invariant.

Keywords: Templates, quantum invariants, bialgebras, framed links.

1 Introduction

For certain flows on 3-manifolds, two dimensional complexes called templates
are used to model strange attractors and other invariant structures. The most
popular example is the Lorenz template [38]. The topological types and embed-
dings of templates are useful in studying such dynamical systems. In particular
we can distinguish dynamical systems by proving their templates are different.
Furthermore, templates carry all the closed orbits of the system. These aspects
have been studied by several authors [3, 4, 8, 10, 13, 14, 15, 33, 34, 35, 36, 38].
Reference [14] is expository. See also the book [11].

In this paper we define invariants of templates in 3-space. A well known such
invariant is the Parry-Sullivan invariant [29]. Here we use new relations between
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algebras and diagrams that have been developed (see for example [20]) in knot
theory after the discovery of new knot invariants by Jones [16]. Specifically,
we use the projections of templates in the plane. Templates can be isotoped
to singular surfaces that look like ribbons with branch lines. Three ribbons
share a single branch line. Thus a template can be regarded as a thickened
trivalent graph. The projections of trivalent graphs in a plane can be inter-
preted as compositions of homomorphisms between certain algebras as in the
case of Jones type invariants. This way we produce invariants of templates that
are elements of bialgebras and their generalizations. A remarkable feature of
our invariants is a direct relation between certain algebraic structures and local
moves that are characteristic for templates. In particular, the compatibility con-
dition between multiplication and comultiplication of a bialgebra corresponds
to a splitting move of templates along branch lines. Such relations between
diagrams and algebras are characteristic in quantum invariants of knots and
3-manifolds. This relation between dynamical systems and bialgebra structures
has also been discovered by Hillman [12] independently.

Further we make a correspondence between templates and 3-manifolds via
framed links. We construct a 3-manifold from a given template using framed
links, and show that the manifold constructed has unique homeomorphism type
associated to the given template. Specifically, we divide template diagrams
into basic pieces, and assign a framed tangle to each piece. The tangles are
glued together to form a framed link. In this way we obtain a 3-manifold from a
given template diagram. We prove that two framed links thus obtained from two
template diagrams of the equivalent template are related by Kirby moves, giving
the homeomorphic 3-manifold. Thus this procedure assigns a unique 3-manifold
to a given template. Hence any 3-manifold invariant can be used as a template
invariant. This correspondence between tamplates and framed links is naturally
explained as follows. In [7], a relation between cobordisms of 3-manifolds and
bialgera structures was given from the point of view of topological quantum
field theories. This relation was made explicit by Kerler [22] diagrammatically,
using framed links. Thus we obtain a relation between templates and framed
links via bialgebra structures, as an application of Kerler’s correspondence.

The paper is organized as follows. In the next section we recall templates
and describe local moves for projections of templates. In Section 3 we define
invariants of templates derived from bialgebras and give some examples. We
study the relation between our invariants and the Parry-Sullivan invariants in
Section 4. We discuss using braided Hopf algebras defined by Majid to gener-
alize these ideas to get stronger invariants. In Section 5 we give framed link
assignments to template diagrams.
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2 Templates and Their Moves

In this section we quickly review templates that appear in certain dynamical
systems and describe moves of projections of templates. See [11] for more details
about templates.

A template (T, ¢) is a smooth branched 2-manifold T, constructed from two
types of charts, called joining charts and splitting charts, together with a semi-
flow ¢. The joining chart (resp. splitting chart) is depicted in Figure 1 left
(resp. right). A semi-flow is the same as flow except that one cannot back up
uniquely, and in a template one cannot back up uniquely at a branch line. (The
middle segment in the joining chart along which three sheets meet is called the
branch line.) In Figure 1 the semi-flows are indicated by arrows on charts. In
the joining chart (resp. splitting chart), there are two segments (resp. a single
segment) at the top of the figure along which the semi-flow ¢ enters into the
chart. These segments are called the entry segments (or lines) of the chart.
Similarly, there is a segment (resp. three segments) in the joining chart (resp.
splitting chart) at the bottom along which ¢ goes out of the chart. They are
called the ezit segments. The charts are sewn together as follows. The exit
segment of each joining chart is attached to an entry segment of a different
chart. The left and right exit segments of each splitting chart are attached to
entry segments of some other charts. The middle exit segments of the splitting
charts are not attaching to anything. The flow exits the template through entry
and exit segments. We also regard templates as charts with bands connecting
them.

Figure 1: Charts of templates

In Figure 2 we show the simplest example of a template, the Lorenz Tem-
plate. It has been used to model the strange attractor believed to be associated
with the Lorenz equations [3]. The idea is that all the knots and links formed by
orbits in a flow, obeying suitable hypotheses, are on a corresponding template.
The trefoil shown on the Lorenz template is a periodic orbit of the semi-flow.

Obviously if we isotope a template in a 3-manifold, the knots and links



4 Kauffman, Saito and Sullivan

Figure 2: The Lorenz template

X/ X/
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Figure 3: Template move I: switch move

on it are unaltered. Therefore we identify isotopic templates. However, two
additional moves are permitted for equivalence among templates. They are
depicted in Figures 3 and 4 respectively (called switch move and splitting move
respectively). Notice that the splitting move alters the topological type of the
template. This has made finding suitable invariants for templates difficult. One
invariant is the Parry-Sullivan invariant [29], but it does not incorporate half
twists and it ignores how the template is embedded in 3-space. Another is a
zeta function, but its definition is restricted to templates whose orbits have only
one type of crossing, i.e. the closed orbits are all positive braids [36]. See also
[37] for invariants of non-orientable templates. In this paper we define a new
class of template invariants.

For the purpose of constructing invariants of templates, we use the idea of
defining Jones-type invariants for knots and links diagrammatically. We refer
to [20] for such approaches. We use projections of templates on the plane with
crossing information.

Let T be a template in 3-space. Choose a subspace R? which is disjoint from
T, and project T into this plane. A template is regarded as a union of “skinny”
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Figure 4: Template move II: splitting move

N\ NN

Figure 5: Building blocks of templates

bands, and each of such bands are locally homeomorphically projected into the
plane (except at “twists,” see below). The image of T is not one-to-one at a
neighborhood of branch lines, and bands may cross each other on the plane,
and there may be twists of bands. Local pictures of such cases are depicted
in Figure 5. At branch lines and crossings, we indicate which band lies above
the other band by breaking the under path (or by representing them by dotted
lines). In Figure 5 top, images of a projection near two types of branch lines
and an exit line are depicted. In the middle, two types of crossings of bands are
depicted. In the bottom, two types of half twists are depicted. Such projections
of templates together with crossing informations specified are called template
diagrams. Thus a template diagram consists of embedded bands in the plane
and building blocks depicted in Figure 5.
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Figure 6: More building blocks of templates with height functions

We then fix a height function on the plane on which T is projected. With
respect to the height function, we have maximal and minimal points of bands.
Thus T consists of local diagrams depicted in Figures 5 and 6. We include
mirror images with respect to horizontal lines of those depicted in Figure 6 as
local diagrams as well. The height function is the vertical direction in these
figures. This is essentially the same as diagrammatic approaches of Jones-type
invariants (see again [20]) and the only difference is that we have new charts (or
local diagrams, or building blocks): branch lines and exit lines (and half twists
of bands).

We arrange the diagrams so that the semi-flows near joining and splitting
charts go down with respect to the height function, as depicted in Figure 5. Note
also that there are two types of projections near a branch line. However Figure 7
shows that the combination of a crossing and one of two types of projections
describes the other type.

D

Figure 7: Switching branch lines

2.1 Remark. We remark here about the orientations of templates. Each
band has local orientations. A template is orientable if there are choices of
orientations of bands so that they are consistent under identifications of charts.
If a given template is oriented, then there is a template diagram without half
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b
Figure 8: Twists of bands

twist building blocks. This is because full twists of bands can be changed to a
small kink of bands as depicted in Figure 8. (This convention is often used for
the framed link calculus of 3-manifolds.)

<
> .
Low
<
\:
2

Figure 9: Reidemeister moves

R

<
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Next we recall the Reidemeister moves for knots and links and extend these
moves to templates. Figure 9 depicts the Reidemeister moves (type II and IIT)
for bands. Figure 11 and 12 (and the similar rotation moves for the splitting
chart) are additional moves for bands when a height function is fixed. Figure 10
depicts additional moves for joining and splitting charts. Another move depicted
in Figure 13 is necessary for bands (this move is called a spherical move). We also
include the mirror images of these moves depicted with respect to the vertical
or horizontal lines in our list of moves, whenever the semi-flows of charts match
the height function.

There are also moves involving half twists, as depicted in Figures 8 and 14.



8 Kauffman, Saito and Sullivan

i
Xb
17 S
~J
&’:’x@
NS

Figure 10: Reidemeister moves involving branch and exit lines

We call these moves Reidemeister moves of templates.

We have other moves depicted in Figures 3 and 4, as well as the move
depicted in Figure 15. These are called template moves.

If we regard branch and exit lines as trivalent rigid vertices and half twists
as 2-valent rigid vertices, we can apply Reidemeister move theory of graphs with
rigid vertices [19, 17] to obtain the set of Reidemeister moves of templates (with
an additional move in Figure 8). At a branch line, two bands go down into
the branch line and one band go out, so that it has the symmetry with respect
to one full rotation of the plane and a half twist with respect to the vertical
line. The former corresponds to the move depicted in Figure 12 and the latter
corresponds to the move in the middle of Figure 14. Thus the combination of
Reidemeister moves for graphs with rigid vertices and template moves give

2.2 Lemma. Two template diagrams represent equivalent templates if and
only if they are related by finite number of Reidemeister moves and template
moves and isotopies of the projected templates on the plane.

We also define weaker equivalent relation: two template diagrams are called
pass equivalent if they are related by a finite sequence of Reidemeister moves of
templates, template moves, and pass moves depicted in Figure 16.
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Figure 11: Reidemeister moves in the presence of a height function

N =

Figure 12: Rotations
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Figure 13: The spherical move of ribbons

Figure 14: Reidemeister moves for half twists
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Figure 15: Template move I’

2K = 2K

Figure 16: Pass move (crossing change)

3 Invariants Derived from Bialgebras and Hopf
algebras

3.1 Definitions. A bialgebra over a field k is (4,m,n, A, €) such that

(1) (A, m,n) is an algebra where m : A® A — A is the multiplication and 7 :
k — Ais the unit. (i.e., they are k-linear maps such that m(1®m) = m(m®1),
m(1®n) =1=m(n® 1) where 1 denotes the identity map in this case).

(2) A: A —» A® A is an algebra homomorphism (called the comultiplication)
satisfying (1 ® A)A = (A Q 1)A,

(3) € : A — k is an algebra homomorphism called the counit, satisfying
(e®@1)A=1=(1®¢A.

We refer to [1] for these definitions.

Here we explain the second condition in the above definition. One of the
conditions that the comultiplication is an algebra homomorphism is also called
the compatibility condition between the multiplication and the comultiplication
and can be written by A(ab) = A(a)A(b) for any a,b € A. (The other conditions
are A on =n ®n, with k identified with k ® k, eop = e®¢€, and eon = 1j.)
The LHS of the equality is A o m(a ® b). For elements ¢; ® c2,d; ®d2 € A® A,
the multiplication is defined by (¢1 ® ¢2) - (d1 ® d2) = ¢1di1 ® cady. Thus the
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multiplication on A ® A is in fact the map
(me@m)oPs: (AQRA)QR(ARA) AR A

where P53 denotes the permutation map Pa3(21 ®22Q138x4) = 21 23 QL2 ®x4.
Therefore the RHS of the compatibility condition is written as (m ® m) o P30
(A® A)(a®Db). In other words the condition in terms of maps is

Aom=(m@m)oPyzo(ARA).

For the image of the comultiplication the notation A(a) = a1 ® as is often
used. Generally the image under the comutiplication is a sum of such tensors
but this notation is commonly used for shorthand. In this notation the LHS and
the RHS of the compatibility condition are written as A(ab) = (ab); ® (ab)2 and
A(a)A(b) = (a1 ® a2) (b1 ® by) = a1b; ® asby respectively so that the condition
becomes (ab)1 ® (ab)g = a1b; ® asbs.

3.2 Example. Let G be a finite group and kG be the group algebra over
a field k. As a set kG consists of formal linear sums of elements of G with
coefficients in k: kG' = {3 5 Agg9}. The addition and the scalar product is
defined by

Z)‘gg + Zﬂg!] Z (Ag + 1g)g
0-2/\99 = Zc/\gg

respectively so that kG is a vector space spanned by the elements of G.

The multiplication is defined by (3" Ag9) - O pnh) = D (Agun)gh. The
comultiplication is defined for the basis by A(g) = g ® g (and by extending this
linearly). One computes A(gh) = gh ® gh = (g ® g)(h ® h) = A(g)A(h) for
any elements g, h € G. Thus the compatibility condition is satisfied. The unit
isk>ar a-1€ kG where 1 € G is the identity element, and the counit is
defined by €(g) =1 for any g € G.

3.3 Example. In fact this example is something between bialgebras and
braided bialgebras that are defined by Majid [25], since it is a “(Z/2)-graded”
bialgebra. (The map P which appear in the conpatibility condition is replaced
by the map R in this example as described below, which is not the permuta-
tion map, but still satisfies R?2 = 1. See Remark 4.4 for discussions on braided
bialgebras and for more details on this point.)

Let V' be a vector space over a field k of a finite dimension d. Let A = AV
be the exterior algebra of V. Thus AV is isomorphic to ®2_q AP V where
APV consists of elements {v1 A --- Avplv; € V} (p is called the degree) where
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vAv =0 for any v € V. Any linear map f : V — W between vector spaces
is extended to Af : AV — AW by defining the map on the basis elements by
Af(Vi A== Avp) = f(or) A+ A f(vp).

The multiplication is defined by AV @ AV 2a®b—aAbe AV.

The comultiplication is defined by extending the map V 3 a = (a®1+1®a)
to the exterior product.

The unit is the inclusion n: k = k = AV C AV.

The counit is the map induced from V 5 a+— 0 € k.

The map R : AV®AV — AV ® AV which serves the role of the permutation
is defined by

Ra®b) = (-1)""poq

where |z| denotes the degree of 2 € AV. This extends to tensor products
and for the dual spaces. Note that R = AP where P(z,y) = (y,z) is the
permutation map P : V@V — V @V and AP is the induced map on the
exterior product. This R satisfies the compatibility condition

Aom=(m®m)oRyzo(A®A).

We now define invariants of templates using bialgebras as follows. Let A
be a bialgebra over a field k. We assign A (resp. A*, the dual of A, ie.,
A* = Homy(A, k)) to a band with the downward (resp. upward) orientation.

BTl

K A® At
= I @@ &
A®A" .
AQ® A AQ® A
PG
A A AR A

Figure 17: Maps corresponding to Building blocks
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To each building block we assign a map. Figure 17 illustrates the corre-
spondence. In the diagrams, the maps go from bottom to top of the sheet as
depicted. We choose specific maps as follows. Let A be a bialgebra. At a
branch line assign the comultiplication of A, A : A - A® A. At an exit line
assign the multiplication m : A@ A — A. At alocal minimum/maximum assign
the evaluation/co-evaluation maps respectively as follows. The evaluation map
P : A® A* — k is defined by ¢(a,b*) = b*(a) € k, the value of a evaluated by a
dual element b* € A*. The co-evaluation map is defined by ¢(1) = Y7 | e; Q@ e}
where {e;} is a basis of A. At a crossing point, choose the permutation map
P(a,b) = (b,a). Note that a and b can be elements in A or A* and the type
of crossing (positive or negative) does not matter when we use the permutation
map. At a half twist, assign a map S : A — A, the condition for which is stated
in the following theorem.

Thus a projection T of a template represents as a composition of these
maps a linear homomorphism T : ¥ — k which is a multiplication by a scalar
B(T) € k, Tu(z) = B(T) - x. This element B(T') is our invariant.

(ab)1 (ab)2

ab

Figure 18: The splitting move and the compatibility condition

3.4 Theorem. The element B(T) € k gives an invariant of templates if
the map S assigned to half twists satisfies the following conditions: S? = 1,
S(ab) = S(b)S(a) for any a, b € H, and

AoS=Po(S®S5)oA,
where P is the permutation.

Proof. We prove that the above defined B(T') is invariant under local moves
discussed in the previous section.

Since we have chosen (co-)evaluation maps and permutation maps for local
max/min and crossing points respectively, it is routine to check the invariance
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under the Reidemeister moves. Thus it remains to prove the invariance under
the template moves.

The invariance under the switch move follows from the coassociativity of the
comultiplication: A(A® 1) =A(1Q A).

The change of level of exit lines follows similarly from the associativity of
the comultiplication.

The invariance under the splitting move follows from the compatibility be-
tween multiplication and comultiplication: A(ab) = A(a)A(b). This can be
seen on the diagrams as follows. After the splitting move, the segment labeled
a (resp. b) is divided into two segments labeled a; and as (resp. by and bs).
Regard a and b as elements in A, so that A(a) = a1 ® as (resp. A(b) = b1 ® ba)
under the correspondence between separation lines and comultiplications. Then
on the one hand A(a)A(b) = a1b1 ® azb2 by definition (in the bialgebra A), in
terms of diagrams two branch lines join segments labeled a; and by (resp. as
and by). See Figure 18 for this correspondence.

Finally we check the local moves involving half twists. The top picture in
Figure 14 is easily checked. The equality corresponding to the middle picture
is AoS =Po(5®S)oA where P is the permutation, which is satisfied by the
assumption. The bottom picture gives the equality S(ab) = S(b)S(a) for any
a, b € H, which is also satisfied by the assumption. Two half twists constitutes
a full twist, which corresponds to the identity map by the assumption S? = 1.
This gives the invariance under the move depicted in Figure 8. O

We remark here that the relation between templates and bialgebra structures
has also been discovered by Hillman [12] independently.

3.5 Definition. A bialgebra A is commutative if m(a ® b) = m(b® a) for any
a,b € A, cocommutative if A = P o A where P is the permutation.

3.6 Corollary. If A is commutative and cocommutative, by assigning S =1
(the identity map) to half twists, B(T) gives an invariant of templates up to
pass equivalence.

3.7 Definition. A Hopf algebra is a bialgebra over a field k (A, m,n, A, €) with
a mapping S : A — A called the antipode satisfying

mo(S®1)ocA=noe=mo(1®S)oA.

3.8 Corollary. For a Hopf algebra with S? = 1 for the antipode S, by assign-
ing S to half twists, the element B(T') € k defines an invariant of templates up
to the pass equivalence.
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Proof. We check the local moves involving half twists. The equality Ao S =
Po(S®S)oA, where P is the permutation, is satisfied for an antipode ([1], p63).
The equality S(ab) = S(b)S(a) for any a, b € H, is also satisfied ([1], p62). We
note that the condition S? = 1 is satisfied if the Hopf algebra is commutative
or cocommutative ([1], p63). O

The use of Hopf algebras here is related to 3-manifold invariants defined
in [6, 24]. In particular, the cone move defined in [6] for triangulations of 3-
manifolds is related to the splitting move of templates.

Figure 19: Some examples of templates

3.9 Example. Let C, be the cyclic group of order n for a positive integer n
and A = kC), be the bialgebra constructed in Example 3.2 for the group algebra
over a field k.

Let T be the template depicted in Figure 19 where there are s branch lines
for a positive integer s. We compute the invariant B, (T;) for this particular
bialgebra. In this case the bialgebra is commutative and cocommutative, so
that we use the Cor. 3.6 by setting S = 1.

Let ¢ € C, be a generator so that A = kC, has a basis {e =
g°,9,9%,---,9"'}. For an exit line and a branch line we use the multiplication
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and comultiplication defined in general for group algebras in Example 3.2.

The Figure 19 is of the form of the closure of a diagram which joins (s + 1)
bands by s branch lines into one band and separates it again by s exit lines
into (s + 1) bands. Reading it from bottom to top, this diagram defines a
map f : A®GHTD 5 A®GHY) which is in fact equal to f = A® o m®. Here
AP = (A®1%)(A®1°71)-.- A where 1° denotes the identity map on A®? and
similar for m?.

We choose the basis g1 ® g¥* ® - -- ® g%+ of A®(*+1) where 0 < u; < n,
j=1,---,s+1 Let u = E‘;Z} u; (mod n). (Thus u is an integer 0 < u < n.)
Then the image under f of the basis are f(g** ® g*2 ® --- ® g¥=+1) = A%(g¥) =
gu R---® gu_

By the definition of the pairing and the copairing taking the closure of this
diagram correspond to taking the trace of f (see [20]). Thus B,(T) = #{u €
Z/n:u(s+1) =u} = #{u : us = 0}. Thus we can conclude that T = Ty iff
s = s’ using these invariants.

4 A relation to Parry-Sullivan invariants

An alternate definition of the Jones polynomial and generalizations is given by
taking certain traces of linear representations of braid groups. In this section we
give such an interpretation for the Parry-Sullivan invariant [29]. The linear maps
whose trace we compute come from bialgebras we discussed in the preceding
section. First we review the Parry-Sullivan invariant.

Two flows are said to be topologically equivalent if there is a homeomor-
phism between them that takes orbits to orbits, preserving orientation. The
Parry-Sullivan invariant is an invariant of flows under topological equivalence.
Although templates are semi-flows, there is no problem in applying the Parry-
Sullivan invariant to them.

Before defining the Parry-Sullivan invariant, we shall give a brief review of
Markov partitions, but refer the reader to [32, Chapter 10] for details. In our
context a Markov partition is a finite, disjoint collection of line segments trans-
verse to a template’s semi-flow. Each orbit that does not exit the template must
pass through some element of the Markov partition in forward time. The flow
induces a first return map on the partition elements. This map has the prop-
erty that each Markov partition element is mapped onto any partition element
that its image meets. The thickened line segments in Figure 20 represent the
elements of a Markov partition for the template shown.

Given a Markov partition for a template we construct an incidence matrix,
A = [a;;], as follows. Number the Markov partition elements, 1 through n. Let
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ai; be the number of bands going from the i-th element to the j-th element.
Thus, the incidence matrix for partition in Figure 20 is

1 10
A=]10 11
1 10

The Parry-Sullivan invariant is given by det(I — A). It is independent of the
choice of the Markov partition.

Figure 20: A markov partition of a template

We give an alternate description of the Parry-Sullivan invariant using the
braided form of templates as follows.

4.1 Definition. A template T is braided if there exists an unknotted circle
X (called the braid azis) in S* such that (1) X is disjoint from 7', (2) fix an
orientation of the circle S in S \ X = S x D where D is an open disk, then
the semi-flow of 7" matches the orientation of S'. Specifically, consider the
projection p: $* \ X = S x D — S'. Then the second condition above means
that the direction of the semi-flow of T' always matches the orientation of S*
via the projection p.

4.2 Lemma [8]. Any template is isotopic to a braided one.

In terms of template diagrams, this implies that any template can be iso-
toped to the following form (see Figure 20 for an example).
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o All the exit lines, branch lines, and crossings lie in the interior of the
rectangular region [0, 1] x [0, 1].

e Semi-flows restricted to 7'N [0, 1] x [0, 1] are always downward.
e The portion of T outside of this rectangular region is nested trivial bands.

We call the portion TN[0, 1] x [0, 1] the braided template tangle and attaching
the trivial bands to recover T is called taking the closure. This is similar to knots
and links (see for example [2]).

Figure 21: Generators of braided templates

By slicing a braided template tangle 7" we can express T as the juxtaposition
of Ty,---, T, where each of T;,i = 1,---,n consists of parallel bands and one
of the template charts (see Figure 21), or ordinary braid generators for bands
(i.e., parallel bands and a crossing between two bands).

To express the Parry-Sullivan invariant as an invariant we discussed in
the preceding section using trace, recall the Example 3.3. Let V' be a one-
dimensional vector space and assign to the above generators the linear maps
constructed by exterior algebra defined in Example 3.3. More specifically, to
the generator in Figure 21 top, assign the map I®---Q IQARIR®---®I, and to
the bottom figure assign I® - - @ I@mQI®---® I, where m (resp. A) denotes
the multiplication (resp. comultiplication) and the identity I corresponds to
trivial bands to the left and right of the building blocks. Let Tz denote the
composition of such linear maps assigned to a given braided template tangle T'.

4.3 Theorem. The Parry-Sullivan invariant PS(T) of the closure of a
braided template tangle T' is equal to the trace Tr(STg) where S is defined
by S|arw (z) = (—=1)*z for any template T'.

Proof . Choose a Markov partition of a braided template so that the segments
are the top and bottom segments of each generator of the braided template.
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Then the matrix for each generator is as follows.

e I 1 ] @ I for a branch line,

e I®[1,1] @I for an exit line, and

[ 1
e I (1) 0 ] @ I for a crossing, where I denotes the identity matrices of
some size.

Each T; is one of these generators, and we assign the above matrices to
T; s. Let M; be the assigned matrices. Assign the product M = M; --- M,
to the template tangle 7. Then the Parry-Sullivan invariant is computed by
det(I — M).

Let V be a vector space over C of dimension one generated by £. Then the
above matrices are regarded as the following linear maps.

e Abranchline: 8: V¢ (£, eVaV.
e An exit line: p: V&V — V where n(&€,0) =&, 5(0,€) =€£.
e Acrossing: v: V@&V = V&V where v(£,0) = (0,£), v(0,€) = (&,0).

These maps induce maps on the exterior algebra AV as follows, respectively.
(Note that 1 € A°V C AV is always sent to 1 ® ---®@ 1 € (AV)®™.)

e A branch line : AG: AV = AV @ AV where AB(§) = (€®1+1Q¢).
e An exit line : Ap: AV @ AV — AV where An(a®b) =aAb
e A crossing: AP : AVRAV = AV @AV where AP(z®y) = (-1)*Il¥y@.

Let us prove this correspondence. Let & = (£,0), & = (0,€) e Ve V. The
space A(V @V) is generated by 1 € AV, &1, & € A1V, and & A& € A?V. The
isomorphism & : A(V@V) > AV®AV isgiven by &(1) =1®1, ®(&H) =£6®1,
P(&) = 1Q¢E, and ®(& A &) = £ ®E. By this isomorphism @ the above
correspondence follows.

Let Ty be the template tangle with n bands on the top and bottom whose
closure is a given braided tangle diagram 7. Then T represents a map Tg :
@,V — @,V as a composition of maps corresponding to building blocks via
correspondence given above. It induces an endomorphism Tz on A(®,V) &
(AV)®" via the correspondence listed above.

Thus the Theorem follows from the fact det(Tg — I) = Tr(STg) where S is
defined by S|aew (z) = (=1)*z [20, 21]. O
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4.4 Remark. We constructed template invariants using bialgebras. For bial-
gebras, we do not expect to derive as strong invariants as Jones type invariants
for knots and links since the pass equivalence does not detect the crossing in-
formation. However we have to require invariance under the pass move since in
the compatibility condition we only have the permutaion map:

Aom(a®b)=(m@m)o P30 (AR A)a®b)

where Pys(w @z Q@ y®2) =wQ y ® ¢ Q 2z, and the permutation map does not
distinguish positive and negative crossings.

Thus to get stronger invariants we need new algebraic structures with a
generalized compatibility condition

Aom(a®b) = (m®@m)oRazo(ARA)(a®b)

where R denotes a braiding homomorphism on A ® A without the condition
R? = 1 but satisfying the Reidemeister moves. Such an algebraic structure
called a braided Hopf algebra or braided groups has been defined and studied by
S. Majid [25, 26, 27]. Such algebraic objects would define stronger invariants for
templates, as they capture the braiding and is not invariant under pass moves.

Majid [25] constructed braided Hopf algebras from quantum groups as fol-
lows. We refer the reader to [25] for more details. Let (H,A,¢, S, R) be a
quantum group (a quasitriangular Hopf algebra). (Here A is a comultiplica-
tion, € is a counit, S is an antipode, and R is the universal R-matrix.) Let
C = Rep(H) be the category of representations of the quantum group. Then H
gives rise to a braided Hopf algebra. As an algebraset A = H. If A(z) = 21 Qx>
in the original comultiplication of H, then the new comultiplication for A is de-
fined by A4(z) = 21 R2S4(R) ® Riza Ry where Sqaz = RoRyS(R1zSRY) is a
new antipode (S is the antipode of H) and R' = R} ® R}, is another copy of the
universal R-matrix.

It is expected that the template invariants be computed explicitly for such
braided Hopf algebras defined from quantum groups at roots of unity. Further
studies of invariants constructed in this paper and generalizations using Majid’s
braided groups are expected.

5 Framed links associated to template diagrams

In this section we associate a framed link to a given template diagram and
prove that two diagrams representing equivalent templates give framed links
representing homeomorphic 3-manifolds. As we mentioned in Introduction, this
correspondence can be seen as an application of Kerler’s [22] correspondence
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Figure 22: Dots convention for small kinks by Matveev-Polyak

//

Figure 23: Assigning framed links to templates

between 3-dimensional cobordisms and bialgebra structures given by framed
links, although our diagrams are slightly different.

We take the common convention of using the projection direction as the
framing of framed links (this is the same as taking the parallel strings on the
plane for framing). We also use the diagrammatic convention of using dots to
represent small kinks as depicted in Figure 22 following [28].

Let a template diagram T' be given. As in the preceding section, fix a height
function on the plane and cut T into building blocks consisting of copies of
maxima/minima/crossings, splitting/joining charts, and half twists. To a band,
assign a parallel arcs. To each building block, assign framed tangles as depicted
in Figure 23 and 24. In Figure 24 top, only one of two crossing types is depicted,
but the other type is similar, except the crossing information of parallel strings
are reversed. In other words, the boundary of bands of the template diagram
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Figure 24: Assigning framed links to templates

%

together with the framed tangles assigned to splitting/joining charts form a
framed link which is assigned to the given template diagram. (Hence we do not
have to fix a height function on the plane in this section.) Figure 25 depicts the
framed link assigned to the Lorenz template.

5.1 Theorem. If two template diagrams represent equivalent templates, then
the framed links assigned to the diagrams represent homeomorphic 3-manifolds.

Proof. It is known that two framed links represent homeomorphic 3-manifold
if and only if they are related by Kirby moves [23] depicted in Figure 26 top
two figures. The bottom figure is a consequence of the Kirby moves that we use
often in the proof (the top and bottom strings in this figure represent distinct
component of framed links).

Thus we show that framed tangles assigned to before/after each tem-
plate/Reidemeister move are related by Kirby moves. Then, since equivalent
template diagrams are related by these moves, and corresponding moves on as-
sociated framed links are related by Kirby moves, the Theorem follows. The
proofs of such Kirby moves are depicted in Figures 27 and 28. Other moves
directly follow from Reidemeister moves of framed links. O

5.2 Example. It is easy to see that the framed link corresponding to the
Lorenz template, as depicted in Figure 25, represents the 3-sphere S3.
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Figure 25: The framed link assigned to the Lorenz template

KD @ - .

CO
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s

Figure 26: Kirby moves

Figure 29 top left shows an example of a template, and the top right shows
the corresponding framed link. The bottom sequence of Kirby moves from left
to right simplifies to (S x S?)#L(3,1).

5.3 Remark. In [7], the braided Hopf algebra structure was constructed from
Topological Quantum Field Theories (TQFTs) in dimension 3. Thus the corre-
spondence between template moves and braided Hopf algebras gives rise to the
above correspondence between templates and 3-manifolds via framed links.
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