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TWISTWISE FLOW EQUIVALENCE AND BEYOND ...

MICHAEL C. SULLIVAN

1. INTRODUCTION

Square matrices of nonnegative integers are flow equivalent if the
suspensions of their corresponding shifts of finite type (SF'Ts) are topo-
logically equivalent. A complete set of easily computed invariants de-
termines flow equivalence of nontrivial irreducible square nonnegative
matrices [PS, BF, F]. When the assumption of irreducibility is dropped
the classification of matrices up to flow equivalence becomes harder but
has been solved; see [H1, H2, H3| or [H4, BH].

In [Su2] the concept of twistwise flow equivalence was introduced
to describe the orientability of the stable manifolds of the orbits of a
suspended and embedded SFT. The twist matrices are square matrices
over the semi-group ring

7.,7./2 = {a + bt | a&b are nonnegative integers} mod t* = 1.

Several computable invariants were discovered [Su2, Su3, Su4], but
their completeness was unknown and seemed unlikely. In a paper by
this author with Mike Boyle [BS] a complete algebraic invariant has
been found, but it is unknown if it is computable — results in [BS]
are more general, hence the “beyond” in our title. This paper surveys
these developments. It derives from a series of three lectures given to
a graduate student seminar at the University of Maryland in the Fall
2002 semester, and again to the Dynamics Seminar at the University
of North Texas in Spring 2003. The appendix contains a new result
and is joint work with Boyle, who also made many helpful suggestions
on a draft of the main body this paper.

2. SYMBOLIC DYNAMICS

A shift of finite type (SFT) is determined by a square matrix over
the nonnegative integers, Z,, by way of a directed graph. If M is n xn,
the construct a graph G, with n vertices and M;; directed edges from
vertex i to vertex j. Denote the edges £y = {ey,...,ex} (k being the
sum of entries of M). Let X, be the set of all bi-infinite sequence from

Date: November 27, 2004.



2 MICHAEL C. SULLIVAN

E; that can be realized by paths in the graph G,,. The shift map, o
from X, to itself is defined by o(z); = x;;;. We think of it as taking
a step along an path in the graph. A shift of finite type is the sequence
set with its shift map.

The sequence set X, is assigned a topology by taking the subset
topology of the product space Z*. The shift map is then a homeo-
morphism.

11
0 2
Then = = ...aaaa.bccce... is in X,;. Here the dot or “decimal point”
tells us that xo = b. Find all the fixed points of o. Find all the points
of least period two, that is the fixed points of o o o that are not fixed
points of o.

Example 2.1. Let M = [ Number the edges as in Figure 1.

b
@/—\ p
a

FIiGURE 1. Graph for Example 1

Definition 2.2. A square matrix M over Z is irreducible if for every
i, j which indexes an entry of M there is an n such that (M™");; # 0.
An SFT which can be generated by an irreducible matrix is also called
irreducible.

Readers should convince themselves that in the graph of an irre-
ducible matrix over Z, there is a path from each vertex to every other
vertex. Thus, the matrix in Example 1 is reducible (i.e. not irre-
ducible). We will work mostly with irreducible SF'Ts.

Definition 2.3 (Topological Conjugacy). Given two SFT (Xj,0;),
1 = 1,2, we say they are topologically conjugate if there exist a homeo-
morphism A : X; — X, such that oy 0 h = hooy.

It is easy to check that a topologically conjugacy takes periodic orbits
to periodic orbits, preserving the least period.

Definition 2.4 (Strong Shift Equavalence). Let A and B be square
matrices over Z.. An SSE-move from A to B is a dual decomposition
A= RS, B= SR, where R and S are over Z_, but need not be square.
We say A an B are strong shift equivalent if there is a finite chain of
SSE-moves taking A to B.
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It is not yet known if strong shift equivalence is decidable. But
many readily computable invariants are unknown. The theorem below,
which might be referred to as The Fundamental Theorem of Symbolic
Dynamics, is due to R.F. Williams [Wi].

Theorem 2.5. Let A and B be square matrices over Z,. Then X4 is
topologically conjugate to Xp if and only if A is strong shift equivalent
to B.

11

Example 2.6. Let A = [1 1

} and B = [2]. Then A = m 1 1]

1
1
to Xp. We use the edge and vertex names shown in Figure 2. Define
h : X4 — Xp by letting the i-th coordinate of y = h(z) be e if the
edges z; and x; 1 have, respectively, final and initial vertex 1, and be
f otherwise. For example:

...aabcbcaab.dddddd... — ...eefefeeef.fffff...

b
oD« O

FIGURE 2. These SFTs are SSE

while B = [1 1] . Let’s construct a topological conjugacy from X 4

3. FLow EQUIVALENCE

Definition 3.1 (Flow Equivalence). Let A be a square matrix over
Z.. Let (X,0) be the SFT induced by A. Let (F, ¢;) be defined by

F =X xR/{z,t +1} ~ {o(z),t},
and
oi([z, s]) = [z, s + 1]

The pair (F, ¢;) is called the mapping torus or the suspension flow of
(X, 0).

For more details see [LM] §13.6.

Definition 3.2. Two suspension flows (F4, ¢;) and (Fg, ;) are topo-
logically equivalent if there exists a homeomorphism from Fy4 to Fp
taking flow lines to flow lines while preserving the flow direction. We
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say two SFTs are flow equivalent (FE) if their suspensions are topolog-
ically equivalent. We also define two square matrices over Z, to be FE
if their induced SFTs are FE.

Example 3.3. The matrices and [1] are FE. Their SFTs each

0 1
10
consists of a single orbit. Notice these are not SSE.

For permutation matrices FE is determined by just counting the
number of closed orbits. Since permutation matrices induce such simple
SE'Ts they are often called trivial matrices.

Example 3.4. The matrices 1 1:| and [2] are FE since they are SSE

— think about this. FE is a coarser equivalence relation than SSE.

010
] and B= |1 0 1] are FE.
1 01
See Figure 3. Every path that goes through vertex 1 in the graph for
A corresponds to a path in the graph for B that goes through 1’ first.
We define a map from X4 to X by replacing each occurrence of a and
¢ in a member if X 4 by ae and ce, respectively. Thus,

Example 3.5. The matrices A = E }

...aaaaa.aaaa.... —r ....geaeaqaeae.aeaeaeae....

and,
....aabddc.bcaabd.... — ....aeaebddce.bceaeaebd...

This is clearly not a topological conjugacy. The proof that it induces
a topological equivalence of Fy and Fp is given in [PS], where flow
equivalence was first defined. But, the essential idea can be seen in
Figure 4. The matrix A can be recovered from F4 as the incidence
matrix for a cross section partitioned into two pieces, 1 & 2. If we
add a third partition member 1’ to this cross section that is parallel to
but just before 1, we get the matrix B as an incidence matrix. Thus,
heuristically, it seems A and B should be FE. (The partitions are more
properly referred to as Markov partitions; a precise definition can be
found in [PS] or most dynamical systems textbooks.)

Definition 3.6. A PS-move of a matrix A is defined by

0 a 0 1 0
11 G12
G a . a1 0 ap
21 022 = lay 0 agy - ,

or the inverse of this.
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Ficure 3. FE Graphs

FIGURE 4. Different cross sections, same flows.

Theorem 3.7 (Parry & Sullivan [PS]). The matriz moves SSE and
PS generate FE. That is any FE between matrices can be realized by a
finite chain of SEE and PS mowves.

Invariants 3.8. For A an n x n matrix over Z define
PS(A) = det(I — A) (The Parry-Sullivan Number)

and,
Z’n

BF(A) = vz

(The Bowen-Franks Group)

These are invariants of FE; see [PS, BF], respectively.

The Bowen-Franks group of a SFT is a finitely generated Abelian
group. Any n X n integral matrix M determines a finitely generated
Abelian group via 1\%”' Two such groups are isomorphic they are
determined by matrices with the same Smith normal form, and there
is a standard algorithm taking a matrix to its Smith normal form (see
any graduate algebra text).

Remark 3.9. |BF| = |PS]|, unless PS = 0, in which case |BF| = oc.

Theorem 3.10 (Franks [F]). PS and BF are a complete set of invari-
ants for FE of nontrivial irreducible square matrices over Z. .
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4. APPLICATION TO TEMPLATES FOR SMALE FLOWS

A C*' flow ¢, on a compact manifold M is called structurally stable
if any sufficiently close approximation 1); in the C! topology is topolog-
ically equivalent, that is if there exists a homeomorphism h : M — M
taking orbits of ¢; to orbits of v;, preserving the flow direction. Struc-
turally stable C' flows have a hyperbolic structure on their chain-
recurrent sets [Hu|. We define these concepts next.

A point x € M is chain-recurrent for ¢, if for every ¢ > 0 and
T > 0 there exists a chain of points x = xg,...,2, = x in M, and real
numbers t,...,t,_1 all bigger than T such that d(¢,(z;),zi+1) < €
when ever 0 < 2 < n — 1. The set of all such points is called the
chain-recurrent set R. It is a compact set invariant under the flow.

A compact invariant set K for a flow ¢; has a hyperbolic structure if
the tangent bundle of K is the Whitney sum of three bundles E* E*,
and E° each of which invariant under D¢, for all {. Furthermore, the
vector field tangent to ¢; spans E° and there exist real numbers C' > 0
and a > 0 such that

|D:(v)|| < Ce ||| for t > 0 and v € E?,
|Dé:(v)]| < Ce*||v|| for t <0 and v € E“.

We also define the local stable and unstable manifolds associated to
an orbit O. They are respectively,

Wine(0) = (J{y € Mld(¢i(x), du(y)) — 0 as t = oo and d(¢i(x), ¢(y)) < € for ¢ > 0}

€O

and

Wie.(0) = U {y € M|d(¢¢(z), :(y)) — 0 as t — —oo and d(¢s(), ¢ (y)) < € for t < 0}.
€O

The global stable and unstable manifolds are defined similarly by re-
moving the condition that d(¢:(x), ¢:(y)) < e.

It was shown by Smale that if the chain-recurrent set R of flow has a
hyperbolic structure then R is the union of a finite collection of disjoint
invariant compact sets called the basic sets.

Each basic set B contains an orbit whose closure is B. The periodic

orbits of a basic set B are known to be dense in B.
Definition 4.1. A flow ¢; on a manifold M is called a Smale flow
provided

(a) the chain-recurrent set R of ¢; has a hyperbolic structure,
(b) the basic sets of R are one-dimensional, and
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(c) the stable manifold of any orbit in R has transversal intersection
with the unstable manifold of any other orbit of R.

Most references allow for zero-dimensional basic sets but we will be
working with nonsingular flows, flows without fix points. Smale flows
on compact manifolds are structurally stable under C!' perturbations
but are not dense in the space of C' flows. For dim M = 3 a basic
set, either consists of a single closed orbit or it is the suspension of an
irreducible SF'T. A nontrivial basic set is said to be chaotic. It is easy
to see that each attracting and repelling basic set is a closed orbit. The
saddle sets, however, may be chaotic.

For a chaotic saddle set of a Smale flow in a 3-manifold one can
construct a neighborhood that is foliated by local stable manifolds
of orbits in the flow. Collapsing in the stable direction produces a
branched 2-manifold. With a semi-flow induced from the original flow,
this branched 2-manifold becomes what is known as a template. The
template models the basic saddle set in that the saddle set itself can
be recovered from the template via an inverse limit process and that
any knot or link of closed orbits in the flow is smoothly isotopic to
an equivalent knot or link of closed orbits in the template’s semi-flow.
The proof of this is due to Birman and Williams [BiWi] and can also
be found in [GHS, Theorem 2.2.4]. Figure 5 shows two templates, the
one on the left is know as the Lorenz template and the one on the right
arises for the suspension of the Smale horseshoe map.

FIGURE 5. Lorenz and Smale Horseshoe Templates

The symbolic dynamics can be recovered from a template from the
incidence matrix of Markov partition. For the two templates in Figure
5 an obvious choice for the partition is a pair of line segments where
each segment cuts across each of the two bands. Thus, the matrix

1 1)
are each derived from suspensions of the full 2-shift. Their invariant
sets (really their inverse limits) are flow equivalent. But, these two
templates sure do look different. This bothered me.

. .11
in each case is [ ] And so the Lorenz and Horseshoe templates



8 MICHAEL C. SULLIVAN

To capture the twisting in the bands we modify the incidence matrix
by using the symbol #? to count the twisting as an orbit goes from
partition element ¢ to j. For the Lorenz and Horseshoe templates this

2 12 2 12
produces |:t2 t2:| and [t3 t3} respectively. Now at least they look

different. To get invariant information one can use these to define a
type of zeta function. For a standard shift map o the zeta function is

o0 1 o
(o (t) = exp (mz::l ENmt ) ,

where N, is the cardinality of the fixed point set of ¢™, the m-th
iterate of 0. If its incidence matrix over Z, is A then a standard result
gives that

1
)=
G (t) det(I —tA)
If we let A = A(t) be twist matriz for a template and set
1

Galt) = det(I — A(t))’

we get a zeta-like function that tracks periodic orbits by the amount
of twisting. The formal definition of this function is given in [Sul].
There are some important caveats. The definition of twisting is not the
standard one used in knot theory, and (4 fails to correspond to a zeta
function unless all the crossings in the template are of the same type.
And of course while zeta functions are important in dynamics they are
not invariants of flow equivalence. All these problems are circumvented
in the next section by redefining twist matrices mod 2 = 1.

5. TwWISTWISE FLOW EQUIVALENCE

Let G = (t|t* =1) 2 Z/2. Given a matrix A(t) over Z,G (a twist
matrix) we define the ribbon set R of A(t) to be a certain fiber bundle
over the suspension flow (F,¢) of A(1). The fiber will be the interval
(—1,1). Without loss of generality we can assume A(t) has only ones,
tees, and zeros, since A(t) is SSE to such a matrix. Then place an
oriented Markov partition {ds,...,d;}, on a cross section of F' which
induces A(1) as its incidence matrix. For y in any d; let 7(y) be the
first return time for y. Let

F;j = {z € F|z € ¢:(y), where y is such that y € d;,
briy)(y) € dj and 0 <t < 7(y)}-

In words, Fj; is the collection of segments of flow lines from d; to d;.
Some Fj; may be empty. Let R;; = Fj; x (—1,1). Attach the R;;’s so
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that the core is F' and the gluings of the end fibers are identity maps
if A;; = 1 and multiplications by —1 if A;; = ¢. Call this set R. We
can place a flow on R that agrees with F' at is core and has flow lines
converging to the core elsewhere, as in Figure 6. This is the ribbon set
for A(t); it can be shown to be independent of the choice of Markov
partition.

o
o
///_,——;

_

FIGURE 6. Flow on a chart of the ribbon set.

For a given chaotic saddle set of a Smale flow on a 3-manifold, the rib-
bon set is topologically equivalent to the stable portion of the tangent
bundle. (In [Su4] it was mistakenly confounded with a local stable
manifold. But, ribbon sets can be thought of as infinitesimal stable
manifolds.)

Definition 5.1. Two twist matrices are twistunse flow equivalent if
they have topologically equivalent ribbon sets.
Notation: Let T' = [(1) (1)] . If A(t) is n x n, let A(T) be the 2n x 2n

matrix over Z, formed by replacing each entry a;; + b;;t of A(t) with

[Z” 2”} Then A(T) is the incidence matrix for the SFT defined by
% 1]

placing a flow on the boundary of the ribbon set of Fy;) and using the
same Markov partition. The flow Fy(ry is a double cover of Fy(;y that

records the “twisting” give by A(t).

Invariants 5.2. The following are invariants of twistwise flow equiva-
lence.

¢ PSA() = PS(A(L).
o BF¥(A(t)) = BF(A(£1)).
° BF"’(A(t)) BF(A(T)).

O(A(t)) equals “orientable” if tr (A¥(¢)) has no tees for all k,
and equals “nonorientable” otherwise.

These where established in [Su2, Su3, Sud]. It is easy to show that
O(A(t)) can be found by checking only a finite number of powers. For
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1 ¢

L
will be give in Section 6.

example O([ = orientable. A more sophisticated view of O(A)

11 t 1
11 11
matrices PS* = —1 and all the Bowen-Franks groups are trivial. But
they are distinguished by orientability.

Example 5.3. Let A = [ ] and B = [ ] Then for both

Example 5.4. The matrices [(1) ﬂ and E ﬂ are not distinguished

by the invariants above. Are they twistwise flow equivalent? I asked
this question in 1997 [Su4]. The answer was found in 2002 and will
appear in a joint paper with Mike Boyle [BS]. We begin our discussion
of these ideas in the next section.

6. RuN! HiDE! IT’s K-THEORY!

There is a new approach to symbolic dynamics. It is being developed
by a number of researches largely in response to the difficulties that
arose around attempts to settle the Williams Conjecture (that Strong
Shift Equivalence could be reduced to a weaker and computable relation
called Shift Equivalence). The Williams Conjuncture is now known to
be false [KR].

The new approach exploits tools from algebraic K-theory. I initially
found the prospect of having to learn K-theory rather daunting. Fortu-
nately much help is available. The expository articles on K-theory and
symbolic dynamics [B2], [BW] and [Wa] should be studied by anyone
with an interest in symbolic dynamics. For a beginners look at K-
theory itself I recommend [Si], and [R] for a more advanced treatment.
Few details of K-theory are needed to understand its application in
symbolic dynamics. So, you can stop hiding now. The central feature
of the new approach is that the awkward matrix moves for SSE and
PS are replaced with the more natural row and column operations,
but these act on infinite matrices. This paper confines itself to how
this new approach was applied to settle the twistwise flow equivalence
problem.

6.1. Positive Equivalence. In this subsection we restrict ourselves
to the case where G = (1), the trivial group. Given an n X n ma-
trix A define A, to be the infinite matrix, one indexed by ,j in
N = {1,2,3,...}, whose upper right corner agrees with A and is zero
elsewhere. We let I — A, be the infinite identity matrix minus A.
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Let SL(N,Z) be the set of infinite matrices indexed by N with en-
tries in Z and determinant equal to one. For U and V in SL(N,Z)
let (U,V)(A) =1—-U({ —A)V = B. That is, B is determined by
UI-AV=I-B."

Let for ¢+ # j let E;; be the infinite elementary matrix with 1 as its
1j-entry and equal to the identity matrix elsewhere.

Definition 6.1. Let A and B be a square matrices over Z (not neces-
sarily of the same size), and assume the ij-entry of A is positive. Then
there is a basic positive equivalence (BPE) from A to B if (I, Eyj),
(Eij, I) takes Ax to By. Because we want to define an equivalence
relation next, we will say there is a BPE from B to A, whenever there
is one from A to B. If there is a sequence of basic positive equivalences
from A to B we say there is a positive equivalence (PE) from A to B,

and write A ~ B. Now PE is an equivalence relation.

Definition 6.2. A matrix M over Z™ is essentially irreducible if it has
a unique principal submatrix that is irreducible and that is contained
in no larger irreducible principal submatrix; such a submatrix is called
the irreducible core of M.

0 1 01

Example 6.3. Let A = |'1 0 1; and apply (I, Es(1)). We get
[() 1 ()J

01

11

0 0O

Theorem 6.4. PE and FE are the same.

Sketch of Proof. That PE implies FE can be observed in Figure 7; it
shows how a BPE effects a graph (ignore the labels for now). This was
first shown explicitly by Boyle [B3] but was implicit in Franks paper
[F]. The other direction is harder. It is well known the any SSE can be
broken down into basic splitting and their inverses (amalgamations).
One shows that these can be factored into BPEs. The PS move can
also be factored into BPEs. This direction is due to Boyle [B3]. O

0
AL 1{. The corresponding irreducible core is [(1) ﬂ

Example 6.5. (a)Let A = E g] and F = [(1) ﬂ Then (E,I) =

E g] . We see in Figure 8 that one edge from vertex 1 to 2 is deleted,

In [BS] (U, V)(A) was defined to be U AV and it was emphasized that one works
directly with I minus the incidence matrix.
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=K

FiGURE 7. BPE gives a FE

but an edge is added for each length 2 path that started with the
removed edge.

(b) Next observe that (I, E) = L2

1 3
same edge is deleted but now we add an edge for each length 2 path
that ended with the deleted edge.

We see in Figure 9 that he

~

- = - = \/,‘

S o

/

/

Ficure 8. Graphs for Example 6.5a

C @ C@

FiGure 9. Graphs for Example 6.5b

But, we have traded one problem for another. The awkward matrix
moves of SSE and PS have been replaced by row and column operations.
However, we must now tread very carefully lest our new matrix fail
to be nonnegative. The next result eliminates this difficulty. It was
proved by Boyle in [B3, Theorem 3.3] in greater generality than we
give here; specifically the matrices were allowed to be reducible and
the statement of the theorem included special notation for tracking
irreducible components.
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Theorem 6.6. Let A and B be essentially irreducible square matrices
over Z.. Suppose U andV are in SL(N,Z) and (U,V)(A) = B. Then
(U, V) can be factored into BPEs.

The proof of the Theorem 6.6 involves an intricate and clever series
of matrix moves.

6.2. Back to twistwise flow equivalence. We return to the setting
G = (t|t? = 1), but stress that many of the results discussed hold for
any finite group. In particular there is a notion of G-flow equivalence,
which is defined algebraically, that generalizes twistwise flow equiva-
lence. The idea of BPE still works in this setting. The elementary
matrices F;;(g) have ij-entry g € G, i # j. We can act on a matrix A
over Z.G with (E;j(g),I) and (I, E;j(g)), provided the ij-entry of A
has g as a summand. See Figure 7, but now pay close attention to the
labels. Theorems 6.4 and 6.6 were generalized to the case where G is a
finite group in [BS]. For the former this was straight forward, even the
finiteness of G was not required. For the generalization of Theorem 6.6
more needs to be said. Both the finiteness of G and the irreducibility
assumption will be required.

Suppose A is a matrix over Z_,G. We associate to A a labeled graph
G4 such the there is an edge from vertex ¢ to j with label g for each
occurrence of g in the ij-entry of A. For example, if A(7,j) =2+ 39+
12h there would be two edges with label 1, the group identity element,
three with label g and 12 with label h. The weight of an allowed path
eies . .. e is the group product of the labels in order. (For finite G [BS,
§2] shows that G labeled SFTs can be viewed as SFTs with a free right
group action. Then a G-FE is a flow equivalence that the commutes
with the group action. We will only need this point of view in the
Appendix.)

Definition 6.7. Suppose G is a finite group, A is an essentially ir-
reducible matrix over Z,;G and i is a vertex indexing a row of the
irreducible core of A. Then W;(A) is the subgroup of G which is the
set of weights of paths from i to 4, and the weight class of A, W(A), is
the conjugacy class of W;(A) in G.

That the weight class is well defined is shown in [BS] — the finiteness
of G and the irreducibility of A are used. In the case that G is Abelian
each of the W;(A) are the same and we may talk about the weight group
of A. If G = Z/2 then W (A) is either G or trivial. It is equivalent to
the orientation invariant O(A).

The promised generalization of Theorem 6.6 is given by Theorem
6.3 of [BS]. We restate it below for the case G = Z/2. First note
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that if A and B have trivial weight groups then they are twistwise flow
equivalent if and only if the PS™ and BF* invariants are equal. (It is
not hard to show that if W (A) is trivial, A is twistwise flow equivalent
to a matrix over Z,.)

Theorem 6.8. Let G = (t|t*=1). Let A and B be essentially ir-
reducible matrices over Z,.G and assume both have weight group G.

Then A and B are twistwise flow equivalent if and only if there is a
SL(N,ZG) equivalence from I — Ay, to I — By.

0 ¢ 1t 11
Example 6.9. Let A = [1 1}, B = [1 1], and F = [0 1}. Then

E(I—A)=1-B, A and B are twistwise flow equivalent. This settles
the question raised in Example 5.4. Notice £ does not give a basic

positive equivalence. However, following the philosophy of the proofs
in [BS], we let Q) — [} ﬂ and Qp = [(1) ﬂ Then (I,Q1), (I, Q»),
(E, D), (I,Qy"), (I,Q;) is a sequence of basic positive equivalences
taking A to B.

To fully exploit Theorem 6.8 we would like to have an algorithm that
determines when two matrices are SL(n,ZG) equivalent. If the ring
ZG was a PID then we could put two such matrices into their Smith
normal forms and compare them. (See any graduate algebra text for
this result.) But even for G = Z /2 this is not the case. There are zero
divisors: (1 —¢)(1 +t) = 0. To the best of our knowledge the general
problem of deciding SL(n,ZG) has not been explicitly addressed in
the literature. The problem may be quite difficult. There are matrices
over ZZ/2 that are not equivalent to a triangular matrix or to their
own transpose [BS, §8].

However, there is Smith normal form for a special case [BS, §8].

Theorem 6.10. Let G = Z/2. Let M be an n x n matriz over ZG.
Write M = A+ Bt with A and B n xn matrices over Z. If det(A+ B)
is is not divisible by four, then M is SL(n,ZQG)-equivalent to a Smith
normal form. This is the form corresponding to (C, D), where C' and
D are the Smith normal forms for A+ B and A — B.

6.3. Open questions.

e Can these results be extended to infinite groups? The group Z"
is of special interest in ergodic theory. The weights are probabil-
ities which generate of copy of Z™ embedded as a multiplicative
subgroup of the positive reals.

e Can these results be extended to reducible matrices?
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e Is there an an algorithm to classify matrices over SL(n,ZZ/2)?

APPENDIX A. ALMOST FLOW EQUIVALENCE
BY MIKE BOYLE AND MICHAEL C. SULLIVAN

For this appendix, we switch to joint authorship and prove a new
result (Theorem A.1).

Theorem A.l. Let G be a finite group. Then all nontrivial faithful
irreducible G-SFTs are almost flow equivalent.

We begin with some definitions. Let (X;,0;) (or just X;) denote
an irreducible SFT and let (Fj, (¢');) (or just F;) denote its standard
suspension flow (Definition 3.1). An irreducible SFT is trivial if it
contains only one orbit; equivalently, the (mapping torus) domain of
its suspension flow is a topological circle. A semiequivalence of flows
f : Fi; — F} is a continuous surjection whose restriction to any orbit
in the domain is an orientation preserving local homeomorphism onto
some orbit in the range. A semiconjugacy of flows is a semiequivalence
[+ F; — Fj such that, in addition, (¢/)¢f = f(¢"):.

Irreducible SFTs X1, X5 are almost topologically conjugate if there is
a third irreducible SF'T X3 such that for 2+ = 1,2 there is a continuous
shift-commuting surjection f; : X3 — X, which is uniformly finite to
one (i.e. there is a uniform finite bound on the number of preimages
of any point) and one-to-one almost everywhere (i.e. any point of X;
in a bilaterally transitive orbit has a unique preimage). (Here Xj is
an almost conjugate extension of X;.) Note, such a map f; induces a
semiconjugacy of flows F5 — F;. We have then the following natural
flow equivalence analogue of almost topological conjugacy. Irreducible
SFTs (Xi1,01), (X2,092) are almost flow equivalent if there is a third
irreducible SFT (X3, 03) such that for i = 1, 2 there is a semiequivalence
of flows F3 — F; which is uniformly finite to one and one-to-one almost
everywhere (i.e. any point on a bilaterally transitive flow line has a
unique preimage).

Almost topological conjugacy is a weakening of conjugacy which is
useful in particular for studying the SF'T's with respect to certain in-
variant measures. One of the basic results in symbolic dynamics is the
Adler-Marcus Theorem : two irreducible SFTs are almost topologically
conjugate if and only if they have the same topological entropy and pe-
riod (see [AM] or [LM, Theorem 9.3.2]). The flow equivalence analogue
of the Adler-Marcus Theorem is the following fact [B4]: all nontrivial
irreducible SFTs are almost flow equivalent. This is the result which
is generalized to G-SF'Ts by Theorem A.1.



16 MICHAEL C. SULLIVAN

Let G be a group. A G-SFT is an SFT together with a continu-
ous right G action which commutes with the shift (i.e., for all z, g we
have (ox)g = o(xg)). We will only consider finite groups. A G-SFT
is irreducible and nontrivial if the underlying SF'T is. The G action is
faithful if no element other than the identity in G acts by the identity
map. A faithful G-SFT is a G-SF'T for which the G action is faithful.
The G action on a G-SFT X, induces in an obvious way a G action
on the suspension flow (Fj, (¢%);) such that (¢');g = g(¢%); for all g in
G. With this action we call F; a G-flow. We say irreducible G-SFTs
Xy, Xy are almost flow equivalent (as G-SFTs) if there are semiequiv-
alences of flows F3 — F, F3 — F, as above for which in addition each
semiequivalence F3 — F; is equivariant with respect to the G-action.
The relation of being almost flow equivalent is indeed an equivalence
relation, by a standard type of pullback argument (compare [AM, The-
orem 2.17]).

A G-SF'T is free if the G action is free, i.e., if ¢ € G and there exists
z in the SFT such that gx = x, then ¢ must be the identity element of
G. We will summarize some facts reviewed in detail in [BS, Section 2].
Suppose that A is a square matrix over Z,G. Then A gives rise to a
G-labeled directed graph, where the adjacency matrix of the unlabeled
graph is denoted |A| (it is the image of A under entrywise application
of the augmentation map ZG — Z). This graph defines an SFT X 4
with a continuous map into GG, from which a skew product S4 may
be constructed. This skew product is an SF'T which carries a natural
G-action with which it is a free G-SFT. Conversely, any free G-SF'T is
conjugate to one induced by such a matrix A. (A conjugacy of G-SFTs
is simply a G-equivariant topological conjugacy of SFTs.)

For the proof of Theorem A.1, we will use three more facts, which
follow from the adjacent citations.

Fact A.2. [B4, Lemma 2.4] Every irreducible nontrivial SFT is flow
equivalent to a mixing SF'T with entropy log 2.

Fact A.3. [AKM, Theorem 3| Let G be a finite group. Then any
irreducible faithful G-SF'T has an almost conjugate extension to an
irreducible free G-SF'T.

Fact A.4. [AKM, Theorem 4] Let G be a finite group. Then two
faithful mixing G-SFTs are almost topologically conjugate if and only
if they have the same entropy.

Remark A.5. Fact A.4 is a generalization of the Adler-Marcus Theo-
rem to G-SFTs. For the irreducible case and more general actions, also
see [AKM]. For a different proof see [P]. For analogous generalizations
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of right closing almost topological conjugacy to G-SFTs, and some clar-
ification of the [AKM] invariants for irreducible G-SFTs (a special case
in [AKM]), see [D].

We can now prove Theorem A.1. Suppose G is a finite group and
X1, X, are irreducible nontrivial faithful G-SFTs. By Fact A.3, each X;
has an almost conjugate extension to an irreducible free G-SF'T. Thus
without loss of generality we may assume that X; is a skew product
over an SFT X|4(; defined by an irreducible matrix A(7) over Z,G,
with weights class G. By Fact A.2, the SFT X4, is flow equivalent to
a mixing SF'T of entropy log2. This flow equivalence naturally lifts to
the skew product. So without loss of generality, we may assume that
each X)4(; is mixing with entropy log2. By the Adler-Marcus Theo-
rem, there is a common mixing almost conjugate extension of X4
and X 4(2) to some X¢. This can be done by one block codes [AM],
under which the G-labelings (defined from the A(7)) on the graphs with
adjacency matrices |A(7)| lift to G-labelings on the graph with adja-
cency matrix C. Thus without loss of generality, we may assume that
each |A(1)| = |A(2)| = C where X¢ is a mixing SFT of entropy log 2.

Now the only barrier to citing Fact A.4 is the possibility that one
or both of the skew product SFTs S; defined from A(7) is not mixing.
(These skew products remain irreducible SFTs through all the con-
structions.) Let G; be the labeled graph defined by A;. Let G denote
the underlying unlabeled graph, the same for G; and G,. The period
of the irreducible SFT S; is the g.c.d. of the lengths of those loops in
G; which have weight e (where e denotes the identity element in G). If
this g.c.d. is not 1 for the G;, then we will pass to new labeled graphs
G/, with the same underlying unlabeled graph G', as follows.

By positive entropy, there are distinct (not necessarily simple) loops
41, 0] in G; of equal length with weight e. Likewise there are loops
Uy, £, of equal length, which are distinct from each other and from
01, ¢}, and which have weight e in G,. After passing to the same higher
block presentation of C' (pulling along the G-labelings), we can assume
without loss of generality that there is an edge e; traversed exactly once
by ¢; but not at all by #},¢; or ¢,; and there is an edge e, traversed
exactly once by ¢; but not at all by £, ¢; or ¢;. For i = 1,2, construct
G/ from G; by making the following changes to G;

e Delete the labeled edges e; and e,.

e For j = 1,2, add a new vertex v;; add a new edge eg- from the
initial vertex of e; to v;; and add a new edge € from v; to the
terminal vertex of e;.

e Label €/ and e} with the identity element of G.
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e Label €/ and €, respectively with the labels of e; and e, in G;.

We have Z G matrices By, By describing the new labeled graphs, and
their induced skew products are clearly G-flow equivalent respectively
to S; and S3. Moreover, these skew products must be mixing. Finally,
because |B;| = | By|, they also have equal entropy. By Fact A.2, they
are almost flow equivalent. This concludes the proof of Theorem A.1.

Finally we remark that Aratjo [A] studies almost flow equivalence of
stochastic systems. These can be viewed as SF'Ts with a skew product
over a group which is a copy of Z" embedded in the multiplicative group
of positive real numbers [P]. Araujo shows that if the group is infinite
cyclic, then the group is the only invariant of almost flow equivalence,
and he shows that this is not true for more general groups.

We thank Andrew Dykstra for helpful comments on the appendix.
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