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Pareto-Improving Water Management over Space and Time: The Honolulu Case 
Basharat A. Pitafi, Southern Illinois University* 

James A. Roumasset, University of Hawaii 

 

Despite a voluminous literature on groundwater management (see e.g. Koundouri, 

2004a), proposals to induce efficient use through pricing or quantity regulations have 

often been politically infeasible (see, e.g., Dinar 2000; Johansson 2000; Postel 1999, 

p.235-236). The common problem with these proposals is that current users are called on 

to sacrifice in order that future users will be better off (see, e.g., Feinerman and Knapp 

1983).1 Although total welfare gains are greater than losses, present users are politically 

more influential than future users (some of whom are unborn) and are therefore able to 

block reforms (see, e.g., Olson 1965; Dinar and Wolf 1997).  

When gains from efficiency pricing are far in the future and are realized after 

initial losses (e.g., from paying higher prices), then rational present users would accept 
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1 Feinerman and Knapp (1983) note that water management through pump taxes may 

cause losses to water users and gains to nonusers unless the tax revenues are rebated to 

the users. They do not discuss the case, however, where some users are worse off despite 

a revenue rebate, or where future users compensate the present users for their losses. 
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the switch to efficiency pricing only if: 1) present value of future gains is more than the 

present value of initial losses, 2) present users have enough foresight and confidence (to 

expect the future gains), and 3) present users are either a) sufficiently long-lived (to enjoy 

the future gains themselves), or b) sufficiently interested in the benefit of future 

generations (to value the total benefit to future generations equal to or more than their 

own total losses).2 Conditions (2) and (3) are stringent, and without them the present 

users may not have an incentive to adopt efficient pricing and usage policies. To avoid 

this problem of political infeasibility, a mechanism for compensating those who lose 

welfare due to efficient management can be provided. Compensation possibilities to 

enhance political feasibility have been discussed in general (see e.g., Krueger 1992; 

Williamson 1994) but have not been explicitly developed in an inter-temporal 

framework. 

Using the urban Honolulu water district, our objectives are to: 1) compute the 

efficient allocation of water across time and across locations, 2) compute efficiency 

prices needed at the margin to support the efficient allocation as a decentralized 

equilibrium, 3) simulate the effects of the status quo policy of pricing water at average 

cost of extraction and distribution, 4) estimate the topographic and temporal distribution 

of welfare gain/loss to users by switching from the status quo to efficiency pricing, and 5) 

                                                 

2 For example, if the welfare-losing present generation users were going to leave positive 

bequests to the welfare-gaining future generations, those bequests could be reduced to 

make up for the present generation’s loss and to offset the gain to the future generations. 
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define a lump sum compensation scheme such that the switch to efficiency pricing causes 

no user to be a net loser. 

Groundwater aquifers that provide freshwater in coastal areas, such as Honolulu, 

usually exhibit Ghyben-Herzberg lens geometry, where an underground layer of 

freshwater floats on saltwater that seeps in from the ocean (Mink 1980). If the freshwater 

is extracted faster than recharge, the freshwater head falls, the saltwater rises, and the 

freshwater layer becomes thinner. Since most pumping wells go deeper than the 

freshwater head, the rising saltwater can ultimately reach the bottom of the current well 

systems that will then begin to pump out saltwater.3 The freshwater head, therefore, needs 

to be constrained from falling below the level at which the wells would begin to turn 

saline.4 If more freshwater is required than that allowable under the constraint, it must be 

obtained through desalination of seawater, which serves as a backstop. 

                                                 

3 In reality, the interface is a brackish water zone that becomes saltier with depth. This 

brackish water can also be extracted and converted into drinkable water by appropriate 

processes (e.g., reverse osmosis, see Duarte 2002), though it is not currently practiced. 

We abstract away from this possibility and follow the water authority’s (and indeed much 

of the literature’s) practice of assuming a sharp interface, chosen to be the location of the 

maximum allowable salt concentration under the state department of health guidelines. 

4 An ex ante problem would be the optimal placement of wells. However, in Honolulu, as 

in many places, large wells have already been constructed and the Honolulu Board of 

water supply asserts that it would be prohibitively costly to relocate them or to restore 

them after salinization. 
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Net recharge to the aquifer depends on the head level. A higher head level 

increases water pressure within the aquifer. This increases leakage from the aquifer 

towards the ocean and decreases the recharge coming into the aquifer from the watershed. 

Both effects cause net recharge to vary inversely with head. 

For the Honolulu case, we categorize users according to distribution costs, which 

vary across elevations (table 1). In addition, the demand grows over time depending on 

factors such as income and population. 

Whenever water extraction is governed by an administered price, inefficient use 

occurs if marginal user cost is ignored.5  In the Honolulu case, the city-owned water 

utility implicitly sets price equal to the marginal physical cost of providing water, 

ignoring the user cost. Further inefficiency is introduced as the utility sets a uniform price 

for users at all elevations, in effect cross-subsidizing high-elevation users (see table 1, 

effective price). 

To adequately represent the local conditions, we require a general, operational 

model of an exhaustible groundwater aquifer with variable recharge, the possibility of 

well-salinization, desalting as a backstop source of freshwater, and a growing demand for 

water. Drawing on existing literature, we unify these components in an operational model 

and use it to compute the efficiency prices and to perform the welfare analysis required. 

Construction of a compensation scheme requires explicit disaggregation of consumers 

over space and time, and analysis of the distributional consequences of efficient 

                                                 

5 i.e., decrease in the present value of the groundwater stock as a result of extracting one 

more unit of water.  
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management versus the existing, inefficient management practice. This analysis also 

allows us to compare the gains from efficient temporal management with those from 

efficient spatial management. 

The rest of the article is organized as follows: The next section provides a 

theoretical apparatus for modeling the status quo and efficient management scenarios, 

calculating the welfare effects of switching from one to the other, and constructing a 

compensation mechanism. In the application section, we determine efficiency prices and 

estimate the welfare effects of switching from status quo to efficiency pricing in the 

Honolulu case. In the compensation section, we provide a method for compensating those 

who lose welfare as a result of switching from status quo to efficiency pricing, a 

mechanism to finance the compensation, and discuss related equity issues. The final 

section summarizes the major findings and discusses possible extensions. 

The Model 

Temporal optimization of groundwater use has been examined in many studies 

(e.g., Burt, 1967, 1970; Brown and Deacon 1972; Gisser and Sanchez 1980; Feinerman 

and Knapp 1983, among others). These studies neither consider spatial optimization nor 

allow for recharge to continuously vary with head. On the other hand, studies involving 

spatially efficient use of groundwater (e.g., Tolley and Hastings 1960; Chakravorty and 

Roumasset 1991; Chakravorty, Hochman, and Zilberman 1995; Chakravorty and Umetsu 

2003) are based on static optimization. Some models include both temporal optimization 

and multi-sector demands that can be adapted for spatial differentiation of users, but they 

do not allow for a variable recharge (see, e.g., Kim, Moore, and Hanchar 1989; 

Koundouri and Christou 2000). A model that is close to our required features is that of 
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Krulce, Roumasset, and Wilson (1997), which examines temporally optimal groundwater 

use with variable aquifer recharge and a backstop source. Their model, however, does not 

consider spatial efficiency for geographically distributed users.6 They do not model status 

quo management nor do they investigate welfare implications of efficient management. 

There are other excellent models in the literature with spatial and temporal components 

(e.g., Provencher 1993; Provencher and Burt 1994; Zeitouni and Dinar 1997; Reinelt 

2005; Taghavi, Howitt, and Marino 1994; Dinar and Xepapadeas 1998; Noel, Gardner, 

and Moore 1980; Noel and Howitt 1982). However, they usually either add transport 

costs in the numerical simulations, after the analytical model has already been articulated, 

or their optimization objectives are different from ours, e.g., some minimize cost rather 

than maximize welfare; some use an exogenous water price; and some do not attempt to 

provide analytical results such as our equation (10). 

Our required model is obtained by combining temporal and spatial components 

into a single, analytical, welfare-optimizing framework.7 In order to make welfare 

                                                 

6 Krulce, Roumasset, and Wilson (1997) consider spatially uniform pricing, and do not 

have salinity-related restrictions on extraction. They apply the model to Pearl Harbor 

aquifer whereas the present study examines Honolulu aquifer, a smaller but more 

intensively used aquifer. 

7 Other well-known models are then special cases of our model. Krulce, Roumasset, and 

Wilson (1997) model is obtained, of course, by suppressing the spatial component (i.e., 

assuming a uniform distribution cost). Koundouri and Christou (2000) model is achieved 

by imposing the assumption of a constant recharge. And if we also assume an infinite 
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comparisons, we also provide a model of status quo management. The welfare analysis in 

turn is used to generate a block-pricing scheme that is both efficient and Pareto 

improving. 

Users are distributed over different elevation categories. Consumption in 

elevation category i at time t is qt
i = Di(pt

i,t), where Di is the demand function, pt
i is the 

price, and the second argument, t, of the demand function allows for any exogenous 

growth in demand. 

Water is extracted from a coastal groundwater aquifer that is recharged from a 

watershed and leaks into the ocean from its ocean boundary depending on the aquifer 

head level, h.8  Net recharge (recharge minus leakage), w, is a positive, decreasing, 

concave function of head, i.e., ( ) 0, ( ) 0, 0w h w h w′ ′′≥ < ≤ . The aquifer head level, h, 

changes over time depending on the net aquifer recharge, w(h), and the quantity extracted 

for consumption at all elevations, 
i
t

i
q∑ .9  The rate of change of head level is given by: 

                                                                                                                                                 
backstop cost, we obtain Gisser and Sanchez (1980) model. Our model is broadly 

applicable through appropriate choice of parameters. 

8 Measured as the vertical distance between the mean sea level and the top of the 

freshwater layer. 

9 Here, instantaneous adjustment of hydrological conditions is assumed. In reality, 

adjustment takes time and is not uniform throughout the aquifer. We abstract from these 

complications by taking a long-term view that allows enough time to complete the 

adjustment. 
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( ) i
t t t

i
h w h qγ = − ∑&

where γ is the factor of conversion from volume of water in gallons (on 

the R.H.S.) to head level in feet. In the remainder of this section, however, we subsume 

this factor, i.e., h is considered to be in volume, not feet.  Thus, we use ( ) i
t t t

i
h w h q= − ∑&

 

as the relevant equation of head motion.  

As the freshwater head level falls (depending on the extraction rate), the 

freshwater-saltwater interface rises. If the head level falls below hmin, the interface rises to 

the level of well bottoms. Therefore, we measure head as the level above hmin. Any 

expansion in demand when the head level has fallen to hmin would need to be supplied by 

desalination of seawater. The unit cost of the backstop is represented by cb and the 

quantity of the backstop used in category i is bt
i. 

The unit cost of extraction is a function of the vertical distance water has to be 

lifted, f = e – h, where e is the elevation of the well location. At lower head levels, it is 

more expensive to extract water because the water must be lifted over a longer distance 

against gravity, and the effect of gravity becomes more pronounced as the lift, f, 

increases. The extraction cost is, therefore, a positive, increasing, convex function of the 

lift, ( ) 0c f ≥ , where ( ) 0, ( ) 0c f c f′ ′′> ≥ . Since the well location is fixed, we can 

redefine the unit extraction cost as a function of the head level10: ( ) 0qc h ≥ , where 

0
( ) 0,  ( ) 0,  lim ( )q q qh

c h c h c h
→

′ ′′< ≥ = ∞ . The total cost of extracting water from the aquifer at 

                                                 

10 It may also be a function of the water volume extracted, but we assume constant 

returns to scale following Krulce, Roumasset, and Wilson (1997). 
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the rate q given head level h is cq(h).q. The cost of transporting a unit of extracted water 

to users in category, i, is cd
i. 

We first model water allocation under status quo management and then under 

efficient management. The differences in welfare distribution under the two regimes are 

then examined and used to derive a mechanism to compensate those who lose welfare 

when the efficient allocation is implemented.  

Status Quo Management 

In the status quo scenario, price is set at the marginal cost of extraction and distribution, 

averaged over all users. Extraction is equal to the quantity demanded at the status quo 

price, until the groundwater head has reached its minimum, after which extraction is 

limited to recharge, and additional water is obtained through desalination. Once 

desalination is needed, water price under the status quo system is set equal to a weighted 

average of extraction and desalination costs.  

Thus, under status quo, pt
sq is the price at time t regardless of elevation, and is 

given by: 

(1) ( )
min

min min min

( ) ,                                                         if  

( ) ( ) ( ) / ,       if  

sq sq sq
q t d tsq

t sq sq sq sq sq
q t b t t d t

c h c h h
p

c h w h c q w h q c h h

⎧ + >⎪= ⎨⎡ ⎤⋅ + ⋅ − + =⎪⎣ ⎦⎩
 

where cd
sq is the cost of distributing a unit of water averaged over all users (at all 

elevations) as: 

(2) 
i i

=              ( )sq i i i i sq
d d t t t i tc c q q q D p⎛ ⎞ ⎛ ⎞⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  
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and ht
sq is the head level at time t under the status quo scenario and changes as: 

( )sq sq sq
t t th w h q= −& , where ( )sq sq

t i t
i

q D p= ∑  is the quantity extracted at time t.  After the 

head level reaches the minimum allowable point, hmin, the rate of groundwater extraction 

is held constant at min( )w h and any excess demand is met from the desalination backstop. 

The status quo (average cost) price, pt
sq, is, therefore, a volume-weighted average cost of 

water from the two sources (desalination and underground aquifer). 

Efficient Management 

A hypothetical social planner chooses the extraction and backstop quantities over time to 

maximize the present value of net social surplus, and corresponding efficiency price 

paths are computed for each user-category over time.11 

(3) 
1

 
, 

0 0

Max  ,   ( , ) [ ( )] [ ]
i i
t t

i i
t t

q b
rt i i i i

i d q t t d b t
q b i

V V e D x t dx c c h q c c b
+∞

− −
⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟= − + ⋅ + + ⋅⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
∑∫ ∫   

Subject to:  ( ) i
t t t

i
h w h q= − ∑&

 

The current value Hamiltonian for this optimal control problem is: 
                                                 

11 Note that the spatially differentiated development is not necessary here. One can 

vertically shift the individual demand curves by their distribution costs and horizontally 

add them to get an aggregate demand curve, which can then be used to compute optimal 

wholesale price. Price at each elevation category can then be obtained by adding the 

corresponding distribution cost to the wholesale price. This method relies on the (correct) 

assumption that the prices at different elevations will differ by their distribution cost. 

However, our treatment derives, rather than assumes, this last condition. 
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(4) ( )1

0

( , ) [ ( )] [ ] ( )
i i
t tq b

i i i i i
i d q t t d b t t t t

ii
H D x t dx c c h q c c b w h qλ

+
−

⎛ ⎞
⎜ ⎟= − + ⋅ − + ⋅ + ⋅ − ∑⎜ ⎟
⎝ ⎠

∑ ∫  

The necessary conditions for an optimal solution are: 

(5) ( ) i
t t t

it

Hh w h q
λ

∂
= = − ∑

∂
&  

(6) ( ) ( )i
t t t q t t t t

it

Hr r c h q w h
h

λ λ λ λ∂ ′ ′= − = + ⋅ − ⋅
∂ ∑&  

And for each elevation category, i,  

(7) 
1( , ) ( ) 0i i i

i t t q t d ti
t

H D q b t c h c
q

λ−∂
= + − − − ≤

∂  if < then qt
i = 0 

(8) 
1( , ) 0i i i

i t t b di
t

H D q b t c c
b

−∂
= + − − ≤

∂  if < then bt
i = 0 

For efficiency pricing, we need to solve the system of equations (5) – (8). We 

define the optimal price path as 
1( , )i i i

t i t tp D q b t−≡ + in each category. Assuming that the 

cost of desalination is high enough so that water is always extracted from the aquifer, 

condition (7) holds with equality and yields the in situ shadow price of water, as the 

royalty (i.e., price less unit extraction and distribution cost). 

(9) ( )i i
t t q t dp c h cλ = − −  

The time derivative of (9) is ( )i
t t q t tp c h hλ ′= − ⋅ && & . Combining this expression with 

equations (5), (6), and (9) and rearranging, the following arbitrage condition is obtained: 

(10)  
Extraction and distribution cost

Marginal User Cost

1( ) ( ). ( )
( )

i i
t q t d t q t t

t

p c h c p c h w h
r w h

′⎡ ⎤= + + +⎣ ⎦′−
&

14243
1444442444443  
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Equation (10) implies that at the margin, the benefit of extracting water must 

equal the actual costs for extraction and distribution plus the marginal user cost 

associated with both higher future extraction costs and the forgone use of the marginal 

unit when its demand price is higher. Thus if water is priced at physical costs alone, as is 

common in many areas, marginal user cost is ignored and overuse will occur. Equation 

(10) also implies that the price in two elevation categories should differ only by the 

difference between their distribution costs. If we exclude distribution cost from equation 

(10), the resulting price is the wholesale price (i.e., the price before distribution). 

Re-arranging (10), we get the following equation of motion: 

(11)  [ ( )] [ ( ) ] ( ) ( )i i i
t t t q t d t q tp r w h p c h c w h c h′ ′= − ⋅ − − + ⋅&  

The first term on the R.H.S. is positive and the second is negative. Their relative 

magnitudes determine whether the price is increasing or decreasing at any time. If the net 

recharge is small, the second term may be dominated by the first term, making the price 

rise. We rewrite equation (11) to get: 

(12) 
i i
t b dp c c≤ +  , (if < then 0tb = ) 

Equation (12) implies that desalination will not be used if its cost is higher than 

the price of freshwater. When desalination is used, the price must exactly equal the cost 

of the desalted water, i.e., 0i i i
t b d tp c c p= + ⇒ =& .  

We can substitute 
i i
t b dp c c= +  into (5) to get ( )t b q tc c hλ = − .  Taking this 

expression and its time derivative and combining these with equations (5) and (6) by 

eliminating , ,t tλ λ& and th& , yields 
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(13) 
( ( ) ) ( )

( )
( )

t q t
b q t

t

w h c h
c c h

r w h
′

= −
′−  

Since the derivative of the R.H.S. with respect to ht is negative, the ht that solves 

equation (13) is unique. We denote it as *h . Whenever desalination is being used, the 

aquifer head is maintained at this optimal level, i.e., 0 ( *)i
t t

i
h q w h= ⇒ =∑&

. Therefore, at 

*h , the quantity extracted from the aquifer must equal the net inflow to the aquifer. Any 

excess of quantity demanded is supplied by desalination. Since at h*, 0,    0i
t tp h= =&& , the 

system reaches a steady state. 

 

Revenue 

Since the efficiency price includes marginal user cost as well as extraction and 

distribution costs (see equation 10), surplus revenue is generated under efficiency pricing. 

Any surplus revenue is returned to the consumers.12 The return of revenue can cause 

problems if it distorts the incentives provided by the efficiency price (see e.g., Feinerman 

and Knapp 1983). We achieve a non-distorting, lump-sum revenue transfer by means of 

an inframarginal block that is priced at less than its marginal cost. The lower the charge 

for the inframarginal block, the smaller the quantity needed to achieve a particular 

                                                 

12 This is certainly true in the case of many government controlled water utilities, such as 

the Honolulu Board of Water Supply, which are restricted to balanced-budget finance. If 

this assumption is relaxed, some of the surplus revenue can be kept by the agency and the 

revenue returned to the users can be reduced accordingly. 
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transfer. In order to minimize the chance that a particular user’s demand curve intersects 

the block-pricing schedule in the interval corresponding to the first-block, we propose 

charging a price of zero for that block. The size of this free block is chosen such that the 

cost of providing that much water is equal to the revenue that needs to be returned, i.e., 

the size of the free block, ki
t, for a consumer in category i at time t, is: 

(14) 

*

( )

( )t

i i i
t q t d ti

i
q t d

p c h c q
k

c h c

⎡ ⎤− −⎣ ⎦=
⎡ ⎤+⎣ ⎦

 

The quantity of water exceeding the free block is charged the efficiency price.13  

The resulting welfare (consumer surplus plus revenue surplus) for users in category i at 

time t under efficiency pricing is given by: 

                                                 

13 The quantity, q*, is the amount of water a user would consume as dictated by 

efficiency pricing minus the amount of the free block. As long as the actual use exceeds 

the first block (i.e., q*>0), the incentives are undistorted. If the first block equals or 

exceeds the actual use of a user (i.e., q*≤0), the user will get all of his/her water for free 

and will not face the efficiency price at the margin. This can be corrected by providing 

the user a rebate, equal to the efficiency price, for reducing consumption. We abstract 

from this case, however.  In the Honolulu case studied in this article, we find that the free 

blocks required for compensation are smaller than actual consumption. 

 A related issue is the possibility of income effects due to the free blocks. Income 

effects can be incorporated by modeling demand as a function of income as well as price. 

However, as demand is a function of a consumer’s total income that may be in tens of 
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(15) 
0

( ) [ ( )] [ ]
i i
t tq b

i i i i i i
t t d q t t d b tv p x dx c c h q c c b

+⎛ ⎞
⎜ ⎟= − + ⋅ − + ⋅
⎜ ⎟
⎝ ⎠

∫  

Welfare of the same users under status quo pricing will be: 

(16) 
0

( ) [ ( )] [ ]
sq sq
it itq b

i sq sq sq sq sq sq
t t d q t it d b ity p x dx c c h q c c b

+⎛ ⎞
⎜ ⎟= − + ⋅ − + ⋅
⎜ ⎟
⎝ ⎠

∫  

where qit
sq is the quantity of groundwater and bit

sq is the quantity of desalted water 

consumed at elevation i under status quo pricing. 

The switch from status quo to efficiency pricing changes the welfare of the users 

in category i at time t by 
i i i
t t tz v y= − , which may be positive or negative. If 

i
tz  >0 for a 

consumer, he/she is a gainer and if 
i
tz  <0, he/she is a loser.  

                                                                                                                                                 
thousands of dollars, it seems unlikely that a hundred dollars or so of additional effective 

income from a free block would change demand significantly. As an example, average 

income in Honolulu County is $33,329 (DBEDT, 2005b, Table A26). If the annual value 

of the free block is $100, the implied increase in the consumer’s income is only about 

0.3%. Assuming the income elasticity of water demand is 0.8, the increase in demand is 

0.24% or 0.38 gallons for a consumer using 160 gallons. We have ignored the income 

effects in this article, due to data limitations, as income data for Honolulu is not compiled 

according to the elevation categories of water use. 
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Application 

We apply the model to the freshwater market supplied from the Honolulu groundwater 

aquifer. We calibrate the above model and solve for efficiency prices, and estimate 

welfare effects of switching to efficiency pricing. 

Calibration 

The volume of water stored in the Honolulu aquifer14 depends on the head level, the 

aquifer boundaries, the Ghyben-Herzberg lens geometry, and rock porosity. Although the 

freshwater lens is a paraboloid, the upper and lower surfaces of the aquifers are nearly 

flat (see Mink 1980).  Thus, volume of aquifer storage is modeled as linearly related to 

the head level. Using GIS aquifer dimensions15 and effective rock porosity of 10% 

                                                 

14 The Honolulu water district controls all of the water in the Honolulu aquifer. There are 

other water districts on the island of Oahu with their own aquifers. The aquifers 

minimally interact with each other through inter-aquifer percolation small enough to be 

ignored in most studies (see e.g., Mink 1980). Sophisticated engineering studies (e.g., 

Oki 1998) have considered such interactions, but  integrating them with economic 

modeling remains a direction for further research. 

15  GIS data, obtained from http://www.state.hi.us/dbedt/gis/dohaq.htm (Layer Name: 

DOH Aquifers). Source: Original maps prepared by John F. Mink and L. Stephen Lau 

(Water Resources Research Center, University of Hawaii) for Hawaii Department of 

Health (DOH) Groundwater Protection Program. Digitized by DOH - Environmental 

Planning Office based on USGS 1:24,000 scale maps. 
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(following Mink, 1980), the Honolulu aquifer has 61 billion gallons of water stored per 

foot of head. This value is used to calculate the conversion factor from head level in feet 

to volume in billion gallons. Extracting one billion gallons (or a thousand MG) of water 

from the aquifer would lower the head by 1/61 or 0.0163934 feet, giving us γ = 

0.0000163934 ft/MG. We econometrically estimate net recharge, l, as a function of the 

head level, h, to get the recharge function: 2( ( )) 157 0.24972 ( ) 0.022023 ( )l h t h t h t= − − , 

where l is measured in million gallons per day (mgd). 

We calculate the minimum allowable head level to be 15 feet. The deepest wells 

in the Honolulu aquifer are at Beretania pumping station and have a bottom depth of 

about 600 feet. This well system will be the first to go saline as the freshwater head level 

will fall and the saltwater interface will rise to meet the well bottom (thereby making it 

saline). The current head level at this location is about 22 feet. Using a 1:40 ratio of 

freshwater head to depth of saltwater interface in a Ghyben-Herzberg freshwater lens (as 

calculated by Mink), we get current depth of the interface at 880 feet below sea level. 

When this interface rises to the bottom of the Beretania wells (600 below sea level), the 

wells will turn saline. Using the 1:40 ratio, this implies a freshwater head level of 15 feet. 

The cost is a function of elevation (and, therefore, the head level), specified as: 

0
0

( )( ( ))
n

e h tc h t c
e h

⎛ ⎞−
= ⎜ ⎟−⎝ ⎠

, where c0 is the initial extraction cost when the head level h(t) is 

at the current level, h0 = 22 feet (at Beretania wells). There are many wells from which 

the freshwater is extracted and, using a volume-weighted average cost, the initial average 

extraction cost in Honolulu is $0.16 per thousand gallon (tg) of water. e is the average 

elevation of these wells and is estimated at 50 feet, and n is an adjustable parameter that 
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controls the rate of cost growth as head falls. We initially assume n = 2 (with sensitivity 

analyses for n = 1 and n = 3). Since the head level does not change much relative to the 

elevation, the value of n does not affect the results appreciably. We calculate the 

distribution cost, cd
i, for each elevation category from pumping data (table 1). The unit 

cost (
bc ) of desalting16 in Honolulu is currently estimated at $7/tg. This includes the cost 

of desalting and an additional cost of transporting the desalted water from the 

desalination plant to the existing freshwater distribution network. Technical progress may 

lead to a lower desalination cost over time.17 We abstract away from explicitly modeling 

technical progress and provide sensitivity analysis for 
bc = $5, 6, and 8 (Table 3). 

                                                 

16 Desalination is the main alternative water source in Honolulu. Other sources such as 

surface water and water from fallow cropland are negligible in the Honolulu water 

district. Water in the district is used almost entirely for urban purposes. There are a few, 

very small agricultural enterprises, such as floricultural nurseries, but they are supplied 

by the Honolulu Board of Water Supply, and their consumption is included in our 

demand estimates. 

17 Future costs may be lower due to technological advances or larger due to increasing 

cost of environmental consequences. For example, the cost of a brine pond and ocean 

outfall to manage the pollutants generated in the desalination process is about $0.63 / tg 

for a 5 mgd plant, according to the Honolulu Desalination Study (GMP Associates 2000) 

and is likely to increase as land becomes more expensive. 
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We use a demand function of the form: Di(pt
i, t)=Ai eg t (pt

i ) -η , where Ai is a 

constant, g is the demand growth rate, pt
i is the price at time t in the elevation category i, 

and η  is the price elasticity of demand.18 Demand estimates could be improved, in 

principle, by including income and population variables in the demand function. 

However, this would require currently unavailable data on income and population by 

elevation categories of water use. In the status-quo scenario, all the users pay a uniform 

price, and we can obtain the aggregate demand function: 

i

- - -( )= ( ) ( ) ( ) ( ) ( )        A=sq sq sq gt gt sq gt sq
t i t i t t i t i

i i i
D p D p A p e e p A e p A Aη η η= = =∑ ∑ ∑ ∑  

Similarly, the distribution cost under status quo is: 

 
i i

=              ( )sq i i i i sq
d d t t t i tc c q q q D p⎛ ⎞ ⎛ ⎞⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

i i

i i i i

= ( ) ( )

- -   ( ) ( )

sq i sq sq
d d i t i t

i sq gt sq gt i
d i t i t d i i

c c D p D p

c A p e A p e c A Aη η

⎛ ⎞ ⎛ ⎞⋅⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ = ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑
 

                                                 

18 Using linear demand functions while keeping the same elasticity at the status quo price 

and quantity as used in the constant elasticity demand function for each elevation 

category, welfare gains are reduced by between 4% (for the lowest elevation category) 

and 64% (for the highest elevation category) compared with the gains under the constant 

elasticity demand functions. However, since most of the consumption is at the lowest 

elevation category, the aggregate welfare gains are lower by less than 10%. 
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The constant of the demand function, Ai, in each elevation category is chosen to 

normalize the demand to actual price and quantity data (and is reported in table 1). The 

value of A=83.77 mgd and =$1.81/tgsq
dc . We initially use r = 3% (see Krulce, 

Roumasset, and Wilson 1997), η  = – 0.25 (see Moncur 1987; Malla 1996)19, and g= 1% 

(see DBEDT 2005a, table 1.3). We subsequently perform sensitivity analyses with r = 

1%, 2%, 4%; η  = – 0.15, – 0.3; g=2%, 3%; and n=1, 2 (see table 3).  

Solution Algorithm 

The computer algorithm relies on the following strategy. We first solve equation (13) to 

obtain final period head level and then use it as a boundary condition to numerically 

                                                 

19 Moncur (1984) examined single-family residential water demand on Oahu, HI, and 

using the OLS procedure, estimated the price elasticity between -0.029 and -0.114, and 

income elasticity between 0.185 and 0.4. For the same consumer segment, Moncur 

(1987) used pooled cross-section time-series data with the Fuller and Battese (1974) OLS 

correction. Although he obtained short-run price elasticity between -0.032 to -0.517 and 

long-run price elasticity between -0.1 to -0.683 from different model specifications, he 

relies more on specifications that give intermediate elasticity values of -0.265 to -0.377. 

Malla (1996) included an inframarginal price variable (difference between actual water 

bill and the bill at the marginal rates) following Billings and Agthe (1980). He estimated 

the price elasticity for multi-unit residential demand at -0.40. This may have been 

overestimated because of possible collinearity between the marginal and inframarginal 

price variables. A GLS estimate gives the corresponding elasticity at -0.26. These studies 

remain the main source of elasticity estimates in Honolulu. 
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solve equations (5) and (11) simultaneously for the time paths of efficiency price and 

head level. Welfare in each elevation category is computed as the area under that 

category’s demand curve minus extraction and distribution costs (as in expression 3). 

 

Results 

Now we examine the time-paths of prices, head levels, and welfare, under the status quo 

and efficiency pricing scenarios. 

Status Quo Management 

The status quo price (fig. 1 a) starts at $1.97 per thousand gallons and increases slightly 

over time due to the head level (fig. 1 b) drawdown through extraction and the resulting 

increase in extraction costs. Consumption (corresponding to the status quo price) in each 

elevation category is given in fig. 1(c), and at selected intervals, in table 2 (a).  

Higher-elevation users have larger per capita consumption. They are generally 

considered high-income consumers.20 Over time consumption increases and the head 

level decreases until it reaches 15 feet, the minimum allowable21 to avoid aquifer salinity, 

in year 57. At this point, extraction must be adjusted such that head level does not fall 

                                                 

20 Although income data is not available by elevation, it is readily apparent from property 

values that high-income consumers are relatively concentrated at higher elevations in 

Honolulu. 

21 The Honolulu Board of Water Supply uses a minimum allowable head level of 18 feet 

as an extra precaution. If we use that number, the minimum head is achieved in 29 years. 
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further, i.e., extraction must not exceed recharge. Thus, in year 57, consumption is partly 

supplied from the backstop source (desalination) and partly from the groundwater source. 

The price is therefore a volume-weighted average of the cost of the backstop and the cost 

of the groundwater. This results in a jump in the status quo price from $2.05 in year 56 to 

$2.86 in year 57. As a result, consumption falls in year 57. Afterward, as consumption 

continues to grow, more and more of it is supplied from the backstop source and the price 

(as a volume-weighted average cost) continues to increase toward the backstop price. 

Efficient Management 

The efficiency price (fig. 1 a) starts at $1.98 per thousand gallons for the first elevation 

category and increases over time, faster than the status quo price, due to the head level 

(fig. 1 b) draw down through extraction and the resulting increase in marginal user cost 

and extraction costs. Table 2 (b) gives prices for all elevation categories at selected 

intervals.  

Higher elevations have higher prices due to larger distribution costs. The 

efficiency price in the lowest elevation category starts at $1.98/tg, which is very close to 

the status quo price of $1.97/tg, even though the former includes marginal user cost. This 

is because, under efficiency pricing, low-elevation users pay a lower distribution cost and 

do not have to subsidize distribution costs for higher elevations. Consumption 

(corresponding to the efficiency price) in each elevation category is given in fig.1 (c), and 

at selected intervals, in table 2 (c). 

Per capita consumption is larger at higher-elevations. Over time consumption 

increases but slower than the status quo case because the price rises faster under 

efficiency pricing. Because of lower efficiency prices at lower elevations (see equation 
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6), the same absolute change in price implies a bigger relative change for lower elevation 

consumers than for those at higher elevations. Thus low elevation users are more 

sensitive to price changes. In fact, in the period from year 48 to 68, when the price rises 

steeply, consumption at lower elevations falls slightly, i.e. the price effect offsets the 

effect of exogenous demand growth (g). The head level decreases over time until it 

reaches the minimum allowable to avoid aquifer salinity, in year 76. After this point, 

extraction must be such that head level does not fall further, i.e., extraction must not 

exceed recharge. Therefore, in year 76, consumption is partly supplied from the backstop 

source (desalination) and partly from the groundwater source. The efficiency price, thus, 

reaches the backstop price (plus distribution cost) and remains there.22 

The present value of revenue per capita is shown in fig. 2 (a), and total annual 

revenue, at selected intervals, is given in table 2 (d). The revenue is initially small as the 

efficiency price is only slightly higher than the status quo price (average cost). It is 

relatively large in the lowest elevation category, however, because of lower distribution 

costs. Over time, the efficiency price rises and the revenue generated increases. 

To return this revenue, we use block pricing where an initial block of a certain 

size is provided to the users free of charge. The size of the free block is adjusted as the 

amount of revenue collected changes over time as shown in fig. 2 (b), and at selected 

                                                 

22 In the efficiency case, the modest 26% increase, over the 76 year period until 

desalination comes into use, is within the excess capacity of the current system. If status 

quo pricing is continued, capacity may have to be expanded, further augmenting the 

relative advantage of efficiency pricing. 
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intervals, in table 2 (e). The size of the free block is smaller for higher elevation 

categories because their distribution cost is larger and it costs more to provide them the 

free block. The size of the block increases over time as the revenue collected increases 

and is rebated via the free block. 

Switching from the status quo pricing to the above efficiency price system 

provides welfare gains (losses), as shown at selected intervals, in table 2 (f). Per capita 

welfare gains (losses) by switching from status quo to efficiency pricing are shown in fig. 

2 (c), and at selected intervals, in table 2 (g). Initially (year 0), switching from status quo 

to efficiency pricing causes a loss of welfare due to efficiency prices being higher than 

the status quo prices. This loss of welfare occurs in all categories except category 1 where 

the initial efficiency price ($1.98 / tg) is extremely close to the status-quo price ($1.97 / 

tg) and the resulting miniscule loss of welfare is more than offset by savings in 

distribution cost that are passed on to the consumers via the return of surplus revenue. 

Over time, as the efficiency price increases, the losses increase for all categories.  

In year 57, under status quo pricing, (expensive) desalination is used, but 

efficiency pricing allows it to be delayed by about two decades (until year 76). Thus 

efficiency pricing provides greater relative welfare after year 57. Even after efficiency 

pricing results in desalination (year 76), it remains welfare-superior to the status quo case 

because the latter has greater consumption and, therefore, requires more desalinated 

water in a particular year resulting in greater costs. Note that in fig. 2 (c), the losses in the 

highest elevation categories seem larger than later gains in all categories. These are per 

capita losses and gains, however, and since there are more users in the lowest-elevation 

category, the total gains are actually much larger than the losses. 
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The net present value of gains ($441.25 million) minus losses ($34 million) is 

$407 million, about 6.2% of the welfare under status quo (see fig. 3). This falls between 

the low estimates obtained in several studies (e.g., 0.01% in Gisser and Sanchez 1980;  

Gisser 1983; Allen and Gisser 1984; 0.28% in Nieswiadomy 1985; 0.3% in Dixon, 1989; 

2.6% in Knapp and Olson 1995; 2.2% in Burness and Brill 2001; and 4% in Provencher 

and Burt 1994), and high estimates in others (e.g., 10% in Noel, Gardner, Moore 1980; 

14% in Feinerman and Knapp 1983; 17% in  Brill and Burness 1994). While a detailed 

analysis of the reasons for the size of the gains is beyond the scope of this article, it is 

worth noting that the recharge to storativity ratio and the demand slope to storativity ratio 

in Honolulu are small compared with those in Gisser and Sanchez (1980).  This tends to 

decrease the size of the gains. Also we have demand growth (though less than that in 

Brill and Burness 1994) and non-linear extraction costs (as in Worthington, Burt, and 

Brustkern 1985). Both of these tend to increase the size of the gains.23 

                                                 

23 Gisser and Sanchez (1980) point out that large recharge to storativity ratio and large 

demand slope to storativity ratio can lead to larger welfare gains. In Honolulu, the net 

recharge varies between 13 billion gallons per year (at head level of 22 feet) and 36.6 

billion gallons per year (at head level of 15 feet). Since the storativity in Honolulu is 61 

billion gallons per foot of head level, the recharge to storativity ratio is between 0.2 and 

0.6 ft/yr. In Gisser and Sanchez (1980), the recharge is 173,000 acre feet per year and 

storativity is 135,000 acre feet per foot of head level, resulting in a ratio of 1.28 ft/yr (1 

acre foot = 325,850 gallons). Thus, our recharge to storativity ratio is lower than in Gisser 

and Sanchez (1980) who obtained very small gains from efficient management. 
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Efficiency pricing generates welfare gains from both spatial and temporal 

optimization. In order to consider the relative magnitudes of these, we decompose 

welfare gains by the type of optimization in Figure 3. The relative contribution of spatial 

and temporal optimization depends on which of the two is adopted first. If spatial 

optimization is undertaken without temporal optimization, the gains are only about $5 

million. However, if temporal optimization is undertaken first (netting $227 million) the 

subsequent gains from spatial optimization are about $180 million. In effect, much of the 

potential savings from spatial reallocation would be wasted unless temporal reforms are 

also adopted. 

                                                                                                                                                 

 Similarly, the slope of our (non-linear) demand curve varies between 39 tg/$ (for 

the highest elevation category, at the beginning price of $1.97, in year 0) and 268 tg/$ 

(for the lowest elevation category, at the backstop price, in year 76). With the storativity 

of 61 billion gallons per foot, the slope to storativity ratio is between 6.39 x 10-7ft/$ and 

4.39 x 10-6 ft/$. In Gisser and Sanchez (1980), the slope is 3,259 acre feet/$ and with the 

storativity of 135,000 acre feet per foot, results in a ratio of 0.024 ft/$.Thus, our demand 

slope to storativity ratio is much smaller than in Gisser and Sanchez (1980). However, a 

smaller discount rate (2 to 4%) in our model compared with 10% in Gisser and Sanchez 

(1980) could contribute to larger gains. 

 Demand growth and non-linear cost could also contribute to larger gains. Brill 

and Burness (1994) obtain about 17% gains with 2% demand growth. Worthington, Burt, 

and Brustkern (1985) obtain about 29% gains using a non-linear cost specification. 



27 

 
Compensation for political feasibility 
 

Efficiency pricing is welfare increasing overall, primarily by postponing the high prices 

associated with desalination. That is, the gains to future consumption outweigh the near-

term losses from efficiency pricing. This may still render the pricing reform politically 

infeasible, inasmuch as future consumers have limited (if any) political influence. 

To render the reform unambiguously welfare increasing and to discourage  

present users from blocking the reform, we need Pareto-improvement so that no 

consumer is worse off and some (at least one) are better off. This can be achieved by 

compensating the losers. Rather than attempting to estimate a particular consumers gains 

and losses over their lifetime (including time of death), we propose compensating for 

losses in each time period. Consumers who would lose in the near-term and gain in the 

future are thereby made strictly better off by the reform. 

To compensate losers, then, a lump-sum amount equal to their loss must be added 

to the revenue returned to them. An administratively convenient way to do this is to 

increase the size of the free block, which now not only serves to return the revenue but 

also to effect transfers from winners to losers. The amount of this transfer is financed by 

a proportional reduction of the revenue returned to the gainers via the free-block. 

Therefore, for a consumer in category i at time t, the size of the free block, ki
t, is: 
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The proportion, s, taken from the revenues returned to the gainers is calculated so that it 

is sufficient to finance the transfers to the losers. The present value of the total welfare 

loss is: 

(18) 
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And the present value of the total welfare gain is: 
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We compute the proportion, s = L/G. This is the proportion by which the size of the free 

block provided to the gainers is reduced.  

Inasmuch as the free blocks are initially set to balance the budget within each 

period, additional compensatory transfers imply that the water authority will run a deficit 

in early periods when net compensation is positive. The principle of benefit taxation 

requires these to be paid by future beneficiaries, as if a bond issue is created to finance 

compensation. That is, transfers in period t will require borrowing, Bt, given by: 
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with a present value of: 
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This will be repaid from the revenues of the gainers. Repayment, Rt, in period t is given 

by: 
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with a present value of: 

(23) 
0
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te R dt sG

∞
− =∫  

Thus, we have an intergenerationally balanced budget when s = L/G. 

Compensation in the Honolulu Case 

In Honolulu, the gains (G) are computed to be $441 million and the losses (L) are $34 

million (or 7.7 % of the gains) in present value terms. To compensate the losers, we 

reduce the revenue returned to the welfare-gaining users by 7.7 % (s=34/441=0.077) and 

increase the size of the free block just enough to compensate the welfare-losing users. 

The borrowing stream (Bt) required for this purpose is shown in fig. 4. The total present 

value of the borrowing is $34 million. 

The size of the free block to provide compensation and to return the surplus 

revenue is given in fig. 2 (d), and at selected intervals, in table 2 (f). The size of the free 

block is now initially larger for higher elevation categories, because they are losing larger 

welfare by switching to efficiency pricing and need larger compensation. Over time the 

free-block size increases for all categories, until the year 57 when status quo pricing 

would require the use of the backstop and efficiency pricing that avoids the need for 

backstop is welfare superior. Thus the size of the free block falls in year 57 because at 

that time all users becomes gainers and do not need to be compensated. After this fall, the 

size of the free block continues to grow as the revenue collected from efficiency pricing 

increases and is returned to the users. 
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Alternate compensation plans 

Intergenerational lump-sum transfers can take a variety of alternative forms and still 

satisfy the requirement that the pricing reform be Pareto-improving. Full compensation of 

each loser in each period simply provides a transparent guarantee that no one will be 

made worse off and, therefore, increases the chances of political feasibility of efficient 

management. Lower transfers are conceivable that may still compensate and/or satisfy 

losers. One way to lower the necessary transfers would be to consider gains that losers 

may make in future periods, either by living long enough or by enjoying the prospects of 

bequeathing to their heirs. Another is to account for capital gains in accordance with the 

capitalization of lower future water prices in property values.  Also, if the higher 

elevation users are wealthier, as is generally understood to be the case in Honolulu, they 

may not be sufficiently motivated to oppose the reform that causes small losses in their 

welfare. Then it might be possible to reduce compensation to these users, thus enhancing 

vertical equity without jeopardizing political feasibility. Designing reduced compensation 

plans based on such considerations, however, is likely to be administratively costly due to 

the information requirements involved. 

 In addition, it would be unrealistic to think that the above factors can entirely 

remove the need for compensation. User resistance can still occur. Indeed, a proposed 

price increase in Hawaii was abandoned due to resistance by water users. In the year 

2000, a very small increase of five cents per thousand gallons was proposed as an 

addition to Hawaii House Bill number HB2835 through Senate Standing Committee 

Report number 2919. After a prolonged public debate, the increase could not pass and 
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was excluded from the final version of the bill approved in the House-Senate Conference 

(Conference Committee Report number 152, see Hawaii State Legislature, Archives). 

Using the welfare gains from pricing reform to compensate the losers is one way 

to divide the gains. The financing mechanism discussed above allows for other ways to 

divide the welfare gains among users. Such reassignment of gains may, in some cases, 

become necessary. For instance, in year 57, when compensation is no longer needed, 

there is a discontinuous fall in the size of the free block. If users at the time do not 

approve of this decrease in the quantity of free water received, they could lobby against 

its reduction, creating a problem of dynamic inconsistency in block size choice. Since 

after year 60, the free block increases back to a size larger than it is in year 56, it is 

possible to reduce post-year 60 block size and use the money to keep the free block size 

constant between year 56 and year 60. In other words, some of the welfare gains 

originally assigned to users after year 60 are now being reassigned to users between year 

56 and year 60. Concepts of gains-division from cooperative game theory, e.g., the 

Shapley value (Shapley 1953), the nucleolus (Schmeidler 1969), and the core's centroid 

(Arce and Sandler 2001), can be applied to derive other ways to assign welfare gains 

across users. 

Conclusions 

 Pricing (or quantity) reforms intended to improve the efficiency of water 

allocation over time and space may be politically infeasible. The present paper provides a 

model of groundwater optimization over space and time, allowing for growing demand as 

well as a backstop resource, and provides a compensatory mechanism that renders the 

reform Pareto-improving. An inframarginal free block is used for two purposes. First, it is 
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used to return the revenue surplus generated by full marginal cost pricing (including 

marginal user cost). Second, by lowering the block for winners and increasing it for 

losers, it is used to compensate consumers who would lose from switching to efficiency 

pricing even with the budget-balancing free block. Status quo pricing favors current vs. 

future consumers, especially those in higher elevations who are cross-subsidized by low-

elevation consumers. But losses from switching to efficiency pricing are sufficiently 

small that reducing gains of winners by only 7.7% provides sufficient revenue to 

compensate for losses in each period.   

Total welfare gains from efficiency pricing are estimated to be 6.2 % compared to 

the status quo case. These gains are large relative to those found by studies of situations 

with smaller demand growth and linear extraction costs. On the other hand, our results 

show smaller welfare gains in comparison with some studies that find a higher initial 

efficiency price of water and posit an even higher demand growth than in the Honolulu 

case. 

By decomposing the sources of welfare gains, we find that the relative 

contribution of spatial and temporal optimization depends on which comes first. In the 

Honolulu case, if spatial optimization is undertaken without temporal optimization, the 

gains are relatively small (about $5 million). On the other hand, if temporal optimization 

is undertaken first (yielding $227 million), the additional gains from spatial optimization 

are about $180 million. Intuitively, conserving water by spatial reallocation is somewhat 

futile if much of the water saved thereby is wasted through aggregate over-consumption. 

Temporal efficiency generates welfare gains by delaying aquifer exhaustion and 

the resulting need for expensive backstop technology. As such, the gains start at the time 
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when status quo management would have resulted in the use of the backstop. Before this 

time, temporally efficient management causes welfare losses due to the higher efficiency 

prices. The gains from efficient temporal and spatial management in Honolulu are $441 

million and the losses are $34 million (or 7.7 % of the gains) in present value terms.  

The intertemporal transfer mechanism presented in this article can be modified in 

order to increase or decreases transfers from winners to losers. The compensation scheme 

discussed ensures that there are no losers in any period, so that Pareto-improvement leads 

to political feasibility. In cases where political feasibility can be achieved with smaller or 

larger compensation, or when equity concerns other than political feasibility require a 

different compensation regime, the transfers can be adjusted accordingly. 

 Designing spatial and intergenerational compensation to render economic 

reforms Pareto-improving may have applications in other contexts. One such 

application relates to the commonly related problem of reallocating water from 

agricultural to urban uses where governments are precluded from reform by concerns 

about equity and political feasibility. The Pareto-improving pricing reforms discussed 

here can be directly applied in that context as well, e. g., by giving farmers a free 

block or lump sum payment sufficient to compensate them for paying efficiency 

prices at the margin. As in our scheme, these payments would be financed through 

benefit taxation, perhaps requiring debt issuance to facilitate future winners 

compensating current losers. More generally, the compensation methodology 

described in this article can be applied to other similar situations where a policy 

provides a net welfare gain but losses to some individuals or groups threaten the 

implementation of the policy. Indeed it may seem curious that intergenerational 
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compensation schemes have not been more widely considered in Public Economics 

generally. We presume this is because the public finance tradition, despite its 

emphasis on benefit taxation, focuses on financing new projects, not pricing reforms 

of existing projects. 
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Figure 1: Status Quo v. Efficiency Pricing: Prices, Head Levels, and Quantities (The 
solid curves represent the lowest elevation category, and the dotted curves represent the 
highest elevation category.) 
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Figure 2: Revenue, Compensation, and Free Blocks under Efficiency Pricing (The 
solid curves represent the lowest elevation category, and the dotted curves represent the 
highest elevation category.)
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Fig. 3. Present value ($ million) of Welfare Gain from Temporal and Spatial Optimization 
(Numbers in boxes represent welfare generated under the corresponding scenarios; numbers in square 
brackets represent welfare changes indicated by arrows; numbers in parenthesis show the welfare changes 
as percent of welfare under status quo.) 
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Table 1: Water Demand and Cost Parameters 
Elevation 
Category 

(i) 

Average 
Elevation 

(feet) 

Constant of the 
Demand Function:

Ai (mgd) 

Distribution Cost:
ci

d ($/thousand 
gallons) 

Current Status 
Quo Price: 

psq ($/thousand 
gallons) 

Effective 
Price: (psq–ci

d) 
($/thousand 

gallons) 
1 0.00 67.58 1.74 1.97 0.23 
2 447.89 13.40 2.09 1.97 -0.12 
3 819.47 1.83 2.51 1.97 -0.54 
4 1071.08 0.64 3.22 1.97 -1.25 
5 1162.57 0.13 4.14 1.97 -2.17 
6 1344 0.09 5.28 1.97 -3.31 

Source: Honolulu Board of Water Supply, 2002. 
(Negative effective price indicates an implicit subsidy.) 
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Table 2: Summary of Results  
Year Categ. 1 Categ. 2 Categ. 3 Categ. 4 Categ. 5 Categ. 6 

 (a) Consumption under Status Quo (gallons per capita per day) 
0 111 115 120 127 135 143 
56 172 179 186 197 209 222 
57 160 166 173 183 194 206 
100 201 209 218 231 245 260 

 (b) Efficiency Price ($ / thousand gallons) 
0 1.98 2.33 2.75 3.46 4.38 5.52 
76 8.74 9.09 9.51 10.22 11.14 12.28 
100 8.74 9.09 9.51 10.22 11.14 12.28 

 (c) Consumption under Efficiency Price (gallons per capita per day) 
0 111 111 112 112 113 113 
48 141 143 146 148 151 153 
68 138 142 146 151 156 161 
76 140 145 149 155 161 167 
100 171 175 181 188 195 202 

 (d) Present Value of Revenue (million $ per annum) 
0 1.8 0.35 0.048 0.017 0.003 0.002 
76 207.23 42.06 5.91 2.15 0.46 0.34 
100 263.45 53.46 7.52 2.73 0.59 0.43 

 (e) Size of the Free Block (gallons per capita per day) for Revenue Return 
0 4.8 4.1 3.4 2.7 2.2 1.7 
76 108.8 107.9 106.2 102.8 97.9 91.8 
100 113.2 112.8 111.8 109.2 105.1 99.6 

 (f) Present Value of Welfare Gain (Loss) by Switching from Status Quo to 
Efficiency Pricing    ($ per day) 

0 450.775 -358.065 -119.355 -80.665 -26.645 -26.645 
56 -1268.01 -367.92 -69.35 -35.405 -10.22 -9.49 
57 3639.05 642.4 75.19 18.615 2.19 -0.365 
76 3196.67 612.47 80.3 25.915 4.745 2.555 
100 4054.785 804.825 110.23 38.325 8.03 5.11 

 (g) Present Value of Per capita Welfare Gain (Loss) by Switching from Status 
Quo to Efficiency Pricing    ($ per capita per day) 

0 0.002 -0.009 -0.02 -0.04 -0.07 -0.102 
56 -0.006 -0.008 -0.012 -0.017 -0.024 -0.03 
57 0.017 0.015 0.013 0.009 0.004 -0.001 
76 0.014 0.014 0.013 0.012 0.010 0.008 
100 0.0177 0.0178 0.0179 0.0178 0.0175 0.0168 

 (h) Size of the Free Block (g/d/capita) for Compensation and Revenue Return 
0 4.48 8.27 12.09 16.04 18.76 20.34 

56 88.47 87.18 85.41 82.24 78.23 73.66 
57 80.94 77.12 72.8 66.26 59.16 55.85 
76 106.78 105.61 103.75 100 94.81 88.52 
100 110.11 109.57 108.36 105.53 101.17 95.57 
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Table 3: Sensitivity Analysis: Welfare Gain/Loss under Different Parameter Values 
Parameter Values Gain ($) Loss ($) Loss / Gain (%) 

n=1, g=1, r=3, η=-0.25, cb=7  4.46321 X 108 3.36008 X 107 7.52839 

n=2, g=1, r=3, η=-0.25, cb=7 4.41492 X 108 3.41286 X 107 7.7303 

n=3, g=1, r=3, η=-0.25, cb=7 4.37378 X 108 3.24464 X 107 7.41839 

g=2, r=3, η=-0.25, cb=7, n=2 2.87016 X 109 7.10178 X 107 2.47435 

g=3, r=3, η=-0.25, cb=7, n=2 8.90351 X 109 1.03764 X 108 1.16543 

r=1, η=-0.25, cb=7, n=2, g=1 1.29086 X 109 5.31298 X 107 4.11585 

r=2, η=-0.25, cb=7, n=2, g=1 4.10026 X 109 8.96464 X 107 2.18636 

r=4, η=-0.25, cb=7, n=2, g=1 1.66164 X 108 2.36151 X 107 14.2119 

η=-0.15, cb=7, n=2, g=1, r=3 7.47648 X 108 3.89001 X 107 5.20299 

η=-0.3, cb=7, n=2, g=1, r=3 3.47041X 108 3.23112 X 107 9.31051 

cb=5,η=-0.3, n=2, g=1, r=3 3.16384 X 108 3.30352 X 107 10.4415 

cb=6,η=-0.3, n=2, g=1, r=3 4.10837 X 108 3.37025 X 107 8.20340 

cb=8,η=-0.3, n=2, g=1, r=3 5.73062 X 108 3.44064 X 107 6.00397 
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