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Abstract

We consider a principal-agent relationship where a buyer contracts with a risk-averse

supplier for the production of certain good. At the time of contracting, both parties

share incomplete information on cost of production. However, after contracting and before

production, the supplier privately discovers its cost of production. We study the optimal

contract between the two parties in the presence of cost uncertainty when the supplier is

privately informed of its risk preference at the time of contracting.
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1 Introduction

It is well understood that principal-agent relationships often involve simultaneous consider-

ation of risk sharing, effort motivation (moral hazard), and information revelation (adverse

selection). For example, Zeckhauser (1970), Spence and Zeckhauser (1971), Holmstrom

(1979), Shavell (1979); Grossman and Hart (1983) among others consider optimal risk

sharing under moral hazard; Salanie (1990) studies optimal risk sharing under adverse

selection; Laffont and Rochet (1998), Theilen (2003), and Dai (2007) study optimal risk

sharing under both adverse selection and moral hazard. In all these studies, the equilibrium

contracts closely depend on both the principal’s and the agent’s degree of risk aversion.

In reality, principals often do not have precise information on agents’ risk preference. For

example, the owner of a firm typically does not know either a manager’s or a worker’s degree

of risk aversion. Similarly, a regulator seldom has perfect information on how risk-averse a

firm is. In those cases, the agent conceivably can manipulate the principal’s perception of

his risk preference. The purpose of this study is to extend the adverse selection model to

settings where the agent is privately informed about his degree of risk aversion.

We consider a principal-agent relationship where a buyer contracts with a risk-averse

supplier for the production of certain good. At the time of contracting, both the buyer and

the supplier share the same incomplete information about cost of production. However,

after signing the contract and before the production, the supplier can privately discover the

cost of production. We study the optimal contract between the two parties in the presence

of cost uncertainty when the supplier is privately informed of its risk preference at the time

of contracting.

When both parties share the same information on cost of production at the time of

contracting, the efficient supply schedule can be achieved by a fixed-price contract which

makes the supplier the residual claimant of the production, if the supplier is risk-neutral.
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However, when the supplier is risk-averse, the optimal supply schedule must balance risk

sharing and the incentive for the supplier to truthfully reveal its private information on cost

of production. Consequently, a supplier of small degree of risk aversion supplies less than

the efficient level of output except for the lowest and the highest realizations of the cost.

The production distortion increases as the supplier becomes more risk-averse. When the

supplier becomes sufficiently risk-averse, bunching arises in the supply schedule—the supplier

is required to produce a constant level of output for high realizations of cost. When the

supplier becomes infinitely risk-averse, the supply schedule converges to one where the

supplier is privately informed about its cost of production at the time of contracting.

When the supplier is privately informed of its degree of risk aversion, the buyer must

screen the supplier not only by its marginal cost of production but also by its degree of risk

aversion. When the buyer is risk-neutral, the optimal contract balances risk sharing and

the incentive for the supplier to truthfully reveal both the realization of cost and its degree

of risk aversion. Consequently, the supply schedule for the more risk-averse supplier is

further distorted towards a cost-plus contract in order to limit a less risk-averse supplier’s

incentive to mimick a more risk-averse one. However, the supply schedule for the less

risk-averse supplier is the same as when the supplier’s degree of risk aversion is common

information.

When the buyer is also risk-averse, the optimal contract must simultaneously balance

the buyer’s profits with different types of suppliers, risk sharing between the two parties

and the supplier’s incentives for truthful information revelation. The downward distortion

in production decreases for both types of suppliers as a risk-averse buyer allocates more risk

towards the suppliers. Moreover, a risk-averse buyer also reduces the production distortion

for a more risk-averse supplier to smooth its profits with different types of suppliers. When

the buyer is sufficiently risk-averse, both types of suppliers produce above the efficient level

of output.
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de Mezza and Webb (2000) and Jullien, Salanie and Salanie (2007) study the optimal

insurance contracts under moral hazard when insurance customers are privately informed

of their risk preference. Landsberger and Meilijson (1994) consider a principal-agent set-

ting with one risk neutral monopolistic insurer and one risk-averse agent who is privately

informed about his degree of risk aversion. Smart (2000) studies a screening game in a

competitive insurance market in which insurance customers differ with respect to both ac-

cident probability and degree of risk aversion. In contrast to the above studies, we consider

a principal-agent relationship where suppliers differ with respect to both cost of production

and degree of risk aversion.

The rest of the paper is organized as follows. Section 2 describes the central elements

of the model. As a benchmark, Section 3 presents the optimal contract when the supplier’s

degree of risk aversion is common information. Section 4 examines the optimal contract

when the supplier is privately informed of its degree of risk aversion. Section 5 summarizes

our main findings and concludes the paper with future research directions. The proofs of

all formal conclusions are in the Appendix.

2 The model

A buyer contracts with a supplier to obtain some quantity, q ≥ 0, of a good. The buyer’s

valuation of q is V (q), and V (·) is a smooth, increasing, and concave function. The buyer’s

net surplus is W = V (q) − T , where T is the buyer’s payment to the supplier. The

supplier’s total cost of producing q is C = cq, where c is the supplier’s marginal/average

cost of production. Hence, the supplier’s profit is π = T − cq.

The utility function of the supplier, U(·), belongs to some smooth one-dimensional

family of utility functions that is ranked according to the Arrow-Prat measure of risk

aversion: for any wealth level π, −U 0(ρ, π)/U 00(ρ, π) is increasing with ρ. Thus, ρ measures
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the the supplier’s degree of risk aversion. The supplier’s degree of risk aversion is unknown

to the buyer. However, it is common knowledge that the supplier’s degree of risk aversion,

ρ, belongs to the two point support {ρl, ρh} with ρh > ρl and Pr(ρ = ρl) = α (therefore

Pr(ρ = ρh) = 1− α).

The supplier’s marginal cost of production, c, is uncertain at the time of contracting.

However, both the buyer and the supplier know that the realization of c follows a uniform

distribution between c and c. After contracting with the buyer and before the production

takes place, the supplier privately discovers the realization of c.

The timing and contractual relation between the buyer and the supplier are as follows:

(1) the supplier privately learns its degree of risk aversion ρ; (2) the buyer offers the supplier

a set of contract menus Mn = {Tn(c), qn(c)} conditional on the supplier’s degree of risk

aversion n, where n = l, h, and its eventual marginal cost c; (3) the supplier selects its

preferred menu Mn given its private information on ρ; (4) the supplier discovers c, and

selects a desired option (Tn(c), qn(c)) from the selected menu Mn; (5) exchange takes place

according to the contract terms.

3 Common Information on Risk Preference

As a benchmark, in this section we discuss the optimal contract when the supplier’s degree

of risk aversion is common information. When the buyer is risk-neutral, its optimization

problem is choosing {T (c), q(c)} to maximize

Z c

c

[V (q(c))− T (c)]f(c)dc, (1)

where f(c) is the probability density function of c. Denote ∆c = c− c, then f(c) = 1/∆c.

A contract is feasible (or implementable) provided if it is incentive compatible and
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individually rational. Incentive compatibility requires that the contract induces the supplier

to truthfully report its realization of marginal cost, i.e.,

π(ci | ci) > π(ci | cj) for ci 6= cj, (2)

where π(ci | ci) and π(ci | cj) denote the supplier’s respective profits from choosing options

(T (ci), q(ci)) and (T (cj), q(cj)) when the realization of its marginal cost in fact is ci. In-

dividual rationality requires that the supplier’s expected utility from entering the contract

must be nonnegative, i.e.,

E[U ] =

Z c

c

U(T (c)− cq(c))f(c)dc > 0. (3)

When the supplier is risk-neutral, it is well known that the optimal contract {T (c), q(c)}

takes the following form:

T (c) = V (q(c))− T , where (4)

T = argmax
q(c)

Z c

c

[V (q(c))− cq(c)]f(c)dc. (5)

The optimal contract in essence makes the supplier the residual claimant of its production.

Under the contract, the supplier produces the efficient amount of goods (i.e., V 0(q(c)) = c,)

based on the realization of its marginal cost. Moreover, the supplier receives zero rent in

expectation as E[U ] =Max
q(c)

R c
c
[(V (q(c))− T )− cq(c)]f(c)dc = 0 under the contract.

Under the above optimal contract, the supplier bears the entire risk of cost uncertainty

as the residual claimant of the production. When the supplier is risk-averse, however, the

optimal contract must balance risk sharing and the incentive for the supplier to truthfully

reveal its marginal cost of production.

Lemma 1 describes the general properties of the optimal contract when the supplier’s
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degree of risk aversion is common information.

Lemma 1 The optimal contract must be of the following form, for some c∗ in [c, c] and

q∗ > 0:

(a) E[U ] = 1
∆c

R c
c
U(π(c))dc = 0;

(b) q(c) is given by

1

∆c
[V 0(q(c))− c] =

c− c

∆c
−
R c
c
U 0(π(x))dF (x)R c

c
U 0(π(x))dF (x)

(6)

on [c, c∗) and q(c) = q∗ on [c∗, c].

Proof. See appendix.

At the time of contracting both the supplier and the buyer face the same uncertainty

regarding the cost of production. Consequently, although the supplier can capture informa-

tion rent from its private information on the realization of c after signing the contract, the

buyer can fully extract the expected information rent at the time of contracting by reducing

the level of transfer payments T (c) for all realization of c. (Note that it is the difference

in T (c) that provides the incentive for the supplier to truthfully reveal its marginal cost.)

Consequently, the supplier receives zero expected utility under the optimal contract.

Given that the buyer can fully extract the supplier’s ex post information rent at the

time of contracting, the buyer does not face the traditional trade-off between rent extraction

and production efficiency as in Baron and Myerson (1982). As we have shown earlier, the

supplier’s ex post information rent would be costless to the buyer and the efficient outcome

would be achieved if the supplier were risk-neutral. However, when the supplier is risk-

averse, the optimal supply schedule must balance risk sharing and the incentive for truthful

information revelation. Equation (6) demonstrates the intuition.
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When the supplier’s realization of marginal cost is bc, raising q(bc) by δq will in expecta-
tion increase the supplier’s production efficiency by [V 0(q(bc))− bc]δq/∆c where 1/∆c is the

probability that c = bc. However, the increase in q(bc) will also raise the supplier’s ex post
information rent by δq when c < bc. Consequently, in expectation the increase in q(bc) raises
the supplier’s ex post information rent by (c− c)δq/∆c, where (c− c)/∆c is the probability

that c < bc. When the supplier is risk-averse, the buyer can only reduce T (c) for all realiza-
tion of c by δq

R c
c
U 0(π(x))dx/

R c
c
U 0(π(x))dx in order to keep the supplier’s expected utility

unchanged. Notice that δq
R c
c
U 0(π(x))dx is the increase in the supplier’s expected utility

as a result of the increased ex post information rent, and
R c
c
U 0(π(x))dx is the supplier’s

additional expected utility as a result of one unit of increase in T (c) for all realization of

c. Therefore, δq
R c
c
U 0(π(x))dx/

R c
c
U 0(π(x))dx is the certainty equivalent of the supplier’s

increased additional information rent. At the optimum, the supplier’s marginal benefit of

raising q(bc) must equal its marginal cost of doing so, which yields equation (6).
When the supplier is risk-neutral, i.e., u00 = 0,

R c
c
U 0(π(x))dx/

R c
c
U 0(π(x))dx = (c −

c)/∆c, which means the the certainty equivalent of the supplier’s increased additional

information rent is the same for both the buyer and the seller. Consequently, the buyer

can fully extract the supplier’s expected ex post information rent by reducing the transfer

payments under all realization of c by exactly (c− c)/∆c. In that case, the right-hand side

of equation (6) becomes zero, and V 0(q(c)) = c. The optimal contract would be a fixed

price contract, and the supplier would always supply the efficient level of goods.

Denote the term on the left-hand side of equation (6) as D(c). When the optimal supply

schedule is strictly decreasing in c in [c, c], i.e., c∗ = c (no bunching), equation (6) suggests

that D(c) = 0 and V 0(q(c)) = c at c and c. Therefore, the supplier delivers the efficient

amount of goods at c and c. Furthermore, D00(c) = U 00(π(c))q(c)/
R c
c
U 0(π(x))dx < 0, which

implies that D(c) is concave on (c, c). Since D(c) = D(c) = 0, the concavity suggests that

D(c) > 0 on (c, c). Consequently, the supplier delivers less than the efficient amount of

goods on (c, c).
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To fully demonstrate the effect of risk aversion on the optimal contract, we assume that

the supplier has a constant absolute risk aversion (CARA) utility function, u(x) = 1−e−ρx

with ρ > 0 and the buyer have a quadratic value function, V (q) = aq− bq2, with a > c > 0

and b > 0.1

Lemma 2 demonstrates the effect of risk aversion on the optimal supply schedule in the

no-bunching region.

Lemma 2 When there is no bunching, the supply schedule, q(c), decreases with the sup-

plier’s degree of risk aversion, ρ, on (c, c).

Proof. See Appendix.

Lemma 2 suggests that, when the supplier becomes more risk-averse, the buyer opti-

mally reduces the supplier’s exposure to cost uncertainty by distorting the supply schedule

on (c, c) downwards. As ρ becomes increasingly large, the monotonicity condition that re-

quires q0(c) 6 0– a necessary condition for the supplier to truthfully reveal its realization

of marginal cost – may become constraining. Consequently, the optimal supply schedule

may involve bunching as the buyer becomes sufficiently risk-averse.

Lemma 3 fully characterizes the effect of the supplier’s degree of risk aversion on the

optimal contract.

Lemma 3 There exists ρ∗ with ρ∗ > 0, such that

(a) For ρ < ρ∗, there is no bunching and q(c) is given by

1

∆c
[V 0(q(c))− c] =

c− c

∆c
−
R c
c
e−ρπdxR c

c
e−ρπdx

(7)

1Technically, our analysis in this case is similar to Salanie (1990) where a risk-neutral producer contracts
with a risk-averse retailer.

8



for all c on [c, c];

(b) For ρ > ρ∗, q(c) is given by equation (7) on some interval [c, c∗) and is constant on

[c∗, c].

Proof. See Appendix.

Lemma 3 suggests that bunching arises in the optimal contract when the supplier be-

comes sufficiently risk-averse. In the optimal contract, the supply schedule is strictly de-

creasing in the realization of marginal cost for small value of marginal cost but is constant

for all realizations of marginal cost above c∗ whose value depends on ρ.

 q 

c 
 
 

cc  

First-best solution 

Infinite risk aversion 

Increasing ρ 

b
ca

2
−  

b
ca

2
−  

b
cca

2
2−+  

Figure 1. The comparative statics of the second-best supply schedule as ρ increases.
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Notice that when the supplier is infinitely risk-averse, i.e., ρ converges to infinity, equa-

tion (7) becomes
1

∆c
[V 0(q(c))− c] =

c− c

∆c
. (8)

It is the well known solution for a standard adverse selection problem where the supplier is

privately informed about its marginal cost of production at the time of contracting. This

is because the supplier will participate in the contract only if he is guaranteed nonnegative

profit for all realization of c when he is infinitely risk-averse. Consequently our model

becomes equivalent to one that the supplier is perfectly informed about its marginal cost

at the time of contracting.

For later use, we call the optimal supply schedule when the supplier’s degree of risk

aversion is common information the second-best supply schedule.

4 Asymmetric Information on Risk Preference

4.1 A Risk-Neutral Buyer

When the supplier is privately informed of its degree of risk aversion, the buyer must

screen the supplier not only by its marginal cost of production but also by its degree of

risk aversion.

When the buyer is risk-neutral, the buyer’s optimization problem is choosing a set of

contract menus Mn = {Tn(c), qn(c)} for n = l, h to maximize

Z c

c

{α[V (ql(c))− Tl(c)] + (1− α)[V (qh(c))− Th(c)]} f(c)dc, (9)
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subject to

E[U(ρn,Mn)] =

Z c

c

U(Tn(c)− cqn(c))f(c)dc > 0; (10)

πn(ci | ci) > πn(ci | cj) for ci 6= cj; and (11)

E[U(ρn,Mn)] > E[U(ρs,Ms)], (12)

where n = l, h , s = l, h, and n 6= s.

While conditions (10) and (11) ensure the supplier’s participation and truthful report

of its marginal cost regardless of its degree of risk aversion, condition (12) guarantees that

the supplier truthfully reveals its degree of risk aversion.

Proposition 1 describes the general properties of the optimal contract when the supplier

is privately informed of its degree of risk aversion.

Proposition 1 The optimal contract has the following properties :

(a) E[U(ρl,Ml)] > E[U(ρh,Mh)] = 0;

(b) In no bunching region, the optimal supply schedule for the less risk-averse supplier

is characterized by

1

∆c
[V 0(ql(c))− c] =

Z c

c

(
1

∆c
− e−ρlπlR c

c
e−ρlπldx

)
dz; and (13)

the optimal supply schedule for the more risk-averse supplier is characterized by

1− α

∆c
[V 0(qh(c))− c] =

Z c

c

{1− α

∆c
− e−ρhπhR c

c
e−ρhπhdx

+
αe−ρlπhR c
c
e−ρlπldx

}dz. (14)

Proof. See Appendix.

Under the optimal contract, the buyer can fully extract the more risk-averse supplier’s
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ex post information rent by adjusting the level of payments for all realizations of marginal

cost as in the case of common information on risk aversion. However, the utility function of

a less risk-averse supplier is an increasing and convex transformation of that of a more risk-

averse supplier, and in equilibrium the less risk-averse supplier can enjoy positive expected

utility by mimicking a more risk-averse one. Consequently, the optimal contract provides

a less risk-averse supplier positive expected utility to induce its truthful revelation of its

degree of risk aversion.

Under the optimal contract, the supply schedule for the less risk-averse supplier opti-

mally balances risk sharing and the incentive for the supplier to truthfully reveal its realiza-

tion of marginal cost, as in the case of common information on risk aversion. Consequently,

the less risk-averse supplier produces according to the second-best supply schedule.

However, the supply schedule for the more risk-averse supplier now must simultaneously

trade-off risk sharing, the supplier’s incentives to truthfully reveal its marginal cost of

production, and the less risk-averse supplier’s incentive to truthfully reveal its degree of

risk aversion. To demonstrate the trade-off, we rewrite equation (14) as

1− α

∆c
[V 0(qh(c))− c] = (1− α)[

(c− c)

∆c
−
R c
c
e−ρhπhdzR c

c
e−ρhπhdx

] + αG(c), (15)

where G(c) ≡
R c
c
e−ρlπhdz/

R c
c
e−ρlπldx−

R c
c
e−ρhπhdz/

R c
c
e−ρhπhdx.

When the more risk-averse supplier’s realization of marginal cost is bc, raising qh(bc)
by δq will in expectation increase the production efficiency by (1− α)[V 0(q(bc)) − bc]δq/∆c

where 1 − α is probability that the supplier is more risk-averse. However, the increase in

qh(bc) will also raise the more risk-averse supplier’s ex post information rent by δq when

c < bc. Consequently, in expectation it increases the more risk-averse supplier’s ex post
information rent by δq

R c
c
e−ρhπhdz. In addition, the increase in qh(bc) will also increase the

less risk-averse supplier’s rent from mimicking the more risk-averse one by δq
R c
c
e−ρlπhdz
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in expectation.

The certainty equivalents of the above ex post information rents for both types of sup-

pliers are δq
R c
c
e−ρhπhdz/

R c
c
e−ρhπhdx and δq

R c
c
e−ρlπhdz/

R c
c
e−ρlπldx, respectively. Notice

that
R c
c
e−ρhπhdx and

R c
c
e−ρlπldx are the marginal utilities of one unit of increase in certainty

equivalent for both types of suppliers, respectively.

In anticipation of the supplier’s information rent, at the time of contracting the buyer

can reduce both types of suppliers’ payments by δq
R c
c
e−ρhπhdz/

R c
c
e−ρhπhdx for all real-

izations of marginal cost. Doing so fully extracts the more risk-averse supplier’s ex post

information rent and provides the less risk-averse supplier just enough incentive to truth-

fully reveal its degree of risk aversion. At the optimum, the supplier’s marginal benefit of

raising qh(bc) must equal its marginal cost of doing so, which yields equation (15).
Notice that αG(c) (which is positive on (c, c) as shown in the proof of Proposition 2)

is the effect of asymmetric information on the supplier’s risk aversion. In order to limit a

less risk-averse supplier’s rent of exaggerating its degree of risk aversion, the buyer further

distorts the more risk-averse supplier’s contract towards a cost-plus contract. Consequently,

as we show in Proposition 2, the more risk-averse supplier produces below the second-best

supply schedule.

Proposition 2 Under the optimal contract, the more risk-averse supplier’s supply schedule

is below the second-best level.

Proof. See Appendix.

Similar to the case of common information on risk aversion, bunching arises in the

optimal contract as either type of supplier becomes increasingly risk-averse. In the optimal

contract with bunching, the supply schedule is strictly decreasing in the realization of

marginal cost for small value of marginal cost but is constant for all realizations of marginal
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cost above certain critical value of marginal cost. The critical value of marginal cost depends

on the degree of risk aversion of both types of suppliers.

Proposition 3 describes the properties of the optimal contract in that case.

Proposition 3 When both types of suppliers become sufficiently risk-averse, there exist

some c∗h and c
∗
l in [c, c] that the optimal supply schedule is constant over [c

∗
h, c] for the more

risk-averse supplier and [c∗l , c] for the less risk-averse supplier; The supply schedules for

the non-bunching regions are determined by equation (14) for the more risk-averse supplier

and by equation (13) for the less risk-averse supplier.

Proof. The proof is similar to that of Lemma 3 and is therefore omitted.

Suppose that one type of supplier is risk-neutral and the other type of supplier is

infinitely risk-averse. Then equation (15) becomes

1− α

∆c
[V 0(qh(c))− c] =

c− c

∆c
. (16)

A direct comparison between equations (8) and (16) demonstrates the effect on the

optimal contract of asymmetric information on the supplier’s risk aversion. An increase in

qh(bc) by δq increases the more risk-averse suppliers’ production efficiency by [V 0(q(bc)) −
bc]δq/∆c regardless whether he is privately informed about its risk aversion. However, with

asymmetric information on risk aversion, an increase in qh(bc) by δq increases the ex post

information rent for not only the more risk-averse supplier but also the less risk-averse

supplier by (c − c)/∆c. The certainty equivalent of the ex post information rent is zero

for the more risk-averse supplier, which means that the buyer cannot extract any of the ex

post rent at the time of contracting. Consequently, with asymmetric information on risk

aversion, the more risk-averse supplier’s supply schedule is further distorted towards a cost

plus contract.
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4.2 A Risk-Averse Buyer

When the buyer is also risk-averse, the optimal contract must balance the buyer’s profits

with different types of suppliers, in addition to the tradeoff among risk sharing and the

incentives for the supplier to truthfully reveal both its marginal cost of production and

its degree of risk aversion. Suppose that the buyer has a constant absolute risk aversion

(CARA) utility function, u(x) = 1− e−ρbx with ρb > 0. The buyer’s optimization problem

is choosing a set of contract menus Mn = {Tn(c), qn(c)} for n = l, h to maximize

E[Ub] =

Z c

c

©
α[1− e−ρbWl] + (1− α)[1− e−ρbWh]

ª
f(c)dc (17)

subject to conditions (10), (11), and (12), whereWl = V (ql(c))−Tl(c) andWh = V (qh(c))−

Th(c).

Proposition 4 describes the properties of the optimal contract when both the buyer and

the supplier are risk-averse.

Proposition 4 When both the buyer and the supplier are risk-averse, the optimal contract

has the following properties:

(a) E[U(ρl,Ml)] > E[U(ρh,Mh)] = 0;

(b) In no bunching region, the optimal supply schedule for the less risk-averse supplier

is characterized by

e−ρbWl

CE
[V 0(ql(c))− c] =

Z c

c

(
e−ρbWl

CE
−

e−ρlπl
R c
c
e−ρbWldx

CE
R c
c
e−ρlπldx

)
dz; (18)

and the optimal optimal supply schedule for the more risk-averse supplier is characterized
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by

(1− α)e−ρbWh

CE
[V 0(qh(c))−c] =

Z c

c

{(1− α)e−ρbWh

CE
+
αe−ρlπh

R c
c
e−ρbWldx

CE
R c
c
e−ρlπldx

− e−ρhπhR c
c
e−ρhπhdx

}dz,

(19)

where CE ≡ α
R c
c
e−ρbWldx+ (1− α)

R c
c
e−ρbWhdx.

Proof. See Appendix.

Under the optimal contract, the more risk-averse supplier still receives zero expected

utility, and the less risk-averse supplier still receives positive expected utility due to its

private information on its degree of risk aversion. However, the optimal supply schedule is

profoundly different compared with the case when the buyer is risk neutral.

For the less risk-averse supplier, when the realization of marginal cost is bc, raising ql(bc)
by δq will in expectation increase W (bc) by [V 0(ql(bc)) − bc]δq which increases the buyer’s
certainty equivalent by δqα[V 0(ql(bc)) − bc]e−ρbW/CE. Note that CE is the increase in the

buyer’s expected surplus as a result of one unit increase in its profits for all possible events.

On the other hand, the increase in ql(bc) will also raise the less risk-averse supplier’s ex
post information rent by δq when c < bc. The certainty equivalent of the additional ex
post information rent is δq

R c
c
e−ρhπhdz/

R c
c
e−ρhπhdx for the supplier. Therefore, therefore

at the time of contracting the buyer can optimally reduce the supplier’s payments under

all realization of c by δq
R c
c
e−ρhπhdz/

R c
c
e−ρhπhdx.

However, the buyer’s certainty equivalent of the supplier’s additional ex post information

rent is δqα
R c
c
e−ρbWldz/CE and its certainty equivalent of the amount that can be extracted

from the supplier at the time of contracting is δqα
R c
c
e−ρlπldz

R c
c
e−ρbWldx/CE

R c
c
e−ρlπldx.

Hence depending on the relative sizes of these two certainty equivalents for the buyer, which

in turn depends on the relative degree of risk aversion between the two parties, the optimal

supply schedule can be either above or below the efficient level.
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For example, when ρl converges to zero, i.e., the supplier converges to risk-neutral,R c
c
e−ρlπldx/

R c
c
e−ρlπldx converges to (c−c)/∆c and the latter certainty equivalent converges

to δqα(c − c)
R c
c
e−ρbWldx/(CE)∆c. In the optimal contract, Wl must be non-increasing

on [c, c]. Then, we have (c − c)
R c
c
e−ρbWldx/∆c >

R c
c
e−ρbWldz and the right-hand side of

equation (18) is non-positive. Consequently, the optimal supply schedule is above or at the

efficient level on [c, c].

On the other hand, based on our analysis of a risk-neutral buyer in the previous section,

by continuity the optimal supply schedule must be below the efficient level when the buyer

converges to risk-neutral.

The buyer’s risk aversion has a different impact on the more risk-averse supplier’s supply

schedule. Equation (19) demonstrates how the optimal supply schedule for the more risk-

averse supplier balances risk sharing, incentives for truthful revelation, and the buyer’s

profits with different types of suppliers.

The certainty equivalent of the additional profits of increasing qh(c) by δq is (1 −

α)[V 0(qh(c))−c]e−ρbWh/CE. However, the increase in qh(c) also increases the ex post infor-

mation rent for both types of suppliers. The certainty equivalent for the buyer of the more

risk-averse supplier’s additional ex post information rent is (1−α)δq
R c
c
e−ρbWhdz/CE. We

have shown earlier that the less risk-averse supplier’s certainty equivalent of the additional

ex post information rent is δq
R c
c
e−ρlπhdz/

R c
c
e−ρlπldx, the certainty equivalent of which for

the buyer is αδq
R c
c
e−ρlπhdz

R c
c
e−ρbWldx/CE

R c
c
e−ρlπldx. Note that α

R c
c
e−ρbWldx/CE is the

certainty equivalent for the buyer of one unit increase in surplus under a less risk-averse

supplier for all realizations of marginal costs. Therefore, it measures how the risk-averse

buyer values additional surplus under the less-risk averse supplier.

Recall that, in anticipation of the additional ex post information rents for both types

of suppliers, the buyer can reduce both types of suppliers’ payments for all realizations of

marginal cost by the amount equal to the more risk-averse supplier’s certainty equivalent
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of the additional rent. Therefore, as indicated by the right-hand of Equation (19), the

marginal cost of increasing qh(c) is the sum of the certainty equivalents for the buyer

of both types of suppliers’ additional rents (which are (1 − α)δq
R c
c
e−ρbWhdz/CE and

α
R c
c
e−ρlπhdz

R c
c
e−ρbWldx/CE

R c
c
e−ρlπldx, respectively) minus the more risk-averse supplier’s

certainty equivalent of the additional rent
R c
c
e−ρhπhdz/

R c
c
e−ρhπhdx. Nonetheless, the less

risk-averse supplier receives positive information rent from its private information on its

degree of risk aversion. Similar to the case of risk-neutral buyer, in order to restrict a

less risk-averse supplier’s rent of exaggerating its degree of risk aversion, the buyer distorts

the more risk-averse supplier’s contract towards a cost plus contract compared with the

contract for the less risk-averse supplier. However, the distortion is smaller compared with

the case of a risk-neutral buyer as the distortion for a more risk-averse supplier becomes

more costly and the information rent for a less risk-averse supplier becomes less important

to a risk-averse buyer.

It can be readily shown that the optimal supply schedule for a more risk-averse supplier

can also be either below or above the efficient level depending on the relative degree of risk

aversion between the buyer and the supplier.

We summarize this property in Proposition 5.

Proposition 5 Depending on the relative degree of risk aversion between the buyer and

the supplier, the optimal supply schedule for both types of suppliers can be either below or

above the efficient level.

5 Conclusion

We extend the standard adverse selection model to settings where the supplier is privately

informed of its degree of risk aversion. The optimal contract simultaneously balances
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risk sharing, incentives for information revelation, and the buyer’s expected profits with

different types of suppliers. A supplier with small degree of risk aversion produces below

the efficient levle of output le except for the lowest and the highest realizations of cost. The

production distortion increases as the supplier becomes more risk-averse. The asymmetric

information on risk preference further distorts the supply schedule of a more risk-averse

supplier towards a cost-plus contract. However, when the buyer is also risk-averse, both

types of supplier may produce above the efficient supply schedule.

Our research could be extended in several directions. For example, although the sup-

plier’s information on cost of production is imperfect at the time of contracting, the supplier

could be better informed of its potential costs than the buyer. Then the optimal contract

must screen the firm not only by its degree of risk aversion but also by its information re-

garding cost of production at the time of contracting. The optimal contract in this situation

merits further investigation.

6 Appendix

6.1 Proof of Lemma 1

A well known characterization of feasible contracts is the following: (a) T 0(c) = cq0(c); (b)

q(c) is non increasing; (c) EU ≥ 0.

Therefore, we can rewrite the buyer’s optimization problem as an optimal control prob-

lem with state variables T (c) and q(c) and control variable q0(c) = z:

Max
1

∆c

Z c

c

[V (q(c))− T (c)]dc, (A1)
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subject to

q0(c) = z (A2)

T 0(c) = cz (A3)

q0(c) ≤ 0; and (A4)

1

∆c

Z c

c

U(T (c)− cq(c))dc > 0. (A5)

The Hamiltonian is

H = [V (q)− T ] + μcz + λz + θU(π). (A6)

The necessary conditions are given by

∂H

∂z
= μc+ λ > 0, z 6 0, and (μc+ λ) z = 0; (A7)

λ0 = −∂H
∂q

= −[V 0(q)− θU 0(π)c]; (A8)

μ0 = −∂H
∂T

= −[−1 + θU 0(π)]; and (A9)

λ(c) = λ(c) = μ(c) = μ(c) = 0. (A10)

From the transversality condition (A8) and equation (A9),

μ(c)− μ(c) =

Z c

c

[1− θU 0(π)]dc = 0. (A11)

Therefore,

θ =
∆cR c

c
U 0(π(c))dc

. (A12)
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Define h(c) = μc+λ. From condition (A7), on any interval where q is strictly decreasing,

h(c) must be zero. So h0(c) = μ+ μ0c+ λ0 = 0, which leads to

μ = −μ0c− λ0. (A13)

Substituting equations (A8) and (A9) into the above equation for μ0 and λ0, we have

μ =

Z c

c

[1− θU 0(π)]dx = V 0(q)− c. (A14)

Substituting equation (A12) into the above equation for θ, we have

1

∆c
[V 0(q)− c] =

c− c

∆c
−
R c
c
U 0(π(x))dxR c

c
U 0(π(x))dx

. (A15)

Next we show that q0(c) = 0 can only occur on some interval [c∗, c], and the solution is

strictly decreasing on [c, c∗). Suppose that there exist c1, c2, and c3 such that q is constant

on (c1, c2) and strictly decreasing on (c2, c3).

Since q is constant on (c1, c2) on (c2, c3), h(c+2 ) = h0(c+2 ) = h00(c+2 ) = 0. Furthermore,

h0(c) = μ+ μ0c+ λ0 (A16)

=

Z c

c

[1− θU 0(π)]dx− [V 0(q)− c].

Hence,

0 = h
00
(c+2 ) = [1− θU 0(π(c+2 ))]− [V

00
(q(c+2 ))q

0(c+2 )− 1] (A17)

< 2− θU 0(π(c−2 )) = h
00
(c−2 ),
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as V
00
(q(c+2 )) < 0, q

0(c+2 ) < 0, and q0(c−2 ) = 0.

Moreover,

h000(c) = θU 00(π(c))q(c) < 0 (A18)

on (c1, c2), which together with (A17) implies that h00(c) is positive (i.e., h(c) is convex,) on

(c1, c2). Since h(c+2 ) = 0, h(c) is convex on (c1, c2) means h(c1) > 0. As h(c) is continuous,

it h(c) > 0 must be true for some c < c1. Since μ(c) = 0 by the transversality condition,

there is a contradiction.

6.2 Proof of Lemma 2

With CARA utility function, when there is no bunching, q(c) is given by equation (7)

for all c on [c, c]. Differentiating both sides of equation (7) with respect to c, we have

1− e−ρπ(c) = −2bq0(c)− 1 and q0(c) = (e−ρπ(c) − 2)/2b. Since π0(c) = −q(c),

π00(c) = −q0(c) = (2− e−ρπ(c))/2b. (A19)

Assume for some (ρ0, c0), A ≡ ∂q/∂ρ = −∂2π(c)/∂c∂ρ > 0. Since A(ρ0, c) = A(ρ0, c) =

0 and A(ρ0, ·) is smooth, A must admit an interior positive maximum on (c, c), i.e.,

A(ρ0, cm) > 0; (A20)

∂A(ρ0, cm)

∂c
= 0; and (A21)

∂2A(ρ0, cm)

∂c2
6 0. (A22)
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From equation (A17),

∂A(ρ0, cm)

∂c
= −∂

3π(cm)

∂c2∂ρ
= −e

−ρπ

2b

∂ρπ

∂ρ
; and (A23)

∂2A(ρ0, cm)

∂c2
= −∂

4π(cm)

∂c3∂ρ
= − 1

2b
[e−ρπρq

∂ρπ

∂ρ
+ e−ρπ

∂2(ρπ)

∂ρ∂c
]. (A24)

Equations (7) and (A21) together imply that ∂ρπ/∂ρ = 0 and

∂2A(ρ0, cm)

∂c2
= − 1

2b
e−ρπ

∂2(ρπ)

∂ρ∂c
. (A25)

Then equations (A22) and (A25) together require that

∂2(ρπ)

∂ρ∂c
= −∂ρq

∂ρ
= −(q + ρ

∂q

∂ρ
) > 0. (A26)

Equation (A26) implies ∂q/∂ρ < 0, which contradicts with condition (A20).

6.3 Proof of Lemma 3

With CARA utility function, when there is no bunching, from equation (6) we have

1

∆c
[V 0(q(c))− c] =

c− c

∆c
−
R c
c
e−ρπdxR c

c
e−ρπdx

(A27)

on [c, c].When ρ = 0, q(c) is strictly decreasing on [c, c]. By continuity, the optimal supply

schedule is strictly decreasing on [c, c] for small ρ.

With the quadratic value function, equation (A27) provides

q0(c) = (e−ρπ(c) − 2)/2b > −1/b; and (A28)
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q00(c) = e−ρπ(c)ρq/2b = (1 + bq0(c))ρq/b. (A29)

Therefore, q00(c) > 0, i.e., the supply schedule is strictly convex on [c, c] when there is

no bunching. Hence, the supply schedule will be non-increasing everywhere if and only if

∂q(c)/∂c 6 0. Suppose that ∂q(c)/∂c 6 0 for any ρ in the optimal contract.

Since q0(c) > −1/b, the graph of q must stay inside the triangle pictured in Figure 1.

Therefore, we have

Z c

c

q(c)dc >
a− c

2b
∆c+

b

2
[
(a− c)− (a− c)

2b
]2 =

∆c

2b
[a− c− ∆c

4
]. (A30)

Integrating both sides of equation (A29) with respect to c provides

q0(c)− q0(c) =
ρ

b

Z c

c

(1 + bq0(c))q(c)dc

>
ρ

b

½
∆c

2b
(a− c− ∆c

4
) +

q2(c)− q2(c)

2

¾

>
ρ∆c

2b2

½
(a− c− ∆c

4
) +

2a− c− c

4

¾
. (A31)

The term on the left-hand side of inequality converges to infinity as ρ goes to infinity.

However, since 0 > q0(c) > −1/b, q0(c) − q0(c) < 1/b, which is contradict with condition

(A31).

Proposition 2 implies that ∂2q(c, ρ)/∂c∂ρ > 0. Therefore, there exists ρ∗ with ρ∗ > 0,

such that bunching occurs when ρ > ρ∗.
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6.4 Proof of Proposition 1

The Hamiltonian is

H = α[V (ql(c))− Tl(c)] + (1− α)[V (qh(c))− Th(c)] (A32)

+μlczl + μhczh + λlzl + λhzh − θe−ρhπh + β[e−ρlπh − e−ρlπl ], (A33)

where μl, μh, λl, λh, and β are the Lagrange multipliers.

The necessary conditions are given by

∂H

∂z
= μlc+ λl > 0, zl 6 0, and (μlc+ λl) zl = 0; (A34)

∂H

∂z
= μhc+ λh > 0, z 6 0, and (μhc+ λh) zl = 0; (A35)

λ0l = −
∂H

∂q
= −[αV 0(ql)− βe−ρlπlρlc]; (A36)

λ0h = −
∂H

∂q
= −[(1− α)V 0(qh)− θe−ρhπhρhc+ βe−ρlπhρlc]; (A37)

μ0l = −
∂H

∂T
= −[−α+ βe−ρlπlρl]; (A38)

μ0h = −
∂H

∂T
= −[−(1− α) + θe−ρhπhρh − βe−ρlπhρl]; and (A39)

λn(c) = λn(c) = μn(c) = μn(c) = 0, where n = l, h. (A40)

From the transversality condition (A40) and equation (A38),

μl(c)− μl(c) =

Z c

c

[α− βe−ρlπlρl]dc = 0, (A41)
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which provides

β =
α∆c

ρl
R c
c
e−ρlπldc

. (A42)

From the transversality condition (A40) and equation (A39),

μl(c)− μl(c) =

Z c

c

[(1− α)− θe−ρhπhρh + βe−ρlπhρl]dc = 0, (A43)

which provides

θ =
1

ρl
[(1− α) + α

R c
c
e−ρlπhdcR c

c
e−ρlπldc

] =
1

ρl
(A44)

as
R c
c
e−ρlπhdc =

R c
c
e−ρlπldc, i.e., constraint (15) is binding at equilibrium.

Since h0n(c) = μn + μ0nc+ λ0n = 0 or μl = −μ0lc− λ0l when qn is strictly decreasing in c,

we have

μl =

Z c

c

[α− α∆ce−ρlπlR c
c
e−ρlπldx

]dz = α[V 0(ql(c))− c], (A45)

and

μh =

Z c

c

[(1− α)− θe−ρhπhρh + βe−ρlπhρl]dx (A46)

=

Z c

c

[(1− α)− e−ρhπh +
α∆ce−ρlπhR c
c
e−ρlπldz

]dx (A47)

= (1− α)[V 0(qh(c))− c]. (A48)

6.5 Proof of Proposition 2

Since

G0(c) =
e−ρlπhR c

c
e−ρlπhdc

− e−ρhπhR c
c
e−ρhπhdc

, (A49)
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G0(c) > 0 if

πh >
ln
R c
c
e−ρlπhdc− ln

R c
c
e−ρhπhdc

ρh − ρl
. (A50)

Notice that ln
R c
c
e−ρlπhdc− ln

R c
c
e−ρhπhdc < 0 as

R c
c
e−ρlπhdc <

R c
c
e−ρhπhdc.

Since πh is strictly decreasing in c and
R c
c
[1 − e−ρhπh]dc = 0, πh(c) must be positive.

Consequently, G0(c) > 0. Since πh is monotone in c, the sign of G0(c) can change at

most once. Moreover, since G(c) = G(c) = 0, the sign of G0(c) must change at least

once. Consequently, G(c) must be increasing for some region starting from c and become

decreasing for its complimentary region. As a result, G(c) > 0 on (c, c).

6.6 Proof of Proposition 4

The Hamiltonian is

H = α[1−e−ρbWl ]+(1−α)[1−e−ρbWh]+μlczl+μhczh+λlzl+λhzh−θe−ρhπh+β[e−ρlπh−e−ρlπl ],

(A51)

where μl, μh, λl, λh, and β are the Lagrange multipliers.

The necessary conditions are given by

∂H

∂z
= μlc+ λl > 0, zl 6 0, and (μlc+ λl) zl = 0; (A52)

∂H

∂z
= μhc+ λh > 0, z 6 0, and (μhc+ λh) zl = 0; (A53)

λ0l = −
∂H

∂ql
= −[αρbe−ρbWlV 0(ql)− βe−ρlπlρlc]; (A54)

λ0h = −
∂H

∂qh
= −[(1− α)ρbe

−ρbWhV 0(qh)− θe−ρhπhρhc+ βe−ρlπhρlc]; (A55)
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μ0l = −
∂H

∂Tl
= −[−αρbe−ρbWl + βe−ρlπlρl]; (A56)

μ0h = −
∂H

∂Th
= −[−(1 + α)ρbe

−ρbWh + θe−ρhπhρh − βe−ρlπhρl]; and (A57)

λn(c) = λn(c) = μn(c) = μn(c) = 0, where n = l, h. (A58)

From the transversality condition (A58) and equation (A56),

μl(c)− μl(c) =

Z c

c

[αρbe
−ρbWl − βρle

−ρlπl ]dc = 0, (A59)

which provides

β =
αρb

R c
c
e−ρbWldc

ρl
R c
c
e−ρlπldc

. (A60)

From the transversality condition (A58) and equation (A57),

μh(c)− μh(c) =

Z c

c

[(1− α)ρbe
−ρbWh − θe−ρhπhρh + βe−ρlπhρl]dc = 0, (A61)

which provides

θ =
αρb

R c
c
e−ρbWldc+ (1− α)ρb

R c
c
e−ρbWhdc

ρh
R c
c
e−ρhπhdc

. (A62)

Since μl = −μ0lc− λ0l when qn is strictly decreasing in c, we have

μl =

Z c

c

[αρbe
−ρbWl − βe−ρlπlρl]dz (A63)

=

Z c

c

[αρbe
−ρbWl −

αρb
R c
c
e−ρbWldcR c

c
e−ρlπldc

e−ρlπl ]dz (A64)

= αρbe
−ρbWl[V 0(ql(c))− c], (A65)
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and

μh =

Z c

c

[(1− α)ρbe
−ρbWh − θe−ρhπhρh + βe−ρlπhρl]dx (A66)

=

Z c

c

[(1− α)ρbe
−ρbWh − CER c

c
e−ρlπldc

e−ρhπh +
αρb

R c
c
e−ρbWldcR c

c
e−ρlπldz

e−ρlπh]dx (A67)

= (1− α)ρbe
−ρbWh[V 0(qh(c))− c]. (A68)
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