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PERIODIC PRIME KNOTS AND TOPOLOGICALLY
TRANSITIVE FLOWS ON 3-MANIFOLDS

WILLIAM BASENER AND MICHAEL C. SULLIVAN

ABSTRACT. Suppose that ¢ is a nonsingular (fixed point free) C! flow on a
smooth closed 3-dimensional manifold M with Ho(M) = 0. Suppose that ¢
has a dense orbit. We show that there exists an open dense set N C M such
that any knotted periodic orbit which intersects N is a nontrivial prime knot.

1. INTRODUCTION

We need some standard terminology from knot theory. For presentation of knots
in dynamical systems see the book [5] by Ghrist, Holmes, and Sullivan. Let I' C M
denote a knot. By this we mean that I' is the image of a continuous injective
function from the circle to a 3-dimensional manifold M. We shall say that T is a
trivial knot if it bounds a disk. We say that I is a composite knot if there exists a
2-sphere S in M such that SNT is two points, z and w, and the intersection of each
component of I' — {z, w} together with a segment in S from z to w is a nontrivial
knot. We shall say that T is a prime knot if it is neither composite or trivial. When
the knot is of class C! and

©:Tx {(z,y) €R%a® +y* <1} » M

is a C'! embedding such that, for all z € T, ©((x,0,0)) = x, the concepts of trivial,
composite, and prime extend to the solid torus which is the image of ©.

Our main theorem is Theorem 1. As a consequence of this theorem, for any
topologically transitive C* nonsingular flow on S3, there is an open dense set N C
S3 such that any periodic orbit intersecting N is a nontrivial prime knot.

THEOREM 1. Let M be a smooth closed (compact, no boundary) 3-dimensional
manifold with Ho(M) = 0. Suppose ¢ is a C* nonsingular (fived point free) topo-
logically transitive (p has a dense orbit) flow on M. There exists an open dense
set N C M such that if is v a periodic orbit with yN N # & then v is a nontrivial
prime knot.

REMARK: It is possible that some periodic orbits are trivial. As an example,
Harrison and Pugh in [7] define a nonsingular flow on S? with a a dense orbit by
Birkhoff suspending Katok diffeomorphisms of a disk. The flow has a dense orbit
but the diffeomorphism of the disk has a fixed point which corresponds to a trivial
knot in the flow.

For the rest of this paper, let M be a smooth closed 3-dimensional manifold with
Hy(M) =0, and let ¢ be a C' nonsingular topologically transitive flow on M.
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Our motivation for this result is a Theorem 2 below, which appears as Theorem 1
from [3]. Let p be any point in the dense orbit of ¢. Let D be a compact disk
containing p which is transverse to the flow. That is, D is a compact disk and there
is an open disk E containing D that is transverse to the flow. We call such a disk a
transverse disk, and if D is in addition a global cross section we will call it a global
transverse disk. Let ¢ € D be a point in the forward orbit of p and let ﬁ& denote
the orbit segment beginning at p and ending g. Let [pg] denote a compact segment
in D — p§ N D connecting p to ¢. Let T = p§ U [pq].

THEOREM 2. If q is close enough to p then I is a nontrivial prime knot. The
result holds in the case Ha(M) # 0 if the flow has no periodic orbits.

For a point x € M we use 7, to denote the orbit through . Theorem 3 below
is proven as Theorem 2.1 in [6]. We use it to prove a periodic orbit forms a prime
knot under our specified conditions.

THEOREM 3. A solid torus T contained in M is a (nontrivial) prime knot if
there exists a transversely orientable bidimensional C? foliation F onV = M — T
such that:

(1) F is transversal to V. Moreover, every leaf of F has nonempty intersection
with OV .

(2) The one-dimensional foliation F|sy on OV contains a meridian o as a leaf.
Moreover, F|oy contains no Reeb components.

(3) If F has a compact leaf K, there are finitely many discs D1, D, ..., Dy
contained in T such that the union of K with U_, D; is a torus L satisfying
LNaT = KNoT = U;_,0D;

(4) Let B = {(z,y) € R?|1 < 22+ 4% < 9andz < 2} and decompose its
boundary OB as the union of By = {(z,y) € Blz?+y? = 1}, B, = {(z,y) €
B|z = 2} and B; = {(z,y) € B|z? +y®> = 9}. There exists an embedding
A: B x[-1,1] = V such that

(a) A:(B1UB3)x[—1,1] is precisely the intersection of OV with the image
Im(X\) of A.

(b) The complement of \(By x (=1/2,1/2)) in 0V is a union of meridians
of OV which are leaves of F|oy.

(c) For all p € B, the segments A({p} x [-1,1]) are transversal to F.

(d) Let H be a half straight line of R? starting at the origin. Then, for all
z € [-1,1], M((H N B) x {2}) is contained in a leaf of F. Also, for all
z € [-1,-1/2)U (1/2,1], A(B x {z}) is a plaque of F.

Proof. (of Theorem 1)

Let p be any point in the dense orbit. We will prove that there is a neighborhood
N, of p such that if a € N, and v, is periodic then +, is a nontrivial prime knot.
Once this is proven for every p in the dense orbit, the set N = U,N,, is the open
(it is the union of open sets) dense (it contains the dense orbit) set required in the
theorem.

The idea of the proof is simple. In [3], Theorem 2 is proven by showing that
there exists a solid torus neighborhood of T' = [pg] U p§ and a foliation satisfying
the criteria of Theorem 3 proving that this solid torus is a prime knot, and hence
I" is a prime knot. We show that for any periodic point a in a small neighborhood
of p, this foliation can be moved by a small amount so that a torus neighborhood
of 7y, is a prime knot, and hence that =, itself is a prime knot.
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Let D be a global transverse disk containing p. In [2] it is proven that any non-
singular C' flow on a manifold of dimension greater than 2 has a global transverse
disk. We can assume that the disk contains p, for if D is any global transverse disk
and t, is any time such that ¢(t,,p) € D then, ¢(—t,, D) is a global transverse
disk containing p.

It is proven in [3] that there is a disk D; C D containing p, a foliation F on
M, a solid torus neighborhood T of p§ U [pg], and an imbedding A satisfying the
conditions of Theorem 3, proving that T is a prime solid torus. (See Figure 3 of
[3] and Figure 1.) This can be chosen so that the embedding A : B — M has its
image in a flowbox W whose base is Dy, whose top is a disk U C D, and such that
WND=D;UU and D; NU = &. Moreover, we can assume that T'N W is a pair
of cylindrical flow boxes T} and T5.
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FIGURE 1. The imbedding A(B) inside the flowbox W.

Let V denote the interior of the base of T;. Note that V' is an open disk. Let a be
any periodic point in V. Then the orbit beginning at a follows the orbit beginning
at p through the cylinders 77 and T5. Define p;, po, and p3 by

p1 = @(t1,p), where t; = min{t > 0: ¢(t,p) € U}
p2 = @(ta,p), where to = min{t > t; : p(t,p) € D1}
p3 = ¢(t3,p), where t3 = min{t > t2 : p(t,p) € U}
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Define a1, as, and az in the same manner. (See Figure 1.) Perturb the foliation
F from [3] so that it is defined on M — aa; instead of M — pp]. Specifically, there
is a homeomorphism ¢ of 77 that fixes the vertical boundary, is constant on the
vertical coordinate, and takes aaj to m . Define the new foliation F' to be equal
to F on M — Ty and to be the pullback by ¢ of F on T;. Then define T' to be a
small tubular neighborhood of ~,.

By reducing the size of D; so that v, N D; is two points a and as if necessary,
if T' is chosen small enough (with 7" a torus neighborhood of v,) then T' N W
has two components. Let T} be the component containing aaj and T} be the other
component. As in [3], we can then define A : B — B satisfying the criteria of
Theorem 3 and the solid torus T" is a prime knot. Hence the periodic orbit through
a is a prime knot.

Let € > 0 and define N, = ¢((—¢,€),V). If € is small enough then N, is an
open neighborhood of p and any periodic orbit which intersects IV, intersects V'
and hence is a nontrivial prime knot. a

We conclude with two questions:

e Under the assumptions of Theorem 1, is it true that every orbit is either
prime or trivial?
e Can the assumption that Hy(M) = 0 be removed?
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