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The Linking Homomorphism of
One-dimensional Minimal Sets

Alex Clark and Michael C. Sullivan

ABSTRACT. We introduce a way of characterizing the linking of
one-dimensional minimal sets in three-dimensional flows and carry
out the characterization for some minimal sets within flows mod-
elled by templates, with an emphasis on the linking of Denjoy
continua. We also show that any aperiodic minimal subshift of
minimal block growth has a suspension which is homeomorphic to
a Denjoy continuum.

1. Introduction

A flow is a continuous group action ¢ of (R,+) on a space X. If
f is a continuous Z or R action on X, then a closed set M C X is a
manimal set of f if M is invariant but contains no proper, non-empty,
closed set which is also invariant under the action. This is equivalent
to requiring that the f—orbit of each point of M be dense in M. The
simplest one-dimensional minimal sets of flows are periodic orbits, and
the linking of periodic orbits in three-dimensional flows has been well-
studied; see [ BW1], [BW2], and [GHS|. We broaden the perspective
and introduce a way of characterizing the linking of one-dimensional
minimal sets in three-dimensional flows. With an embedding of two
minimal sets M and M’ in three space we associate a homomorphism
H, (M") — H" (M) from Cech homology to Cech cohomology with in-
teger coefficients, the linking homomorphism. In the case of circular
minimal sets, the standard linking number of the embedding represents
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2 ALEX CLARK AND MICHAEL C. SULLIVAN

this homomorphism. In the more general case this linking homomor-
phism is not necessarily represented by an integer and depends on the
structure of the groups Hy (M') and H' (M).

We shall examine the linking homomorphism for minimal sets hav-
ing minimal block growth in the Lorenz template derived from the full
shift on two symbols (see §5), which includes the minimal sets derived
from Sturmian sequences. The linking homomorphism in this case can
be represented by a 2 x 2 integer matrix, the Smith normal form of
which is an invariant of the embedding. In the process we shall show
that each such minimal set is homeomorphic to a Denjoy minimal set
D,. Moreover, we shall show that given any D, from among the un-
countably many topologically distinct Denjoy minimal sets (see [F],
[BaW]), the union of all homeomorphic copies of D, in such a tem-
plate is dense in the template, extending the results of [B]. Since these
templates model C*° flows in three-space, this is a significant extension
of a result of Knill [Kn], which is of interest since the structure of the
Denjoy minimal set prevented Schweitzer’s counterexample [Sch] to
the Seifert conjecture from being smoother than C'*°. (Later Harrison
was able to improve this to C?*° [Har].) Similar observations apply to
the general class of isolated and nearly isolated examples examined in
[H]. One sees that the behavior of these minimal sets is significantly
different when not isolated and that they can interact in complicated
ways. (The C¥ example of [KK] is two-dimensional.)

For a space X, a metric space M is said to be X —like if for every
e > 0 there is a map f. : M — X satisfying

diam (f. ' (z)) < e forallz € X.

Solenoids and circles are examples of circle-like, one-dimensional min-
imal sets of flows. In flows in three space one can frequently enclose
circle-like minimal sets in tubes homeomorphic to a solid torus. Gam-
baudo et al [GST] used tubes enclosing minimal sets to define a sort
of ergodic linking number. However, such a tube, when retracted to
an essentially embedded central circle, provides a natural map to a
circle that will be an e—map when the cross-sectional diameters of the
tube do not exceed . Hence, if a minimal set is not circle-like, one
cannot expect to model the minimal set arbitrarily well with a tube
homeomorphic to a solid torus.

With S' v S' denoting the wedge of two circles, Denjoy minimal
sets are not circle-like, but instead are (S'V S')— like, as shown in
[BaW] where the Denjoy minimal set D, corresponding to the irra-
tional number « is represented as the inverse limit of an inverse se-
quence of (S'V S')’s, the projections of D, onto the factor S' v S!
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spaces providing the e—maps. And D,, is not circle-like; otherwise, D,,
would be the inverse limit of circles [MS] and (by the continuity of Cech
cohomology) H' (Dg) would then have torsion-free rank one or less, but
(as we shall see) H' (D,) is isomorphic to Z? and so has torsion-free
rank two; see [F] for a discussion of torsion-free rank. Generally, the
linking homomorphism is a more appropriate way of characterizing the
linking of minimal sets which are not circle-like.

2. The Linking Homomorphism

Many one-dimensional minimal sets have trivial singular (co)ho-
mology (denoted H, and H"') but telling Cech (co)homology. (We shall
always use integer coefficients.) When M is not a periodic orbit, any
map S' — M must be inessential since the image must be contained
in a path component and so must be an arc or a point. Solenoids, for
example, have trivial H; and H!, but their one-dimensional Cech coho-
mology is sufficient for a topological classification [Mc]. For a Denjoy
minimal set D, there is an inverse limit representation [BaW]

Sty st dl gty gt gty gt Lp,
where the bonding maps f; depend on the continued fraction expansion
of a, but where each f; (independent of a and 7) induces isomorphisms
of Hy (S'Vv S') and H' (S' Vv S') which can be represented by matri-
ces in SL (2,Z). Thus, by continuity, H, (D,) and H'(D,) are both
isomorphic to Z?* while having trivial H; and H!. For this reason we
use Cech (co)homology.

While we are primarily interested in the linking of minimal sets, we
shall define the linking homomorphism for two disjoint, one-dimensional,
compact subsets M, M' C R® C S3. Alexander duality provides an iso-
morphism

A:HY (M) =~ H, (R* — M)
where

H' (M) =lim{H" (U)|U is a neighborhood of M }
—

and the system is directed by reverse inclusion and the associated ho-
momorphisms are induced by inclusion. To couch everything in terms
of Cech (co)homology, we utilize the isomorphism (see [D, VIII;13.17])

v H (R — M) ~ H (R* - M)

known to exist since R® — M is a manifold. Here H; is given by
taking the inverse limit of the dual to the direct sequence used to
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define H'. With j : M' — R® — M denoting the inclusion, the linking
homomorphism A : Hy (M') — H' (M) is given by

A Hy (M) £>]:[1 (R* — M) (Lr)’; H, (R*— M) ~ H' (M).

3. The Linking of Denjoy Minimal Sets

Denjoy continua form a natural class of minimal sets to which the
linking homomorphism applies well. Given two minimal sets M and M’
in R? and homeomorphisms h : M — D, and h' : M' — D,s, we have
the inverse limit representations as indicated above and corresponding
projections p; (p}) : Do (Do) — S* vV St onto the factor spaces. Since
St v St is an ANR, each of the maps p; o h and p’ o I/ extends to a
neighborhood U; or U/, which (by using finitely many flowbox neigh-
borhoods covering M and M') may be chosen to homotopically retract
to a copy of S'V St. Since the bonding maps induce isomorphisms on
(co)homology, the homomorphism

H (U;) —» H' (M) = lim {#' (U) |M C U}

given by identifying H! (U;) with its occurrence in the direct system
defining H' (M) is thus in an isomorphism. Similar observations ap-
ply to H; (M) and M'. Thus, choosing such neighborhoods U; and U!
disjoint, we have the following scenario:

O A=t

A H (MY 5 H@®B-M) '~ H (R -M) ~ H (M)
liad |1~

In the cases we shall examine, there is a Mayer-Vietoris decomposition
U= AUB and U] = A’ U B’ with each of the sets A, B, A" and B’
homotopically equivalent to a circle. Associated with each of these four
sets (oriented to go with the flow) is a basis element for (co)homology
which admit isomorphisms

H, (U!) ~ Z? and H" (U;) ~ Z?

associating H; (A’) ~ (1,0) and Hy (B') ~ (0,1) and similarly for U;.
Then the homomorphism A can be represented by a 2 X 2 integer matrix
A (M, M'") which then also represents A. Of course, A (M, M") depends
on our choice of neighborhoods, amounting to a choice of bases for
H, (M") and H' (M).

Recall that two integer matrices L and L' are equivalent if there
are matrices X and Y invertible over Z with L' = X LY. By a theorem
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of Smith, any integer matrix is equivalent to exactly one matrix hav-
ing entries myq, ..., my only along its leading diagonal and satisfying the
condition that m; divides m;; for i =1,..., k—1. This uniquely deter-
mined diagonal matrix is known as the Smith normal form. Thus, the
Smith normal form and absolute value of the determinant of A (M, M')
are invariants of A.

To calculate A (M, M'), observe that the first entry of A (M, M')
represents the standard linking number of the circles to which A and
A" homotopically deform since following the diagram for this entry
yields the standard linking homomorphism. Hence, all the standard
techniques to calculate this linking number apply; see [R] for a list of
such techniques, the most practical of these techniques perhaps being
the counting of under/over crossings of a regular projection. Ordinarily
the sign of the linking number is considered irrelevant and is regarded
as positive in all events, which can always be achieved by changing
the choice of basis element in one of the groups. We must however
choose consistent orientations in calculating the entries and so some
of the entries may not be positive. All four entries are then obtained
by calculating the appropriate linking numbers. Reversing the roles of
M and M' and using the same pair of neighborhoods to calculate the
matrix representation of A then transposes the matrix since the linking
number of circles is unchanged by reversing the roles of the circles.

In a similar way, one can compute the linking homomorphism be-
tween a periodic orbit and a Denjoy continuum. In this case the ho-
momorphism will be represented by a 1 X 2 matrix or its transpose. In
Section 6 we shall investigate the linking of Denjoy minimal sets within
the Lorenz template.

4. Minimal Sets Having Minimal Block Growth

We now turn to the problem of identifying Denjoy continua as min-
imal sets of well-studied flows by determining which classes of minimal
subshifts of the full shift on finitely many symbols are Denjoy continua
in their suspended flows. This will allow us then to measure the linking
of Denjoy minimal sets as they occur in some natural settings.

We follow the presentations in [GH] and [Pa] to define the minimal
Sturmian subshift of the full shift on two symbols (€2, o) corresponding
toa € [0,1] — Q. With 7 : R — R/Z = S! denoting the quotient
map, let p, : St — S! be the rotation given by 7 (t) — 7 (¢t + ) and
let A= =7 ([0,)) and AT =7 ((0,]). For t € R, define the sequences
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tT = (t)), ez and t= = (t;), .z by
L [0 it (r(1) ¢ At (0 (1) ¢ A
tn_{ 1 ifﬁggwgtggifﬁ andtn_{ | ifZngEtBiA—

Then Q, = {t"|t e R} U{t|t € R} is a minimal set of (©2,0). We see
that t* =t~ for ¢t ¢ {najn € Z} and that for n € Z and t = na, the
shift orbits o™ (t) and o™ (t~) approach each other asymptotically
as m — oo, meaning lim,, ,1 d (o™ (t*),0™ (t7)) = 0. Moreover,
these are the only such orbits. Now define f : Q, — S!, by

FE) = (6 ) = 0.
Then f~!(f (z)) = x provided
v ¢ {tTt=no,neZ}U{t [t =na,neZ},

and for

ve{ttft=na,ne ZyU{t [t =na,n € Z}
f7H(f (x)) is a two point set. What is more, f provides a semiconjugacy
(homomorphism): p, o f = fool|q,-

Let us recall the construction of the standard c«—Denjoy homeomor-
phism of S!. Starting with a single point, say 7 (0) € S, one replaces
the orbit {p (7 (0))},cz With a sequence of intervals p. (m (0)) ~ I,
with lengths going to 0 as n — +o0o to obtain a homeomorph of S*,
say S'; see e.g., [Sch]. Then by mapping each interval I,, homeomor-
phically onto I,,4; in an orientation preserving way and by mapping all
other points of S’ to the point determined by p,, we obtain a Denjoy
homeomorphism §, : S" — S’ which has a unique minimal set D,, the
Cantor set formed by taking the complement of the interior of the
intervals I,,, n € Z. We denote the points of D, — Uz, by the point
7 (t) of S* from which it was derived and we label the interval I,, so
that it goes from the point a,, to the point b, as we follow the orien-
tation. We then have a natural homeomorphism h : €, ~ D, given
by

h(tt) =h(t7) =7 (t) for t#na
and for t = na
h (t_) =a, and h (t+) =b,,
and h also provides a conjugacy of o], to the restriction of the Denjoy
homeomorphism to D,. By taking the suspension of o, we then ob-
tain a one-dimensional minimal flow which is topologically conjugate
to the standard Denjoy flow on D,.

In what follows, (X,0) denotes the full shift on an alphabet of
finitely many symbols. With P (S, n) denoting the number of distinct
n—blocks that occur in S C X, a minimal subshift (S,o0|g) satisfies
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P(S,n) = n+1 for all n if and only if S = , for some « by the
results of [CH]. The property P (S,n) = n + 1 is not a conjugacy
invariant of subshifts; however, the property P (S,n) < n+ K for some
fixed K and all n is a conjugacy invariant of minimal subshifts, and any
minimal subshift satisfying this condition is said to have minimal block
growth [Pa]. Clearly any periodic or Sturmian minimal set has minimal
block growth, but the class of aperiodic minimal sets having minimal
block growth includes some minimal sets which are not conjugate to
any Sturmian minimal set. And yet, the following does hold.

THEOREM 1. A one-dimensional minimal set obtained from the sus-
pension of an aperiodic minimal subshift (S,o|s) is homeomorphic to
a Denjoy continuum if (S,0|s) is of minimal block growth.

PROOF. As shown in [Pa, 4.2], any minimal set (S, 0|s) of minimal
block growth is obtained from a Sturmian by the composition of a
sliding block code and a substitution. A sliding block code yields a
conjugacy of symbolic systems, so it is clear that two symbolic systems
related by a sliding block code have homeomorphic suspensions. Recall
that a homeomorphism A : X — X is totally minimal provided that
h™ is minimal for each positive integer n. In [Pa, 4.1] it is shown that
a totally minimal subshift of minimal block growth is conjugate to a
Sturmian subshift via a sliding block code.

A substitution of length N associates to each symbol a in the al-
phabet A of the original symbolic system an N-block # (a) from an
alphabet B. This then induces a map of bisequences of A to those of
B :

X _1. X9 .. 'i> ...0 (3?_2) 0 (JZ‘_I) .0 (l‘o) 0 (l‘l) .
If a substitution of length N is applied to a symbolic system, then the
substituted system is generally not conjugate to the original system.
The argument of [Pa, 4.2] goes as follows: given (S, 0|s) of minimal
block growth either (S, c|g) is totally minimal (in which case we have
a subshift conjugate to a Sturmian via a sliding block code), or there
is a prime py such that (S, (0|s)") is not minimal. We then need only
treat the second case. One can then show that S breaks into py clopen

subsets {Sp, ..., Sy, 1} which are invariant under (o|g)", and in this
case (S, 0|g) is conjugate to
A : SOX{O,...,po—l}—)SOX{O,...,po—l}
. (s,i+1), ifi<py—1
(872) — { ((0_|S)p0 (8),0) le:p[]_].

Figuratively, this is a finite adding machine structure superimposed on
(0]|s)”. What is important to the proof of [Pa, 4.2] is that one can
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realize the first return map to one of these py clopen sets S; (which is
conjugate to (o|s)") by applying a simple substitution to the original
(S,0ls), which at the same time reduces the K as in the definition of
minimal block growth, i.e., the block growth decreases in complexity
after this substitution. One then repeats the argument for (S;, (o]s)")
until finally one must reach a totally minimal system, possibly a Stur-
mian (which are unique among all aperiodic minimal subshifts in having
K =1). That is to say that after a finite number of stages and corre-
sponding primes py, ..., pr one obtains that the original system (S, o|s)
decomposes into py---pr = N clopen subsets Cy,...,Cy_1, each of
which is invariant under (o|s)" , which is also the first return map to
each C;. This first return map (o|s)” is then conjugate to a Sturmian
subshift and hence is conjugate to the return map to a clopen subset of
the minimal set of a Denjoy homeomorphism. The suspended flows are
therefore topologically equivalent by theorems of Aarts and Martens
[A], [AM], meaning that there is a homeomorphism of the two sets
which preserves the orientation of orbits. Hence, the suspension of any
aperiodic subshift of minimal block growth is topologically equivalent
to a flow on a Denjoy continuum.

U

It is well known that the collection of periodic orbits of (£2,0) is
dense in 2. Since the orbits of the suspension of {2, are not Lyapunov
stable (or equicontinuous), it is not possible for periodic orbits to follow
these orbits arbitrarily closely. Hence, we should not really think of
the periodic orbits as modeling all the orbits of the flow. The following
extends some results in [B], where it is shown that the union of all
Denjoy minimal sets in the full shift is dense in the full shift on two
symbols. (In [B] a Denjoy minimal set is allowed to have more than
one pair of asymptotic orbits, but here we have just one such pair.)

THEOREM 2. For any given a € [0, 1] — Q, the collection of points
of X belonging to a minimal set which in the suspension flow is home-
omorphic to the Denjoy set D, is a dense subset of 2.

PROOF. Let x = (1),,.5 € ¥ and let w = [x_y, ..., xy] be a central
word of x. Let A be the alphabet of words of length 2N + 1 from X and
let (Q24,04) be the full shift on the bisequences of A. Consider then
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the (2N + 1) higher power code v : ¥ — Q4 given by

<Z">n€Z

A
Z—(N+1) Z-N AN+1
Z—(3N+1) ZN Z3N+1

It then follows that v o oc®N+Y) = 5 401, (see, e.g., [LM, Section 1.4]).
Then form a Sturmian sequence y from {2, on the symbol corresponding
to w and some other symbol in A. Then the closure of y in 24 will be
a 04 minimal set M conjugate to the shift on Q,. Then M’ = v~ (M)
will have a point (bisequence) agreeing with x on the central block
corresponding to w. In the suspension flow, this set will have a time
2N + 1 map on a Cantor set cross-section that is conjugate to the
shift on €2, as follows from the relation v o 0¥+ = 54 0. And so
rescaling time by this factor in the suspension yields a homeomorphism
between the suspended minimal set and the suspension of €2,, namely
D,. We have essentially realized a sequence from a substituted image
of Q, agreeing with the original sequence on a central N block. By
choosing N large enough we may thus find points from a minimal set
homeomorphic to D, arbitrarily close to x. 0

5. Templates

A template is a compact branched 2-manifold with boundary to-
gether with a smooth expansive semi-flow. The example we study here
is called the Lorenz template and is shown in Figure 1. The semi-flow
proceeds downward from the branch line the splits and loops around.
The orbits merge at the branch line and many orbits exit just below
the middle portion of the branch line. The non-wandering set of the
semi-flow is locally an interval cross a Cantor set, except for points in
the branch line where it is homeomorphic to the product of a “Y” and
a Cantor set. We shall take the intersection of the branch line and

the non-wandering set to be the middle thirds Cantor set, associating
2x; .

—* The first return map for this
3z+1

invariant Cantor set is the one-sided (right) shift on 2 symbols:

the sequence (z¢, x1,...) with Z?io

<l‘0,l‘1,...> > <1‘1,LL’2,...>

There is an extensive literature on template theory. Templates
where introduced to study strange attractors by Williams [W] but are
used to model other types of invariant sets in flows. The template
form used here is a model for a chaotic saddle set in a Smale flow;
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Ficure 1. Lorenz Template

see e.g., [Su]. Etnyre and Ghrist [EG] have used templates to model
flows induced by contact structures with an eye towards applications
in hydrodynamics, while Gilmore and others have used templates to
study attractors in various time series data; see [Gi.

Templates are constructed from invariant sets of hyperbolic flows
on 3-manifolds as follows. An isolating neighborhood is foliated by
strong stable manifolds of orbits. Collapsing along the stable direction
results in a branched 2-manifold with an induced semi-flow. The orig-
inal invariant set can be recovered by an inverse limit. In the collaps-
ing many orbits are identified. But periodic orbits, and the manner
in which they are knotted and linked, are preserved in the template
model. This was proven in [BW2], and a proof can also be found in
the book [GHS, page 38]. In the latter reference it is noted that on
the level of the symbolic dynamics the collapsing identifies those orbits
approach each other asymptotically in forward time [GHS, page 42]:
two orbits (7)., and (y;),.5 of the invariant set collapsed onto the
branch line are identified on the branch line if and only if x; = y; for
¢ > 0. It is important to note that the collapsing takes place along
the stable manifolds, and thus the collapsed template can be obtained
by homotoping the original invariant set into its collapsed form. Also,
since any two distinct minimal sets do not have asymptotic orbits in
common, the collapsing only identifies orbits within individual mini-
mal sets. Thus, the “Fundamental Theorem of Templates” extends to
other, aperiodic, minimal sets.
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THEOREM 3. Gien a flow ¢ on a 3-manifold M with a hyper-
bolic chain-recurrent set, the collection of minimal sets is in bijective
correspondence with the collection of minimal sets of the corresponding
template(s). And, for any pair of minimal sets of minimal block growth
in the same component of the chain recurrent set of ¢, the Smith nor-
mal form of the linking homomorphism is the same as the Smith normal
form of the linking homomorphism of the corresponding minimal sets
in the template model.

All previous work on template theory has focused on the study of
the periodic orbits. This is the first paper to examine aperiodic minimal
sets.

6. Sturmian Links in the Lorenz Template

Now we apply the theory to calculate linking matrices for mini-
mal sets of minimal block growth in the Lorenz template, focusing on
Sturmian minimal sets. First we develop a convenient way of describ-
ing tubular neighborhoods in the template. It is to be recalled that
each , has two asymptotic orbits corresponding to 0" and 0~ whose
forward orbits are eventually identified in the template. However, by
Theorem 3, the linking for the collapsed minimal sets in the template
S, and the original are the same. Hereafter, we shall only consider the
collapsed minimal sets as they occur within the template.

DEFINITION 1. For a given word w = wqy---wy_1, let [w] be the
cylindrical w-neighborhood given by the smallest closed segment of the
branch line containing all words starting with w together with the for-
ward orbit of all such points up to and including the first return to the
branch line.

DEFINITION 2. Given a minimal set or word X in a shift, L, (X)
denotes the collection of words of length n occurring in X.

This allows us to define the following sequence of neighborhoods of
the suspended Sturmian minimal set S, in the template.

DEFINITION 3. Given ann € {1,2,...}, let
Us € 0{[w] |w e £a ()}

Then N, UY = S,. The linking of S, and Sz can then be measured
by finding an n for which U% and U? are disjoint and then measuring
the linking of these neighborhoods, which is possible since S, and Sg
are compact and disjoint. The computer plots that follow illustrate the
neighborhoods U$' for various S,, which then allows a calculation of
the linking.
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EXAMPLE 1. Figure 2 is an overlay of Si9-1/s (black) and Sg-1/3
(gray). The Smith normal form of the linking of these two minimal

10
0 0}'

EXAMPLE 2. The orbit 00101 is a trefoil knot. Let oy = 372/3
and ay = 1172, Then from Figure 8 we obtain a linking matriz
A(00101, S,,) with Smith normal form [1,0]. In general the linking
between a closed orbit and a Sturmian minimal set can be characterized

by a single number, the least common divisor of the entries in any
linking matriz (vector).

sets is

FIGURE 2. Two Sturmian minimal sets

However, a complete justification of this procedure would involve
showing that the (co)homology of these cylinder neighborhoods are
isomorphic to the (direct) inverse limit of the systems as described in
3. In order to develop an inverse limit representation of S, naturally
related to the o and to justify the linking calculations and to describe
limitations of the linking of Sturmians, we now we bring to bear facts
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FI1GURE 3. Trefoil orbit and S5 2.

particular to Sturmian minimal sets. These properties may be found
in [Fogg| and are listed here for convenience.

Generally, £, (Q,) has n + 1 elements. Thus, exactly one of the
n elements of £, 1 (€2,) can be extended with either a 0 or 1 to form
words in £, (€2,), while all other words are uniquely extended. It
is also known (see, e.g., [Fogg, 6.6.19]) that £, (£2,) is closed un-
der palindromes, meaning that w;---w, € L, (Q,) if and only if
Wy, w1 € Ly (Qa) -

DEFINITION 4. The unique word in L, () that can be extended
in two ways on the right to form a word in L, () is denoted 12,
while (¢ denotes the unique word in L, () that can be extended in
two ways on the left.

These ambiguously extended words can be identified with the help
of the two asymptotic sequences:
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0:{20 = 05070507 -+ =0lugus--- and
0,59 = 05070505 - =10uqus---

Then iugug - --u, for i € {0,1} are both in £, (Q,), implying that
ugug - U, = Co_, and that r7_, is the palindrome of ¢¢_;. In the
2Ui

7 )
two asymptotic orbits merge on the branch line, by the coincidence of
the terminus of the two cylinders [if$], ¢ = 1,2 at the initial part of
the cylinder [¢2]. One can also see that exactly one cylinder set has
a terminus coinciding with the initial part of two cylinders, seen as a
splitting: [rg] feeds into [r§i], for i = 1, 2.

For any given «, £, (€2,) = 3, and an examination of the sequences
0" and 0~ reveals that {01,10} C £, (€,). Thus, the following notion
is well-defined.

DEFINITION 5. A Sturmian minimal set ), or one of its elements
is of type 0 or of type 1 according as 00 € Ly (2) or 11 € L5 (Qy),
denoted 7 (€2y) = 0 or 1 accordingly.

DEFINITION 6. For i = 0,1 let o; be the substitution on € induced
by the function of {0,1}

computer plots, one can detect the wedge point Y .-, where the

o; (1) =d;0; (') = i'i

where i =1 —1i mod 2. That is,
ag; (< L9 1. 29X ... >) = < .. 0 (ZU_Q) ag; (ZE‘_l) .0; (ZEU) o; (l‘l) e > .

DEFINITION 7. Foru € Q, of typei € {0,1}, let ¢ (u) be the unique
v € Q with either o; (v) =u or o (o; (v)) = u.
DEFINITION 8. The additive coding sequence of {2, is the sequence
(T (6" (u))nZo
for any u € €Q,.
DEFINITION 9. If the additive coding sequence of (), is written
%1% 0% ...

where ag > 0 and a; > 1 for ¢ > 0 denote the number of consecutive
0’s (i even) or 1’s (i odd) occurring in the corresponding portion of the
additive coding sequence, then the sequence

(%)i’io

s the multiplicative coding sequence.
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THEOREM 4. The multiplicative coding sequence (a;)iy of Qg is
equivalent to the continued fraction expansion of «; i.e., the continued
fraction expansion of a and (a;);2, have a common tail [Fogg, 6.4.23].

We now describe a way of collapsing the cylindrical neighborhoods
in such a way as to obtain a natural inverse limit representation of
the S,. Similar constructions provide a systematic way of calculating
the linking matrix, yielding very general descriptions of the linking of
different types of Sturmians.

By identifying to a point all points within the cylinder [0] that are in
the same suspension flow time from the branch line and similarly for [1],
we obtain S'V S! = X; with the branch line (which corresponds to the
terminus of both [0] and [1]) mapping to the wedge point and each of
the cylinders yielding one of the circles. At the same time this provides
a projection of S, to X,. We assume now without loss of generality that
Sa is of type 0. The neighborhood U§ has three cylinders: [00], [10] and
[01]. As indicated in Figure 6, we can find a subtemplate of the original
Lorenz template, where this subtemplate has an extra full twist on the
right, 1 side. In the terminology of [GHS], the subtemplate is of type
L(0,2), just as the subtemplate in [GHS, 2.4.7].

We now form a wedge of two circles X; in much the same way. We
identify to a point all points within the cylinder [00] that are in the
same suspension flow time from the branch line. Since 11 is not an
allowed word for a type 0 Sturmian, there are two cases: (a) [r$] = [00]
or (b) [r$] = [10]. In case (a), this process identifies the initial segment
of the cylinders [00] and [01] to a single point. Then we apply a similar
process to the cylinders [01] and [10]. In case (b) we see that the
cylinder leading from [10] feeds into the same pair of cylinders [00]
and [01]. This identification then leads to a wedge of two circles in
either case: one circle corresponding to the cylinder [00] and the other

1
corresponding to [01] and [10]. In either case, the initial segment [0, gl

along the original branch line corresponds to the wedge point. Also,
we can see that the inclusion of the uncollapsed cylinders on this level
into the preceding level naturally induces a map f; : X; — X, that
. 11
can be represented by the matrix J o 0 1
map induces an isomorphism of (co)homology and an isomorphism of
fundamental groups.
This subtemplate, has a natural symbolic representation where the

) . Notice that this

1
portion of the original branch line corresponding to [0, 5] is recoded as
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0 and the portion corresponding to 9’3 is recoded as 1, as indicated

in Figure 6. The symbolic representation of the points of the original
Sturmian with respect to this new coding corresponds to the sequences
in ¢ (2,) as described in Definition 8. It is important to note that the
subshift corresponding to the recoding of the original Sturmian is again
Sturmian.

Now we treat this subtemplate and the original minimal set within
this subtemplate just as we did the original template. The recoded
Sturmian is of type 0 or 1 according as the original Sturmian has addi-
tive coding sequence beginning with 00 or 01. See Figure 7 for a picture
of the subsubtemplate corresponding to the 01 case. In either case, af-
ter identifying points in the same way as before, we are led to a wedge
of two circles Xy and a map fy : Xy — X represented by the matrix
J or its transpose J!, according as we are in the 00 or 01 case.

Repeating this process iteratively, we obtain an inverse sequence
(X, f;) with inverse limit lim (Xj;, f;) homeomorphic to S, since the

cross-sectional diameter of the cylinders goes to 0 as ¢ — oo, as can
be seen by recalling that any cylinder feeds into at most two cylinders.
Thus, for any given € > 0, for sufficiently large ¢ the projection S, —
X, is an e-map. Notice that the bonding maps of both types induce
isomorphisms of fundamental groups and (co)homology.

Notice the similarity of this inverse limit representation with that
found in [BaW]. The number of bonding maps in a row of the form .J or
J1 is determined by the multiplicative coding sequence for v and thus is
determined by the continued fraction expansion of o by Theorem 4. It
follows that if a and 3 have continued fraction expansions with a com-
mon tail, then the corresponding S, and Sz are homeomorphic. This
and its converse are shown in [BaW],[Fo] for the uncollapsed Denjoy
minimal sets D, and Dg. For the purposes of topologically classifying
the suspension of Sturmian minimal sets, only the tail ends of the con-
tinued fraction expansion are relevant. However, we shall soon see that
only the beginnings of the inverse limit expansions are relevant for the
linking. To determine the linking of two Sturmians Sy and S; with
additive coding sequences (o;):, and (8;);°,, with a; = 3;, i < k and
Qgt1 # Pra1, we take subtemplates of type «q, then of type ay, ..., ak.
Then the recoded Sturmians will be of different types. In principle, as
will become evident below, this then allows us to calculate the linking
matrix.

The first proposition foreshadows the style of the arguments to
follow and is of independent interest.
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PROPOSITION 1. Let v be the periodic orbit for (01)°. Let S, be
any Sturmian minimal set. Then

ASa,7) = 1 0].

Proor. Without loss of generality suppose S, is of type 0. Recall

that we parameterize the branch line of the Lorenz template from left

to right as the closed unit interval [0,1]. Let p “on [0, 3], with

associated sequence 010101... and let ¢ dof v N [%, 1], with associated

sequence 101010.... Since any 1 in the sequence for a point of S, along
the branch line is followed by a 0, any point of S, N[0, %] is to the left
of p and any point of S, N [%, 1] is to the left of q. Consider the first
subtemplate neighborhood for S, as described above, with one “tube”
corresponding to the cylinder [00] and the other to [01] together with
[10]. The portion of S, in the [00] tube and its first return to the
branch line is entirely to the left of v. Thus, it does not link at all with
7v, and so A(7v,S) ~ [n,0], with the n corresponding to the linking of
the portion of S, in [01],[10] tube. Since v and S, satisfy the branch
line ordering described above, we can choose the tubular neighborhood
corresponding to [01],[10] to be entirely to the left (at the branch
line) of . This tube then has only one over-crossing with . Thus,
A(7v,S) =~ [1,0]. See Figure 4 for a typical example. O

O s

FIGURE 4. A Sturmian and the (01)* orbit

There seems to be no such rigidity in the linking of other minimal
sets and 7y or between Sturmian minimal sets and other periodic orbits.
The periodic orbit of (001) and S, 5 have linking matrix with nor-

mal form [1 O], while the same periodic orbit and S 5/5 have linking
matrix with normal form [2 O].
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The next few propositions and examples explore the 2 x 2 linking
matrix of pairs of Sturmian minimal sets. Computer plots are helpful,
but the images quickly become impossible to resolve visually when two
Sturmians share the first few terms in their additive sequence. (An
illustration of why we should not let our students become too dependent
on graphing calculators.)

PROPOSITION 2. Let Sy and S; be Sturmian minimal sets of type
0 and 1 respectively. Then

A(So, 51) ~ [(1) 8] .

PROOF. Since points of S; N[0, 1] have no consecutive 0’s, as in
Proposition 1 the left most point of Sy N [0, ] is to the right of the
right most point of Sy N [0, 3] and the left most point of S; N [2,1] is
to the right of the right most point of Sy N [3,1]. A typical example
is illustrated in Figure 5. Then we can measure the linking of Sy and
S} by examining the neighborhood corresponding to the [00] tube and
[01],[10] tube of Sy and the [11] tube and [10],[01] tube of S; since all
portions of the minimal sets within the [01],[10] tubes are on opposite
cross-sectional ends. Then the [00] tube of Sy does not link at all with
Sy. Similarly, the [11] tube of S} does not link with Sy. The [01],[10]

tube of Sy crosses over the the [10],[01] tube of S; once, and so

10
)\(51,52) =~ |:0 0:| .

FIGURE 5. Sturmians of type 0 and 1
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Each of the following propositions naturally yields another propo-
sition obtained by reversing the roles of 0 and 1.

COROLLARY 1. If we replace the Lorenz template L (0,0) in Propo-
sition 2 with L£(0,2n), n > 0, then the same conclusion holds.

Proor. With an even number of twists the lexicographical ordering
of the branch line and returns to it works as before. Now the long tube
of Sy crosses over the [11] tube of S; n times, and it crosses over the
long tube of S; n+ 1 times. The [00] tube of Sy still misses S;. Thus,

no 0] 1o
A(SO’Sl)”{nH 0]%{0 0}'
O

PrRoOPOSITION 3. Fori=0,1 let S; be Sturmian minimal sets with
additive coding sequences beginning with m; consecutive 0’s satisfying

mgo > mq > 0. That is, the additive coding sequences are of the form
0™i1.... Then

10
)\(50,51) =~ |:0 O] .

PROOF. As in the formation of the inverse sequence, we iteratively
form m; type 0 subtemplates of the original template. This is then a
template of type £ (0,2m;). On this subtemplate, the recoded Stur-
mian systems for Sy and S; are of type 0 and type 1, respectively.
Thus, by Corollary 1 we obtain the desired result. 0

PROPOSITION 4. Let Sy and Sy be Sturmian minimal sets whose
additive recoding sequences start with 010 and 011 respectively. Then

1 0
)\(50,51) ~ |:0 0:| .

PRroOOF. It is now difficult to visualize Sy and S; distinctly on the
Lorenz template. As indicated in Figure 6 and Figure 7, we first take
a type 0 and then a type 1 subtemplate. On this subsubtemplate,
Sp is of type 0 and S; is of type 1. Then Figure 8 shows a choice of
tubes systems, where the [00] and [01] cylinders are conflated below the
branch line for the ease of computer drawing. (This has no effect on
the linking calculation.) In this and the following figure, a small box
with the number N in it represents N half-twists of the band inside
the box. This yields:

13 1o
Ao, 51) ~ [2 6] ~ [0 0]'
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FI1GURE 6. L(0,2)

PROPOSITION 5. Let Sy and Sy be Sturmian minimal sets whose
additive recoding sequences start with 0100 and 0101 respectively. Then

0 0

PROOF. A further iteration of the procedure used in Proposition 4
yields the subsubsubtemplate and tube systems shown in Figure 6. (In
this figure and the next, a box covering two bands with a number M
represents M band crossings, left over right, with no twisting.) Thus,

A(S1, Sy) ~ B 155] - {(1) 8} '

The reader may be wondering if the linking matrix for any pair of

A(Sh, 55) = {1 0] .

U

Sturmian minimal sets is [(1) 8] Indeed, for a time we had hoped to

prove that this was the case. However, the following shows this is not
SO.
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FIGURE 7
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FiGUure 8. Tubular Neighborhoods

PROPOSITION 6. Let Sy and Sy be Sturmian minimal sets whose
additive recoding sequences start with 0110 and 0111 respectively. Then

10
)\(51,52) =~ |:0 1:| .
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/9/’[;\:/ n
T
4 [ | 1
] |\1
2 [ | 1
A k/'\/\/'\)l U

FiGure 9. Template for Proposition 5

Proor. A further iteration of the procedure used in Proposition 4
yields the template and tube systems shown in Figure 6. Thus,

A(S1, S3) & B 171] B [(1) ﬂ '
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NN N

USSR SN U

FiGure 10. Template for Proposition 6

Non-Sturmian minimal sets of minimal block growth are much more
flexible in their linking behavior. For example, if one applies the sub-
stitution 6 : 0 +% 0100; 1 +% 0011 to the Fibonacci substitution minimal
set, one obtains a minimal set M of minimal block growth. The linking
matrix of the suspension of M and S, /5 has Smith normal form

b

The apparent simplicity of the Smith normal forms for linking ma-
trices of pairs of Sturmian minimal sets in the Lorenz template is sur-
prising and intriguing.
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Question. Given the additive coding sequence of two Sturmian min-
imal sets, what is the Smith normal form of the matrix representing
their linking?

While we do not currently have an answer to this question, our
procedure for taking subtemplates of the appropriate type until one
reaches a subtempate for which the two minimal sets are of different
types does lead to the following general observation.

THEOREM 5. Any two Sturmian minimal sets in the Lorenz tem-
plate have a linking matriz with non-zero Smith normal form and so
are essentially linked.
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