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EQUIVARIANT FLOW EQUIVALENCE FOR SHIFTSOF FINITE TYPE, BY MATRIX EQUIVALENCE OVERGROUP RINGSMIKE BOYLE AND MICHAEL C. SULLIVANAbstract. Let G be a �nite group. We classify G-equivariantow equivalence of nontrivial irreducible shifts of �nite type interms of (i) elementary equivalence of matrices over ZG and (ii)the conjugacy class in ZG of the group of G-weights of cycles basedat a �xed vertex. In the case G = Z=2, we have the classi�cationfor twistwise ow equivalence. We include some algebraic resultsand examples related to the determination of E(ZG) equivalence,which involves K1(ZG). Contents1. Introduction 12. G-ow equivalence and SFTs 33. Positive equivalence 94. The weight class 125. Equivalence through very positive matrices 156. The main results 217. Twistwise ow equivalence 258. E(ZG)-equivalence 279. E(ZG)-equivalence of injective matrices 32References 361. IntroductionLet G denote a �nite group. In this paper, by a G shift of �nitetype (G-SFT) we will mean an SFT together with a continuous G-action which commutes with the shift, where in addition the action isDate: November 30, 2004.2000 Mathematics Subject Classi�cation. Primary: 37B10; Secondary: 15A21,15A23, 15A33, 15A48, 19B28, 19M05, 20C05, 37D20, 37C80.Key words and phrases. ow equivalence, shift of �nite type, skew product, equi-variant, K-theory, matrix equivalence, group ring, Smale ows, Markov.1



2 BOYLE AND SULLIVANfree and the SFT is irreducible and is nontrivial (contains more thanone orbit). We will classify these systems up to G-ow equivalence.This equivalence relation can be described in terms of G-SFTs, skewproducts or suspension ows (Sec 2). For example, two G-SFTs areG-ow equivalent if and only if there exists an orientation preservinghomeomorphism between their mapping tori which commutes with theinduced G actions.A G-SFT can be presented by a �nite square matrix A over Z+G, thepositive cone of the integral group ring ZG [30]. Let (I � A)1 denotethe N�N matrix whose upper left corner is I�A and which otherwiseequals the in�nite identity matrix. Let E(ZG) be the group of N � Nmatrices generated by basic elementary matrices (those which di�erfrom I in at most one entry, which must be o�-diagonal) over ZG. LetW (A) denote the weight class of A (4.1): the conjugacy class inG of thegroup of weights of loops based at a �xed vertex. We show the weightclass is an invariant of G-ow equivalence. When W (A) =W (B) = G,we will show that G-SFTs presented by matrices A and B are G-owequivalent if and only if there are matrices U; V in E(ZG) such thatU(I � A)1V = (I � B)1 (Thm. 6.1). The complete classi�cation upto G-ow equivalence, which allows the possibility W (A) $ G, has amore complicated statement (Thm. 6.4).In the case that G is trivial, our classi�cation reduces to the fa-miliar classi�cation of Franks [15] by cokernel group and determinant.When G is nontrivial, the classi�cation up to E(ZG) is much more dif-�cult and interesting, and remains an open problem. We consider thesealgebraic issues in Sections 8 and 9. In Section 8, we give the mod-est requisite K-theory terminology and background, and for the caseG = Z=2 we give a constructive partial result (Theorem 8.1) and somevery concrete illustrative examples (8.6, 8.7) which indicate how theZG equivalence problem becomes more diÆcult when G is nontrivial(i.e. ZG 6= Z). In Section 9, we consider E(ZG) equivalence of injectivematrices. In this case, GL(ZG) equivalence amounts to isomorphismof cokernel modules, and the re�nement to E(ZG) equivalence is clas-si�ed by K1(ZG)=H for an associated subgroup H of SK1(ZG). As oneconsequence, if G is abelian and det(I�A) is not a zero divisor in ZG,then det(I � A) determines the G-ow equivalence class up to �nitelymany possibilities (Theorem 6.5). Some of the algebra here works moregenerally and in particular has a consequence for invariants of SFTswith Markov measures (9.10,9.11).Algebraic invariants over Z for isomorphism and ow equivalenceof SFTs are paralleled by the algebraic invariants over ZG for G-equivariant isomorphism and ow equivalence of G-SFTs. The �rst



EQUIVARIANT FLOW EQUIVALENCE 3key step, classi�cation of G-SFTs by strong shift equivalence over Z+Gof de�ning matrices, is due to Parry (Prop. 2.7.1). We use a system-atic conversion [9, Thm. 7.2] from the realm of strong shift equiva-lence to the realm of \positive K-theory" to establish necessary matrixconditions for G-ow equivalence. We generalize existing positive K-theory constructions [7] to establish suÆcient conditions in the caseW (A) = W (B) = G. To understand the reduction to this case, wedraw on ideas of Holt, Parry and Schmidt [29, 31, 36].Among motivations for studying G-SFTs, we mention three. First,there are two systematic frameworks for classifying systems relatedto SFTs: the ideas around strong shift equivalence growing out ofWilliams paper [42], and the ideas of positive K-theory growing outof the Kim-Roush-Wagoner papers [22]. (See [5, 6, 9].) The G-FEclassi�cation �lls in another piece of both frameworks. Second, in thestudy of \symmetric chaos" [12], G-SFTs arise as important tools forthe study of equivariant basic sets [11, 13], and can equal such sets. (Weemphasize that we are not addressing the important but quite di�erentcase of nonfree actions.) Finally (and in fact our initial motivation), weare interested in twistwise ow equivalence, which arose [37, 38, 39] inthe study of basic sets of Smale ows on 3-manifolds. Twistwise owequivalence amounts to equivariant ow equivalence of G-SFTs withG = Z=2, so our results include a classi�cation up to twistwise owequivalence, along with constructive techniques resolving some openquestions (Sec. 7).We thank Bob Guralnick, Bob Fitzgerald, Bill Parry (especially, see2.7.1 and 9.10), Jonathan Rosenberg (especially, see 9.7) and KlausSchmidt for extremely helpful discussions. We are also grateful to theanonymous referee for many detailed comments which improved theexposition. 2. G-flow equivalence and SFTsIn this section we give background for ow equivalence, G-ows andG-SFTs.2.1. Notational conventions. Except in part of Section 9, G denotesa �nite group. All our G actions are assumed to be continuous (each gacts by a homeomorphism), from the right ((x; g) 7! xg), and free (ifg �xes any x then g is the identity in G). Here are other notations.� Let x = Pg2G ngg be an element of ZG. We de�ne �h(x) =xh = nh for each h 2 G. If xg > 0, we say g is a summand of x.� For a and b in ZG we say a� b if �g(a) > �g(b) for each g 2 G,and a > b if �g(a) � �g(b) for each g 2 G and �g(a) > �g(b) for



4 BOYLE AND SULLIVANat least one g 2 G. We de�ne � and < similarly and extendthese notations to matrices if they hold entry-by-entry.� Let A be matrix over ZG. We say A is very positive if A � 0and A is strictly positive if A > 0.� The augmentation map � : ZG! Z sends an elementPngg toPng. Applying � entry-wise to a matrix A with entries in ZGproduces a matrix �(A) with entries in Z.� In this paper, a ring means a ring with 1. LetR be a ring. ThenE(R) has already been de�ned; E(n;R) is de�ned likewise, forn�n rather than N �N matrices. See the beginning of Section8 for more.2.2. Flows and sections. Let Y be a compact metrizable space. Inthis paper, a ow on Y will be an R-action on Y , given by a continuousmap  : R � Y ! Y , where  is locally injective (the ow has no restpoints). Two ows are topologically conjugate, or conjugate, if there is ahomeomorphism intertwining their R-actions. Two ows are equivalentif there is a homeomorphism between their domains taking R-orbits toR-orbits and preserving orientation (i.e. respecting the direction of theow).A compact subset C of Y is a cross section of the ow if the restrictionof  to R � C is a surjective local homeomorphism. (In this case, thereturn map to C is a well de�ned homeomorphism R : C ! C; thereturn time r is a continuous function on C; and the given ow istopologically conjugate to the \ow under the function" built from Rand r.) We say that R is a section to the ow. Two homeomorphismsare ow equivalent if they are topologically conjugate to sections ofa common ow. (Homeomorphisms f; g are topologically conjugate ifthere is a homeomorphism h such that hf = gh.) Sections of two owsare ow equivalent if and only if the ows are equivalent.In the case that T1 and T2 are homeomorphisms of zero dimensionalcompact metrizable spaces, Parry and Sullivan [32] showed that T1 andT2 are ow equivalent if and only if there is a third homeomorphismT such that there are discrete towers T 01 and T 02 over T which aretopologically conjugate respectively to T1 and T2. (A discrete toweris a homeomorphism (X 0; T 0) built from (X; T ) by partitioning X into�nitely many closed open sets Ci, picking for each i a positive integerni, making X 0 the disjoint union of the sets Ci � fjg, 1 � j � ni, andfor x 2 Ci setting T 0(x; k) = (x; k + 1) when k < ni, and T 0(x; ni) =(Tx; 1). Here (X; T ) is called the base of the tower.)2.3. G-ows and G-sections. By a G-ow we mean a ow togetherwith a continuous free right G-action which commutes with the ow



EQUIVARIANT FLOW EQUIVALENCE 5(t(yg) = (ty)g). By a G-homeomorphism we mean a homeomorphismtogether with a continuous free right G-action with which it com-mutes. Two G-ows are G-conjugate if the ows are topologicallyconjugate by a map which intertwines the G-actions. Two G-owsare G-equivalent if the ows are equivalent by a map which intertwinesthe G-actions (f(xg) = (fx)g). A G-cross section to a G-ow is across section C which is G-invariant. Then there is an induced G-action on C with which R becomes a G-homeomorphism, and we saythe G-homeomorphism R is a G-section to the G-ow. A discreteG-tower (X 0; T 0) over a G-homeomorphism (X; T ) is a discrete towerover (X; T ), together with a G-action (x; j) 7! (xg; j) (in the notationabove) induced by the G action x 7! xg for (X; T ).The standard theory carries over to the G setting. We call two G-homeomorphisms G-ow equivalent if they are conjugate to G-sectionsof the same G-ow. G-sections of two G-ows are G-ow equivalent ifand only if the ows are G-equivalent. In the case that T1 and T2 areG-homeomorphisms of zero dimensional compact metrizable spaces,T1 and T2 are G-ow equivalent if and only if there is a third G-homeomorphism T such that there are discrete G-towers T 01 and T 02over T which are G-conjugate respectively to T1 and T2.2.4. Skew products. Let T : X ! X be a homeomorphism, with Xzero dimensional. Let � be a continuous map from X into the �nitegroup G. De�ne a homeomorphism S : X � G ! X � G by the rule(x; h) 7! (T (x); �(x)h). With the natural right G-action on X � G,g : (x; h) 7! (x; hg), S is a G-homeomorphism. S is T n� G, the skewproduct over T built from the skewing function � .Conversely, suppose S : X ! X is a G-homeomorphism, with Xzero dimensional. Let q : X ! X be the map onto the quotient spaceof G-orbits, and let T be the homeomorphism induced by S on X.Because X is zero dimensional and the G action is free, we can �nd aclosed open subset C of X such that fCg : g 2 Gg is a partition of X.Using the homeomorphism qjC, identify X with C. Using the mapsCg ! C � G (xg 7! (x; g)), identify X with C � G. In this notation,q is the standard projection C � G ! C, and the G action on C � Gis h : (x; g) 7! (x; gh). To display the skew product structure, de�ne� : C ! G by setting �(x) = g if S(x) 2 Cg. It follows for x 2 C thatS : (x; e) 7! (T (x); �(x)e). Because S commutes with the G action, weconclude that for any (x; g) we have S : (x; g)! (T (x); �(x)g). So, upto G-conjugacy, every G-homeomorphism of a zero dimensional spaceis a skew product.



6 BOYLE AND SULLIVANFinally, suppose we have aG-homeomorphism T . The givenG-actioninduces a natural G action on the mapping torus Y of T , with respectto which the natural ow on Y is a G-ow, and T is conjugate to theobvious G-section of this ow.2.5. Cocycles. Let T : X ! X be a homeomorphism. We may regarda continuous skewing function � : X ! G as de�ning a cocycle forT . We say two such skewing functions � and � are cohomologous ifthere is another continuous function h from X into G such that forall x in X, �(x) = [h(x)]�1�(x)h(Tx). Such a function h is called atransfer function. It is an easy exercise to verify that two skew productsT1n�G and T2n�G are G-conjugate if and only if there is a topologicalconjugacy � of T1 and T2 such that � Æ � is cohomologous to �.2.6. Shifts of �nite type and matrices over Z+. Here we giveminimal background for shifts of �nite type (SFTs). See the texts[23, 24] for an introduction to SFTs.In this subsection, all matrices will be N � N with entries in Z+ and(except for the identity matrix I) with all but �nitely many entriesequal to zero. (In particular, det (I � A) is well de�ned as a limit of thedeterminants of the principal f1; 2; : : : ; ng�f1; 2; : : : ; ng submatrices.)Given such a matrix A, let GA be the directed graph with vertex setN and with exactly A(i; j) edges from i to j. Let E be the edge setand de�ne �A to be the subset of ZE realized by bi-in�nite paths inGA. With the natural topology, �A is a zero dimensional compactmetrizable space. Let �A : �A ! �A be the shift map, (�A(s))i = si+1.The homeomorphism �A is the edge SFT induced by A. Every SFT istopologically conjugate to some edge SFT.Matrices A and B over a semiring R are strong shift equivalent(SSE) over R if they are connected by a string of elementary movesof the following sort: there are R and S over R such that A = RSand B = SR. A fundamental result in symbolic dynamics is that �Ais topologically conjugate to �B if and only if A is SSE over Z+ to B[42]. Re�ned computable invariants of SSE are known, but it is stillnot known even if SSE over Z+ is decidable.If A = (Aij) and B = 0BBBB@ 0 A11 � � � A1n1 0 � � � 00 A21 � � � A2n... ... ...0 An1 � � � Ann
1CCCCA ;



EQUIVARIANT FLOW EQUIVALENCE 7then we say A and B are connected by a Parry-Sullivan move or a PSmove.It follows from the Parry-Sullivan result described above that SFTs�A and �B are ow equivalent if and only if the matrices A and B can beconnected by SSE and Parry-Sullivan moves [32]. (The Parry-Sullivanmoves allow for building the discrete towers.)An SFT �A is irreducible if for any edges e and f which appear inpoints of �A, there is a path in GA beginning with e and ending withf . When �A and �B are irreducible and nontrivial (not just a singleperiodic orbit), they are ow equivalent if and only if the matricesI �A and I �B are SL(Z)-equivalent. This equivalence is determinedby two simple invariants: the Parry-Sullivan number det(I � A) andthe isomorphism class of the Bowen-Franks group cok(I�A) [32, 4, 15].The Huang classi�cation of reducible SFTs up to ow equivalence ismuch more complicated. (Huang's original arguments are developed in[17, 18, 19, 20] and an almost complete unpublished manuscript, \TheK-web invariant and ow equivalence of reducible shifts of �nite type."A complete alternate development is contained in [6, 8].) In this paper,we only address G-ow equivalence of irreducible SFTs.2.7. Skew products, G-SFTs and matrices over Z+G. By a G-SFT we mean an SFT together with a free G-action with which itcommutes. (Usually \G-SFT" is not restricted to free actions [11,12, 13]; we adopt the restriction only for this paper, where we onlyconsider free actions.) In this subsection, we'll consider presentationsof G-SFTs.Let A be an N�N matrix with entries in Z+G and with all but �nitelymany entries equal to zero. Such a matrix A determines a weighteddirected graph GA as follows. As an unweighted graph, it is the graphG�(A). Recall � is the augmentation map (2.1). If A(i; j) =Pngg thenexactly ng of the edges from i to j are weighted g. Let `(e) denote theweight on an edge e. De�ne a locally constant function �A : ��(A) ! Gby the rule x 7! `(x0). This function then de�nes a skew productover ��(A). This skew product can be presented as an edge SFT withthe graph G constructed as follows. Let the vertex set of G be theproduct of G and the vertex set of G�(A). For each edge e from i toj in G�(A), for each g in G draw an edge from (g; i) to (`(e)g; j): Wewrite SA = ��(A) n �A. To make SA a G-SFT, for each pair of verticesv; v0 of G, we choose an ordering of the edges from v to v0, and then letg in G act by the one block map given by the unique automorphismof G which acts on the vertex set G by (h; j) 7! (hg; j) and which isorder-preserving on edges.



8 BOYLE AND SULLIVANIt is not diÆcult to see that for any locally constant function intoG from a SFT �, there is a matrix A over Z+G and a topologicalconjugacy from � to ��(A) which takes the given function to �A, andtherefore any G skew product over an SFT can be presented as someSA. Moreover, a G-SFT can be presented as a skew product (Sec. 2.4{our assumption of freeness is necessary for this), and it is not diÆcultto see that the base map for this skew product must be SFT in orderfor the skew product to be SFT. Thus all G-SFTs are G-conjugate tothose arising by this construction of SA.Proposition 2.7.1. [30] Let G be a �nite group. The following areequivalent for matrices A and B over Z+G and their associated skewproduct systems SA and SB.(1) A and B are SSE over Z+G.(2) There is a topological conjugacy ' : ��(A) ! ��(B) such that�A � �B Æ '.(3) The G-SFTs SA and SB are G-conjugate.Proof. We will prove (2) =) (1). As shown by Parry [28], the givenconjugacy ' can be given as a string of state splittings from �(A) tosome C followed by the reversal of a string of state splittings from �(B)to C. The SSE's over Z+ which give the splittings are easily adaptedto SSE's over Z+G which reect the corresponding lifting of edge label-ings (we give an example following the proof). In this way, we produceZ+G matrices A0; B0 such that �(A0) = C = �(B0), the skewing func-tions derived from A0 and B0 are the functions lifted from the skewingfunctions de�ned from A and B, and they are cohomologous. If h is acontinuous transfer function giving the cohomology of these functions,then in fact h(x) is determined by the initial vertex of x0 ([29, Lemma9.1] proves this for irreducible SFTs, and the essential ideas of thatproof can be extracted to prove the general case). Therefore there isa diagonal matrix D with D(i; i) = gi 2 G, such that DA0D�1 = B0.The Z+G strong shift equivalence from A0 to DA0D�1 is given by thepair (A0D�1; D). �Above, in restricting to ZG with G �nite, we have not given the mostgeneral statement of Parry's results.Example 2.7.2. Here is the example promised in the preceding proof.Let A = �g hj k + `� over some Z+G. Consider the row splitting of



EQUIVARIANT FLOW EQUIVALENCE 9�(A) de�ned by the elementary SSE�(A) = �1 11 2� = �1 0 10 1 2� 0@1 01 00 11A ;0@1 0 11 0 10 1 21A = 0@1 01 00 11A �1 0 10 1 2� :Then the Z+G SSE which captures the label lifting is simplyA = �g hj k + `� = �g 0 h0 j k + `� 0@1 01 00 11A ;0@g 0 hg 0 h0 j k + `1A = 0@1 01 00 11A �g 0 h0 j k + `� :Remark 2.7.3. The equivalence of (1) and (2) in Prop. 2.7.1, estab-lished by Parry following the related innovation of Parry and Tun-cel for Markov chains [28, 33], is a key step to a proper algebraicapproach to G-SFTs. Otherwise, the facts and constructions aboveare at most minor variations of well known results (see e.g. [13, Sec.3.2],[11, 1, 28, 29]). We also remark that [21] gives a realization resultfor G-SFTs which employs the positive K-theory technique introducedin [22]. 3. Positive equivalenceBelow, we allow a square matrix to be n � n or N � N . In�nitematrices A;B are nonzero in only �nitely many entries. Thus in�nitematrices I�A; I�B equal the in�nite identity matrix except in �nitelymany entries.De�nition 3.1. A square matrix M over Z or ZG is irreducible if itsentries are nonnegative (i.e. in Z+ or Z+G) and for each index pair(i; j) there is an k > 0 with Mk(i; j) > 0. The matrix M is essentiallyirreducible if it has a unique principal submatrix that is irreducible andthat is contained in no larger irreducible principal submatrix. Such asubmatrix is called the irreducible core of M .We consider matrices over ZG. A basic elementary matrix is a matrixof the form Eij(x), which denotes a matrix equal to the identity exceptfor perhaps the o�-diagonal ij entry (so, i 6= j), which is equal tox. Suppose g 2 G, E = Eij(g) and A is a square matrix over Z+G



10 BOYLE AND SULLIVANsuch that g is a summand of A(i; j). Then we say that each of theequivalences(E; I) : (I � A)! E(I � A) ; (E�1; I) : E(I � A)! (I � A) ;(I; E) : (I � A)! (I � A)E ; (I; E�1) : (I � A)E ! (I � A)is a basic positive equivalence over ZG. Here the equivalences (E; I)and (I; E) are forward basic equivalences while (E�1; I) and (I; E�1)are backward basic equivalences.De�nition 3.2. An equivalence (U; V ) : (I � A) ! (I � B) is apositive equivalence if it is a composition of basic positive equivalences.When there exists a positive equivalence from I�A to I�B, we writeI � A +� I � B.The e�ect of a basic positive equivalence on the induced graph isdiscussed in detail in [7, page 278] when G is trivial. Our situationis entirely analogous. Suppose (E; I) : (I � A) ! (I � A0) is a basicforward positive equivalence, E = Eij(g). Then A and A0 agree exceptperhaps in row i, whereA0(i; k) = A(i; k) + gA(j; k) if k 6= j ; andA0(i; j) = A(i; j) + gA(j; j)� g :Consequently the weighted graph G 0 associated to A0 is constructedfrom the weighted graph G for A as follows. An edge e from i to j withweight g is deleted from G. For each G-edge f beginning at j, add anadditional edge (called [ef ]) from i to k with weight gh (where h is theweight of f and k is the terminal vertex of f). See Figure 1. (There,G-labels are suppressed for simplicity. If the labels of the edges e; f 0; f 00are g; h0; h00, then the labels of the new edges [ef 0]; [ef 00] are gh0; gh00.)
76540123k
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76540123k
/.-,()*+i [ef 0] //
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� f 0SSFigure 1. A basic positive equivalence.The correspondence of the graphs G;G 0 induces a bijection of �A-orbits and �A0-orbits,: : : befcegfeffd : : : $ : : : b[ef ]cegf [ef ]fd : : :



EQUIVARIANT FLOW EQUIVALENCE 11This bijection of orbits does not arise from a bijection of points for theSFTs, but it does correspond to a homeomorphism of their mappingtori (after changing time by a factor of 2 over the clopen sets fx :x0 = [ef ]g, the new ow is conjugate to the old one), which lifts to aG-equivariant equivalence of the mapping tori ows for the respectiveskew products.The bijection of orbits above respects �niteness of orbits and the in-duced homeomorphism of mapping tori above respects respects densityof orbits. Consequently, positive equivalence respects essential irre-ducibility and nontriviality (in�nite number of orbits). Positive equiv-alence need not respect the size of the irreducible core of a presentingmatrix.Theorem 3.3. Let G be a �nite group, and let A and B be squarematrices over Z+G. Then I �A +� I �B if and only if SA and SB areG-ow equivalent.Proof. We explained above that I � A +� I � B implies the G-owequivalence of SA and SB. Now suppose SA and SB are G-ow equiv-alent.First suppose SA and SB are G-conjugate. Then by Proposition2.7.1, B and A are SSE over Z+G. In the polynomial setting of [9],the G-weighted SFTs de�ned by A, B can be presented by polynomialmatrices I � tA, I� tB, and any SSE over Z+G from A to B gives riseto a composition of polynomial positive equivalences via the polynomialstrong shift equivalence equations [9, Theorem 7.2]. These equivalences,after setting the variable t equal to 1, produce a positive equivalencefrom I � A to I � B.In the polynomial setting of [9], a matrix I � tA as above can bepositively equivalent to a matrix I � B(t), where the entries of B(t)may involve higher powers of the variable t. A matrixB(t) over tZ+G[t]presents a discrete G-tower whose base is obtained by setting every tmto t, and up to G-conjugacy every discrete G-tower over a G-SFTarises in this way. Changing tn to tm does not change the image undert 7! 1. �Remark 3.4. There is a more complicated way to handle the precedingproof, along the lines of [7, pp. 296-297] (which was the case ZG = Z).One can provide a decomposition of a state-splitting SSE move intopositive equivalences, and provide a separate decomposition for an SSEwhich for some i corresponds to multiplying row i by g and column i byg�1. Such moves generate SSE over Z+G. Lastly one can decomposea PS move into a �nite string of basic positive equivalences.



12 BOYLE AND SULLIVAN4. The weight classSuppose A is a matrix over Z+G, with �A the associated labeling ofedges. The weight of a path e of edges e1e2 � � � ek from vertex i to jis de�ned to be �(e) = �A(e1)�A(e2) � � � �A(ek). (So, g is the weight ofsome path from i to j if and only if �g(An(i; j)) > 0 for some n 2 N .)De�nition 4.1. Suppose G is a �nite group, A is an essentially ir-reducible matrix over Z+G and i is a vertex indexing a row of theirreducible core of A. Then Wi(A) is the subgroup of G which is theset of weights of paths from i to i, and the weight class of A, W (A),is the conjugacy class of Wi(A) in G. A member of W (A) is a weightsgroup for A; ifW (A) contains one element, then it is the weights groupfor A.Let us verify two implicit claims of the de�nition. First, Wi(A) isa group because it is a semigroup and G is �nite. Second, we checkgiven i 6= j that Wi and Wj are conjugate subgroups in G. Appealingto irreducibility, let x be the weight of some path from i to j and lety be the weight of some path from j to i. Because G is �nite, we mayassume y = x�1 (if necessary after replacing y with y(xy)k for suitablek). Then xWjx�1 = Wi, becauseWi � xWjx�1 � x(x�1Wix)x�1 = Wi :If G is abelian, then there is only one group in the weight class of A,and it is the union of the Wi(A). If G is not abelian, then [iWi(A) cangenerate a group strictly containing each Wi(A), and this larger groupwill not be the right group for our analysis.Proposition 4.2. Suppose A is an irreducible matrix over Z+G, andthere is a positive Z+G equivalence from I�A to I�B. Then W (A) =W (B).Proof. From the description in Section 3, it is clear that when thereis a basic positive equivalence from I � A to I � B, there must be avertex i, indexing a row in the irreducible core of A and also in theirreducible core of B, such that Wi(A) and Wi(B) are equal. �Example 4.3. Suppose G is any nontrivial �nite group. Let g be anelement of G not equal to the identity e. In the ring ZG, the formalelement e is the multiplicative identity 1. Consider the matrices overZ+G, A = �g 11 1� and B = �0 11 1� :



EQUIVARIANT FLOW EQUIVALENCE 13The weight class W (B) is trivial while W (A) is not, so by Proposition4.2 there cannot be a positive ZG-equivalence from I � A to I � B.However, there is an E(ZG)-equivalence:�1 �g0 1 � (I�A) = �1 �g0 1 ��1� g �1�1 0 � = � 1 �1�1 0 � = I�B : �Example 4.3 shows that positive ZG-equivalence of nontrivial irre-ducible SA does not follow from E(ZG)-equivalence. This issue is clar-i�ed in the positive K-theory framework [6, Sec. 8].We will use the next lemma to pass from a matrix A over Z+Gto a matrix over Z+H, when H is in the weight class. The lemmais modeled on the Parry-Schmidt argument [31] for presentations ofMarkov chains. Recall � denotes the augmentation map (2.1).Proposition 4.4. Suppose A is an irreducible matrix over Z+G, andH is a group in the weight class of A. Then there is a diagonal matrixD over Z+G with each diagonal entry in G (i.e., �(D) = Id) such thatevery entry of DAD�1 lies in Z+H.Proof. First consider H = W`(A), where ` is some vertex of A. Foreach j pick a path from ` to j and let the j-th diagonal element dj ofD be the G-weight of this path. Let bj be the G-weight of a path fromj back to `. Now, if A(i; j) has h as a summand, then dihd�1j is thecorresponding summand in DAD�1(i; j). Write(4.5) dihd�1j = (dihbj)(djbj)�1:Let k be the order of djbj in G. Then the right hand side of (4.5) is(dihbj)(djbj)k�1, a product of weights from ` to `.Finally, if H = gW`(A)g�1, then replace D above with gD. �The following example is extracted from an example of Derek Holtanalyzed by Parry [29, Sec. 10], and shows that cohomology over Gdoes not imply cohomology over a group in the weight class.Example 4.6. Let G = S4, the group of permutations of f1; 2; 3; 4g.De�ne permutations a = (12)(34); b = (13)(24); c = (14)(23). Let Hbe the subgroup fe; a; b; cg �= Z=2� Z=2. Consider two 1� 1 matricesover Z+H, A = (a+b) and B = (a+c). Let d be the transposition (12),so dad�1 = a and dbd�1 = c. Then dAd�1 = B and there is a positiveZG equivalence from I�A to I�B. On the other hand, if we considerA and B as matrices over Z+G, we see that fHg is the weight class ofA and B (H is a normal subgroup of G), but the matrices I � A andI � B are not even SL(ZH) equivalent: the determinant is de�ned formatrices over the commutative ring ZH, and det(I�A) 6= det(I �B).�



14 BOYLE AND SULLIVANFortunately, the passage from G to the weight class is no worse thanindicated by the previous example.Theorem 4.7. Let A and B be essentially irreducible matrices overZ+H, such that H is a weights group for A and B, and H is a subgroupof the �nite group G. Then there is a positive Z+G equivalence fromI � A to I � B if and only if there exists an element  of G such that� H�1 = H, and� there is a positive Z+H equivalence from I � A to I � �1B.Proof. We will prove the nontrivial direction (\only if"). The assumedpositive ZG-equivalence from I �A to I �B involves time changes aswell as conjugacies, and we re�ne the discussion of the proof of Propo-sition 2.7.1 to incorporate these time changes; they can be capturedby including with the splittings from A to C a set of Parry-Sullivanmoves, which can like the splittings be mirrored in the positive equiva-lence framework using only matrices over Z+H. Thus, as in the proofof Proposition 2.7.1, we end up with �(A0) = C = �(B0); a diagonalD with D(i; i) = gi 2 G such that DA0D�1 = B0; a positive Z+Hequivalence from I � A to I � A0; and another from I �B to I � B0.Let �A and �B denote the edge-labeling functions de�ned by A0 andB0. Then for any path e = e1e2 � � � ek of edges from vertex i to vertexj, we have gi�A(e)(gj)�1 = �B(e) :(4.8)Because H is a weights group for A and B and all entries of A and Bare in Z+H, it holds for each pair of vertices i; j in the irreducible corethat every element of H arises as �A(e) for some path e from i to j.Because the right side of (4.8) lies in H, we have giH(gj)�1 � H. Weconclude for every i; j that giH(gj)�1 = H. Let  = g1. For each j,H = gjH�1 = gj�1(H�1) = gj�1Hand therefore for some hj 2 H we have gj = hj. Now D = (D0)I,where D0(j; j) = hj, and therefore�1B0 = (�1D0)A0(�1D0)�1 :The entries of �1D0 lie in Z+H. We have now a Z+H SSE fromA0 to �1B0. The Z+H SSE from B0 to B yields a Z+H SSE from�1B0 to �1B, by replacement of each elementary SSE (R; S) with�1R; �1S. Thus we have a Z+H SSE from A0 to �1B, andthere is a positive Z+H equivalence from I �A0 to I � �1B, and bycomposition from I � A to I � �1B. �



EQUIVARIANT FLOW EQUIVALENCE 15Theorem 4.7 is reminiscent of a similar reduction of Parry and Schmidtin their extension of Liv�sic theory to nonabelian cocycles [29, Theorems6.4, 9.5], [36]. They were particularly concerned with deducing coho-mology of certain G-valued functions given conjugate weights on eachperiodic orbit. This is a much stronger assumption than we use, andyields a correspondingly stronger conclusion.5. Equivalence through very positive matricesIn this section we give the heart of the proofs of our main results.Throughout this section k denotes a positive integer greater than 1 andall matrices will be k�k. LetM+ denote the set of k�k very positivematrices over ZG (\very positive" was de�ned in (2.1)). We say anequivalence (U; V ) is a basic elementary equivalence if one of U; V is Iand the other has the form Eij(g) or Eij(�g).De�nition 5.1. An equivalence (U; V ) : B ! B0 is a positive equiva-lence throughM+ if it can be given as a composition of basic elementaryequivalences over ZG,B = B0 ! B1 ! B2 � � � ! Bn = B0 ;such that every Bi is in M+.Lemma 5.2. Suppose (U; V ) : A� I ! A0� I is a positive equivalencethrough M+. Then (U; V ) : I � A! I � A0 is a positive equivalence.Proof. It suÆces to consider the case that (U; V ) is a basic elementaryequivalence, and this case is clear. �The lemma explains our interest in the following theorem.Theorem 5.3. Suppose U and V are in E(k;ZG) and UBV = B0,with B and B0 matrices in M+. Suppose also that there are matricesX and Y in E(k;ZG) such that XBY = D, where D has block diagonalform I2 � F .Then (U; V ) : B ! B0 is a positive equivalence through M+.The rest of this section is devoted to the proof of Theorem 5.3, whichgeneralizes the arguments of [7, Sec. 5]. We begin with a de�nition.De�nition 5.4. A signed transposition matrix is the matrix of a trans-position, but with one of the o�-diagonal 1's replaced by �1. A signedpermutation matrix is any product of signed transposition matrices.It is not diÆcult to verify that the matrix of any even permutationis a signed permutation matrix.Recall that �(A) is the matrix obtained by applying the augmenta-tion map � to A entrywise.



16 BOYLE AND SULLIVANLemma 5.5. Suppose B 2M+ and E = Eij(g) or E = Eij(�g) whereg 2 G. Suppose the ith row of �(EB) is not the zero row. Then inE(k;ZG) there is a nonnegative matrix Q and a signed permutationmatrix S such that (SE;Q) : B ! SEBQ is a positive equivalencethrough M+.Proof. If E(i; j) = g, then let Q = I = S. Now, suppose E(i; j) = �g.Select l such that ��B(i; l) � gB(j; l)� 6= 0, and set x = B(i; l) �gB(j; l), that is x = (EB)(i; l). Let y = Ph2G h 2 ZG. Thenxy = P(Pxf )h, where x = Pxff , with all sums over G. Thusall coeÆcients (xy)h of xy are the same nonzero number.Case I: xy� 0. Here we may repeatedly add y times column l ofB to the other columns, until we have a matrix B0 with B0(i;m) �B0(j;m) for allm = 1; : : : ; k. This B0 is BQ for someQ which is a prod-uct of nonnegative basic elementary matrices, and (E;Q) : B ! EBQis the composition of positive equivalences through M+, (I; Q) : B !BQ followed by (E; I) : BQ! EBQ. Let S = I.Case II: xy � 0. For concreteness of notation, let (i; j) = (1; 2).Let Ml denote (in this proof only) row l of a matrixM . We can choosea suitable Q, in the manner of Case I, to obtain Q nonnegative suchthat (BQ)2 � (BQ)1 and (gBQ)2 � (BQ)1 and (I; Q) : B ! BQ is apositive equivalence in M+. For simplicity of notation, we now writeBQ as B and we restrict what we write to rows 1 and 2, e.g.E = �1 �g0 1 � and B = �B1B2� :Let S = � 0 1�1 0�. Then(SE)B = � 0 1�1 0��1 �g0 1 ��B1B2�= � 0 1�1 g��B1B2� = � B2gB2 � B1�� 0 :Write SE as the productSE = E1E2E3E4 = � 1 0�1 1��1 0g 1��1 10 1�� 1 0�1 1� :Write the equivalence SE : B ! SEB as the composition of leftmultiplications by E1; E2; E3; E4:�B1B2�! � B1B2 �B1�! � B2B2 � B1�! � B2B2 �B1 + gB2�! � B2gB2 �B1� :



EQUIVARIANT FLOW EQUIVALENCE 17This �nishes the proof. �Lemma 5.6. Suppose B is a k � k matrix over ZG and �(B) hasrank at least 2. Suppose U 2 E(k;ZG), and no row of �(B) or �(UB)is the zero row. Then U is the product of basic elementary matrices,U = En � � �E1, such that for 1 � j � n the matrix �(EjEj�1 � � �E1B)does not have a zero row.Proof. Without loss of generality, assume U 6= I. The proof is clearfor k = 2, since �(B) will have full rank. Let k � 3. (The reader maywish to work through the proof for k = 3 on a �rst reading.)Let E(i) denote the set of ZG matrices which equal I both on thediagonal and outside of row i. Let U be the set of factorizations U =Un � � �U1 such that for 1 � h � n, the matrix Uh is not the identity andthere is an index ih such that Uh 2 E(ih). Given such a factorizationU = Un � � �U1, letz = #fh : 1 � h � n and row ih of �(Uh � � �U1B) is the zero rowg:Step 1. We will produce an element of U for which z = 0.By induction, it suÆces to begin with a factorization U = Un � � �U1from U for which z > 0, and produce another factorization from Uwith reduced z. Pick s minimal such that row is of �(Us � � �U1B) iszero, and let t be minimal such that t > s and it = is. (This t existsbecause row is of �(UB) is nonzero.) We will change the factorizationby replacing the subword Ut � � �Us with a suitable word U 0T � � �U 0s, tobe de�ned recursively; T will either be t or t� 1.First pick js 6= is such that row js of �(Us�1 � � �U1B) is nonzero(Us�1 � � �U1B just denotes B in the case that s = 1). Choose Fs anelementary matrix which acts to add a multiple of row js to row is, suchthat (to avoid re-indexing) F�1s Us 6= I. De�ne U 0s = F�1s Us 2 E(is).Now Ut � � �Us = Ut � � �Us+1FsU 0s and row is of �(U 0sUs�1 � � �U1B) is notzero.Now we give the recursive step. Suppose s < m = r + 1 � t and wehave produced Ut � � �Ur+1Fm�1U 0r � � �U 0s = Ut � � �Us (and consequently,Fm�1U 0r � � �U 0s = Um�1 � � �Us) such that there is a nonzero integer cm�1and an index jm�1 6= is, such that Fm�1(is; jm�1) = cm�1 and otherwiseFm�1 = I. We will replace UmFm�1 with new terms. There are threecases.Case 1: m < t and jm�1 6= im. Set Fm = Fm�1 and U 0r+1 =F�1m UmFm. For example, if k = 3 and (is; im; jm�1) = (1; 2; 3), then



18 BOYLE AND SULLIVANwe would have for some a; b; c thatU 0r+1 = F�1m UmFm = 0@1 0 �c0 1 00 0 1 1A0@1 0 0a 1 b0 0 11A0@1 0 c0 1 00 0 11A= 0@1 0 �c0 1 00 0 1 1A0@1 0 ca 1 ac + b0 0 1 1A = 0@1 0 0a 1 ac+ b0 0 1 1A :Now U 0r+1 2 E(im), and FmU 0r+1 = UmFm�1, and row im of Um � � �U1Bequals row im of U 0r+1U 0r � � �U 0sUs�1 � � �U1B.Case 2: m < t and jm�1 = im. Choose an index jm such thatjm =2 fim; isg and row jm of �(U 0r � � �U 0sUs�1 � � �U1B) is not zero. Thisis possible because rows is and jm�1 of �(U 0r � � �U 0sUs�1 � � �U1B) arelinearly dependent, (since row is of FmU 0r � � �U 0sUs�1 � � �U1B equals rowis of Um � � �U1B which is the zero row under �) and rank(�(B)) � 2.Pick Fm with Fm(is; jm) = 1 and otherwise Fm = I. Set U 0r+1 =F�1m Fm�1 and U 0r+2 = F�1m UmFm. Now� FmU 0r+2U 0r+1 = Fm(F�1m UmFm)(F�1m Fm�1) = UmFm�1,� U 0r+1 2 E(is) and row is of �(U 0r+1 � � �U 0sUs�1 � � �U1B) is notzero,� U 0r+2 2 E(im) and row im of U 0r+2 � � �U 0sUs�1 � � �U1B equals rowim of Um � � �U1B.Case 3: m = t. If UtFt�1 6= I, then set U 0T = U 0r+1 = UtFt�1 2E(is): row is is the same in the matrices U 0T � � �U 0sUs�1 � � �U1B andUm � � �U1B. If UtFt�1 = I, then simply delete UtFt�1, so U 0T = U 0r.The new factorization has z reduced. This concludes Step 1.Step 2. Suppose we have the factorization from U with z = 0,U = Un � � �U1, with Uh 2 E(ih). For 1 � h � n, we will replace Uh witha suitable product of elementary matrices in E(ih). The argument willbe clear from the case h = 1. For notational simplicity, suppose i1 = 1.Write U1 as a product U1 = Ek1 � � �E1 of basic elementary matriceswhich agree with I outside row 1. Now, choose a row l > 1 of B suchthat row l of �(B) is not a rational multiple of row 1 of �(U1B) (such arow l exists because rank(�(B)) > 1). Let E0 be the elementary matrixwhich adds row l to row 1: if s > 0, then �((E0)sB) has row 1 not zero.Choose a nonnegative integer m large enough that for 1 � j � k1, row1 of �([Ej � � �E1(E0)m]B) is nonzero. Then for 0 � s � m,[E�s0 ][Ek � � �E1(E0)m]B = [Em�s0 ][Ek � � �E1]B= [Em�s0 ]U1B



EQUIVARIANT FLOW EQUIVALENCE 19and therefore row 1 of �([E�s0 ][Ek1 � � �E1(E0)m]B) cannot be zero. (Sinceeach Ei, for i = 0; : : : ; k1, a�ects only row 1, they all commute witheach other.) Thus the factorization U1 = (E0)�mEk1 � � �E1(E0)m hasthe required properties. �Lemma 5.7. Suppose B and B0 are in M+; �(B) and �(B0) haverank � 2; U and W are in E(k;ZG); the matrix �(UB) has at leastone strictly positive entry; and UB = B0W . Then the equivalence(U;W�1) : B ! B0 is a positive equivalence through M+.Proof. We divide the proof into four steps.Step 1: Reduction to the case �(UB) has all entries posi-tive. Consider an entry ��(UB)(i; j)� > 0. We can repeatedly addcolumn j to other columns until row i of �(UB) has all entries strictlypositive. This corresponds to multiplying from the right by a nonneg-ative matrix Q in E(k;Z) � E(k;ZG), giving UBQ = B0WQ. Thenwe can repeatedly add row i of UBQ to other rows until all entries of�(UBQ) are positive. This corresponds to multiplying from the left bya matrix P in E(k;Z), resulting in a matrix (PU)(BQ) = (PB0)(WQ)whose augmentation has all entries positive. Also, there are positiveequivalences in M+ given by(I; Q) : B ! BQ ; (P; I) : B0 ! PB0 :Therefore, after replacing (U;B;B0;W ) with (PU;BQ; PB0;WQ), wemay assume without loss of generality that �(UB) has all entries pos-itive.Step 2: Factoring U and B! SUBQ throughM+. By Lemma 5.6,we can write U as a product of basic elementary matrices, U = El � � �E1,such that for 1 � j � l, the matrix �(Ej � � �E1B) has no zero row. ByLemma 5.5 and Step 1, given the pair (E1; B), there is a nonnegativeQ1 in E(k;ZG) and a signed permutation matrix S1 such that(S1E1; Q1) : B ! S1E1BQ1is a positive equivalence in M+. We observe thatUBQ1 = S�11 [S1ElS�11 ] � � � [S1E2S�11 ][S1E1]BQ1 :Now, for 2 � j � l, the matrix S1EjS�11 is again a basic elementarymatrix E 0j, and the matrix �(E 0j � � �E 02(S1E1BQ1)) has no zero rows.Again using Lemma 5.5, for the pair ([S1E2S�11 ]; [S1E1BQ1]) choosea signed permutation matrix S2 and nonnegative Q2 producing a pos-itive equivalence in M+(S2[S1E2S�11 ]; Q2) : S1E1BQ1 ! S2[S1E2S�11 ]S1E1BQ1Q2



20 BOYLE AND SULLIVANso that we get a positive equivalence in M+([S2S1E2S�11 ][S1E1]; Q1Q2) : B ! [S2S1E2E1BQ1Q2]and we observe thatUBQ1Q2 = S�11 S�12 [S2S1ElS�11 S�12 ] � � � [S2S1E3S�11 S�12 ][S2S1E2S�11 ][S1E1]BQ1Q2 :Continue this, to obtain a signed permutation matrix S = Sl � � �S1 andnonnegative Q = Q1 � � �Ql such thatUBQ = S�1[Sl � � �S1ElS�11 � � �S�1l�1] � � � [S2S1E2S�11 ][S1E1]BQ= S�1(SUBQ)and (SU;Q) : B ! SUBQ is a positive equivalence in M+.Step 3: Realizing the permutation. We continue from Step 2.It remains to show that(S; I) : UBQ! SUBQis a positive equivalence inM+. Since S is a product of signed transpo-sition matrices, it may be described as a permutation matrix in whichsome rows have been multiplied by �1. Since UBQ and SUBQ arestrictly positive, it must be that S is a permutation matrix. Also,det(S) = 1, so if S 6= I then S is the matrix of a permutation which isa product of 3-cycles. So it is enough to realize the positive equivalencein M+ in the case that S is the matrix of a 3-cycle. For this we writethe matrix C = 0@0 1 00 0 11 0 01Aas the following product C0C1 � � �C5:0@1 0 00 1 00 �1 11A0@ 1 0 0�1 1 00 0 11A0@1 0 �10 1 00 0 1 1A0@1 1 00 1 00 0 11A0@1 0 00 1 01 0 11A0@1 0 00 1 10 0 11A :For 0 � i � 5, the matrix CiCi+1 � � �C5 is nonnegative. Thereforethe equivalence (C; I) : A! CA is a positive equivalence through M+whenever A 2M+.Step 4. Conclusion. We now have several positive equivalencesthrough M+, namely (SU;Q) : B ! SUBQ, (S�1; I) : SUBQ !UBQ, and (I; Q�1) : UBQ! UB. By composition, (U; I) is a positiveequivalence throughM+ from B to UB = B0W . By a similar argument(invoking corollaries to Lemmas 5.5 and 5.6 for multiplications on theright), we can show (I;W ) is a positive equivalence through M+ fromB to B0W . This proves Lemma 5.7. �



EQUIVARIANT FLOW EQUIVALENCE 21Proof of Theorem 5.3. We will use Lemma 5.7 twice: �rst to give apositive equivalence from B to itself, and then to give another from Bto B0. The inverse of the �rst followed by the second will equal (U; V )and thus establish that (U; V ) is a positive equivalence.Notation: For a 2 � 2 matrix H and m 2 N let L = Lm(H) =�m �11 0 �H�Ik�2. For a matrix Q let Qf12; �g denote the submatrixconsisting of the �rst two rows of Q.By assumption, there are matrices X and Y in E(k;ZG) such thatXBY = D, where D has block diagonal form I2 � F .Step 1. We will show that for a suitable 2�2 matrix H and integerm large enough the self equivalence (X�1LX; Y L�1Y �1) : B ! Bis a positive equivalence. The matrix �(XBY )f12; �g = �(D)f12; �ghas rank two, so �(XB)f12; �g has rank two, and thus there exists anH 2 SL(2;Z) such that the �rst row R of H[�(XB)f12; �g] has botha positive and a negative entry.Let C be the �rst column of �(X�1) = �(X)�1. Since C is not thezero vector the k � k matrix CR has a positive and a negative entry.Now, if m is suÆciently large, then the corresponding entries of�(X�1LXB) and CR will have the same sign provided the correspond-ing entry of CR is not zero.We now apply Lemma 5.7 to see that (X�1LX; Y L�1Y �1) is a pos-itive equivalence from B to itself.Step 2. For large enough m the entries of �(UX�1LXB) agreein sign with the corresponding nonzero entries of �(U)CR. Since�(U) is nonsingular, the matrix �(U)CR is nonzero and so containspositive and negative entries, because R does. Thus, by Lemma 5.7(UX�1LX; Y L�1Y �1V ) is a positive equivalence form B to B0. Thisconcludes the proof. �6. The main resultsGiven an n�n matrix A, we de�ne (I�A)1 to be the N�N matrixequal to I � A in its n � n upper left-hand corner and equal to thein�nite identity outside this block. The next theorem is our centralresult.Theorem 6.1. Let G be a �nite group, and let A and B be nontrivialessentially irreducible matrices over Z+G such that W (A) = W (B) =G. If (U; V ) : (I � A)1 ! (I � B)1 is an E(ZG)-equivalence, then itis a positive ZG equivalence.



22 BOYLE AND SULLIVANProof. First, we may assume that that A and B have a common size kwith only zero entries outside the upper left k � 2� k � 2 corner (ex-panding a matrix A to a larger matrix with zero entries does not a�ect(I � A)1), and consequently the 2 � 2 identity matrix is a summandof I � A and of I � B. By Lemma 6.6 (which we defer to the end ofthis section), after replacing I �A and I �B with matrices positivelyequivalent over ZG, we may assume that A � I is very positive andlikewise that B � I � 0. By Lemma 5.2, (U; V ) : I � A ! I � B is apositive equivalence if (U; V ) : A� I ! B� I is a positive equivalencethroughM+ (De�nition 5.1). By Theorem 5.3, (U; V ) : A� I ! B� Iis indeed a positive equivalence through M+. �Remark 6.2. Note, in Theorem 6.1 we not only showed a positiveequivalence exists, in addition we showed every equivalence is a positiveequivalence. In the case G is trivial, this additional information proves[7, Sec. 7] surjectivity of a certain homomorphism to Aut(cok(I �A))from the mapping class group of the mapping torus of an irreduciblenontrivial SFT SA. (For this homomorphism, the action of a basic owequivalence is multiplication by the corresponding basic elementarymatrix.) In the case G is nontrivial, our map goes from an equivariantmapping class group to the ZG module cok(I � A), and from Theo-rem 6.1 we similarly know the range in Aut(cok(I � A)) is the set ofautomorphisms induced by E(ZG) self equivalences of (I � A).Remark 6.3. Suppose in Theorem 6.1 that (I � A)1, (I � B)1, Uand V equal I outside their upper left n�n corners. Then the proof ofTheorem 6.1 shows that the factorization of (U; V ) into basic positiveequivalences can be achieved using only matrices which equal I outsidetheir upper left (n + 2)� (n + 2) corners.Theorem 6.4 (Classi�cation Theorem). Let G be a �nite group, andlet A and B be essentially irreducible nontrivial matrices over Z+G.For SA and SB to be G-ow equivalent, it is necessary that W (A) =W (B). Now suppose W (A) = W (B) and H is a group in this weightclass. Let A and B be matrices over ZH which are positively ZG equiv-alent to A and B, respectively. (A and B exist by Proposition 4.4).Then the following are equivalent:(1) SA and SB are G-ow equivalent.(2) There exists  2 G such that H�1 = H and there is anE(ZH) equivalence from (I � A)1 to (I � B�1)1.Proof. The necessity ofW (A) =W (B) was Proposition 4.2. The impli-cation (1) =) (2) follows from Theorems 3.3 and 4.7. The implication(2) =) (1) follows from Theorem 6.1. �



EQUIVARIANT FLOW EQUIVALENCE 23Theorem 6.4 reduces the G-ow equivalence classi�cation to theproblem of classifying matrices up to E(ZG) equivalence, which wediscuss in Sections 8 and 9. The positivity constraints on the matricesI�A we study does not lead to a smaller E(ZG) equivalence problem,because for any �nitely supported B over ZG there is an E(ZG) equiv-alence from I �B to a matrix I �A where A is essentially irreducibleand nontrivial with weight class fGg (Proposition 8.8). We extractnow one consequence of Theorem 6.4 and the algebra. SK1(ZG) isdiscussed in Section 8.Theorem 6.5. Suppose G is a �nite abelian group and A is a squareirreducible matrix over Z+G such that I�A is injective (i.e. det(I�A)is not a zero divisor in ZG). Then the following hold.(1) The number of distinct G-ow equivalence classes de�ned bymatrices B such that det(I �B) = det(I � A) is �nite.(2) If SK1(ZG) is trivial and det(I �B) = det(I �A), then A andB determine the same G-ow equivalence class if and only ifthey have the same weight class and the ZG modules cok(I�A)and cok(I � B) are isomorphic.Proof. (1) When I � A is injective, cok(I � A) is �nite. Therefore(crudely) only �nitely many isomorphism classes of cokernel module arepossible. The conclusion now follows from the Classi�cation Theorem6.4, Corollary 9.9, and the �niteness of SK1(ZG) [27]. (2) This followsfrom the Classi�cation Theorem 6.4 and Proposition 9.5. �We �nish this section with the (somewhat tedious) proof for thereduction to very positive matrices.Lemma 6.6 (Very Positive Presentation). Let A be an essentially ir-reducible m � m matrix over Z+G, m � 2, such that Wi(A) = G for1 � i � m and �(A) has more than one cycle. Then there is a pos-itive equivalence over ZG from I � A to a matrix I � B such that�g((B� I)(i; j)) > 0 for every g in G and every entry index (i; j), i.e.,B � I � 0.Proof. We sequentially adjust the matrix A without renaming it eachtime. Let A be n� n, where n changes as A does. We relabel so thatthe irreducible core submatrix is in the upper left-hand corner.Step 0: Diagonalizing cycles. First we describe a certain cycle-shortening construction. Let i = i0; i1; : : : ; ik = i be a �nite sequenceof indices corresponding to a cycle (cyclic path of edges) C = e1e2 � � � ekwith weight g, where et runs from it�1 to it and has weight gt (sog1g2 � � �gk = g). We require that some intermediate index ir is not i.



24 BOYLE AND SULLIVANWe will construct a positive equivalence (I � A) ! (I � B) for whichwe claim A(i; i) � B(i; i) + g and also A(t; t) � B(t; t) for all t. Thelatter part of this claim will be clear because the construction will bea composition of forward basic positive equivalences.First suppose the path length k satis�es k > 2. Let e denote theedge er.(1) If r < k � 1, then produce a new matrix I � A0 by applyingthe basic positive equivalence (Eir;ir+1(gr+1); I). The A-cycle Cgives rise to an A0-cycle C 0, which looks like C except that anyeses+1 for which es = e is replaced by an edge from is�1 = ir tois+1 with weight gsgs+1. The cycle C 0 is still a cycle from i toi, it still passes through an index other than i, and it has thesame weight as C.(2) If we do not have r < k � 1, then r = k � 1 � 2, and we maysimilarly apply the basic positive equivalence (I; Eir�1;ir(gr)) toshorten the cycle.Repeating the moves above, we reach the case of path length k = 2.Apply the basic positive equivalence (Ei0;i1(g1); I). We have shortenedthe cycle to a cycle from i to i with the same weight. This completesthe proof of the claim.Given A, let A00 denote the irreducible core of A, its maximal irre-ducible principal submatrix.Step 1: Nonzero trace. If A has zero trace, then diagonalize acycle as in the previous step to achieve nonzero trace.Step 2: Trim. Suppose row j of A is zero and some entry A(i; j) 6=0. Let A(i; j) = g1 + � � � + gk and set E = Eij(g1 + � � � + gk), soE = Eij(g1) � � �Eij(gk). Then E(I�A) = (I�B) where B = A exceptfor the entry B(i; j) = 0, and (E; I) : (I � A) ! (I � B) is a positiveequivalence. After if necessary applying such positive equivalences, andanalogous equivalences (E; I), we may assume that A(i; j) = 0 unlessboth i and j are indices for A00.Step 3: Core at least 2� 2. Suppose the irreducible core A00 is1�1, say A00 = (A(1; 1)). Because there is more than one cycle, we canwrite A(1; 1) = g + b where g 2 G and 0 6= b 2 Z+G. Subtract g timesrow 2 of (I � A) from row 1; then subtract column 2 from column 1.The result of these two positive equivalences is a matrix with �b g1 0�as the irreducible core.Step 4: Very positive core diagonal. At this point we have A00at least 2� 2 in size and with an index i such that A00(i; i) 6= 0. Pickan index j 6= i for A00. Every element of G is the weight of some cycle



EQUIVARIANT FLOW EQUIVALENCE 25from i to i, so it follows by irreducibility of A00 that every element ofG is the weight of some cycle from j to j which runs through i. Thisstatement remains true after we diagonalize a cycle from j to j as inStep 0, because i and j must remain in the irreducible core, becausethe ii and jj entries are nonzero and do not decrease. Consequentlywe can diagonalize cycles until A00(t; t)� 0 for every diagonal entry ofA00.Step 5: A=core. If 1 � t � m and t is not an index for A00: pick anindex s for A00; subtract row t of A from row s; then subtract columnt from column s. This positive equivalence I � A ! I � C producesC whose irreducible core has an index set enlarged by ftg. Apply Step4 again to the tt and ss entries as needed to get all diagonal entries ofC 00 � 0. Repeat until A = A00 with very positive diagonal.Step 6: Very positive A. Suppose i 6= j, g 2 G and A00(i; j)�g �0. Following Step 3, (Eij(g); I) : (I � A)! (I � C) is a basic positiveequivalence; C(i; j)� 0; and C � A. So, we may apply basic positiveequivalences to arrive at A00 on an unchanged index set with A00 � 0.�7. Twistwise flow equivalenceAs noted in the Introduction, when G = Z=2 the equivalence relationof G-ow equivalence is called twistwise ow equivalence. Let t denotethe generator of Z=2, so t2 = 1. We write A(t) for a matrix over Z+Gand let A(1) and A(�1) denote the matrices over Z obtained fromsetting t to 1 and �1.Suppose A(t) is given. We de�ne the ribbon set R to be a ow ona �ber bundle with �ber (�1; 1) over the one-dimension suspensionow (B; �) of A(1), associated to A(t) as follows. We can pass to ahigher block presentation so that we may assume A(t) has only 1's,0's and t's as entries. Then there is an oriented Markov partitionD = fD1; : : : ; Dkg on a cross section of F that induces A(1). LetBij = fx 2 B j x 2 �t(y); y 2 Di; and��(y)(y) 2 Dj for 0 � t � �(y)g,where � is the �rst return time map for D. Let Rij = Bij � (�1; 1).Attach the nonempty Rij's so that the core is F and the gluing of theedge �bers (end points of the Bij crossed with the �ber (�1; 1)) are theidentity if Aij = 1 and multiplication by �1 if Aij = t. Call this set R.We place a ow on R that agrees with � on the core B and so that allother orbits are forward asymptotic to B and exit R in reverse time.Two matrices are twistwise ow equivalent if and only if they havetopologically equivalent ribbon sets. Ribbon sets are realized naturallyas stable bundles of basic sets of Smale ows [37].



26 BOYLE AND SULLIVANWe now de�ne the invariants of twistwise ow equivalence establishedin [37, 38, 39]. Let T = �0 11 0�. If A(t) is k � k de�ne A(T ) tobe the 2k � 2k matrix over Z+ obtained by converting each a + btentry of A(t) to the block aI + bT = �a bb a�. The determinants ofthe three matrices I � A(1); I � A(�1); I � A(T ) were established asinvariants of twistwise ow equivalence, as were the isomorphism classesof their cokernel groups. (We remark that the group cok(I � A(T )) isisomorphic to the group obtained from the ZZ=2 module cok(I�A(t))by forgetting the module structure.) The orientability of the ribbonset was determined by checking the diagonal entries of Ai(t) for i =1; : : : ; k for t's. The ribbon set is orientable if t appears in none of theseentries, and is nonorientable otherwise. Orientability is an invariantindependent of the others; in the setting of this paper, orientability istriviality of the weight class.From the results of this paper, it is easy to see that the previouslyknown invariants were not complete. For example, none of those in-variants distinguish a matrix and its transpose, so Example 8.6 andProposition 8.8 can be used to produce a pair which agree on the pre-viously known invariants but are not twistwise ow equivalent. Themethods and results of this paper are also useful for establishing twist-wise ow equivalence when it holds.Example 7.1. Let A = �0 t1 1�, B = �1 t1 1�, and E = �1 10 1�.Then E(I � A) = I � B, so by Theorem 6.4, A and B are twistwiseow equivalent. This answers a question in [39, page 9]. Here E doesnot give a basic positive equivalence. However, following the philosophyof the proof of Theorem 6.1, if we let Q1 = �1 01 1� and Q2 = �1 t0 1�then (I; Q1), (I; Q2), (E; I), (I; Q�12 ), (I; Q�11 ) is a sequence of basicpositive equivalences taking I � A to I � B. �In [38] Table 2 lists some 3� 3 matrices. Several pairs have identicalinvariants: counting down, 1 & 5, 2 & 7, 4 & 13, and 17 & 18. It wasunknown if they were twistwise ow equivalent. We can now reportthat simple hand calculations show that the matrices correspondingto these pairs are twistwise ow equivalent. Section 8 includes someadditional results on twistwise ow equivalence.



EQUIVARIANT FLOW EQUIVALENCE 278. E(ZG)-equivalenceIn this section, we'll give some general background on E(ZG)-equivalence,with some results and examples for the case G = Z=2. Recall our con-vention (2.1) that in this paper a ring means a ring with 1.Let R be a ring. E(n;R) denotes the group of n � n elementarymatrices over R, the subgroup of GL(n;R) generated by basic elemen-tary matrices. Similarly, we let E(R) denote the subgroup of GL(R)generated by the basic elementary matrices. The group GL(R)=E(R)is the abelian group K1(R) studied in algebraic K-theory [34]. When Ris commutative (so SL(R) can be de�ned as the group of invertible ma-trices with determinant 1), the quotient group SL(R)=E(R) is denotedSK1(R). If G is a �nite group, then SK1(ZG) denotes the kernel of themap K1(ZG)! K1(QG) (the de�nitions agree if G is abelian). If G is�nite, then SK1(ZG) is �nite. If R is Z, or R = ZG with G = Z=2,then every element of SL(R) is a product of basic elementary matrices,and SK1(R) is trivial. In general, though, SK1(ZG) is not trivial whenG is a �nite group. For example, SK1(ZG) is not trivial if G = (Z=p)nwith p an odd prime and n � 3. See [27] for the characterization ofthe �nite abelian G with trivial SK1(ZG) and other background onSK1(ZG).We will say an n�n matrixD over Z is a Smith normal form ifD is adiagonal matrix diag(d1; d2; : : : ; dn) satisfying the following conditions:di+1 divides di whenever 1 < i � n and di+1 6= 0; di+1 = 0 implies di =0; and di � 0 if i > 1.(Our notation here is slightly unconventional.)It is well known that any n�n matrix over Z is SL(n;Z) equivalent toa unique Smith normal form. Because E(n;Z) = SL(n;Z), the Smithnormal form also gives a complete invariant of E(n;Z)-equivalence.This classi�cation extends to N � N matrices. We will say a Smithnormal form is a matrix whose upper left corner is a �nite Smith normalform and which otherwise equals the in�nite identity matrix. If A isan n � n square matrix over Z, then (I � A)1 is E(Z)-equivalent toa unique Smith normal form, and this form is the matrix whose upperleft corner is the Smith normal form of In � A, and which equals Ielsewhere. (It is to make this last statement that we reversed theusual order of diagonal elements in our de�nition of Smith normalform.) So in the Z case, we have everything: a good normal form; agood algorithm for generating it; a decision procedure for determiningwhether two matrices are equivalent; an equivalence classi�cation givenby the classi�cation of the cokernel group (Z-module) with a little moreinformation (sign of the determinant) to reect the re�nement of GL(Z)equivalence by E(Z) equivalence; and immediate stabilization (i.e., if



28 BOYLE AND SULLIVANA and B are n� n and (I � A)1 and (I � B)1 are E(Z) equivalent,then (I � A) and (I �B) are E(n;Z) equivalent).Given G a �nite group, the results of this paper obviously lead oneto ask similarly for a classi�cation of matrices over ZG up to E(ZG)-equivalence, when the matrices are n� n, or equal I except in �nitelymany entries. This very natural algebraic problem is far more diÆcultthan in the Z case. In particular, there is nothing so nice as the Smithnormal form; even for G = Z=2, a matrix might not be equivalentover GL(ZG) to any triangular matrix (8.7), or to its transpose (8.6).The problem even of GL(ZG) equivalence seems not to have been ad-dressed directly in the algebra literature, although there are powerfulresults [16] in a more general setting which point the way to substantialprogress. In the rest of this section, we make no attempt to addressthe general problem, but we do give some illustrative concrete resultsand examples in the case G = Z=2.From here until Proposition 8.8, G = Z=2. We write elements of ZGin the form a + tb, where a; b are integers and t2 = 1. We will use thewell known [34, Sec. 2.4] embedding of ZG into Z2, Æ : a + tb 7! (a +b; a�b). One easily checks that Æ is a ring monomorphism whose imageis f(c; d) : c � d mod 2g. If we write a matrix over ZG in the formA+tB (A and B over Z), then applying Æ entrywise gives an embeddingof matrix rings (also called Æ), A+ tB 7! (A + B;A� B). Under thisembedding, the image of SL(ZG) is f(C;D) 2 SL(Z) � SL(Z) : C �D mod 2g. We will say that a matrix M over ZG is a Smith normalform if Æ(M) = (C;D) where C and D are Smith normal forms forZ. In this case, M is diagonal over ZG and its diagonal entries satisfythe divisibility and zero conditions we gave above for the Z form; thenonnegativity condition is replaced by the corresponding nonnegativityof the image under Æ. Clearly, M can be E(ZG) equivalent to at mostone Smith normal form.Theorem 8.1 (Normal Form). Let G = Z=2. Let M be an n � nmatrix over ZG. Write M = A + Bt with A and B n � n matricesover Z. If det(A+ B) is odd, then M is E(ZG)-equivalent to a Smithnormal form. This is the form corresponding to (C;D), where C andD are the Smith normal forms for A+B and A� B.The theorem follows immediately from a more general lemma.Lemma 8.2. Let G = Z=2. Let M be an n � n matrix over ZG andlet (C;D) = Æ(M). Suppose the mod-2 rank of C is k. Then M isE(n;ZG)-equivalent to a matrix M 0 such that Æ(M 0) = (C 0; D0) wherethe bottom right k � k corners of C 0 and D0 are Smith normal forms



EQUIVARIANT FLOW EQUIVALENCE 29(equal to the bottom right corners of the Smith normal forms for C andD) and the other entries in the last k rows and columns are zero.Proof. Multiplication of M by a matrix in E(n;ZG) corresponds tomultiplication of (C;D) from the same side by a pair of matrices inE(n;Z) � E(n;Z) which are equal mod 2. So, an equivalence M !UMV corresponds to an E(n;Z) = SL(n;Z) equivalence (C;D) !(U1CV1; U2DV2) where U1 � U2 and V1 � V2 are zero mod 2. We willact on the given pair (C;D) with such equivalences. Note the conditionC � D mod 2 persists under this action.Let (U1; V1) be an E(n;Z) equivalence putting C into the Smithnormal form for Z. Apply this along with (U2; V2) = (U1; V1). Themod-2 rank assumption tells us that the last k diagonal entries of Care now odd and the other entries of C are even. The same is trueof D. From here we will use equivalences with (U1; V1) = (I; V1), toachieve the required form for D without disturbing the form for C.That is, we will act on D with the even elementary matrices: matricesin E(n;Z) equal mod 2 to the identity. In particular we may freely addeven multiples of rows and columns to other rows and columns.We claim that such even elementary operations may be used to putD into a form such that the all entries of the last row and column arezero except for the diagonal entry, which is the gcd of the entries of D.Without loss of generality, we suppose n > 1.Step 1. Consider the bottom row of C, row n. The last entry is oddand the rest are even. Pick j such that D(n; j) = a is a nonzero entryof smallest magnitude in row n. Add even multiples of column j toother columns to produce the condition that every entry in row n liesin the interval [�jaj; jaj]. If any nonzero entry b of row n now satis�esjbj < jaj, then again add even multiples of columns to others until allentries lie in [�jbj; jbj]. Continue until there is some nonzero entry asuch that all entries of row n lie in the set f�jaj; 0; jajg. This numberjaj must be the gcd of the original entries of row n. Consequently jaj isodd. Since the entries of row 1 were never changed mod n, the diagonalentry of row n must be a and the others then must be 0.Step 2. Apply the Step 1 idea to column n, putting it into the form[0 � � �0a]t (a may have decreased).If row n is no longer in the form [0 � � � 0a], then re-apply Step 1.Repeat Steps 1 and 2 as needed until both row 1 and column 1 are zeroexcept for the odd entry on the diagonal. Call this \the process".If jaj is not the gcd of all the matrix entries, then there is somehigher row i containing an element not divisible by a. Add twice row ito row n. Now row n has a gcd smaller than jaj. Apply \the process"



30 BOYLE AND SULLIVANagain. The one nonzero entry in row n or column n, on the diagonal, hasdecreased in magnitude. Finitely many iterations therefore produce thediagonal entry a such that jaj is the gcd of the matrix entries. Finally,if necessary after multiplying the last row and a higher row both by�1 (this corresponds to multiplying by a determinant 1 matrix whichequals I mod 2), we can assume a > 0. This �nishes the proof of theclaim.Repeat this procedure on successive submatrices until a matrix isproduced which satis�es the statement of the theorem. If k = n, thenat the �nal step there will not be a \higher row" and there will notbe freedom to adjust the sign of the diagonal entry|it must equal thesign of the determinant. �Remark 8.3. The lemma shows that Theorem 8.1 is true under theweaker assumption that at most one entry of the Smith form for A+Bis even, because in this case the algorithm of the lemma produces amatrix which is equivalent to A�B and which must be a Smith normalform.Corollary 8.4. Let G = Z=2. IfM = A+tB where A and B are squareintegral matrices with det(A+B) odd, then M is E(ZG)-equivalent toits transpose.Remark 8.5. Equivalence to the transpose gives rise to an interpreta-tion of G-ow equivalence to the time-reversed ow as in [15]. Becauseirreducible matrices over Z are equivalent to diagonal matrices, Frankscould include that the mapping torus ows of irreducible shifts of �-nite type are ow equivalent to their time-reversed ows. For G-owequivalence with G nontrivial, this holds in some cases (e.g. Cor. 8.4)but not in general, as the next example shows.Example 8.6. For G = Z=2, there is a matrix M over ZG which isnot GL(ZG)-equivalent to its transpose.Proof. We will give a 2 � 2 example M . (It is not diÆcult to verifyfor this example that M � I, where I is the in�nite identity matrix,is also not equivalent GL(ZG)-equivalent to its transpose.) De�ne M ,and consequently Æ(M) = 2(C;D), as follows:M = �1 10 2� + t�1 �10 2 � ; C = �1 00 2� ; D = �0 10 0� :To show M is not equivalent to its transpose, we suppose there areGL(Z) matrices U1; U2; V1; V2 such that U1 � U2 mod 2, V1 � V2 mod2, U1CV1 = C and U2DV2 = Dt, and then �nd a contradiction. First



EQUIVARIANT FLOW EQUIVALENCE 31consider the equivalence C = U1CV1:�1 00 2� = �a bc d��1 00 2��� � Æ� = �a� + 2b a� + 2bÆc� + 2d c� + 2dÆ� :We see that a and � must be odd, and then also that c and � must beeven, and then because the determinants of U1 and V1 are odd that dand Æ must be odd. So we haveU1 = �1 �0 1� mod 2 and V1 = �1 0� 1� mod 2 ;with � indicating an entry which is not speci�ed mod 2. Consequently,mod 2 we haveU2DV2 = U1DV1 = �1 �0 1��0 10 0��1 0� 1� = �� 10 0� 6= Dt :This contradiction �nishes the proof. �Example 8.7. Let G = Z=2. There is a matrix M over ZG such thatM is not GL(ZG)-equivalent to a triangular matrix. In particular, Mis not equivalent to a Smith normal form.Proof. We will give a 2� 2 example M . (It is not diÆcult to verify forthis example that M � I, where I is the in�nite identity matrix, is alsonot equivalent to a triangular matrix.) SetM = �1 11 2� + t� 1 �1�1 0 �so that Æ(M) = 2(I;D) where D = �0 11 1� : Suppose M 0 is uppertriangular and GL(ZG)-equivalent to M . Then Æ(M 0) = 2(C 0; D0) forsome matrices C 0; D0 over Z which are upper triangular. Here C 0 mustbe GL(Z)-equivalent to I, so its diagonal entries must be �1. Let Ube a matrix which acts to add a multiple of row 2 to row 1, such thatUC 0 is diagonal. Let W be a diagonal matrix with diagonal entriesfrom f1;�1g such that WUC 0 = I. Note WUD0 is upper triangular.Replace (C 0; D0) with (WUC 0;WUD0). At this point we have 2(I;D)equivalent to some 2(I;D00) where D00 is upper triangular. So, thereare GL(2;Z) matrices U1 � U2 mod 2 and V1 � V2 mod 2 such thatU1(2I)V1 = 2I and U2(2D00)V2 = 2D. Now V1 must equal (U1)�1 andtherefore mod 2 we have D similar to a triangular matrix. This isimpossible because the characteristic polynomial of D considered overthe �eld Z=2 is irreducible. �We �nish with the proposition mentioned in Section 6.



32 BOYLE AND SULLIVANProposition 8.8. Suppose G is a �nite group, and B is a �nitelysupported N � N matrix over ZG. Then I �B is E(ZG) equivalent tosome matrix (I � A)1 over Z+G, where A has weight class fGg andA� 0.Proof. Suppose B is zero outside its upper left n � n corner. Let ydenote the sum of all elements in G and let m be a positive integer.Subtract my times row n + 1 from the rows 1; 2; : : : ; n. Then addcolumn n + 1 to the columns 1; 2; : : : ; n. Finally, add row 1 to rown + 1. If m is suÆciently large, we get a matrix I � C for which C iszero except in the upper left (n+1)� (n+1) corner, where every entryof C is greater than y. Let A be the upper left (n+1)� (n+1) cornerof C. �9. E(ZG)-equivalence of injective matricesRecall, if C is an n� n matrix, then C1 denotes the N � N matrixwhose upper left corner is C and which otherwise is equal to the in�niteidentity matrix. We begin with an easy application of a theorem ofFitting [14]. Recall our convention (2.1) that in this paper a ringmeans a ring with 1.Lemma 9.1. Suppose R is a ring, and C and D are injective squarematrices over R. Then the following are equivalent.(1) There exist V 2 E(R) and U 2 GL(R) such that UC1V = D1.(2) The R-modules cok(C) and cok(D) are isomorphic.Proof. We will prove the nontrivial implication, which is (2) =) (1).Let matrices act on row vectors. Suppose C andD arem�m and n�n,respectively. Let e.g. In denote the n� n identity matrix. Because Cand D have isomorphic cokernels, there is an invertible matrix V1 suchthat the matrices(9.2) �C 00 Im�V1 and �In 00 D�have the same image. For this claim we refer to War�eld's modern(and English) presentation [41, p.1816] of Fitting's result; it is evidentfrom the proof that the matrix V1 can be chosen from E(m + n;R).Because the displayed matrices are injective with equal image, obvi-ously [14, 41] there exists an invertible matrix U1 such thatU1�C 00 Im�V1 = �In 00 D� :



EQUIVARIANT FLOW EQUIVALENCE 33Finally, let E be a matrix in E(m + n;R) such thatE�1�In 00 D�E = �D 00 In�and set U = (EU1)1 and V = (V1E�1)1. �Remark 9.3. [41, p.1823] For a certain �nite group G (the generalizedquaternion group of order 32), Swan [40, p.57] found an ideal P , notfree as a ZG module, but still with module isomorphisms ZG� ZG �=P � P �= ZG�P . This yields 2� 2 matrices over ZG with isomorphiccokernels but nonisomorphic kernels. Therefore Lemma 9.1 would befalse without the hypothesis of injectivity.Remark 9.4. An imperfection of Fitting's general result is that thesize of the identity summands in (9.2) depends on the matrices C;D.However, if d is a positive integer in the stable range (de�ned below)of the ring R, then those summands Im; In can be chosen with m =n = d, and under some additional conditions on R (for example if R iscommutative) this bound can be lowered to d � 1 [41, pp.1822-1823].When G is a �nite group, the Krull dimension (see [26, Ch. 6] for thede�nition for a not necessarily commutative ring) of the Noetherianring ZG is 1 [26, Prop. 6.5.5, p. 211], and consequently 2 is in (and isthen easily seen to be the minimum integer in) the stable range of ZG[26, Thm. 6.7.3, p. 220].To de�ne stable range, say a row vector (a1; : : : ; an) over R is a rightunimodular row if there are elements xi 2 R, 1 � i � n, withPi aixi =1. The stable range of R is the set of positive integers d such that forany right unimodular row (a1; : : : ; an) with n > d, there exist elementsbi 2 R, 1 � i � n� 1, such that the row (a1 + anb1; : : : ; an�1 + anbn�1)is again right unimodular.We pause to isolate for later use a particularly simple statement.Proposition 9.5. Suppose R is a commutative ring; SK1(R) is trivial;C and D are �nite square matrices over R; and C is injective. Thenthe following are equivalent.(1) There exist U; V in E(R) such that UC1V = D1.(2) det(C) = det(D) and the R-modules cok(C) and cok(D) areisomorphic.Proof. We check the nontrivial implication, (2) =) (1). By Lemma9.1, we have matrices U; V such that UC1V = D1 with V 2 E(R).Because det(V ) = 1 and det(D) = det(C) 6= 0, we have also det(U) =1. Because SK1(R) is trivial, it follows that U and V are in E(R). �



34 BOYLE AND SULLIVANNow we want to observe that injective matrices with a given coker-nel isomorphism class are classi�ed up to elementary equivalence by aquotient of K1.Proposition 9.6. Let R be a ring. Let C be the set of all squareinjective matrices over R with cokernel module isomorphic to that ofa given square injective matrix over R. Let E(C) be the partition of Csuch that C and D are in the same element of E(C) if C1 and D1 areE(R) equivalent. Then there is a subgroup H of K1(R) such that thefollowing hold.(1) For any C and D in C, if (U; V ) is a GL(R) equivalence fromC1 to D1, i.e. UC1V = D1, then there exists an elementaryequivalence from C1 to D1 if and only if [UV ] 2 H.(2) For any C 2 C, the map GL(R) ! C de�ned by U 7! UC1induces a well de�ned bijection (K1(R))=H ! E(C).(3) If R is commutative, or if R = ZG with G �nite, then H �SK1(R)Proof. We write C � D if there is an elementary equivalence fromC to D. If U is in GL(n;R), then it is well known that the matrix�U 00 U�1� is in E(2n;R), and therefore that for any n� n matrix Cover R�UC 00 I� � �U�1 00 U��UC 00 I��U 00 U�1� � �CU 00 I� :We will use this simple fact repeatedly. From here, we suppress thesubscript 1 and consider all matrices in�nite. U and V will denoteelements of GL(R). Note, if C � D, then CU � DU and UC �UD, and in particular U(CV ) � U(V C). Also, U(V C) � U(CV ) =(UC)V � V (UC). Thus UV C � V UC and similarly CUV � CV U .Choose a matrix C in C and de�ne HC to be the set of U in GL(R)such that UC � C (or equivalently CU � C). If UC � C and V C � Cthen U(V C) � U(C) � C, and similarly U�1(C) � U�1(UC) = C.Therefore HC is a group. We claim UCV � C if and only if UV 2 HC .If UV 2 HC , then UCV � UV C � C. Conversely, if UCV � C, thenC � UCV � UV C and thus UV 2 HC .Next suppose that D is another element of C. We claim HC = HD.Suppose UDV � D. By Lemma 9.1 there are X; Y in GL(R) suchthat D = XCY . Thus XCY � UXCY V � XUCV Y , so UCV � Cand UV 2 HC . Similarly, UV 2 HC implies UDV � D. Thus showsthe group HC does not depend on the choice of C from C.



EQUIVARIANT FLOW EQUIVALENCE 35NoticeHC contains the commutator of GL(R), since UV CU�1V �1 �V UCU�1V �1 � C. The commutator is the kernel of the map GL(R)!K1(R). De�ne H as the image of HC in K1(R). It follows that[U ] 2 H () U 2 HC . This proves (1). It then follows that in(2) we have a well de�ned injection (K1(R))=H ! E(C), which is sur-jective by Lemma 9.1.To prove (3), suppose [U ] 2 H. Perhaps after passing to anotherrepresentative of [U ], we have E 2 E(R) such that UC = CE. If R iscommutative, the injectivity of C forces det(U) = 1, i.e., [U ] 2 SK1(R).Suppose now that R = ZG with G �nite. Let U;C;E denote theimages of U;C;E under the map induced by the inclusion ZG! QG.The injectivity of C implies that C is invertible. Now (C)�1UC = E,which implies that U and E are E(QG) equivalent. In other words,[U ] is in the kernel of the induced map K1(ZG)! K1(QG), and [U ] 2SK1(R). �Remark 9.7. In the case of ZGwithG not abelian, we thank JonathanRosenberg [35] for the statement and proof of part (3) of Proposition9.6,Remark 9.8. In Proposition 9.6, if C contains an element of GL(R),then clearly the group H is trivial. We do not know whether it ispossible for H to be nontrivial.Our main interest in the next result is the case R = ZG, whereG is �nite (so, SK1(ZG) is �nite [27]) and abelian. In this case, it isstraightforward to check whether a square matrix C over ZG is injective(examine the matrix for the regular representation or equivalently checkwhether det(C) is a zero divisor in ZG). Also in this case, the ZGmodule cok(C) is �nite if and only if C is injective.Corollary 9.9. Suppose R is a commutative ring and SK1(R) is �nite.Suppose D1; : : : ; Dk are �nite square matrices over R such that(1) The modules cok(Di) are isomorphic;(2) the determinants det(Di) are equal and are not equal to a zerodivisor in R; and(3) for i 6= j, there is no E(R) equivalence from (Di)1 to (Dj)1.Then k � jSK1(R)j. �Remark 9.10. Let G be a subgroup of the positive reals under mul-tiplication, and let A be a �nite square matrix A with entries in Z+G,with �(A) irreducible. Then A presents the shift of �nite type ��(A)together with an invariant Markov measure, �A [25, 33]. Let B beanother such matrix, and (after the normalizations described in [25]),



36 BOYLE AND SULLIVANsuppose that I � A and I � B have equal determinant, and that Gis the common group of weights over periodic cycles for �A and �B.Then [25, 31, 33] there is a measure preserving topological conjugacy(��(A); �A)! (��(B); �B) if and only if A and B are strong shift equiv-alent over Z+G, if and only if (by [9, Theorem 7.2]) there is a positiveequivalence of polynomial matrices from I � tA to I � tB. In thiscase (after setting t = 1), we get matrices U; V in E(ZG) such thatU(I�A)1V = (I�B)1. (In fact, this elementary equivalence class ofI �A is also an invariant of stochastic ow equivalence [2].) Bill Parry[30] has asked if the cokernel module of (I �A) is a complete invariantof equivalence over ZG when det(I � A) is nonzero. The next result,which follows immediately from Proposition 9.5, answers this questionin the aÆrmative.Proposition 9.11. Suppose R = ZG where G �= Zn and A;B are�nite square matrices over R and det(I�A) is nonzero. The followingare equivalent.(1) There exist U; V in E(R) such that U(I � A)1V = (I �B)1.(2) det(I � A) = det(I � B) and the R-modules cok(I � A) andcok(I �B) are isomorphic.Proof. For any commutative ringR, the units group R� ofR is a directsummand of K1(R). The projection from K1(R) to R� is given by det,and the complementary summand is SK1(R). Let G = Zn, and let Udenote the set of \obvious" units of ZG, U = f�g : g 2 Gg. Thenthe det map on K1(ZG) is an isomorphism to (ZG)�, and moreover(ZG)� = U [3]. (The statement of the relevant Corollary in [3, p. 63]shows K1(ZG) �= Z=2 � Zn. Because U �= Z=2 � Zn, it follows herethat det is injective. That (ZG)� = U follows from the construction ofthe isomorphism proving the Corollary.) Because SK1(ZG) is trivial,Prop. 9.11 follows from Prop. 9.5. �References[1] R. ADLER, B. KITCHENS and B. MARCUS, `Almost topological classi�ca-tion of �nite-to-one factor maps between shifts of �nite type', Ergodic TheoryDynam. Systems (4) 5 (1985) 485{500.[2] P. V. ARAUJO, `A stochastic analogue of a theorem of Boyle's on almostow equivalence', Ergodic Theory Dynam. Systems (3) 13 (1993) 417{444.[3] H. BASS, A. HELLER and R. G. SWAN, `The Whitehead group of a poly-nomial extension', Pub. Math. IHES 22 (1964) 61-79.[4] R. BOWEN and J. FRANKS, `Homology for zero-dimensional basic sets',Ann. of Math. 106 (1977) 73-92.[5] M. BOYLE, `Symbolic Dynamics and Matrices', Combinatorical and Graph-Theoretical Problems in Linear Algebra (eds. R. A. Brualdi, S. Friedland and



EQUIVARIANT FLOW EQUIVALENCE 37V. Klee), IMA Volumes in Mathematics and its Applications 50 (Springer-Verlag, New York, 1993), pp. 1-38.[6] M. BOYLE, `Positive K-theory and symbolic dynamics', Dynamics and Ran-domness (eds. A. Maass, S. Martinez and J. San Martin), Nonlinear Phenom-ena and Complex Systems 7 (Kluwer, 2002), pp. 31-52.[7] M. BOYLE, `Flow equivalence of shifts of �nite type via positive factoriza-tions', Paci�c J. Math. (2) 204 (2002) 273-317.[8] M. BOYLE and D. HUANG, `Poset block equivalence of integral matrices',Trans. Amer. Math. Soc. 355 (2003) 3861-3886.[9] M. BOYLE and J. B. WAGONER, `Positive algebraic K-theory and shifts of�nite type', Modern Dynamical Systems and Applications (eds. M. Brin, B.Hasselblatt and Y. Pesin, Cambridge University Press, 2004), pp. 45-66.[10] U. FIEBIG, `Periodic points and �nite group actions on shifts of �nite type',Ergodic Theory Dynam. Systems (3) 13 (1993) 485-514.[11] M. FIELD, `Equivariant di�eomorphisms hyperbolic transverse to a G-action', J. London Math. Soc. (2) 27 (1983) 563-576.[12] M. FIELD and M. GOLUBITSKY, Symmetry in chaos. A search for patternin mathematics, art and nature. Corrected reprint of the 1992 original (OxfordUniversity Press, 1995).[13] M. FIELD and M. NICOL, `Ergodic Theory of Equivariant Di�eomorphisms:Markov Partitions and Stable Ergodicity', Memoirs Amer. Math. Soc. 803(2004).[14] H. FITTING, `Uber den Zusammenhang zwischen dem Begri� der Gleichar-tigkeit zweier Ideale und dem Aquivalenz-begri� der Elementarteilertheorie',Math. Annalen 112 (1936) 572-582.[15] J. FRANKS, `Flow equivalence of subshifts of �nite type', Ergodic TheoryDynam. Systems 4 (1984) 53-66.[16] R. GURALNICK and L. LEVY, `Presentations of modules when ideals neednot be principal', Illinois J. Math. (4) 32 (1988) 593-653.[17] D. HUANG, `Flow equivalence of reducible shifts of �nite type', Ergodic The-ory Dynam. Systems 14 (1994) 695-720.[18] D. HUANG, `Flow equivalence of reducible shifts of �nite type and Cuntz-Krieger algebra', J. Reine. Angew. Math. 462 (1995) 185-217.[19] D. HUANG, `The classi�cation of two-component Cuntz-Krieger algebras',Proc. Amer. Math. Soc. (2) 124 (1996) 505-512.[20] D. HUANG, `Automorphisms of Bowen-Franks groups for shifts of �nite type',Ergodic Theory Dynam. Systems 21 (2001) 1113-1137.[21] K. H. KIM and F. W. ROUSH, `Free Zp actions on subshifts', Pure Math.Appl. (2-4) 8 (1997) 293-322.[22] K. H. KIM, F. W. ROUSH and J. B. WAGONER, `Characterization of inertactions on periodic points, Part I and Part II', Forum Math. 12 (2000), 565-602 and 671-712.[23] B. P. KITCHENS, Symbolic dynamics. One-sided, two-sided and countablestate Markov shifts (Springer-Verlag, 1998).[24] D.LIND and B. MARCUS, An Introduction to Symbolic Dynamics and Coding(Cambridge University Press, 1995).[25] B. MARCUS and S. TUNCEL, `The weight-per-symbol polytope and embed-dings of Markov chains', Ergodic Theory Dynam. Systems 11 (1991) 129-180.



38 BOYLE AND SULLIVAN[26] J. C. MCCONNELL and J. C. ROBSON, Noncommutative Noetherian rings,Revised edition, Graduate Studies in Math. 30 (American Math. Soc., Prov-idence, 2001).[27] R. OLIVER, Whitehead groups of �nite groups, London Math. Soc. LectureNote Ser. 132 (Cambridge Univ. Press, 1988).[28] W. PARRY, `Notes on coding problems for �nite state processes', Bull. Lon-don Math. Soc. (1) 23 (1991) 1-33.[29] W. PARRY, `The Liv�sic periodic point theorem for non-abelian cocycles',Ergodic Theory Dynam. Systems 19 (1999) 687-701.[30] W. PARRY, personal communication (2001).[31] W. PARRY and K. SCHMIDT `Natural coeÆcients and invariants forMarkov-shifts', Invent. Math. (1) 76 (1984) 15-32.[32] W. PARRY and D. SULLIVAN, `A topological invariant for ows on one-dimensional spaces', Topology 14 (1975) 297-299.[33] W. PARRY and S. TUNCEL, `On the stochastic and topological structure ofMarkov chains', Bull. London Math. Soc. (1) 14 (1982) 16-27.[34] J. ROSENBERG, Algebraic K-theory and Its Applications (Springer-Verlag,1994).[35] J. ROSENBERG, personal communication (2004).[36] K. SCHMIDT, `Remarks on Liv�sic' theory for nonabelian cocycles', ErgodicTheory Dynam. Systems 19 (1999) 703-721.[37] M. SULLIVAN, `An invariant of basic sets of Smale ows', Ergodic TheoryDynam. Systems 17 (1997) 1437{1448; Errata 18 (1998) 1047.[38] M. SULLIVAN, `Invariants of twist-wise ow equivalence', Electron. Res. An-nounc. Amer. Math. Soc. 3 (1997) 126{130.[39] M. SULLIVAN, `Invariants of twist-wise ow equivalence', Discrete Contin.Dynam. Systems (3) 4 (1998) 475{484.[40] R. G. SWAN, `Projective modules over group rings and maximal orders', Ann.of Math. (2) 76 (1962) 55-61.[41] R. B. WARFIELD, `Stable equivalence of matrices and resolutions', Commu-nications in Algebra (17) 6 (1978) 1811-1828.[42] R. F. WILLIAMS, `Classi�cation of subshifts of �nite type', Ann. of Math.98 (1973) 120{153; Errata Ann. of Math 99 (1974), 380{381.Department of Mathematics, University of Maryland, College Park,MD 20742-4015E-mail address : mmb@math.umd.eduURL: www.math.umd.edu/�mmbDepartment of Mathematics, Southern Illinois University, Carbon-dale IL 62901-4408E-mail address : msulliva@math.siu.eduURL: www.math.siu.edu/sullivan


	Southern Illinois University Carbondale
	OpenSIUC
	2005

	Equivariant Flow Equivalence of Shifts of Finite Type by Matrix Equivalence over Group Rings
	Mike Boyle
	Michael C. Sullivan
	Recommended Citation



