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Introduction

The purpose of this article is to introduce the reader to certain aspects of stochastic
differential systems, whose evolution depends on the past history of the state.

Chapter I begins with simple motivating examples. These include the noisy feedback
loop, the logistic time-lag model with Gaussian noise, and the classical “heat-bath” model
of R. Kubo, modeling the motion of a “large” molecule in a viscous fluid. These examples
are embedded in a general class of stochastic functional differential equations (sfde’s). We
then establish pathwise existence and uniqueness of solutions to these classes of sfde’s
under local Lipschitz and linear growth hypotheses on the coefficients. It is interesting to
note that the above class of sfde’s is not covered by classical results of Protter, Metivier
and Pellaumail and Doleans-Dade.

In Chapter II, we prove that the Markov (Feller) property holds for the trajectory
random field of a sfde. The trajectory Markov semigroup is not strongly continuous for
positive delays, and its domain of strong continuity does not contain tame (or cylinder)
functions with evaluations away from 0. To overcome this difficulty, we introduce a class
of quasitame functions. These belong to the domain of the weak infinitesimal generator,
are weakly dense in the underlying space of continuous functions and generate the Borel
σ-algebra of the state space. This chapter also contains a derivation of a formula for the
weak infinitesimal generator of the semigroup for sufficiently regular functions, and for a
large class of quasitame functions.

In Chapter III, we study pathwise regularity of the trajectory random field in the
time variable and in the initial path. Of note here is the non-existence of the stochastic flow
for the singular sdde dx(t) = x(t−r) dW (t) and a breakdown of linearity and local bound-
edness. This phenomenon is peculiar to stochastic delay equations. It leads naturally to a
classification of sfde’s into regular and singular types. Necessary and sufficient conditions
for regularity are not known. The rest of Chapter III is devoted to results on sufficient
conditions for regularity of linear systems driven by white noise or semimartingales, and
Sussman-Doss type nonlinear sfde’s.

Building on the existence of a compacting stochastic flow, we develop a multi-
plicative ergodic theory for regular linear sfde’s driven by white noise, or general helix
semimartingales (Chapter IV). In particular, we prove a Stable Manifold Theorem for such
systems.
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In Chapter V, we seek asymptotic stability for various examples of one-dimensional
linear sfde’s. Our approach is to obtain upper and lower estimates for the top Lyapunov
exponent.

Several topics are discussed in Chapter VI. These include the existence of smooth
densities for solutions of sfde’s using the Malliavin calculus, an approximation technique
for multidimensional diffusions using sdde’s with small delays, and affine sfde’s.
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Chapter I

Existence

In this chapter we introduce several motivating examples of stochastic differential
equations with memory. These simple examples include the the noisy feedback loop de-
scribed by the stochastic differential delay equation (sdde)

dx(t) = x(t− r) dW (t)

driven by one-dimensional Brownian motion W , the logistic time-lag model with Gaussian
noise

dx(t) = [α− βx(t− r)]x(t) dt + σx(t) dW (t),

and the classical “heat-bath” model proposed by R. Kubo ([Ku]) in order to model the
motion of a large molecule in a viscous fluid.

We will formulate these physical models as stochastic functional differential equa-
tions (sfde’s) with the appropriate choice of underlying state space. Our formulation leads
to pathwise existence and uniqueness of solutions to the sfde. The existence theorem allows
for stochastic white-noise perturbations of the memory, e.g.

dx(t) =
{∫

[−r,0]

x(t + s) dW (s)
}

dW (t), t > 0

where W is the standard one-dimensional Wiener process. It is interesting to note that
the above sfde is not covered by classical results in sde’s (cf. Protter [Pr], Metivier and
Pellaumail [MP], Doleans-Dade [Do]).

At the end of the chapter we discuss mean-Lipschitz, smooth and/or sublinear
dependence of the trajectory random field on the initial condition.

1. Examples and motivation.

Throughout this section, denote by W : R+ × Ω → R standard one-dimensional
Wiener process defined on the canonical filtered Wiener space (Ω,F , (Ft)t∈R+ , P ), where
Ω := C(R+,R), F := Borel Ω, Ft := σ{ρu : u ≤ t}, ρu : Ω → R, u ∈ R+, are evaluation
maps ω 7→ ω(u), and P is Wiener measure on Ω.

5



Example 1. (Noisy Feedback Loops)

.............................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...............................................................................................................................................................................................................................................................................................................

........

........
.........
.........
..........

............
................

...................................................................................................................................................................................................................................................
.............
...........
..........
.........
........
........
.....

........

.................

............

................... ............ ................... ............

...............................

................
...
.........
...

................... ............

σx(t− r)

y(t) x(t)

σx(t− r)

(1− σ)x(t− r)
N D

Consider the above noisy feedback loop. In Box N , the input y(t) and output x(t) at time
t > 0 are related through the stochastic integral

x(t) = x(0) +
∫ t

0

y(u) dZ(u) (1)

where Z(u) is a real-valued semimartingale noise. Unit D delays the signal x(t) by r (> 0)
units of time. A proportion σ (0 ≤ σ ≤ 1) of the signal is transmitted through the link D

and the rest (1− σ) is used for other purposes. Therefore y(t) = σx(t− r). Take Ż(u) to
be white noise Ẇ (u). Substituting in (1), gives the Itô integral equation

x(t) = x(0) + σ

∫ t

0

x(u− r)dW (u)

or the stochastic differential delay equation (sdde):

dx(t) = σx(t− r)dW (t), t > 0. (I)

In the nondelay case, r = 0 and (I) becomes a linear stochastic ode with the closed-form
solution

x(t) = x(0)eσW (t)−(σ2t)/2 , t ≥ 0.

Suppose the delay r is positive. To solve (I), we need an initial process θ(t), −r ≤ t ≤ 0,
viz.

x(t) = θ(t) a.s., − r ≤ t ≤ 0.
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We solve (I) by successive Itô integrations over steps of length r. This gives

x(t) = θ(0) + σ

∫ t

0

θ(u− r) dW (u), 0 ≤ t ≤ r,

x(t) = x(r) + σ

∫ t

r

[θ(0) + σ

∫ (v−r)

0

θ(u− r) dW (u)] dW (v), r < t ≤ 2r,

· · · = · · · 2r < t ≤ 3r,

No closed form solution is known (even in the deterministic case).

Curious Fact!

In the sdde (I), the Itô differential dW may be replaced by the Stratonovich dif-
ferential ◦dW without changing the solution x. Let x be the solution of (I) under an Itô
differential dW . Then using finite partitions {uk} of the interval [0, t], we have

∫ t

0

x(u− r) ◦ dW (t) = lim
∑

k

1
2
[x(uk − r) + x(uk+1 − r)][W (uk+1)−W (uk)]

where the limit in probability is taken as the mesh of the partition {uk} goes to zero. Now
compare the Stratonovich and Itô integrals using the corresponding partial sums. Thus

lim E

( ∑

k

1
2
[x(uk − r) + x(uk+1 − r)][W (uk+1)−W (uk)]

−
∑

k

[x(uk − r)][W (uk+1)−W (uk)]
)2

= lim E

(∑

k

1
2
[x(uk+1 − r)− x(uk − r)][W (uk+1)−W (uk)]

)2

= lim
∑

k

1
4
E[x(uk+1 − r)− x(uk − r)]2 E[W (uk+1)−W (uk)]2

= lim
∑

k

1
4
E[x(uk+1 − r)− x(uk − r)]2 (uk+1 − uk)

= 0

because W has independent increments, x is adapted to the Brownian filtration, u 7→
x(u) ∈ L2(Ω,R) is continuous, and the delay r is positive. In fact the above computation
shows that the quadratic variation < x(· − r,W > (t) = 0 for all t > 0, and

∫ t

0

x(u− r) ◦ dW (u) =
∫ t

0

x(u− r) dW (u) +
1
2

< x(· − r,W > (t)

=
∫ t

0

x(u− r) dW (u)
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almost surely for all t > 0.

Remark.

When r > 0, the solution process {x(t) : t ≥ −r} of (I) is an (Ft)t≥0-martingale
but is non-Markov .

Example 2. (Simple Population Growth)

Consider a large population x(t) at time t evolving with a constant birth rate β > 0
and a constant death rate α per capita. Assume immediate removal of the dead from
the population. Let the fixed non-random number r > 0 denote the development period
of each individual (e.g. r = 9 months!). Assume there is migration whose overall rate
is distributed like white noise σẆ . The change in population ∆x(t) over a small time
interval (t, t + ∆t) is

∆x(t) = −αx(t)∆t + βx(t− r)∆t + σẆ∆t.

Letting ∆t → 0 and using Itô stochastic differentials, we obtain the sdde

dx(t) = {−αx(t) + βx(t− r)} dt + σdW (t), t > 0. (II)

We may associate with the above affine sdde the initial condition (v, η) ∈ M2 := R ×
L2([−r, 0],R)

x(0) = v, x(s) = η(s), −r ≤ s < 0.

The state space M2 is the Delfour-Mitter Hilbert space consisting of all pairs (v, η), v ∈ R,
η ∈ L2([−r, 0],R) and furnished with the norm

‖(v, η)‖M2 :=
(
|v|2 +

∫ 0

−r

|η(s)|2 ds

)1/2

.

Example 3. (Logistic Population Growth)

Consider a single population x(t) at time t evolving logistically with development
(incubation) period r > 0. Suppose there is migration on a molecular level which con-
tributes γẆ (t) to the growth rate per capita at time t. The evolution of the population is
governed by the non-linear logistic sdde

ẋ(t) = [α− βx(t− r)] x(t) + γx(t)Ẇ (t), t > 0,

8



i.e.
dx(t) = [α− βx(t− r)] x(t) dt + γx(t)dW (t), t > 0. (III)

with initial condition
x(t) = θ(t), −r ≤ t ≤ 0,

where η : [−r, 0] → R is a continuous function.

For a positive delay r, the sdde (III) can be solved implicitly using forward steps of
length r, i.e. for 0 ≤ t ≤ r, x(t) satisfies the linear stochastic ode (sode) (without delay):

dx(t) = [α− βθ(t− r)] x(t) dt + γx(t)dW (t) 0 < t ≤ r. (III ′)

Note that x(t) is an (Ft)t≥0-semimartingale and is non-Markov. This model was studied
by Scheutzow ([S]).

Example 4. (Heat bath)

A model for “physical Brownian motion” was proposed by R. Kubo in 1966 ([K]).
A molecule of mass m moves under random gas forces with position ξ(t) ∈ R3 and velocity
v(t) ∈ R3 at time t; cf. classical work by Einstein and Ornstein and Uhlenbeck. Kubo
proposed the following modification of the Ornstein-Uhlenbeck process

dξ(t) = v(t) dt

mdv(t) = −m[
∫ t

t0

β(t− t′)v(t′) dt′] dt + γ(ξ(t), v(t)) dW (t), t > t0.





(IV )

In the above sfde, β : R → R+ is a deterministic viscosity coefficient with compact support;
γ is a function R3 ×R3 → R representing the random gas forces on the molecule; W is
3-dimensional Brownian motion. This model is discussed in ([M1], pp. 223-226). See also
Chapter VI, Section 3 of this article.

Further Examples.

We list here some further examples of sfde’s.

First, consider the sdde with Poisson noise:

dx(t) = x((t− r)−) dN(t) t > 0

x0 = η ∈ D([−r, 0],R).

}
(V )

In the above sdde, N is a Poisson process with i.i.d. interarrival times ([S]); D([−r, 0],R)
is the space of all cadlag paths [−r, 0] → R, given the supremum norm. Large-time
asymptotics of (V) are given in Chapter V, Section 3.
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The figure below represents a simple model of dye circulation in the blood stream
(or pollution in a river) (cf. [BW], [LT]).
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(cc/sec)

β = σẆ (t)
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αx(t− r)
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The main blood vessel has dye with concentration x(t) (gm/cc) at time t. A fixed
proportion of blood in the main vessel is pumped into the side vessel(s). The blood takes
r > 0 seconds to traverse the side tube (vessel). Assume that the flow rate (cc/sec) in the
main blood vessel is Gaussian with constant mean and variance σ. By writing an equation
for the rate of dye transfer through a fixed part V of the main vessel, it is easy to see that
the following sdde holds:

dx(t) = {νx(t) + µx(t− r)} dt + σx(t) dW (t), t > 0

(x(0), x0) = (v, η) ∈ M2 = R× L2([−r, 0],R),

}
(V I)

where ν and µ are real constants. The above model will be analyzed in Chapter V (Theorem
V.5). See also the survey article ([M4]) and ([MS2]).

The following sfde has discrete lag in the drift but a distributed delay in the diffusion
term:

dx(t) = {νx(t) + µx(t− r))} dt + {
∫ 0

−r

x(t + s)σ(s) ds} dW (t), t > 0

(x(0), x0) = (v, η) ∈ M2 = R× L2([−r, 0],R).





(V II)

([M4], [MS2]).
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In Chapter IV, we will study the following system of linear d-dimensional sfde’s
driven by m-dimensional Brownian motion W := (W1, · · · ,Wm):

dx(t) =
{∫ 0

−r

h(s, x(t− d1), · · · , x(t− dN ), x(t), x(t + s)) ds
}

dt

+
m∑

i=1

gix(t) dWi(t), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd)





(V III ′)

In (VIII′), h(s, · · · ) : (Rd)N+2 → Rd is a linear map for each s ∈ [−r, 0], and each gi,
1 ≤ i ≤ d, is a d× d-matrix ([M3]).

The following is a more general class of linear systems of sfde’s:

dx(t) =
{∫

[−r,0]

ν(t)(ds)x(t + s)
}

dt

+ dN(t)
∫ 0

−r

K(t)(s)x(t + s) ds + dL(t) x(t−), t > 0

(x(0), x0) = (v, η) ∈ M2 = Rd × L2([−r, 0],Rd)





(IX)

In the above equation, ν takes values in the Rd×d-valued measures, K(t)(s) is a stationary
(in t) Rd×d-valued process and L is an Rd×d-valued semimartingale with stationary ergodic
increments. The ergodic theory of equation (IX) will be treated in Chapter IV. See also
([MS1]).

Multidimensional affine systems driven by a (helix) noise Q will be discussed briefly
in Chapter (VI) ([MS3]):

dx(t) =
{∫

[−r,0]

ν(t)(ds) x(t + s)
}

dt + dQ(t), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd)





(X)

In the following one-dimensional sfde, the memory is driven by white noise:

dx(t) =
{∫

[−r,0]

x(t + s) dW (s)
}

dW (t), t > 0

x(0) = v ∈ R, x(s) = η(s), −r < s < 0, r ≥ 0





(XI)
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2. General formulation. Existence and uniqueness.

In this chapter and throughout the article, the symbol | · | denotes the Euclidean
norm on Rd.

At each t ≥ 0, slice each solution path x : [−r,∞) → Rd over the interval [t− r, t]
and define the segment xt : [−r, 0] → Rd by

xt(s) := x(t + s) a.s., t ≥ 0, s ∈ J := [−r, 0].

−r t− r 0 t
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Therefore the sdde’s (I), (II), (III) and (XI) become

dx(t) = σxt(−r)dW (t), t > 0

x0 = θ ∈ C([−r, 0],R)

}
(I)

dx(t) = {−αx(t) + βxt(−r)} dt + σdW (t), t > 0

(x(0), x0) = (v, η) ∈ R× L2([−r, 0],R)

}
(II)

dx(t) = [α− βxt(−r)]xt(0) dt + γxt(0) dW (t)

x0 = θ ∈ C([−r, 0],R)

}
(III)

dx(t) =
{∫

[−r,0]

xt(s) dW (s)
}

dW (t) t > 0

(x(0), x0) = (v, η) ∈ R× L2([−r, 0],R), r ≥ 0





(XI)
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The right-hand sides of equations (I), (II), (III), (XI) may be viewed as functionals
of xt (and x(t)). Therefore we can imbed these equations in the following general class of
stochastic functional differential equations (sfde’s)

dx(t) = h(t, xt)dt + g(t, xt)dW (t), t > 0

x0 = θ

}
(XII)

on a filtered probability space (Ω,F , (Ft)t≥0, P ) satisfying the usual conditions; viz. the
filtration (Ft)t≥0 is right-continuous, and each Ft, t ≥ 0, contains all P -null sets in F .
Denote by C := C([−r, 0],Rd) the Banach space of all continuous paths [−r, 0] → Rd

given the supremum norm

‖η‖C := sup
s∈[−r,0]

|η(s)|, η ∈ C.

In the sfde (XII), W (t) represents m-dimensional Brownian motion and L2(Ω, C) is the
Banach space of all (equivalence classes of) (F , Borel C)-measurable maps Ω → C which
are L2 in the Bochner sense. Give L2(Ω, C) the Banach norm

‖θ‖L2(Ω,C) :=
[∫

Ω

‖θ(ω)‖2C dP (ω)
]1/2

.

The sfde (XII) has a drift coefficient function h : [0, T ] × L2(Ω, C) → L2(Ω,Rd) and a
diffusion coefficient function g : [0, T ] × L2(Ω, C) → L2(Ω,Rd×m) satisfying Hypotheses
(E1) below. The initial path is an F0-measurable process θ ∈ L2(Ω, C;F0).

A solution of (XII) is a measurable, sample-continuous process x : [−r, T ]×Ω → Rd

such that x|[0, T ] is (Ft)0≤t≤T -adapted, x(s) is F0-measurable for all s ∈ [−r, 0], and x

satisfies(XII) almost surely.

Note that the path-valued trajectory [0, T ] 3 t 7→ xt ∈ C([−r, 0],Rd) is (Ft)0≤t≤T -
adapted. This is because Borel C is generated by all evaluations C 3 η 7→ η(s) ∈ Rd, s ∈
J .

Hypotheses (E1).

(i) The coefficient functionals h and g are jointly continuous and uniformly Lipschitz
in the second variable with respect to the first, viz.

‖h(t, ψ1)− h(t, ψ2)‖L2(Ω,Rd) + ‖g(t, ψ1)− g(t, ψ2)‖L2(Ω,Rd×m) ≤ L‖ψ1 − ψ2‖L2(Ω,C)

for all t ∈ [0, T ] and ψ1, ψ2 ∈ L2(Ω, C). The Lipschitz constant L is independent of
t ∈ [0, T ].

(ii) For each (Ft)0≤t≤T -adapted process y : [0, T ] → L2(Ω, C), the processes h(·, y(·))
and g(·, y(·)) are also (Ft)0≤t≤T - adapted.

13



Theorem I.1. (Existence and Uniqueness)([M1])

Suppose h and g satisfy Hypotheses (E1). Let θ ∈ L2(Ω, C;F0).

Then the sfde (XII) has a unique solution θx : [−r,∞)×Ω → Rd starting off at θ ∈
L2(Ω, C;F0) with [0, T ] 3 t 7−→ θxt ∈ C sample-continuous, and θx ∈ L2(Ω, C([−r, T ],Rd))
for all T > 0. For a given θ, uniqueness holds up to equivalence among all (Ft)0≤t≤T -
adapted processes in L2(Ω, C([−r, T ],Rd)).

The proof of the above theorem uses a classical successive approximation technique.
The essence of the argument will be outlined in the proof of Theorem I.2 below. See also
([M1], Theorem 2.1, pp. 36-39.)

Theorem I.1 covers equations (I), (II), (IV), (VI), (VII), (VIII), (XI) and a large class
of sfde’s driven by white noise. Note that (XI) does not satisfy the hypotheses underlying
the classical results of Doleans-Dade [Do], Metivier and Pellaumail [MP], Protter [P1],
Lipster and Shiryayev [LS], and Metivier [Met]. This is because the coefficient functional

η 7→
∫ 0

−r

η(s) dW (s)

on the right-hand side of (XI) does not admit almost surely Lipschitz (or even linear)
versions C → R! This will be shown later (Chapter V, Section 1).

When the coefficients h and g in (XII) factor through (deterministic) functionals

H : [0, T ]× C → Rd, G : [0, T ]× C → Rd×m,

we can impose the following local Lipschitz and global linear growth conditions on the sfde

dx(t) = H(t, xt) dt + G(t, xt) dW (t), t > 0

x0 = θ

}
(XIII)

where W is m-dimensional Brownian motion:

Hypotheses (E2).

(i) Suppose that H and G are Lipschitz on bounded sets in C uniformly in the second
variable; viz. for each integer n ≥ 1, there exists a constant Ln > 0 (independent
of t ∈ [0, T ]) such that

|H(t, η1)−H(t, η2)|+ ‖G(t, η1)−G(t, η2)‖ ≤ Ln‖η1 − η2‖C

for all t ∈ [0, T ] and η1, η2 ∈ C with ‖η1‖C ≤ n, ‖η2‖C ≤ n.
14



(ii) There is a constant K > 0 such that

|H(t, η)|+ ‖G(t, η)‖ ≤ K(1 + ‖η‖C)

for all t ∈ [0, T ] and η ∈ C.

Note that the adaptability condition is not needed (explicitly) in (XIII) because H

and G are deterministic, and because the sample-continuity and adaptability of x imply
that the segment [0, T ] 3 t 7→ xt ∈ C is also adapted.

Assuming that β has compact support in R+, the heat-bath model (IV) may easily
be formulated as a sfde of the form (XIII).

Theorem I.2. (Existence and Uniqueness)([M1])

Suppose H and G satisfy Hypotheses (E2) and let θ ∈ L2(Ω, C;F0).

Then the sfde (XIII) has a unique (Ft)0≤t≤T -adapted solution θx : [−r, T ]×Ω → Rd

starting off at θ ∈ L2(Ω, C;F0) with [0, T ] 3 t 7−→ θxt ∈ C sample-continuous, and
θx ∈ L2(Ω, C([−r, T ],Rd)) for all T > 0. For a given θ, uniqueness holds up to equivalence
among all (Ft)0≤t≤T -adapted processes in L2(Ω, C([−r, T ],Rd)).

Furthermore, if θ ∈ L2k(Ω, C;F0) for some positive integer k, then θxt ∈ L2k(Ω, C;Ft)
and

E‖θxt‖2k
C ≤ Ck[1 + ‖θ‖2k

L2k(Ω,C)]

for all t ∈ [0, T ] and some positive constant Ck.

Outline of Proofs of Theorems I.1, I.2.

We will outline the proofs of Theorems I.1 and I.2. The proofs are based on the
classical successive approximation scheme; cf. ([M1], pp. 150-152, [GS] or [Fr]).

The main steps of the proof are as follows:

(1) Truncate the coefficients of (XIII) outside any open ball of radius N in C, using
globally Lipschitz partitions of unity. This, together with Step 3 below, reduces the
problem of existence of a solution to the case with globally Lipschitz coefficients.

(2) Assuming globally Lipschitz coefficients, use successive approximations to obtain a
unique pathwise solution of the sfde (XII). Details of this argument are given below.

(3) Under a global Lipschitz hypothesis, it is possible to show that for sfde’s of type
(XIII), if the coefficients agree on an open set U in C, then the trajectories starting

15



from an initial path in U must leave U at the same time and agree until they leave
U . Now truncate each coefficient in (XIII) outside an open ball of radius N and
center 0 in C. Using the above local uniqueness result, one can “patch up” solutions
of the truncated sfde’s as N increases to infinity ([M1], pp. 150-151).

We shall only give the argument for (2). Suppose for simplicity that h ≡ 0 in (XII)
and g satisfies the global Lipschitz condition (E1)(i).

Let J := [−r, 0]. Denote by L2
A(Ω, C([−r, a],Rd)) the space of all processes x ∈

L2(Ω, C([−r, a],Rd)) such that x(s, ·) := x(·)(s) is F0-measurable for all s ∈ J and x(t, ·)
is Ft-measurable for all t ∈ [0, a]. Clearly L2

A(Ω, C([−r, a],Rd)) is a closed linear subspace
of L2(Ω, C([−r, a],Rd)). We will look for solutions of (XII) by successive approximation
in L2

A(Ω, C([−r, a],Rd)).

Suppose that θ ∈ L2(Ω, C(J,Rd)) is F0-measurable. Note that this is equivalent
to saying that θ(s, ·) := θ(·)(s) is F0-measurable for all s ∈ J , because θ has a.a. sample
paths continuous.

We prove by induction that there is a sequence of processes kx : [−r, a]× Ω → Rd,
k = 1, 2, · · · having the

Properties P (k):

(i) kx ∈ L2
A(Ω, C([−r, a],Rd)).

(ii) For each t ∈ [0, a], kxt ∈ L2(Ω, C(J,Rd);Ft).

(iii)

‖k+1x− kx‖L2(Ω,C) ≤ (ML2)k−1 ak−1

(k − 1)!
‖2x− 1x‖L2(Ω,C)

‖k+1xt − kxt‖L2(Ω,C) ≤ (ML2)k−1 tk−1

(k − 1)!
‖2x− 1x‖L2(Ω,C)





(1)

where M is a “martingale” constant and L is the Lipschitz constant of g.

Define 1x : [−r, a]× Ω → Rd by

1x(t, ω) =
{

θ(0, ω), t ∈ [0, a]
θ(t, ω), t ∈ J

a.s., and

k+1x(t, ω) =





θ(0, ω) + (ω)
∫ t

0

g(u, kxu)dW (·)(u), t ∈ [0, a]

θ(t, ω), t ∈ J

(2)

a.s..
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Since θ ∈ L2(Ω, C(J,Rd);F0), then 1x ∈ L2
A(Ω, C([−r, a],Rd)). Therefore 1xt ∈

L2(Ω, C(J,Rd);Ft). Note that property P (1) (iii) holds trivially.

Now suppose P (k) is satisfied for some k > 1. It is easy to see that the “slicing
map” [0, a] × L2(Ω, C([−r, a],Rd)) 3 (u, x) 7→ xu ∈ L2(Ω, C(J,Rd)) is continuous. Then
by Hypothesis (E1)(i), (ii) and property P (k)(ii) it follows that the process

[0, a] 3 u 7−→ g(u, kxu) ∈ L2(Ω,Rd×m)

is continuous and adapted to (Ft)t∈[0,a]. Properties P (k + 1)(i) and P (k + 1)(ii) follow
from the continuity and adaptability of the stochastic integral. Property P (k + 1)(iii) is
easily checked by using Doob’s inequality.

For each k > 1, write

kx = 1x +
k−1∑

i=1

(i+1x− ix).

Since L2
A(Ω, C([−r, a],Rd)) is closed in L2(Ω, C([−r, a],Rd)), the series

∞∑

i=1

(i+1x− ix)

converges in L2
A(Ω, C([−r, a],Rd)) because of (1) and the convergence of

∞∑

i=1

[
(ML2)i−1 ai−1

(i− 1)!

]1/2

.

Hence {kx}∞k=1 converges to some x ∈ L2
A(Ω, C([−r, a],Rd)).

Clearly x|J = θ and is F0-measurable, so applying Doob’s inequality to the Itô
integral of the difference

u 7−→ g(u, kxu)− g(u, xu),

gives

E

(
sup

t∈[0,a]

∣∣∣∣
∫ t

0

g(u, kxu) dW (·)(u)−
∫ t

0

g(u, xu) dW (·)(u)
∣∣∣∣
2)

≤ ML2a‖kx− x‖2L2(Ω,C)

for all k ≥ 1. Thus, viewing the right-hand side of (2) as a process in L2(Ω, C ([−r, a],Rd))
and letting k →∞, it follows from the above inequality that x must satisfy the sfde (XII)
a.s. for all t ∈ [−r, a].
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For uniqueness, let x̃ ∈ L2
A(Ω, ([−r, a],Rd)) be also a solution of (XII) with initial

process θ. Then by the Lipschitz condition, we get

‖xt − x̃t‖2L2(Ω,C) < ML2

∫ t

0

‖xu − x̃u‖2L2(Ω,C) du

for all t ∈ [0, a]. Therefore we must have xt − x̃t = 0 for all t ∈ [0, a]. Hence x = x̃ in
L2(Ω, C([−r, a],Rd)). ¤

3. Remarks and generalizations.

(i) In Theorem I.2, it is possible to replace the process (t,W (t)) by a (square integrable)
semimartingale Z(t) satisfying appropriate conditions ([M1], Chapter II).

(ii) Results on the existence of solutions of sfde’s driven by white noise were first ob-
tained by Itô and Nisio in their pioneering work ([IN], 1968) and then later by
Kushner ([Kus], 1976).

(iii) For extensions to sfde’s with general infinite memory, see [IN]. The fading memory
case was treated by Mizel and Trutzer ([MT], 1984), Marcus and Mizel ([MM],
1988).

(iv) With minor changes in the arguments, the state space C in Theorems I.1, I.2 may
be replaced by the Delfour-Mitter Hilbert space M2 := Rd × L2([−r, 0],Rd) with
the Hilbert norm

‖(v, η)‖M2 =
(
|v|2 +

∫ 0

−r

|η(s)|2 ds

)1/2

for (v, η) ∈ M2 ([A], 1983).

(v) Under Lipschitz (and/or Fréchet smoothness) hypotheses on the coefficients h and
g in (XII), it follows that the map

L2(Ω, C;F0) 3 θ 7→ θxt ∈ L2(Ω, C;Ft)

is Lipschitz (and/or Fréchet smooth) (resp.) for each fixed t ∈ [0, a] ([M1], Theorems
3.1, 3.2, pp. 41-45).
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Chapter II

Markov Behavior and the Generator

Consider the sfde

dx(t) = H(t, xt) dt + G(t, xt) dW (t), t > 0

x0 = η ∈ C := C([−r, 0],Rd)

}
(XIII)

with coefficients H : [0, T ]× C → Rd, G : [0, T ]× C → Rd×m, driven by m-dimensional
Brownian motion W . Let {ηxt : t ≥ 0, η ∈ C} denote the trajectory field of (XIII).

It would be interesting to give satisfactory answers to the following questions re-
garding the sfde (XIII):

(i) Does the trajectory field xt of (XIII) give a diffusion in C (or M2)?

(ii) How does the trajectory xt transform under smooth non-linear functionals φ : C →
R?

(iii) What “diffusions” on C (or M2) correspond to sfde’s on Rd?

This chapter is an attempt to answer the first two questions. Question (iii) is still
largely open.

We begin by outlining the main difficulties encountered in answering questions (i)
and (ii) above.

1. Difficulties.

(i) Although the current state x(t) in (XIII) is a semimartingale, the trajectory xt

does not seem to possess any (semi)martingale properties when viewed as C-(or
M2)-valued process; e.g. for Brownian motion W (H ≡ 0, G ≡ 1), one has

[E(Wt|Ft1)](s) = W (t1) = Wt1(0), s ∈ [−r, 0]

whenever t1 ≤ t− r.

(ii) We will show that xt is a Markov process in C. However, the underlying Markov
semigroup turns out to be not strongly continuous with respect the topology of
uniform convergence on the space of all bounded continuous functions on C. Such
lack of strong continuity leads to the use of weak limits in C which tend to live
outside C.
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(iii) Almost all tame functions will be shown to lie outside the domain of the (weak)
generator of the Markov semigroup.

(iv) The absence of an Itô formula for the trajectory xt makes the computation of the
weak infinitesimal generator especially hard. This difficulty is circumvented by
appealing to functional-analytic methods.

2. The Markov property.

In this section we will show that the trajectory field xt corresponds to a C-valued
Markov process. The following hypotheses will be needed.

Hypotheses (M).

(i) For each t ≥ 0, Ft is the completion of the σ-algebra σ{W (u) : 0 ≤ u ≤ t}.
(ii) H and G are jointly continuous and globally Lipschitz in the second variable uni-

formly with respect to the first:

|H(t, η1)−H(t, η2)|+ ‖G(t, η1)−G(t, η2)‖ ≤ L‖η1 − η2‖C

for all t ∈ [0, T ] and η1, η2 ∈ C.

Consider the sfde

θxt1(t) =

{
θ(0) +

∫ t

t1
H(u, θxt1

u ) du +
∫ t

t1
G(u, θxt1

u ) dW (u), t > t1,

θ(t− t1), t1 − r ≤ t ≤ t1.

Let θxt1 be its solution, starting off at θ ∈ L2(Ω, C;Ft1) at t = t1. This gives a two-
parameter family of mappings

T t1
t2 : L2(Ω, C;Ft1) → L2(Ω, C;Ft2), t1 ≤ t2,

T t1
t2 (θ) := θxt1

t2 , θ ∈ L2(Ω, C;Ft1). (1)

The uniqueness of solutions to the above sfde gives the two-parameter semigroup property:

T t1
t2 ◦ T 0

t1 = T 0
t2 , t1 ≤ t2 (2)

([M1], Theorem II (2.2), p. 40).
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Theorem II.1. (Markov Property)([M1])

In (XIII), suppose Hypotheses (M) hold. Then the trajectory field {ηxt : t ≥ 0, η ∈
C} is a C-valued Feller process with transition probabilities

p(t1, η, t2, B) := P
(
ηxt1

t2 ∈ B
)
, t1 ≤ t2, B ∈ Borel C, η ∈ C;

i.e.
P

(
xt2 ∈ B

∣∣Ft1

)
= p(t1, xt1(·), t2, B) = P

(
xt2 ∈ B

∣∣xt1

)
a.s. (3)

Furthermore, if H and G do not depend on t, then the trajectory is time-homogeneous:

p(t1, η, t2, ·) = p(0, η, t2 − t1, ·), 0 ≤ t1 ≤ t2, η ∈ C. (4)

Proof.

The first equality in (3) is equivalent to
∫

A

1B(T 0
t2(θ)(ω)) dP (ω) =

∫

A

∫

Ω

1B{[T t1
t2 (T 0

t1(θ)(ω
′))](ω)} dP (ω) dP (ω′) (5)

for all A ∈ Ft1 and all Borel subsets B of C. The symbol 1B denotes the indicator function
of B ⊆ C. In order to prove the equality (5), observe first that it holds when 1B is replaced
by an arbitrary uniformly continuous and bounded function φ : C → R; that is

∫

A

φ(T 0
t2(θ)(ω)) dP (ω) =

∫

A

∫

Ω

φ{[T t1
t2 (T 0

t1(θ)(ω
′))](ω)} dP (ω) dP (ω′). (6)

The above relation follows by approximating Tt1(θ) using simple functions ([M1], pp. 52-
53). Since C is separable and admits uniformly continuous partitions of unity, it is easy to
see that (5) holds for all open sets B in C. By uniqueness of measure-theoretic extensions,
(5) also holds for all Borel sets B in C

The proof of the time-homogeneity statement is straightforward. ¤

3. The semigroup.

In the autonomous sfde

dx(t) = H(xt) dt + G(xt) dW (t), t > 0

x0 = η ∈ C,

}
(XIV )

suppose the coefficients H : C → Rd, G : C → Rd×m are globally bounded and globally
Lipschitz on C.
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Let Cb be the Banach space of all bounded uniformly continuous functions φ : C → R,

with the sup norm
‖φ‖Cb

:= sup
η∈C

|φ(η)|, φ ∈ Cb.

Define the operators Pt : Cb ↪→ Cb, t ≥ 0, on Cb by

Pt(φ)(η) := Eφ
(
ηxt

)
, t ≥ 0, φ ∈ Cb, η ∈ C.

For any φ ∈ Cb and any finite Borel measure µ on C, define the pairing

< φ, µ >:=
∫

η∈C

φ(η) dµ(η).

Say that a family φt ∈ Cb, t > 0, converges weakly to φ ∈ Cb as t → 0+ if

lim
t→0+

< φt, µ >=< φ, µ >

for all finite regular Borel measures µ on C. In this case we write φ := w − lim
t→0+

φt. This

is equivalent to the following




φt(η) → φ(η) as t → 0+, for all η ∈ C, and

{‖φt‖Cb
: t ≥ 0} is bounded.

The proof of this equivalence uses the uniform boundedness principle and the dominated
convergence theorem ([Dy], Vol. 1, p. 50).

Theorem II.2. ([M1])

(i) {Pt}t≥0 is a one-parameter contraction semigroup on Cb.

(ii) {Pt}t≥0 is weakly continuous at t = 0; i.e.




Pt(φ)(η) → φ(η) as t → 0+, and

{|Pt(φ)(η)| : t ≥ 0, η ∈ C} is bounded by ‖φ‖Cb
.

(iii) If r > 0, {Pt}t≥0 is never strongly continuous on Cb under the sup norm.

Proof.

(i) The one-parameter semigroup property

Pt2 ◦ Pt1 = Pt1+t2 , t1, t2 ≥ 0,
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follows from the continuation property (2) and the time-homogeneity of the Feller
process xt (Theorem II.1).

(ii) The weak continuity of the semigroup Pt : Cb → Cb, t ≥ 0, at t = 0 follows from
the definition of Pt and the sample-continuity of the trajectory ηxt.

(iii) To demonstrate the lack of strong continuity of the semigroup {Pt}t≥0, consider the
canonical shift (or “static”) semigroup St : Cb → Cb, t ≥ 0, defined by

St(φ)(η) := φ(η̃t), φ ∈ Cb, η ∈ C,

where η̃ : [−r,∞) → Rd is given by

η̃(t) =
{

η(0), t ≥ 0,

η(t), t ∈ [−r, 0).

−r t− r 0 t

η̃t

η̃

η
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Then {Pt}t≥0 is strongly continuous if and only if {St}t≥0 is strongly continuous. That is,
{Pt}t≥0 and {St}t≥0 have the same “domain of strong continuity” independently of H, G

and W . This follows from the global boundedness of H and G and the key relation

lim
t→0+

E‖ηxt − η̃t‖2C = 0,

which holds uniformly in η ∈ C ([M1], Theorem IV.2.1, pp. 72-73). Now, it is not hard
to see that {St}t≥0 is strongly continuous on Cb if and only if C is locally compact. This
happens if and only if r = 0, i.e. (XIV) has no memory! ([M1], Theorems IV.2.1 and
IV.2.2, pp. 72-73). The main idea for proving these equivalences is to pick any s0 ∈ [−r, 0)
and consider the function φ0 : C → R defined by

φ0(η) :=





η(s0), ‖η‖C ≤ 1,

η(s0)
‖η‖C

, ‖η‖C > 1.
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Let C0
b be the domain of strong continuity of {Pt}t≥0, viz.

C0
b := {φ ∈ Cb : Pt(φ) → φ as t → 0+ in Cb}.

Let the delay r be positive. Then it is easy to show that φ0 ∈ Cb, but φ0 /∈ C0
b . ¤

4. The weak infinitesimal generator.

Define the weak generator A : D(A) ⊂ Cb → Cb of {Pt}t≥0 by the weak limit

A(φ) := w − lim
t→0+

Pt(φ)− φ

t
,

where φ belongs to the domain D(A) of A if and only if the above weak limit exists in Cb.
Hence D(A) ⊂ Cb

0 ([Dy], Vol. 1, Chapter I, pp. 36-43). Also D(A) is weakly dense in Cb

and A is weakly closed. Furthermore,

d

dt
Pt(φ) = A(Pt(φ)) = Pt(A(φ)), t > 0

for all φ ∈ D(A) ([Dy], pp. 36-43).

Our next objective is to derive a formula for the weak generator A. We need to
augment C by adjoining a canonical d-dimensional direction. The generator A will be equal
to the weak generator of the shift semigroup {St}t≥0 plus a second order linear partial
differential operator along this new direction. The computation requires the following
sequence of lemmas.

Let Fd := {v1{0} : v ∈ Rd} and C ⊕ Fd := {η + v1{0} : η ∈ C, v ∈ Rd} with the
norm ‖η + v1{0}‖ := ‖η‖C + |v| for η ∈ C, v ∈ Rd.

Lemma II.1. ([M1])

Suppose φ : C → R is C2 and η ∈ C. Then the Fréchet derivatives Dφ(η) and
D2φ(η) have unique weakly continuous linear and bilinear extensions

Dφ(η) : C ⊕ Fd → R, D2φ(η) : (C ⊕ Fd)× (C ⊕ Fd) → R

respectively.

Proof.

Using coordinates, it is sufficient to consider the one-dimensional case d = 1.
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Let α ∈ C∗ = [C([−r, 0],R)]∗. We will show that there is a unique weakly contin-
uous linear extension α : C ⊕ F1 → R of α; viz. if {ξk} is a bounded sequence in C such
that ξk(s) → ξ(s) as k → ∞ for all s ∈ [−r, 0], where ξ ∈ C ⊕ F1, then α(ξk) → α(ξ)
as k → ∞. By the Riesz representation theorem there is a unique finite (regular) Borel
measure µ on [−r, 0] such that

α(η) =
∫ 0

−r

η(s) dµ(s)

for all η ∈ C. Define α ∈ [C ⊕ F1]∗ by

α(η + v1{0}) = α(η) + vµ({0}), η ∈ C, v ∈ R.

An easy application of Lebesgue’s dominated convergence theorem shows that α is weakly
continuous. The weak extension α is unique because for any v ∈ R, the function v1{0} can
be approximated weakly by a sequence of continuous functions {ξk

0} where

ξk
0 (s) :=

{
(ks + 1)v, − 1

k ≤ s ≤ 0

0, −r ≤ s < − 1
k .

See the figure below.

−r − 1
k
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ξk
0.......................................................................................................................................

....

...........
.

.................................................................................................................... .........
...

The first assertion of the lemma now follows by taking α = Dφ(η).

To prove the second assertion of the lemma, we will construct a weakly continuous
bilinear extension β : (C ⊕ F1)× (C ⊕ F1) → R for any continuous bilinear form
β : C × C → R. We do this by appealing to the classical theory of vector measures
([DS], I.6.3). Think of β as a continuos linear map C → C∗. Since C∗ is weakly complete
([DS], I.13.22, p. 341), then β is a weakly compact linear operator ([DS], Theorem I.7.6,
p. 494), viz. it maps norm-bounded sets in C into weakly sequentially compact sets in C∗.
Therefore there is a (unique) C∗-valued measure λ on [−r, 0] such that

β(ξ) =
∫ 0

−r

ξ(s) dλ(s)

25



for all ξ ∈ C ([DS], Theorem VI.7.3, p. 493). By the dominated convergence theorem
for vector measures ([DS], Theorem IV.10.10, p. 328), one could approximate elements
in F1 by weakly convergent sequences of type {ξk

0} above. This gives a unique weakly
continuous linear extension β̂ : C ⊕ F1 → C∗ of β. Next for each η ∈ C, v ∈ R, extend
β̂(η + v1{0}) ∈ C∗ to a weakly continuous linear map β̂(η + v1{0}) : C ⊕ F1 → R. Thus β

corresponds to the weakly continuous bilinear extension β̂(·)(·) : [C ⊕ F1]× [C ⊕ F1] → R

of β.

Finally, we use β = D2φ(η) for each fixed η ∈ C to get the required weakly contin-
uous bilinear extension D2φ(η). ¤

Lemma II.2.

For each t > 0 define W ∗
t ∈ C by

W ∗
t (s) :=





1√
t
[W (t + s)−W (0)], −t ≤ s < 0,

0, −r ≤ s ≤ −t.

Let β be a continuous bilinear form on C. Then

lim
t→0+

[
1
t
Eβ(ηxt − η̃t,

ηxt − η̃t)−Eβ(G(η) ◦W ∗
t , G(η) ◦W ∗

t )
]

= 0

Proof.

First observe that

lim
t→0+

E‖ 1√
t
(ηxt − η̃t)−G(η) ◦W ∗

t ‖2C = 0.

The above limit follows from the Lipschitz continuity of H and G and the martingale
properties of the Itô integral. The conclusion of the lemma follows from the bilinearity of
β, Hölder’s inequality and the above limit ([M1]). ¤

Lemma II.3. ([M1])

Let β be a continuous bilinear form on C and {ei}m
i=1 be any basis for Rm. Then

lim
t→0+

1
t
Eβ(ηxt − η̃t,

ηxt − η̃t) =
m∑

i=1

β
(
G(η)(ei)1{0}, G(η)(ei)1{0}

)

for each η ∈ C.
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Proof.

By taking coordinates, we may and will assume without loss of generality that
d = m = 1. In view of Lemma II.2, we need only show that

lim
t→0+

Eβ(W ∗
t ,W ∗

t ) = β(1{0}, 1{0}),

where W is one-dimensional Brownian motion and W ∗
t is defined in Lemma II.2. To prove

the above relation we will use the following argument. Let C⊗̂πC denote the complete
projective tensor product of C with itself. This allows us to view the continuous bilinear
form β as a continuous linear functional β̃ : C⊗̂πC → R. Therefore, using Bochner
expectation and Mercer’s theorem, we have

Eβ(W ∗
t ,W ∗

t ) = β̃(Kt)

where

Kt := E[W ∗
t ⊗W ∗

t ] =
∞∑

k=0

8
π2(2k + 1)2

ξt
k ⊗ ξt

k, ξt
k(s) := cos

{
(2k + 1)πs

2t

}
1[−t,0](s),

for s ∈ [−r, 0], k ≥ 0, ([M1], pp. 88-94). Taking limits as t → 0+ in the above relations
immediately gives the required result. ¤

Theorem II.3. ([M1])

In (XIV), suppose H and G are globally bounded and Lipschitz. Let S : D(S) ⊂
Cb → Cb be the weak generator of {St}t≥0. Suppose φ belongs to the domain D(S) of
S and is sufficiently smooth (e.g. φ is C2, Dφ, D2φ are globally bounded and Lipschitz).
Then φ ∈ D(A), and for each η ∈ C,

A(φ)(η) = S(φ)(η) + Dφ(η)
(
H(η)1{0}

)
+

1
2

m∑

i=1

D2φ(η)
(
G(η)(ei)1{0}, G(η)(ei)1{0}

)
,

where {ei}m
i=1 is any basis for Rm.

Proof.

We break the proof up into three steps.

Step 1.

Fix η ∈ C. By Taylor’s theorem

φ(ηxt)− φ(η) = φ(η̃t)− φ(η) + Dφ(η̃t)(ηxt − η̃t) + R(t)
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a.s. for t > 0, where

R(t) :=
∫ 1

0

(1− u)D2φ[η̃t + u(ηxt − η̃t)](ηxt − η̃t,
ηxt − η̃t) du.

Taking expectations and dividing by t > 0 gives

1
t
E[φ(ηxt)− φ(η)] =

1
t
[St(φ)(η)− φ(η)] + Dφ(η̃t)

{
E[

1
t
(ηxt − η̃t)]

}
+

1
t
ER(t) (3)

for t > 0. Since φ ∈ D(S), the first term on the right hand side of (3) converges to S(φ)(η)
as t → 0+.

Step 2.

Consider the second term on the right hand side of (3). Then

lim
t→0+

[
E

{
1
t
(ηxt − η̃t)

}]
(s) =





lim
t→0+

1
t

∫ t

0

E[H(ηxu)] du, s = 0,

0, −r ≤ s < 0
= [H(η)1{0}](s), −r ≤ s ≤ 0.

Since H is globally bounded, then ‖E{
1
t (

ηxt − η̃t)
}‖C is bounded in t > 0 and η ∈ C.

Hence

w − lim
t→0+

[
E

{
1
t
(ηxt − η̃t)

}]
= H(η)1{0} (/∈ C).

Therefore, by Lemma II.1 and the continuity of Dφ at η, we get

lim
t→0+

Dφ(η̃t)
{

E

[
1
t
(ηxt − η̃t)

]}
= lim

t→0+
Dφ(η)

{
E

[
1
t
(ηxt − η̃t)

]}

= Dφ(η)
(
H(η)1{0}

)
.

Step 3.

Finally we compute the limit as t → 0+ of the third term in the right-hand side of
(3). Use the martingale property of the Itô integral and the Lipschitz continuity of D2φ

to obtain the following estimates:
∣∣∣∣
1
t
ED2φ[η̃t + u(ηxt − η̃t)](ηxt − η̃t,

ηxt − η̃t)− 1
t
ED2φ(η)(ηxt − η̃t,

ηxt − η̃t)
∣∣∣∣

≤ (
E‖D2φ[η̃t + u(ηxt − η̃t)]−D2φ(η)‖2)1/2

[
1
t2

E‖ηxt − η̃t‖4
]1/2

≤ K(t2 + 1)1/2(E‖D2φ[η̃t + u(ηxt − η̃t)]−D2φ(η)‖2)1/2
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where K is a positive constant independent of u, t ∈ R+ and η ∈ C. The last expression
tends to 0 as t → 0+, uniformly for u ∈ [0, 1]. Therefore by Lemma II.3,

lim
t→0+

1
t
ER(t) =

∫ 1

0

(1− u) lim
t→0+

1
t
ED2φ(η)(ηxt − η̃t,

ηxt − η̃t) du

=
1
2

m∑

i=1

D2φ(η)
(
G(η)(ei)1{0}, G(η)(ei)1{0}

)
.

The above is a weak limit because φ ∈ D(S) and has first and second derivatives globally
bounded on C. ¤

5. Quasitame functions.

Recall that a function φ : C → R is said to be tame (or is a cylinder function) if there
is a finite set {s1 < s2 < · · · < sk} in [−r, 0] and a C∞-bounded function f : (Rd)k → R

such that
φ(η) = f(η(s1), · · · , η(sk)), η ∈ C.

The set of all tame functions is a weakly dense subalgebra of Cb, invariant under
the static semigroup {St}t≥0, and generates Borel C. For each k ≥ 2 the tame function φ

lies outside the domain of strong continuity C0
b of {Pt}t≥0, and hence outside D(A) ([M1],

pp. 98-103). See also the proof of Theorem IV.2.2 in ([M1], pp. 73-76). To overcome this
difficulty we introduce the following definition.

Definition.

Say φ : C → R is quasitame if there are C∞-bounded maps h : (Rd)k → R, fj :
Rd → Rd, and piecewise C1 functions gj : [−r, 0] → R, 1 ≤ j ≤ k − 1, such that

φ(η) = h

(∫ 0

−r

f1(η(s))g1(s) ds, · · · ,

∫ 0

−r

fk−1(η(s))gk−1(s) ds, η(0)
)

(4)

for all η ∈ C.

Theorem II.4. ([M1])

The set of all quasitame functions is a weakly dense subalgebra of C0
b , invariant

under {St}t≥0, generates Borel C and belongs to D(A). In particular, if φ is the quasitame
function given by (4), then

A(φ)(η) =
k−1∑

j=1

Djh(m(η)){fj(η(0))gj(0)− fj(η(−r))gj(−r)−
∫ 0

−r

fj(η(s))g′j(s) ds}

+ Dkh(m(η))(H(η)) +
1
2
trace[D2

kh(m(η)) ◦ (G(η)×G(η))]




(5)

29



for all η ∈ C, where

m(η) :=
(∫ 0

−r

f1(η(s))g1(s) ds, · · · ,

∫ 0

−r

fk−1(η(s))gk−1(s) ds, η(0)
)

. (6)

Proof.

Let S : D(S) ⊂ Cb → Cb be the weak generator of {St}t≥0. An elementary
computation shows that every quasitame function φ belongs to D(S) ⊂ C0

b and

S(φ)(η) =
k−1∑

j=1

Djh(m(η)){fj(η(0))gj(0)− fj(η(−r))gj(−r)−
∫ 0

−r

fj(η(s))g′j(s) ds} (7)

for all η ∈ C.

The invariance of the quasitame functions under {St}t≥0 follows directly from the
definition of a quasitame function and that of {St}t≥0.

It is easy to check that the set of quasitame functions is closed under addition and
multiplication of functions in Cb.

Each tame function is a weak limit of a sequence of quasitame functions. Since the
tame functions are dense in Cb and generate Borel C, then so do the quasitame functions.

Formula (5) follows from Theorem II.3 and (7). Alternatively, one could use Itô’s
formula directly to obtain (5). ¤

Remarks.

(i) In Theorem II.4, the space C may be replaced by the Hilbert space M2. In this
case, there is no need for the weak extensions because M2 is weakly complete.
Extensions of Dφ(v, η) and D2φ(v, η) correspond to partial derivatives in the Rd-
variable. Tame functions do not exist on M2 but quasitame functions do! (with
η(0) replaced by v ∈ Rd).

(ii) An analysis of the supermartingale behavior and stability of φ(ηxt) is given in
Kushner ([Ku]). An infinite fading memory setting was developed by Mizel and
Trutzer ([MT]) in a suitably weighted state space Rd × L2((−∞, 0],R; ρ)

(iii) If φ : C → R is a quasitame function, then the process φ(ηxt) is a semimartingale,
and the following Itô formula holds

d[φ(ηxt)] = A(φ)(ηxt) dt + Dφ(ηxt)
(
H(ηxt)1{0}

)
dW (t).

It is interesting to note here that this formula holds in spite of the fact the trajectory
ηxt is not known to be a semimartingale.
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Chapter III

Regularity and Classification of SFDE’s

In this chapter, we will discuss the regularity of the trajectory random field of the
sfde

dx(t) = H(t, xt) dt + G(t, xt) dW (t), t > 0

x0 = η ∈ C.

}
(XIII)

The trajectory field X(t, η, ω) := {ηxt(ω) : t ≥ 0, η ∈ C} will be viewed as a mapping of
the three variables (t, η, ω), and its regularity in each of the variables will be analyzed. In
the time variable, we will investigate α-Hölder continuity of X(t, η, ω) for times t greater
than the delay r. The almost sure (pathwise) dependence of X(t, η, ω) on the initial state
η is counterintuitive. We will show that for the discrete delay case

dx(t) = x(t− r) dW (t),

the trajectory X is locally unbounded and non-linear in the initial variable η. This patho-
logical behavior leads to a classification of sfde’s into regular and singular types.

We then give sufficient conditions for regularity of linear sfde’s driven by white noise
or semimartingales. A complete characterization of regular linear sfde’s is not known.

A regular Sussman-Doss class of nonlinear sfde’s is introduced. Here we show the
existence of a non-linear semiflow which carries bounded sets into relatively compact ones.

Denote the state space by E where E = C or M2 := Rd × L2([−r, 0],Rd). Most
results in this chapter hold for either choice of state space.

For α ∈ (0, 1) denote by Cα := Cα([−r, 0],Rd) the separable Banach space of α-
Hölder continuous paths η : [−r, 0] → Rd obtained as the completion of the space of
smooth paths C∞([−r, 0],Rd) in the α-Hölder norm

‖η‖α := ‖η‖C + sup
{ |η(s1)− η(s2)|

|s1 − s2|α : s1, s2 ∈ [−r, 0], s1 6= s2

}
.

([FT], [Tr]). The separability of Cα will be needed in order to establish the existence of
measurable versions of the trajectory field.

1. Measurable versions and regularity in distribution.

Our first step is to think of ηxt(ω) as a measurable mapping X : R+ ×C ×Ω → C

in the three variables (t, η, ω) simultaneously:
31



Theorem III.1. ([M1])

In the sfde

dx(t) = H(t, xt) dt + G(t, xt) dW (t), t > 0

x0 = η ∈ C,

}
(XIII)

assume that the coefficients H : [0,∞) × C → Rd and G : [0,∞) × C → Rd×m are
(jointly) continuous and globally Lipschitz in the second variable uniformly with respect to
t in compact sets of [0,∞). Then the following statements are true:

(i) For any 0 < α <
1
2

and each initial path η ∈ C,

P (ηxt ∈ Cα, for all t ≥ r) = 1.

(ii) The trajectory field ηxt, t ≥ 0, η ∈ C, has a measurable version

X : R+ × C × Ω → C.

(iii) The trajectory field ηxt, t ≥ r, η ∈ C, admits a measurable version

[r,∞)× C × Ω → Cα.

Remark.

Similar statements hold when the state space E = M2.

Consider the space L0(Ω, E) with the complete (pseudo)metric

dE(θ1, θ2) := inf
ε>0

[ε + P (‖θ1 − θ2‖E ≥ ε)], θ1, θ2 ∈ L0(Ω, E).

This pseudometric corresponds to convergence in probability ([DS], Lemma III.2.7, p. 104).

Proof of Theorem III.1.

Fix any α ∈ (0, 1/2).

(i) It is sufficient to show that

P
(
ηx|[0, a] ∈ Cα([0, a],Rd)

)
= 1

for any positive real a. This follows from the Borel-Cantelli lemma and the estimate

P

(
sup

0≤t1,t2≤a, t1 6=t1

|ηx(t1)− ηx(t2)|
|t1 − t2|α ≥ N

)
≤ C1

k(1 + ‖η‖2k
C )

1
N2k

,
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for all integers k > (1 − 2α)−1. In the above estimate, C1
k is a positive constant

independent of η ∈ C but may depend on k, α,m, d, a. The above estimate may be
proved using Gronwall’s lemma, Chebyshev’s inequality, and a Garsia-Rodemich-
Rumsey lemma ([GRR], [M1], Theorem 4.1, p. 150; Theorem 4.4, pp. 152-154).

(ii) In view of Remark (v) following the proof of Theorem I.2, the trajectory

[0, a]× C → L2(Ω, C) ⊂ L0(Ω, C)

(t, η) 7→ ηxt

is globally Lipschitz in η uniformly with respect to t in compact sets, and is contin-
uous in t for fixed η ([M1], Theorem 3.1, p. 41). Therefore it is jointly continuous
in (t, η) as a map

[0, a]× C 3 (t, η) 7→ ηxt ∈ L0(Ω, C).

We now apply the Cohn-Hoffman-Jφrgensen Theorem:

If T, E are complete separable metric spaces, then each Borel map X : T →
L0(Ω, E;F) admits a measurable version T × Ω → E ([M1], p. 16).
By this theorem, the trajectory field has a version X(t, η, ω) := ηxt(·, ω) which is
jointly measurable in (t, η, ω). To see this, just take T = [0, a] × C, E = C in the
Cohn-Hoffman-Jφrgensen Theorem.

(iii) The estimate

P
(‖η1xt − η2xt‖Cα ≥ N

) ≤ C2
k

N2k
‖η1 − η2‖2k

C

for t ∈ [r, a], N > 0, ([M1], Theorem 4.7, pp. 158-162) may be used to prove joint
continuity of the trajectory field

[r, a]× C → L0(Ω, Cα)

(t, η) 7→ ηxt

when viewed as a process with values in the separable Banach space Cα ([M1],
Theorem 4.7, pp. 158-162). Again apply the Cohn-Hoffman-Jφrgensen theorem. ¤

As we have seen in Chapter I, the trajectory of a sfde possesses good regularity
properties in the mean-square. The following theorem shows good behavior in distribution.
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Theorem III.2. ([M1])

Suppose the coefficients H and G are globally Lipschitz in the second variable
uniformly with respect to the first. Let α ∈ (0, 1/2) and k be any integer such that
k > (1 − 2α)−1. Then there are positive constants Ci

k := Ci
k(α, k,m, d, a), i = 3, 4, 5

such that
dC(η1xt,

η2xt) ≤ C3
k‖η1 − η2‖2k/(2k+1)

C , t ∈ [0, a],

dCα(η1xt,
η2xt) ≤ C4

k‖η1 − η2‖2k/(2k+1)
C , t ∈ [r, a],

P
(‖ηxt‖Cα ≥ N

)
≤ C5

k(1 + ‖η‖2k
C )

1
N2k

, t ∈ [r, a], N > 0.

In particular, the transition probabilities

[r, a]× C →Mp(C)

(t,η) 7→ p(0, η, t, ·)

take bounded sets in [r, a] × C into relatively weak* compact sets in the space Mp(C) of
probability measures on C.

Proof.

The proofs of the three estimates use Gronwall’s lemma, Chebyshev’s inequality,
and the Garsia-Rodemich-Rumsey lemma ([GRR], [M1], Theorem 4.1, p. 150; Theorem
4.7, pp. 159-162). The weak* compactness assertion follows from the third estimate,
Prohorov’s theorem and the compactness of the embedding Cα ↪→ C ([M1], Theorem 4.6,
pp. 156-158). ¤

2. Erratic behavior. The noisy feedback loop revisited.

In this section, we will show that trajectories of certain types of sfde’s exhibit highly
erratic pathwise dependence on the initial path. We start with a definition.

Definition.

A sfde is regular with respect to M2 if its trajectory random field {(x(t), xt) :
(x(0), x0) = (v, η) ∈ M2, t ≥ 0} admits a (Borel R+⊗Borel M2⊗F , Borel M2)-measurable
version X : R+×M2×Ω → M2 with almost all sample functions continuous on R+×M2.
The sfde is said to be singular otherwise. Regularity with respect to C is similarly defined.
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An example of a singular sfde is the one-dimensional linear sdde with a positive
delay r and driven by a Wiener process W ; viz.

dx(t) = σx(t− r)) dW (t), t > 0

(x(0), x0) = (v, η) ∈ M2 := R× L2([−r, 0],R).

}
(I)

Recall that the above sdde is a model for the noisy feedback loop introduced in Chapter
I. Theorem III.3 below implies that (I) is singular with respect to M2 (and C). See also
[M2].

Consider the regularity of the more general one-dimensional linear sfde:

dx(t) =
∫ 0

−r

x(t + s)dν(s) dW (t), t > 0

(x(0), x0) ∈ M2 := R× L2([−r, 0],R),





(II ′)

where W is a Wiener process and ν is a fixed finite real-valued Borel measure on [−r, 0].

Using integration by parts to “eliminate” the Itô integral, the reader may show that
(II′) is regular if ν has a C1 (or even L2

1) density with respect to Lebesgue measure on
[−r, 0].

The following theorem gives conditions on the measure ν under which (II′) is sin-
gular.

Theorem III.3. ([MS2])

Let r > 0, and suppose that there exists ε ∈ (0, r) such that supp ν ⊂ [−r,−ε].
Suppose 0 < t0 ≤ ε. For each k ≥ 1, set

νk :=
√

t0

∣∣∣∣
∫

[−r,0]

e2πiks/t0 dν(s)
∣∣∣∣.

Assume that ∞∑

k=1

νkx1/ν2
k = ∞ (1)

for all x ∈ (0, 1). Let Y : [0, ε] × M2 × Ω → R be any Borel-measurable version of the
solution field {x(t) : 0 ≤ t ≤ ε, (x(0), x0) = (v, η) ∈ M2} of (II′). Then for a.a. ω ∈ Ω,
the map Y (t0, ·, ω) : M2 → R is unbounded in every neighborhood of every point in M2,
and (hence) non-linear.
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Corollary III.3.1. ([M1])

Suppose r > 0 and σ 6= 0 in (I). Then the trajectory {ηxt : 0 ≤ t ≤ r, η ∈ C} of (I)
has a measurable version X : [0, r]× C × Ω → C such that for every t ∈ (0, r]

P

(
X(t, η1 + λη2, ·) = X(t, η1, ·) + λX(t, η2, ·) for all λ ∈ R, and all η1, η2 ∈ C

)
= 0;

but

P

(
X(t, η1 + λη2, ·) = X(t, η1, ·) + λX(t, η2, ·)

)
= 1.

for all λ ∈ R, η1, η2 ∈ C.

Remark.

(i) Condition (1) of Theorem III.3 is implied by lim
k→∞

νk

√
log k = ∞.

(ii) For the delay equation (I), ν = σδ−r, ε = r. In this case condition (1) is satisfied
for every t0 ∈ (0, r].

(iii) Theorem III.3 also holds for the state space C since every bounded set in C is also
bounded in L2([−r, 0],R).

Proof of Theorem III.3.

This proof is joint work of V. J. Mizel and the author.

The main idea is to track the solution random field of (a complexified version of)
(II′) along the classical Fourier basis

ηk(s) = e2πiks/t0 , −r ≤ s ≤ 0, k ≥ 1 (2)

in L2([−r, 0],C). On this basis, the solution field gives an infinite family of independent
Gaussian random variables. This allows us to show that no Borel measurable version
of the solution field can be bounded with positive probability on an arbitrarily small
neighborhood of 0 in M2, and hence on any neighborhood of any point in M2 (cf. [M1],
pp. 144-148; [M2]). For simplicity of computations, complexify the state space in (II′) by
allowing (v, η) to belong to MC

2 := C× L2([−r, 0],C). Thus we consider the sfde

dx(t) =
∫

[−r,0]

x(t + s)dν(s) dW (t), t > 0,

(x(0), x0) = (v, η) ∈ MC
2 ,





(II ′ − C)

where x(t) ∈ C, t ≥ −r, and ν, W are real-valued.
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We use contradiction. Let Y : [0, ε] × M2 × Ω → R be any Borel-measurable
version of the solution field {x(t) : 0 ≤ t ≤ ε, (x(0), x0) = (v, η) ∈ M2} of (II′). Suppose,
if possible, that there exists a set Ω0 ∈ F of positive P -measure, (v0, η0) ∈ M2 and a
positive δ such that for all ω ∈ Ω0, Y (t0, ·, ω) is bounded on the open ball B((v0, η0), δ)
in M2 of center (v0, η0) and radius δ. Define the complexification Z(·, ω) : MC

2 → C of
Y (t0, ·, ω) : M2 → R by

Z(ξ1 + iξ2, ω) := Y (t0, ξ1, ω) + i Y (t0, ξ2, ω), i =
√−1,

for all ξ1, ξ2 ∈ M2, ω ∈ Ω. Let (v0, η0)C denote the complexification (v0, η0)C := (v0, η0)+
i(v0, η0). Clearly Z(·, ω) is bounded on the complex ball B((v0, η0)C , δ) in MC

2 for all
ω ∈ Ω0. Define the sequence of complex random variables {Zk}∞k=1 by

Zk(ω) := Z((ηk(0), ηk), ω)− ηk(0), ω ∈ Ω, k ≥ 1.

Then

Zk =
∫ t0

0

∫

[−r,−ε]

ηk(u + s) dν(s) dW (u), k ≥ 1.

Using standard properties of the Itô integral together with Fubini’s theorem, we get

EZkZl =
∫

[−r,−ε]

∫

[−r,−ε]

∫ t0

0

ηk(u + s)ηl(u + s′) du dν(s) dν(s′) = 0

for k 6= l, because ∫ t0

0

ηk(u + s)ηl(u + s′) du = 0

whenever k 6= l, for all s, s′ ∈ [−r, 0]. Furthermore

∫ t0

0

ηk(u + s)ηk(u + s′) du = t0e2πik(s−s′)/t0

for all s, s′ ∈ [−r, 0]. Hence

E|Zk|2 =
∫

[−r,−ε]

∫

[−r,−ε]

t0e2πik(s−s′)/t0 dν(s) dν(s′)

= t0

∣∣∣∣
∫

[−r,0]

e2πiks/t0 dν(s)
∣∣∣∣
2

= ν2
k .
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Now Z(·, ω) : MC
2 → C is bounded on B((v0, η0)C , δ) for all ω ∈ Ω0, and ‖(ηk(0), ηk)‖ =√

r + 1 for all k ≥ 1. By the linearity property

Z

(
(v0, η0)C+

δ

2
√

r + 1
(ηk(0), ηk), ·

)
= Z((v0, η0)C , ·)+ δ

2
√

r + 1
Z((ηk(0), ηk), ·), k ≥ 1, a.s.,

it follows that
P

(
sup
k≥1

|Zk| < ∞)
> 0. (3)

It is easy to check that {ReZk, ImZk : k ≥ 1} are independent N (0, ν2
k/2)-

distributed Gaussian random variables. The rest of the proof is an argument due to
Dudley ([Du]) which gives a contradiction to (3).

For each integer N ≥ 1, we have

P

(
sup
k≥1

|Zk| < N

)
≤

∏

k≥1

P

(
|ReZk| < N

)

=
∏

k≥1

[
1− 2√

2π

∫ ∞
√

2N
νk

e−x2/2 dx

]

≤ exp
{
− 2√

2π

∞∑

k=1

∫ ∞
√

2N
νk

e−x2/2 dx

}
. (4)

But there is an N0 > 1 (independent of k ≥ 1) such that

∫ ∞
√

2N
νk

e−x2/2 dx ≥ νk

2
√

2N
e
−N2

ν2
k (5)

for all N ≥ N0 and all k ≥ 1.

Combining (4) and (5) and using hypothesis (1) of the theorem, we obtain

P

(
sup
k≥1

|Zk| < N

)
= 0

for all N ≥ N0. Therefore P

(
sup
k≥1

|Zk| < ∞
)

= 0. This contradicts (3).

Since Y (t0, ·, ω) is locally unbounded, it must be non-linear because of Douady’s
Theorem:

Every Borel measurable linear map between two Banach spaces is continuous.
([Sc], pp. 155-160). This completes the proof of the theorem. ¤
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Note that the pathological phenomenon in Theorem III.3 is peculiar to the delay
case r > 0 . The proof of the theorem suggests that this pathology is due to the Gaussian
nature of the Wiener process W, coupled with the infinite-dimensionality of the state space
M2. Because of this, one may expect similar difficulties in certain types of linear spde’s
driven by multi-dimensional white noise ([FS]).

Problem.

Classify all finite signed Borel measures ν on [−r, 0] for which (II ′) is regular.

Note that (I) automatically satisfies the conditions of Theorem III.3, and hence its
trajectory field explodes on every small neighborhood of 0 ∈ M2. In view of this pathology,
it is somewhat surprising that the maximal exponential growth rate of the trajectory of
(I) is negative for small σ and is bounded away from zero independently of the choice of
the initial path in M2. This will be shown later in Chapter V (Theorem V.1).

3. Regularity of linear systems. White noise.

Here we will consider the following class of linear sfde’s on Rd driven by m-
dimensional Brownian motion W := (W1, · · · , Wm):

dx(t) = H(x(t− d1), · · · , x(t− dN ), x(t), xt)dt +
m∑

i=1

gix(t) dWi(t), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd).




(V III)

The above sfde is defined on a canonical complete filtered Wiener space
(Ω,F , (Ft)t≥0, P ), where:

Ω is the space of all continuous paths ω : R+ → Rm, ω(0) = 0, in Euclidean space
Rm, with the compact open topology;

F is the completed Borel σ-field of Ω;

P is Wiener measure on Ω;

Ft is the completed sub-σ-field of F generated by the evaluations ω 7→ ω(u),

0 ≤ u ≤ t, t ≥ 0.

dWi(t) are Itô stochastic differentials for 1 ≤ i ≤ m. The drift coefficient is a fixed
continuous linear map H : (Rd)N × M2 → Rd with several finite delays 0 < d1 < d2 <

· · · < dN ≤ r. There are no delays in the diffusion coefficient . The diffusion coefficients
are fixed (deterministic) d× d-matrices gi, i = 1, 2, . . . , m.
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Theorem III.4. ([M3])

The sfde (VIII) is regular with respect to the state space M2. There is a measurable
version X : R+ ×M2 × Ω → M2 of the trajectory field {(x(t), xt) : t ∈ R+, (x(0), x0) =
(v, η) ∈ M2} with the following properties:

(i) For each (v, η) ∈ M2 and t ∈ R+, X(t, (v, η), ·) = (x(t), xt) a.s., is Ft-
measurable and belongs to L2(Ω,M2; P ).

(ii) There exists Ω0 ∈ F of full measure such that, for all ω ∈ Ω0, the map
X(·, ·, ω) : R+ ×M2 → M2 is continuous.

(iii) For each t ∈ R+ and every ω ∈ Ω0, the map X(t, ·, ω) : M2 → M2 is
continuous linear; for each ω ∈ Ω0, the map R+ 3 t 7→ X(t, ·, ω) ∈ L(M2)
is measurable and locally bounded in the uniform operator norm on L(M2).
The map [r,∞) 3 t 7→ X(t, ·, ω) ∈ L(M2) is continuous for all ω ∈ Ω0.

(iv) For each t ≥ r and all ω ∈ Ω0, the map

X(t, ·, ω) : M2 → M2

is compact.

The proof uses a variational technique to reduce the problem to the solution of a
random family of classical integral equations involving no stochastic integrals ([M3]).

The compactness of the semi-flow for t ≥ r will be used later to define the notion of
hyperbolicity for the sfde (VIII) and the associated exponential dichotomies. See Chapter
IV.

4. Regularity of linear systems. Semimartingale noise.

Let (Ω,F , (Ft)t≥0, P ) be a complete filtered probability space satisfying the usual
conditions. Consider the following linear sfde:

dx(t) =
{∫

[−r,0]

ν(t)(ds) x(t + s)
}

dt + dN(t)
∫ 0

−r

K(t)(s)x(t + s) ds

+ dL(t)x(t−), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd).





(IX)

The basic set-up and hypotheses underlying (IX) are described below. Let Rd×d denote
the Euclidean space of all d × d-matrices. Denote by M([−r, 0],Rd×d) the space of all
Rd×d-valued Borel measures on [−r, 0] (or Rd×d-valued functions of bounded variation on
[−r, 0]). This space is given the σ-algebra generated by all evaluations. In the sfde (IX),
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all vectors are considered as column vectors. The noise in (IX) is provided by Rd×d-valued
(Ft)t≥0- semimartingales N and L. The memory is driven by a measure-valued process
ν : R × Ω → M([−r, 0],Rd×d) and a “smooth” process K. More specifically, we impose
the following hypotheses.

Hypotheses (R)

(i) The process ν : R×Ω →M([−r, 0],Rd×d) is measurable and (Ft)t≥0-adapted. For
each ω ∈ Ω and t ≥ 0, define the positive measure ν̄(t, ω) on [−r,∞) by

ν̄(t, ω)(A) := |ν|(t, ω){(A− t) ∩ [−r, 0]}

for all Borel subsets A of [−r,∞), where |ν| is the total variation measure of ν with
respect to the Euclidean norm on Rd×d. Therefore the equation

µ(ω)(·) :=
∫ ∞

0

ν̄(t, ω)(·) dt

defines a positive measure on [−r,∞). For each ω ∈ Ω suppose that µ(ω) has
a density with respect to Lebesgue measure, and the density is locally essentially
bounded. (Note that this condition is automatically satisfied if ν(t, ω) is indepen-
dent of (t, ω).)

(ii) K : R × Ω → L∞([−r, 0],Rd×d) is measurable and (Ft)t≥0- adapted. Define the
random field K̄(t, s, ω) by K̄(t, s, ω) := K(t, ω)(s − t) for t ≥ 0, −r ≤ s − t ≤ 0.
Assume that K̄(t, s, ω) is absolutely continuous in t for Lebesgue a.a. s ∈ [−r, 0]

and all ω ∈ Ω. For every ω ∈ Ω,
∂K̄

∂t
(t, s, ω) and K̄(t, s, ω) are locally essentially

bounded in (t, s).
∂K̄

∂t
(t, s, ω) is jointly measurable.

(iii) L = M + V , where M is a continuos Rd×d-valued, (Ft)t≥0-local martingale, and V

is an Rd×d-valued, (Ft)t≥0-adapted bounded-variation process. The process N is
an Rd×d-valued, (Ft)t≥0-semimartingale (with cadlag paths).

Theorem III.5. ([MS1])

Under hypotheses (R), equation (IX) is regular with respect to M2 with a measurable
flow X : R+ ×M2 × Ω → M2. This flow satisfies the conclusions of Theorem III.4.
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Proof.

The key idea of the proof is to use integration by parts ([Met], pp. 185) in order to
identify the sfde (IX) with the following random family of linear integral equations:

x(t) = φ(t, ω)
[
v −

∫ t

0

Z(s, ω)K̄(s, s, ω)x(s) ds +
∫ t−r

−r

Z(s + r, ω)K̄(s + r, s, ω)x(s) ds

−
∫ t

−r

∫ t∧(s+r)

s∨0

Z(u, ω)
∂

∂u
K̄(u, s, ω) dux(s) ds + Z(t, ω)

∫ t

t−r

K̄(t, s, ω)x(s) ds

+
∫ t

−r

∫

[(s−t)∨(−r),0∧s]

φ−1(s− u, ω)ν(s− u, ω)(du)x(s) ds

+
∫ t

0

φ−1(s, ω) dV (s, ω)x(s−)−
∫ t

−r

∫ t∧(s+r)

s∨0

φ−1(u, ω) d[M,N ](u, ω)K̄(u, s, ω)x(s) ds
]
,

for t ∈ R+, with the initial condition

(x(0), x0) = (v, η) ∈ M2.

The processes φ and Z in the above integral equation are defined by

dφ(t) = dM(t)φ(t), t > 0,

φ(0) = I ∈ Rd×d,

and

Z(t) :=
∫ t

0

φ−1(u) dN(u), t ≥ 0.

The crucial point is that the above integral equation contains no stochastic integrals. A
somewhat lengthy pathwise analysis of the random integral equation yields the existence
and regularity of the semiflow ([MS1], pp. 85-96). ¤

5. Regular non-linear systems.

Let (Ω,F , (Ft)t≥0, P ) be the complete filtered Wiener space described in Section 3.
Consider the following non-linear sfde with ordinary diffusion coefficients:

dx(t) = H(xt)dt +
m∑

i=1

gi(x(t)) dWi(t), t > 0

x0 = η ∈ C.





(XV )

Here, H : C → Rd is globally Lipschitz, gi : Rd → Rd are C2-bounded maps satisfying
the Frobenius condition (vanishing Lie brackets):

Dgi(v)gj(v) = Dgj(v)gi(v), 1 ≤ i, j ≤ m, v ∈ Rd;

and W := (W1,W2, · · · ,Wm) is m-dimensional Brownian motion. Note that the diffusion
coefficient in (XV) has no memory.
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Theorem III.6. ([M1])

Suppose the above conditions hold. Then the trajectory field {ηxt : t ≥ 0, η ∈ C} of
(XV) has a measurable version X : R+ × C × Ω → C satisfying the following properties:

For each α ∈ (0, 1/2), there is a set Ωα ⊂ Ω of full Wiener measure such that for
every ω ∈ Ωα the following is true:

(i) X(·, ·, ω) : R+ × C → C is continuous;

(ii) X(·, ·, ω) : [r,∞)× C → Cα is continuous;

(iii) for each t ≥ r, X(t, ·, ω) : C → C is compact;

(iv) for each t ≥ r, X(t, ·, ω) : C → Cα is Lipschitz on every bounded set in C, with a
Lipschitz constant independent of t in compact sets. Hence, each map X(t, ·, ω) :
C → C is compact; viz. it takes bounded sets into relatively compact sets.

Proof of Theorem III.6.

We use a non-linear variational method originally due to Sussman ([Su]) and Doss
([Do]) in the nondelay case r = 0. See ([M1], Theorem (2.1), Chapter (V), p. 121).

Write g := (g1, g2, · · · , gm) : Rd → Rd×m. By the Frobenius condition, there is a
C2 map F : Rm×Rd → Rd such that {F (t, ·) : t ∈ Rm} is a group of C2 diffeomorphisms
of Rd satisfying

D1F (t, x) = g(F (t, x)),

F (0, x) = x

for all t ∈ Rm, x ∈ Rd.

Define

W 0(t) :=
{

W (t)−W (0), t ≥ 0,

0 − r ≤ t < 0,

and H̃ : R+ × C × Ω → Rd, by

H̃(t, η, ·) := [D2F (W 0(t), η(0))]−1
{
H[F ◦ (W 0

t , η)]

− 1
2
trace

(
Dg[F (W 0(t), η(0))] ◦ g[F (W 0(t), η(0))]

)}
,

where the expression under the “trace” is viewed as a bilinear form Rm ×Rm → Rd, and
the trace has values in Rd. By the hypotheses on H and g, it follows that for each ω,
H̃(t, η, ω) is jointly continuous in (t, η), Lipschitz in η in bounded subsets of C uniformly
for t in compact sets, and satisfies a global linear growth condition in η ([M1], pp. 114-126).
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For each ω ∈ Ω, let ηξ(·, ω) denote the unique solution of the random fde

ηξ′(t, ω) = H̃(t, ηξt, ω), t > 0,

ηξ0(ω) = η.

Define the semiflow
X(t, η, ω) := F ◦ (

W 0
t (ω), ηξt(ω)

)
,

for t ≥ 0, η ∈ C, ω ∈ Ω. Therefore X satisfies all assertions of the theorem ([M1], pp.
126-133). ¤

Remark.

The issue of regularity for a much more general class of non-linear sfde’s will be
addressed elsewhere in joint work of M. Scheutzow and the author.
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Chapter IV

Ergodic Theory of Linear SFDE’s

In this chapter, we shall study more closely the regular linear sfde’s (VIII) and
(IX) of Chapter III. Our approach is to view the sfde’s (VIII) and (IX) as (almost sure)
stochastic dynamical systems on the infinite-dimensional state space M2. In particular,
we will establish the following:

(i) Existence of a “perfect” cocycle on M2 that is a modification of the trajectory field
(x(t), xt) ∈ M2.

(ii) Existence of almost sure Lyapunov exponents lim
t→∞

1
t

log ‖(x(t), xt)‖M2 .

(iii) The multiplicative ergodic theorem and the concept of hyperbolicity of the cocycle.

(iv) The Stable Manifold Theorem, (viz. the existence of “random saddles”) for regular
hyperbolic linear sfde’s.

1. Regular linear systems driven by white noise.

Recall the class of regular linear sfde’s

dx(t) = H(x(t− d1), · · · , x(t− dN ), x(t), xt)dt +
m∑

i=1

gix(t) dWi(t), t > 0

(x(0), x0) = (v, η) ∈ M2




(V III)

which was introduced in Section 3 of Chapter III. We will adopt the basic setting therein.
In particular, we will denote by X : R+ × M2 × Ω → M2 the semiflow for (VIII) given
by Theorem III.4. The compactness of X(t, ·, ω), for t ≥ r, will be used below to con-
struct the Lyapunov spectrum, define hyperbolicity for (VIII), and establish the associated
exponential dichotomies.

Define the canonical Brownian shift θ : R× Ω → Ω on Wiener space by

θ(t, ω)(u) := ω(t + u)− ω(t), u, t ∈ R, ω ∈ Ω.

We will first show that the version X of the flow constructed in Theorem III.4 is a multi-
plicative L(M2)-valued linear cocycle over θ. Indeed we have
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Theorem IV.1. ([M3]) (The Cocycle Property)

There is an F-measurable set Ω̂ of full P -measure such that θ(t, ·)(Ω̂) ⊆ Ω̂ for all
t ≥ 0 and

X(t2, ·, θ(t1, ω)) ◦X(t1, ·, ω) = X(t1 + t2, ·, ω)

for all ω ∈ Ω̂ and all t1, t2 ≥ 0.

The figure below illustrates the cocycle property. The vertical solid lines represent
random fibers consisting of copies of the state space M2. The pair (X, θ) is a random
vector-bundle morphism over the base probability space Ω.

M2 M2 M2

Ω
ω θ(t1, ω) θ(t1 + t2, ω)

t = 0 t = t1 t = t1 + t2

.................
.....................

...........................
.......................................................................................................................................................................................... .................

.....................
...........................

........................................................................................................................................................................................................ ...........
. .............. ...........

.

X(t1, ·, ω) X(t2, ·, θ(t1, ω))

.................
.....................

...........................
........................................................................................................................................................................................................ ...........

.

θ(t1, ·)
.................

.....................
...........................

........................................................................................................................................................................................................ ...........
.

θ(t2, ·)

•(v, η)

•
X(t1, (v, η), ω)

• X(t1 + t2, (v, η), ω)

.....................................................................................................................................................................................................................................................................
.................

.........................
.....................................................................................................................................................

...............
............
.........
......
.........
...............
......
........
....................................

.......
.....
......
...........................

........................
.........................................................................................................................................................................................................................................................................................

...........................
...........

Note that the family X̃t : M2 × Ω → M2 × Ω, t ≥ 0,

X̃t((v, η), ω) := (X(t, (v, η), ω), θ(t, ω)), (v, η) ∈ M2, ω ∈ Ω,
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is a one-parameter semigroup of morphisms on the trivial bundle M2 × Ω.

We now sketch a proof of Theorem IV.1.

Proof of Theorem IV.1.

For simplicity consider the case of a single delay d1; i.e. N = 1 in (VIII). We will
break the proof up into three steps.

First step.

Approximate the Brownian motion W in (VIII) by smooth (Ft)t≥0-adapted pro-
cesses {W k}∞k=1, where

W k(t) := k

∫ t

t−(1/k)

W (u) du− k

∫ 0

−(1/k)

W (u) du, t ≥ 0, k ≥ 1. (1)

It is easy to check that each W k is a helix in the sense that

W k(t1 + t2, ω)−W k(t1, ω) = W k(t2, θ(t1, ω)), t1, t2 ∈ R, ω ∈ Ω. (2)

(The above helix property implies that each W k has stationary increments.)

Let Xk : R+ ×M2 × Ω → M2 be the stochastic semiflow of the random fde’s:

dxk(t) = H(xk(t− d1), xk(t), xk
t )dt +

m∑

i=1

gix(t)(W k
i )′(t) dt− 1

2

m∑

i=1

g2
i xk(t) dt, t > 0

(xk(0), xk
0) = (v, η) ∈ M2, k ≥ 1.





(V III − k)

If X : R+ ×M2 × Ω → M2 is the version of the trajectory field of (VIII) given in
Theorem III.4, then there exists an F-measurable set Ω̂ of full Wiener measure which is
invariant under θ(t, ·) for all t ≥ 0 and is such that

lim
k→∞

sup
0≤t≤T

‖Xk(t, ·, ω)−X(t, ·, ω)‖L(M2) = 0 (3)

for every 0 < T < ∞ and all ω ∈ Ω̂. The convergence in (3) may be proved using the
following stochastic variational method.

Let φ : R+ × Ω → Rd×d be the d× d-matrix-valued solution of the linear Itô sode
(without delay):

dφ(t) =
m∑

i=1

giφ(t) dWi(t), t > 0

φ(0) = I ∈ Rd×d.





(4)
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Denote by φk : R+ × Ω → Rd×d, k ≥ 1, the d × d-matrix solution of the random family
of linear ode’s:

dφk(t) =
m∑

i=1

giφ
k(t)(W k

i )′(t)− 1
2

m∑

i=1

g2
i φk(t) dt, t > 0

φk(0) = I ∈ Rd×d.





(4′)

Let Ω̂ be the sure event consisting of all ω ∈ Ω such that

φ(t, ω) := lim
k→∞

φk(t, ω) (5)

exists uniformly for t in compact subsets of R+. Each φk is an Rd×d-valued cocycle over
θ, viz.

φk(t1 + t2, ω) = φk(t2, θ(t1, ω))φk(t1, ω) (6)

for all t1, t2 ∈ R+ and ω ∈ Ω. Using the definition of Ω̂ and passing to the limit in (6) as
k → ∞, we conclude that {φ(t, ω) : t ≥ 0, ω ∈ Ω} is an Rd×d-valued perfect cocycle over
θ, viz.

(i) P (Ω̂) = 1;

(ii) θ(t, ·)(Ω̂) ⊆ Ω̂ for all t ≥ 0;

(iii) φ(t1 + t2, ω) = φ(t2, θ(t1, ω))φ(t1, ω) for all t1, t2 ≥ 0 and every ω ∈ Ω̂;

(iv) φ(·, ω) is continuous for every ω ∈ Ω̂.

An alternative approach is to use the “perfection theorem” in ([MS1], Theorem
3.1, p. 79-82) for crude cocycles with values in a metrizable second countable topological
group. (Observe that φ(t, ω) ∈ GL(Rd) a.s.)

Let J := [−r, 0]. Define Ĥ : R+ ×Rd ×M2 × Ω → Rd by

Ĥ(t, v1, v, η, ω) := φ(t, ω)−1[H(φt(·, ω)(−d1, v1), φ(t, ω)(v), φt(·, ω) ◦ (idJ , η))] (7)

for ω ∈ Ω, t ≥ 0, v, v1 ∈ Rd, η ∈ L2([−r, 0],Rd), where

φt(·, ω)(s, v) =





φ(t + s, ω)(v), t + s ≥ 0

v, −r ≤ t + s < 0

and
(idJ , η)(s) = (s, η(s)), s ∈ J.
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Define Ĥk : R+ ×Rd ×M2 × Ω → Rd by a relation similar to (7) with φ replaced by φk.
Then the random fde’s

y′(t) = Ĥ(t, y(t− d1), y(t), yt, ω), t > 0

(y(0), y0) = (v, η) ∈ M2,

}
(8)

yk′(t) = Ĥk(t, yk(t− d1), yk(t), yk
t , ω), t > 0

(yk(0), yk
0 ) = (v, η) ∈ M2,

}
(9)

have unique non-explosive solutions y, yk : [−r,∞) × Ω → Rd ([M3], pp. 93-98). Itô’s
formula implies that

X(t, (v, η), ω) = (φ(t, ω)(y(t, ω)), φt(·, ω) ◦ (idJ , yt)). (10)

The chain rule gives a similar relation for Xk with φ replaced by φk ([M3], pp. 96-97).

Using (5) and the definitions of Ĥ and Ĥk, we get the convergence

lim
k→∞

|Ĥk(t, v1, v, η, ω)− Ĥ(t, v1, v, η, ω)| = 0 (11)

for every ω ∈ Ω̂, uniformly for (t, v1, v, η) in bounded sets of R+ ×Rd ×M2. Gronwall’s
lemma and (11) give (3).

Second step.

Fix ω ∈ Ω̂, use uniqueness of solutions to the approximating equation (VIII-k) and
the helix property (2) of W k to obtain the following cocycle property for (Xk, θ):

Xk(t2, ·, θ(t1, ω)) ◦Xk(t1, ·, ω) = Xk(t1 + t2, ·, ω)

for all ω ∈ Ω̂ and t1, t2 ≥ 0, k ≥ 1.

Third step.

Pass to limit as k → ∞ in the above identity, and use the convergence (3) in the
uniform operator norm to get the required perfect cocycle property for X. ¤

The a.s. Lyapunov exponents

lim
t→∞

1
t

log ‖X(t, (v(ω), η(ω)), ω)‖M2 ,

(for a.a. ω ∈ Ω, (v, η) ∈ L2(Ω,M2)) of the sfde (VIII) are characterized by the following
“spectral theorem”. The proof of Theorem IV.2 uses compactness of X(t, ·, ω) : M2 → M2,
t ≥ r, together with Ruelle-Oseledec infinite-dimensional multiplicative ergodic theorem
([R]).

Note that each shift θ(t, ·) is ergodic and preserves Wiener measure P .
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Theorem IV.2. ([M3])(Spectral Theorem)

Let X : R+ ×M2 × Ω → M2 be the flow of (VIII) given in Theorem III.4. Then
there exist

(a) an F-measurable set Ω∗ ⊆ Ω such that P (Ω∗) = 1 and θ(t, ·)(Ω∗) ⊆ Ω∗ for
all t ≥ 0,

(b) a fixed (non-random) sequence of real numbers {λi}∞i=1, and

(c) a random family {Ei(ω) : i ≥ 1, ω ∈ Ω∗} of (closed) finite-codimensional
subspaces of M2, with the following properties:

(i) If the Lyapunov spectrum {λi}∞i=1 is infinite, then λi+1 < λi for all i ≥ 1
and lim

i→∞
λi = −∞; otherwise there is a fixed (non-random) integer N0 ≥ 1

such that λN0 = −∞ < λN0−1 < · · · < λ2 < λ1;

(ii) each map ω 7→ Ei(ω), i ≥ 1, is F-measurable into the Grassmannian of M2;

(iii) Ei+1(ω) ⊂ Ei(ω) ⊂ · · · ⊂ E2(ω) ⊂ E1(ω) = M2, i ≥ 1, ω ∈ Ω∗;

(iv) for each i ≥ 1, codim Ei(ω) is fixed independently of ω ∈ Ω∗;

(v) for each ω ∈ Ω∗ and (v, η) ∈ Ei(ω)\Ei+1(ω),

lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖M2 = λi, i ≥ 1;

(vi) top exponent:

λ1 = lim
t→∞

1
t

log ‖X(t, ·, ω)‖L(M2) for all ω ∈ Ω∗;

(vii) invariance:
X(t, ·, ω)(Ei(ω)) ⊆ Ei(θ(t, ω))

for all ω ∈ Ω∗, t ≥ 0, i ≥ 1.

In the figure below, each Ei corresponds to a random subbundle of the trivial bundle
M2 × Ω, which is invariant under the morphism (X, θ).
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The proof of Theorem IV.2 is based on a discrete version of Oseledec’s multiplicative
ergodic theorem in Hilbert space, developed by Ruelle ([R], Theorem (1.1), p. 248 and
Corollary (2.2), p. 253). For any real-valued function f , denote by f+ := f ∨ 0 its positive
part.

Theorem IV.3. ([R])

Let (Ω,F , P ) be a probability space and τ : Ω → Ω a P -preserving transformation.
Assume that H is a separable Hilbert space and T : Ω → L(H) a measurable map (with
respect to the Borel field on the space of all bounded linear operators L(H)). Suppose that
T (ω) is compact for almost all ω ∈ Ω, and E log+ ‖T (·)‖L(H) < ∞. Define the family
{Tn(ω) : ω ∈ Ω, n ≥ 1} of compact linear operators by

Tn(ω) := T (τn−1(ω)) ◦ · · ·T (τ(ω)) ◦ T (ω)
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for ω ∈ Ω, n ≥ 1.

Then there is a set Ω0 ∈ F of full P -measure such that τ(Ω0) ⊆ Ω0, and for each
ω ∈ Ω0, the limit

Λ(ω) := lim
n→∞

[Tn(ω)∗ ◦ Tn(ω)]1/(2n)

exists in the uniform operator norm and is a positive compact self-adjoint operator on H.
Furthermore, each Λ(ω) has a discrete spectrum

eµ1(ω) > eµ2(ω) > eµ3(ω) > eµ4(ω) > · · ·

where the µi’s are distinct. If the sequence {µi}∞i=1 is infinite, then µi ↓ −∞; otherwise it
terminates at µN0(ω) = −∞. If µi(ω) > −∞, then eµi(ω) has finite multiplicity mi(ω) and
a finite-dimensional eigen-space Fi(ω), with mi(ω) := dimFi(ω). Define

E1(ω) := M2, Ei(ω) :=
[⊕i−1

j=1Fj(ω)
]⊥

, E∞(ω) := ker Λ(ω).

Then
E∞(ω) ⊂ · · · ⊂ Ei+1(ω) ⊂ Ei(ω) · · · ⊂ E2(ω) ⊂ E1(ω) = H

and

lim
n→∞

1
n

log ‖Tn(ω)x‖H =
{

µi(ω), if x ∈ Ei(ω)\Ei+1(ω)
−∞, if x ∈ ker Λ(ω).

For a proof of Theorem IV.3 see [R], pp. 248-254.

The following “perfect” version of Kingman’s subadditive ergodic theorem is also
used to construct the shift invariant set Ω∗ appearing in Theorem IV.2 above.

Theorem IV.4. ([M3])(“Perfect” Subadditive Ergodic Theorem)

Let f : R+ × Ω → R ∪ {−∞} be a measurable process on a complete probability
space (Ω,F , P ) and τ(t, ·) : Ω → Ω, t ≥ 0, a family of P -preserving transformations such
that

(i) E sup
0≤u≤1

f+(u, ·) < ∞, E sup
0≤u≤1

f+(1− u, τ(u, ·)) < ∞;

(ii) f(t1 + t2, ω) ≤ f(t1, ω) + f(t2, τ(t1, ω)) for all t1, t2 ≥ 0 and every ω ∈ Ω.

Then there exist a set ˆ̂Ω ∈ F and a measurable f̃ : Ω → R ∪ {−∞} with the properties:

(a) P ( ˆ̂Ω) = 1, τ(t, ·)( ˆ̂Ω) ⊆ ˆ̂Ω for all t ≥ 0;

(b) f̃(ω) = f̃(τ(t, ω)) for all ω ∈ ˆ̂Ω and all t ≥ 0;

(c) f̃+ ∈ L1(Ω,R;P );
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(d) lim
t→∞

(1/t)f(t, ω) = f̃(ω) for every ω ∈ ˆ̂Ω.

If τ(t, ·) is ergodic, then there exist f∗ ∈ R ∪ {−∞} and ˜̃Ω ∈ F such that

(a)′ P ( ˜̃Ω) = 1, τ(t, ·)( ˜̃Ω) ⊆ ˜̃Ω, t ≥ 0;

(b)′ f̃(ω) = f∗ = lim
t→∞

(1/t)f(t, ω) for every ω ∈ ˜̃Ω.

The proof of Theorem IV.4 is given in [M3], Lemma 7, pp. 115–117. The proof
of Theorem IV.2 is an application of Theorem IV.3. It requires Theorem IV.4 and the
following sequence of lemmas.

Lemma IV.1.

For each integer k ≥ 1 and any 0 < a < ∞,

E sup
0≤t≤a

‖φ(t, ω)−1‖2k < ∞;

E sup
0≤t1,t2≤a

‖φ(t2, θ(t1, ·))‖2k < ∞.

Proof.

Observe that φ̂(t, ω) := φ(t, ω)−1 is a solution of a linear sde in L(Rd). Therefore
it is a semimartingale. The conclusions of the lemma then follow from standard sode
estimates, the cocycle property for (φ, θ), and Hölder’s inequality ([M3], pp. 106-108). ¤

The next lemma is the crucial estimate needed to apply the Ruelle-Oseledec theorem
(Theorem IV.3).

Lemma IV.2.

E sup
0≤t1,t2≤r

log+ ‖X(t2, ·, θ(t1, ·))‖L(M2) < ∞.

Proof.

If y(t, (v, η), ω) is the solution of the fde (8), then using Gronwall’s inequality, taking
“E sup

0≤t1,t2≤r
log+ sup

‖(v,η)‖≤1

” and applying Lemma IV.1, gives

E sup
0≤t1,t2≤r

log+ sup
‖(v,η)‖≤1

‖(y(t2, (v, η), θ(t1, ·)), yt2(·, (v, η), θ(t1, ·)))‖M2 < ∞.
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The conclusion of the lemma now follows from the above result by replacing ω′ with θ(t1, ω)
in the formula

X(t2, (v, η), ω′) = (φ(t2, ω′)(y(t2, (v, η), ω′)), φt2(·, ω′) ◦ (idJ , yt2(·, (v, η), ω′))

and applying Lemma IV.1. ¤

The existence of the Lyapunov spectrum is obtained by interpolating between delay
periods of length r, using the discrete limit

1
r

lim
k→∞

1
k

log ‖X(kr, (v(ω), η(ω)), ω)‖M2 , (12)

a.a. ω ∈ Ω and (v, η) ∈ L2(Ω,M2). This procedure requires the next two lemmas.

Lemma IV.3.

Let h : Ω → R+ be F-measurable, and suppose E sup
0≤u≤r

h(θ(u, ·) is finite. Then

Ω1 :=
(

lim
t→∞

1
t
h(θ(t, ·) = 0

)
is a sure event, and θ(t, ·)(Ω1) ⊆ Ω1 for all t ≥ 0.

Proof.

Use interpolation between delay periods and apply the discrete ergodic theorem to
the L1 function

ĥ := sup
0≤u≤r

h(θ(u, ·).

([M3], Lemma 5, pp. 111-113.) ¤

Lemma IV.4.

Suppose there is a sure event Ω2 such that θ(t, ·)(Ω2) ⊆ Ω2 for all t ≥ 0, and the
limit (12) exists (or equal to −∞) for all ω ∈ Ω2 and all (v, η) ∈ M2. Then there is a sure
event Ω3 such that θ(t, ·)(Ω3) ⊆ Ω3 for all t ≥ 0, and

lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖M2 =
1
r

lim
k→∞

1
k

log ‖X(kr, (v, η), ω)‖M2 , (13)

for all ω ∈ Ω3 and all (v, η) ∈ M2.

Proof:.

By the integrability property of Lemma IV.2, we may define h ∈ L1(Ω,R+;P ) by

h(ω) := sup
0≤u≤r

log+ ‖X(u, ·, ω)‖L(M2), ω ∈ Ω.
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Let Ω1 be the sure event in Lemma IV.3, and define Ω3 := Ω1 ∩ Ω2 ∩ Ω̂. The cocycle
property for X implies that

1
(k + 1)r

log ‖X((k + 1)r, (v, η), ω)‖M2 −
1
t
h(θ(t, ω))

≤ 1
t

log ‖X(t, (v, η), ω)‖M2

≤ 1
kr

h(θ(kr, ω)) +
1
kr

log ‖X(kr, (v, η), ω)‖M2

for kr ≤ t ≤ (k + 1)r, ω ∈ Ω3, (v, η) ∈ M2. Now pass to the limit as t → ∞ and k → ∞
to get the required result ([M3], Lemma 6, pp. 113-114.) ¤

Proof of Theorem IV.2. (Sketch).

Apply the Ruelle-Oseledec Theorem (Theorem IV.3) with T (ω) := X(r, ω) ∈ L(M2),
a compact linear operator for ω ∈ Ω̂; τ : Ω → Ω, τ := θ(r, ·).

Then the cocycle property for X implies that

X(kr, ω, ·) = T (τk−1(ω)) ◦ T (τk−2(ω)) ◦ · · · ◦ T (τ(ω)) ◦ T (ω)

:= T k(ω)

for all ω ∈ Ω̂.

Lemma IV.2 implies that E log+ ‖T (·)‖L(M2) < ∞. Theorem IV.3 gives a random
family of compact self-adjoint positive linear operators {Λ(ω) : ω ∈ Ω4} such that

Λ(ω) := lim
n→∞

[Tn(ω)∗ ◦ Tn(ω)]1/(2n)

exists in the uniform operator norm and is a positive compact operator on M2 for ω ∈ Ω4,
a θ(t, ·)-invariant set of full measure. Furthermore each Λ(ω) has a discrete spectrum

eµ1(ω) > eµ2(ω) > eµ3(ω) > eµ4(ω) > · · ·

where the µ′is are distinct, with no accumulation points except possibly −∞. If {µi}∞i=1 is
infinite, then µi ↓ −∞; otherwise they terminate at µN0(ω) = −∞. If µi(ω) > −∞, then

E1(ω) := M2, Ei(ω) :=
[⊕i−1

j=1Fj(ω)
]⊥

, E∞(ω) := ker Λ(ω).

Then
E∞(ω) ⊂ · · · ⊂ Ei+1(ω) ⊂ Ei(ω) · · · ⊂ E2(ω) ⊂ E1(ω) = M2.
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Note that codim Ei(ω) =
∑i−1

j=1 mj(ω) < ∞. Also

lim
k→∞

1
k

log ‖X(kr, (v, η), ω)‖M2 =
{

µi(ω), if (v, η) ∈ Ei(ω)\Ei+1(ω)
−∞, if (v, η) ∈ ker Λ(ω).

The functions
ω 7→ µi(ω), ω 7→ mi(ω), ω 7→ N0(ω)

are invariant under the ergodic shift θ(r, ·). Hence they take fixed values µi, mi, N0 almost
surely, respectively.

Lemma IV.4 gives a θ(t, ·)-invariant sure event Ω∗ ⊆ Ω4 such that

lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖M2 =
1
r

lim
k→∞

1
k

log ‖X(kr, (v, η), ω)‖M2

=
µi

r
=: λi,

for (v, η) ∈ Ei(ω)\Ei+1(ω), ω ∈ Ω∗, i ≥ 1.

The set {λi :=
µi

r
: i ≥ 1} is the Lyapunov spectrum of (VIII).

Since the Lyapunov spectrum is discrete with no finite accumulation points, then
{λi : λi > λ} is finite for all λ ∈ R.

To prove invariance of the Oseledec spaces Ei(ω) under the cocycle (X, θ), use the
random field

λ((v, η), ω) := lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖M2 (v, η) ∈ M2, ω ∈ Ω∗,

and the relations
Ei(ω) := {(v, η) ∈ M2 : λ((v, η), ω) ≤ λi},

λ(X(t, (v, η), ω), θ(t, ω)) = λ((v, η), ω), ω ∈ Ω∗, t ≥ 0,

([M3], p. 122). ¤

The non-random nature of the Lyapunov exponents {λi}∞i=1 of (VIII) is a conse-
quence of the fact the θ is ergodic. (VIII) is said to be hyperbolic if λi 6= 0 for all i ≥ 1.
When (VIII) is hyperbolic, the flow satisfies a stochastic saddle-point property (or expo-
nential dichotomy) (cf. the deterministic case with E = C([−r, 0],Rd), gi ≡ 0, i = 1, . . . ,
m, [H], Theorem 4.1, p. 181).
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Theorem IV.5. (Random Saddles)([M3])

Suppose the sfde (VIII) is hyperbolic. Then there exist

(a) a set Ω̃∗ ∈ F such that P (Ω̃∗) = 1, and θ(t, ·)(Ω̃∗) = Ω̃∗ for all t ∈ R,

and

(b) a measurable splitting

M2 = U(ω)⊕ S(ω), ω ∈ Ω̃∗,

with the following properties:

(i) U(ω), S(ω), ω ∈ Ω̃∗, are closed linear subspaces of M2, dim U(ω) is finite and fixed
independently of ω ∈ Ω̃∗.

(ii) The maps ω 7→ U(ω), ω 7→ S(ω) are F-measurable into the Grassmannian of M2.

(iii) For each ω ∈ Ω̃∗ and (v, η) ∈ U(ω) there exists τ1 = τ1(v, η, ω) > 0 and a positive
δ1, independent of (v, η, ω) such that

‖X(t, (v, η), ω)‖M2 ≥ ‖(v, η)‖M2e
δ1t, for all t ≥ τ1.

(iv) For each ω ∈ Ω̃∗ and (v, η) ∈ S(ω) there exists τ2 = τ2(v, η, ω) > 0 and a positive
δ2, independent of (v, η, ω) such that

‖X(t, (v, η), ω)‖M2 ≤ ‖(v, η)‖M2e
−δ2t, for all t ≥ τ2.

(v) For each t ≥ 0 and ω ∈ Ω̃∗,

X(t, ω, ·)(U(ω)) = U(θ(t, ω)),

X(t, ω, ·)(S(ω)) ⊆ S(θ(t, ω)).

In particular, the restriction X(t, ω, ·) | U(ω) : U(ω) → U(θ(t, ω)) is a linear home-
omorphism onto.

Proof.

[M3], Corollary 2, pp. 127-130. ¤
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2. Regular linear systems driven by helix noise.

Consider the following linear sfde driven by semimartingale helices N and L:

dx(t) =
{∫

[−r,0]

ν(t)(ds) x(t + s)
}

dt + dN(t)
∫ 0

−r

K(t)(s)x(t + s) ds

+ dL(t)x(t−), t > 0

(x(0), x0) = (v, η) ∈ M2 := Rd × L2([−r, 0],Rd).





(IX)

In (IX), the memory is driven by a measure-valued process ν and a matrix-valued random
field K on a complete filtered probability space (Ω,F , (Ft)t∈R, P ).

Throughout this section we shall adopt the basic set-up and Hypotheses (R) of
Section III.4. In addition, we require
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Hypotheses (C)

(i) The processes ν, K are stationary ergodic in the sense that there is a measurable
ergodic P -preserving flow θ : R×Ω → Ω such that for each t ∈ R, Ft = θ(t, ·)−1(F0)
and

ν(t, ω) = ν(0, θ(t, ω)), t ∈ R, ω ∈ Ω,

K(t, ω) = K(0, θ(t, ω)), t ∈ R, ω ∈ Ω.

(ii) L = M + V , where M is a continuos (Ft)t≥0-local martingale, and V is a bounded
variation process. The processes N , L and M are helices (with jointly stationary
ergodic increments), viz.

N(t + h, ω)−N(t, ω) = N(h, θ(t, ω)),

L(t + h, ω)− L(t, ω) = L(h, θ(t, ω)),

M(t + h, ω)−M(t, ω) = M(h, θ(t, ω)),

for t ∈ R, ω ∈ Ω.

Semimartingales satisfying Hypothesis (C)(ii) were studied by de Sam Lazaro and
Meyer ([SM1], [SM2]), Çinlar, Jacod, Protter and Sharpe [CJPS] and Protter [P].

Equation (IX) is regular with respect to M2 with a measurable flow X : R+×M2×
Ω → M2. This flow satisfies Theorems III.4 and the cocycle property. This is achieved via
a construction in ([MS1]) based on the following consequence of Hypothesis (C)(ii):

Theorem IV.6. ([M4], [MS1])

Suppose M satisfies Hypothesis (C)(ii). Then there is an (Ft)t≥0-adapted version
φ : R+ × Ω → Rd×d of the solution to the matrix equation

dφ(t) = dM(t)φ(t), t > 0

φ(0) = I ∈ Rd×d,

}
(X)

and a set Ω1 ∈ F such that

(i) P (Ω1) = 1;

(ii) θ(t, ·)(Ω1) ⊆ Ω1 for all t ≥ 0;

(iii) φ(t1 + t2, ω) = φ(t2, θ(t1, ω))φ(t1, ω) for all t1, t2 ∈ R+ and every ω ∈ Ω1;
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(iv) φ(·, ω) is continuous on R+ for every ω ∈ Ω1.

A proof of Theorem IV.6 is given in ([M4], [MS1]), either by a double-approximation
argument or via perfection techniques ([MS1], Theorem 3.1).

The existence of a discrete non-random Lyapunov spectrum {λi}∞i=1 for the sfde
(IX) is proved via Ruelle-Oseledec multiplicative ergodic theorem (Theorem IV.3), which
requires the integrability property:

E sup
0≤t1,t2≤r

log+ ‖X(t1, θ(t2, ·), ·)‖L(M2) < ∞.

(Lemma IV.2). For equation (IX), the above integrability property is established under
the following set of hypotheses on ν, K, N and L:

Hypotheses (I)

(i)

sup
−r≤s≤2r

∣∣∣∣
dµ(·)(s)

ds

∣∣∣∣
2

, sup
0≤t≤2r

essup
t−r≤s≤t

‖K̄(t, s, ·)‖3,

essup
0≤t≤2r

essup
t−r≤s≤t

‖ ∂

∂t
K̄(t, s, ·)‖3, {|V |(2r, ·)}4,

are all integrable. Recall that

µ(ω)(A) :=
∫ ∞

0

|ν(t, ω)|{(A− t) ∩ [−r, 0]} dt, A ∈ Borel [−r,∞),

K̄(t, s, ·) := K(t, ω)(s− t), t ≥ 0, t− r ≤ s ≤ t,

and the measure µ has a locally (essentially) bounded density dµ(·)(s)/ds with
respect to Lebesgue measure on [−r,∞); |V | is the total variation of V with respect
to the Euclidean norm ‖ · ‖ on Rd×d.

(ii) Let N = N0 + V 0 where the local (Ft)t≥0-martingale N0 = (N0
ij)

d
i,j=1 and the

bounded-variation process V 0 = (V 0
ij)

d
i,j=1 are such that {[N0

ij ](2r, ·)}2, {|V 0
ij |(2r, ·)}4,

i, j = 1, 2, . . . , d, are integrable. |V 0
ij |(2r, ·) is the total variation of V 0

ij over [0, 2r].

(iii) [Mij ](1) ∈ L∞(Ω,R), i, j = 1, 2, . . . , d.

The integrability property of the cocycle (X, θ) is a consequence of

E log+ sup
0≤t1,t2≤r, ‖(v,η)‖≤1

|x(t1, (v, η), θ(t2, ·))| < ∞.
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The proof of the latter property uses a lengthy argument based on establishing the exis-
tence of suitable higher order moments for the coefficients of the random integral equation
appearing in the proof of Theorem III.5. (See Lemmas (5.1)-(5.5) in [MS1].)

Since θ is ergodic, the multiplicative ergodic theorem (Theorem IV.3) now gives a
fixed discrete set of Lyapunov exponents:

Theorem IV.7. ([M4], [MS1])

Under Hypotheses (R), (C) and (I), the statements of Theorems IV.2 and IV.5 hold
true for the linear sfde (IX).

It is easy to see that the Lyapunov spectrum of (IX) does not change if one uses
the state space D([−r, 0],Rd) with the supremum norm ‖ · ‖∞ ([MS1], Remark, p. 103).
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Chapter V

Stability. Examples and Case Studies

In this chapter, we will examine several issues related to examples and case studies
of linear sfde’s. In particular, we will develop estimates on the “maximal exponential
growth rate” for the singular noisy feedback loop introduced in Chapter I. This is done
using Lyapunov functionals. We establish the existence of the stochastic semiflow and
its Lyapunov spectrum for a large class of one-dimensional linear sfde’s. For a variety
of examples of regular linear sfde’s, upper bounds on the top Lyapunov exponent λ1 are
obtained ([MS2]). Such bounds yield information on the almost sure asymptotic stability
of the sfde. A characterization of the Lyapunov spectrum for sdde’s with Poisson noise is
given ([S]).

In the literature, Lyapunov exponents for linear sode’s (without memory) have been
studied by many authors; e.g. [AKO], [AOP], [B], [PW1], [PW2].

Questions of asymptotic stability of general sfde’s are treated in Kushner [Kus],
Mizel and Trutzer [MT], Mohammed [M1], [M3], [M4], Mohammed and Scheutzow [MS1]-
[MS3], Scheutzow [S], Kolmanovskii and Nosov [KN]. Mao ([Ma], Chapter 5) gives several
results concerning the maximal exponential growth rate for sdde’s driven by Kunita-type
C-valued semimartingales. These results assume that the second-order characteristics of
the driving semimartingales are time-dependent and decay to zero exponentially fast in
time, uniformly in the space variable.

The results in this chapter are joint work of M. Scheutzow and the author ([MS2]).

Throughout this chapter, W stands for the one-dimensional Wiener process on a
complete filtered Wiener space (Ω,F , (Ft)t≥0, P ).

1. The noisy feedback loop revisited once more.

The noisy feedback loop is modeled by the one-dimensional linear sdde:

dx(t) = σx(t− r)) dW (t), t > 0

(x(0), x0) = (v, η) ∈ M2 := R× L2([−r, 0],R).

}
(I)

The delay r in (I) is positive.

By Theorem III.3, (I) is singular with respect to M2.
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Consider the more general one-dimensional linear sfde:

dx(t) =
∫ 0

−r

x(t + s)dν(s) dW (t), t > 0

(x(0), x0) ∈ M2 := R× L2([−r, 0],R),





(II ′)

where ν is a fixed finite real-valued Borel measure on [−r, 0].

Equation (II ′) is regular if ν has a C1 (or even L2
1) density with respect to Lebesgue

measure on [−r, 0] ([MS1]). If ν satisfies Theorem III.3, then (II ′) is singular. In the
singular case, there is no stochastic semiflow (Theorem III.3) and we do not know whether
a (discrete) set of Lyapunov exponents

λ((v, η), ·) := lim
t→∞

1
t

log ‖(x(t, (v, η)), xt(·, (v, η)))‖M2 , (v, η) ∈ M2,

exists. The existence of Lyapunov exponents for singular equations appears to be a hard
problem. However, we can still define the maximal exponential growth rate

λ1 := sup
(v,η)∈M2

lim sup
t→∞

1
t

log ‖(x(t, (v, η)), xt(·, (v, η)))‖M2

for the trajectory random field {(x(t, (v, η)), xt(·, (v, η))) : t ≥ 0, (v, η) ∈ M2}. In general,
λ1 may depend on ω ∈ Ω, but λ1 = λ1 in the regular case.

In spite of the extremely erratic dependence on the initial paths of solutions of
(I), it is shown in Theorem V.1 that for small noise variance, uniform almost sure global
asymptotic stability still persists. For small σ, λ1 ≤ −σ2/2 + o(σ2) uniformly in the initial
path (Theorem V.1, and Remark (iii)). For large |σ| and ν = δ−r, one has

1
2r

log |σ|+ o(log |σ|) ≤ λ1 ≤ 1
r

log |σ|

([MS2], Remark (ii) after proof of Theorem 2.3 ). This result is in sharp contrast with the
nondelay case (r = 0), where λ1 = −σ2/2 for all values of σ. See Remark (ii) following
the proof of Theorem V.1. The proofs of Theorems V.1 and V.2 involve very delicate
constructions of new types of Lyapunov functionals on the underlying state space.
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Theorem V.1. ([MS2])

Let ν be a probability measure on [−r, 0], r > 0, and consider the sfde

dx(t) = σ

(∫

[−r,0]

x(t + s) dν(s)
)

dW (t), t ≥ 0

(x(0), x0) = (v, η) ∈ M2





(II ′)

with σ ∈ R, (v, η) ∈ M2. Let x(·, (v, η)) be the solution of (II ′) through (v, η) ∈ M2. Then
there exists σ0 > 0 and a continuous strictly negative nonrandom function φ : (−σ0, σ0) →
R− (independent of (v, η) ∈ M2 and ν) such that

P

(
lim sup

t→∞
1
t

log ‖(x(t, (v, η)), xt(·, (v, η)))‖M2 ≤ φ(σ)
)

= 1.

for all (v, η) ∈ M2 and all −σ0 < σ < σ0.

Remark.

Theorem V.1 also holds for the state space C with the supremum norm ‖ · ‖∞.

Proof of Theorem V.1. (Sketch).

For simplicity, and without loss of generality, assume that r = 1. See Remark (i)
below.

It is sufficient to consider (II ′) on C ≡ C([−1, 0],R), because C is continuously
embedded in M2. Without loss of generality, assume that σ > 0.

Define the Lyapunov functional V : C → R+

V (η) := (R(η) ∨ |η(0)|)α + βR(η)α, η ∈ C,

where R(η) := η−η, the diameter of the range of η, η := sup
−1≤s≤0

η(s) and η := inf
−1≤s≤0

η(s).

Fix 0 < α < 1. Using a lengthy computation, one can arrange for β = β(σ) for sufficiently
small σ such that

E(V (ηx1)) ≤ δ(σ)V (η), η ∈ C, (1)

where δ(σ) ∈ (0, 1) is a continuous function of σ defined near 0. Furthermore, there is a
positive constant K = K(α) (independent of η, ν) such that δ(σ) ∼ (1 − Kσ2) ([MS2],
pp. 12-18). The estimate (1) is hard ([MS2], pp. 12-18). Now {ηxn}∞n=1 is a Markov
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process in C (Theorem II.1). So (1) implies that δ(σ)−nV (ηxn), n ≥ 1, is a non-negative
(Fn)-supermartingale. Therefore there exists Z : Ω → [0,∞) such that

lim
n→∞

V (ηxn)
δ(σ)n

= Z a.s. (2)

Set φ(σ) := 1
α log δ(σ). Then the definition of V together with (2) imply that

lim
t→∞

1
t

log |ηx(t)| ≤ lim
n→∞

1
n

log[|ηx(n)|+ R(ηxn)]

=
1
α

lim
n→∞

1
n

log V (ηxn) ≤ 1
α

log δ(σ) = φ(σ) < 0.

Note that δ(σ), φ(σ) are independent of η, ν, and the “domain” of φ is also independent
of η, ν. ¤

Remarks.

(i) The choice of σ0 in Theorem V.1 depends on r. In (I), the scaling t 7→ t/r has
the effect of replacing r by 1 and σ by σ

√
r. If λ1(r, σ) is the maximal exponential

growth rate of (I), then λ1(r, σ) =
1
r
λ1(1, σ

√
r). Hence σ0 decreases (like 1√

r
) as r

increases . Thus (for a fixed σ), a small delay r tends to stabilize equation (I). A
large delay in (I) has a destabilizing effect. See Theorem V.2 below.

(ii) Using a Lyapunov function(al) argument, Theorem V.2 below shows that for suffi-
ciently large σ, the singular delay equation (I) is unstable. This result is in sharp
contrast with the nondelay case r = 0, where

lim
t→∞

1
t

log |x(t)| = −σ2/2 < 0

for all σ ∈ R. Furthermore, for fixed r > 0, the delay equation (I) becomes more
unstable as σ increases, while the corresponding nondelay equation (for r = 0)
becomes more stable.

(iii) The growth rate function φ in Theorem V.1 satisfies

φ(σ) = −σ2/2 + o(σ2)

as σ → 0+. This agrees with the nondelay case r = 0. The above relation follows
by suitably modifying the proof of Theorem V.1.
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Theorem V.2. ([MS2])

Consider the equation

dx(t) = σx(t− r) dW (t), t > 0

(x(0), x0) = (v, η) ∈ M2 := R× L2([−r, 0],R),

}
(I)

with a positive delay r and σ ∈ R . Then there exists a continuous function ψ : (0,∞) → R

which is increasing to infinity such that

P

(
lim inf
t→∞

1
t

log ‖(x(t, (v, η)), xt(·, (v, η))‖M2 ≥ ψ(|σ|)
)

= 1,

for all (v, η) ∈ M2\{0} and all σ 6= 0. The function ψ is independent of the choice of
(v, η) ∈ M2\{0}.

Remarks.

(i) ‖ · ‖M2 can be replaced by the sup-norm ‖ · ‖∞ on C.

(ii) The proof of the theorem shows that ψ(σ) ∼ 1
2 log σ for large σ.

Proof of Theorem V.2.

We will only give an outline of the proof. For more details see [MS2], pp. 20-24.

We break the proof up into two main steps.

Step 1:

We first show that

P

(
lim inf
n→∞

1
n

log ‖(x(n, (v, η)), xn(·, (v, η)))‖M2 ≥ ψ(|σ|)
)

= 1,

for all (v, η) ∈ M2\{0} and all σ 6= 0.

Without loss of generality assume that r = 1 and σ > 0.

Define the continuous Lyapunov functional V : M2\{0} → [0,∞) by

V ((v, η)) =
(

v2 + σ

∫ 0

−1

η2(s) ds

)−1/4

Then an elementary (but somewhat lengthy) computation using the Gaussian na-
ture of (x(1, (v, η)), x1(·, (v, η))), shows that

EV ((x(1, (v, η)), x1(·, (v, η))) ≤ Kσ−1/4V ((v, η))
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for (v, η) 6= 0 and all σ > 0, where K is a positive constant suitably chosen independently of
(v, η) ∈ M2\{0}. Set X(t) := (x(t, (v, η)), xt(·, (v, η))), t ≥ 0. Then the above inequality
and the Markov property imply that K−nσn/4V (X(n)), n ≥ 0 is a nonnegative (Fn)n≥0-
supermartingale. Hence

lim inf
n→∞

1
n

log ‖X(n)‖M2 ≥ ψ(σ) :=
1
2

log σ − 2 log K

almost surely. This proves a discrete version of the conclusion of the theorem.

Step 2:

We interpolate the result in Step 1 between the times n and n + 1, n ≥ 1. The
continuous a.s. limit

lim inf
t→∞

1
t

log ‖(x(t, (v, η)), xt(·, (v, η)))‖M2 ≥ ψ(|σ|),

then follows from the a.s. inequality

lim sup
n→∞

1
nYn ≤ 0, (∗)

with

Yn := − log inf
n≤t≤n+1

‖X(t)‖M2

‖X(n)‖M2

.

For (v, η) ∈ M2 \ {0}, define

Z(v, η) := − inf
0≤t≤1

log
‖X(t)‖M2

‖(v, η)‖M2

.

By a Borel-Cantelli argument and the Markov property, the inequality (∗) is a
consequence of the following estimate:

sup
(v,η)∈M2\{0}

E
(
Z(v, η)β

)
< ∞, β > 1.

The above estimate may be established using a time-change argument which exploits the

Gaussian nature of the Wiener integral
∫ t

0

η(s− 1)dW (s) for t ∈ [0, 1]. ¤
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2. Regular one-dimensional linear sfde’s.

The purpose of this section is to outline a general scheme for obtaining estimates on
the top Lyapunov exponent for a class of one-dimensional regular linear sfde’s. We then
apply our scheme to specific examples within the above class. Although this will not be
discussed here, the method also covers multidimensional linear sfde’s with multiple delays.

A different approach in [Kus] uses Lyapunov functionals; it yields weaker estimates
in all cases.

Consider the class of one-dimensional linear sfde’s

dx(t) =
{

ν1x(t) + µ1x(t− r) +
∫ 0

−r

x(t + s)σ1(s) ds
}

dt

+
{

ν2x(t) +
∫ 0

−r

x(t + s)σ2(s) ds
}

dM(t),





(XV II)

where r > 0, σ1, σ2 ∈ C1([−r, 0],R), and M is a continuous helix local martingale on
(Ω,F , (Ft)t≥0, P ) with (stationary) ergodic increments. The ergodic theorem gives the

a.s. deterministic limit β := lim
t→∞

〈M〉(t)
t

. Assume that β < ∞ and 〈M〉(1) ∈ L∞(Ω,R).

Therefore (XVII) is regular with respect to M2 and has a sample-continuous stochastic
semiflow X : R+×M2×Ω → M2 (Theorem III.5). The stochastic semiflow X has a fixed
(non-random) Lyapunov spectrum (Theorem IV.7). Let λ1 be its top exponent. We wish
to develop an upper bound for λ1. By the spectral theorem (Theorem IV.7, cf. Theorem
IV.2), there is a shift-invariant set Ω∗ ∈ F of full P -measure and a measurable random
field λ : M2 × Ω → R ∪ {−∞},

λ((v, η), ω) := lim
t→∞

1
t

log ‖X(t, (v, η), ω)‖M2 , (v, η) ∈ M2, ω ∈ Ω∗, (1)

giving the Lyapunov spectrum of (XVII).

Introduce the following family of equivalent norms on M2:

‖(v, η)‖α :=
{

αv2 +
∫ 0

−r

η(s)2 ds

}1/2

, (v, η) ∈ M2, α > 0. (2)

Then
λ((v, η), ω) = lim

t→∞
1
t

log ‖X(t, (v, η), ω)‖α, (v, η) ∈ M2, ω ∈ Ω∗ (3)

for all α > 0; i.e. the Lyapunov spectrum of (XVII) with respect to ‖ · ‖α is independent
of α > 0.
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Let x be the solution of (XVII) starting at (v, η) ∈ M2. Define

ρα(t)2 := ‖X(t)‖2α = αx(t)2 +
∫ t

t−r

x(u)2 du, t > 0, α > 0. (4)

For each fixed (v, η) ∈ M2, define the set Ω0 ∈ F by Ω0 := {ω ∈ Ω : ρα(t, ω) 6=
0 for all t > 0}. If P (Ω0) = 0, then by uniqueness there is a random time τ0 such that
a.s. X(t, (v, η), ·) = 0 for all t ≥ τ0. Hence λ1 = −∞. Now suppose that P (Ω0) > 0. Itô’s
formula implies

log ρα(t) = log ρα(0) +
∫ t

0

Qα(a(u), b(u), I1(u)) du

+
∫ t

0

Q̃α(a(u), I2(u)) d〈M〉(u) +
∫ t

0

Rα(a(u), I2(u)) dM(u), (5)

for t > 0, a.s. on Ω0, where

Qα(z1, z2, z3) := ν1z
2
1 +

√
α µ1z1z2 +

√
α z1z3 + 1

2

z2
1

α
− 1

2z2
2

Q̃α(z1, z
′
3) := α( 1

2 − z2
1)

(
ν2√
α

z1 + z′3

)2

Rα(z1, z
′
3) := ν2z

2
1 +

√
αz1z

′
3,





(6)

and

a(t) :=
√

αx(t)
ρα(t)

, b(t) :=
x(t− r)
ρα(t)

, Ii(t) :=

∫ 0

−r
x(t + s)σi(s) ds

ρα(t)
(7)

for i = 1, 2, t > 0, a.s. on Ω0.

If ‖σi‖2 :=
{∫ 0

−r
σi(s)2ds

}1/2

, i = 1, 2, then

|Ii(t)| ≤ 1
ρα(t)

(∫ 0

−r

x(t + s)2 ds

)1/2

‖σi‖2 =
√

1− a2(t) ‖σi‖2,

i = 1, 2, a.s. on Ω0. Therefore the variables z1, z2, z3, z
′
3 in (6) must satisfy

|z1| ≤ 1, z2 ∈ R, |z3|2 ≤ (1− z2
1)‖σ1‖22, |z′3|2 ≤ (1− z2

1)‖σ2‖22.

Let τ1 := inf{t > 0 : ρα(t) = 0}. Then the local martingale

∫ t∧τ1

0

Rα(a(u), I2(u)) dM(u), t > 0
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is a time-changed (possibly stopped) Brownian motion. Since

|Rα(a(u), I2(u))| ≤ |ν2|+
√

α‖σ2‖2

for all u ∈ [0, τ1), a.s., then

lim
t→∞

1
t

∫ t∧τ1

0

Rα(a(u), I2(u)) dM(u) = 0 a.s. (8)

Divide (5) by t and let t →∞, to get

λ((v, η), ω) ≤ lim sup
t→∞

1
t

∫ t

0

Qα(a(u), b(u), I1(u)) du+lim sup
t→∞

1
t

∫ t

0

Q̃α(a(u), I2(u)) d〈M〉(u).

(9)
a.s. on Ω0, for all α > 0.

We wish to develop upper bounds for λ1 in the following special cases.

Our first example is the one-dimensional linear sfde:

dx(t) = {ν1x(t) + µ1x(t− r)} dt +
{∫ 0

−r

x(t + s)σ2(s) ds

}
dW (t), t > 0 (V II)

with real constants ν1, µ1, and σ2 ∈ C1([−r, 0],R). (VII) is a special case of (XVII).
Hence it is regular with respect to M2. Observe that (VII) has a smooth memory in the
white-noise term. Indeed the process

∫ 0

−r
x(t + s)σ2(s) ds has C1 paths in t. Hence the

stochastic differential dW in (VII) may be interpreted in the Itô or Stratonovich sense
without changing the solution x.

Theorem V.3. ([MS2])

Suppose λ1 is the top a.s. Lyapunov exponent of (VII). Define the function

θ(δ, α) := −δ +
(

ν1 + δ +
1
2
αµ2

1e
2δr +

1
2α

)
∨

(
α

2
‖σ2‖22e2δ+r

)

for all α ∈ R+, δ ∈ R, where δ+ := max{δ, 0}.
Then

λ1 ≤ inf{θ(δ, α) : δ ∈ R, α ∈ R+}. (10)
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Proof.

In the right-hand-side of (9), set M = W and maximize the function Qα(z1, z2, z3)+
Q̃α(z1, z

′
3) over its domain of definition. This gives the upper bound

λ1 ≤
(

ν1 +
1
2
µ2

1 +
1
2α

)
∨

(
α

2
‖σ2‖22

)
.

Next we shift the Lyapunov spectrum of (VII) by an arbitrary amount δ ∈ R. We
do this by setting y(t) := eδtx(t), t ≥ −r, for a fixed δ ∈ R. Then y solves a linear sfde of
the type (VII) where ν1, µ1, σ2 are replaced (respectively) by ν1 + δ, µ1eδr and σ̂2, where
σ̂2(s) := e−δs · σ2(s), s ∈ [−r, 0].

Now apply the above estimate to the top exponent of the transformed equation,
and then minimize over α, δ to get (10) ([MS2], Theorem 4.1). ¤

The next corollary shows that the estimate in Theorem V.3 reduces to a well-known
estimate in the deterministic case σ2 ≡ 0 ([Ha], pp.17-18).

Corollary V.3.1. ([MS2])

In (VII), suppose µ1 6= 0 and let δ0 be the unique real solution of the transcendental
equation

ν1 + δ + |µ1|eδr = 0. (11)

Then

λ1 ≤ −δ0 +
1
2
‖σ2‖22
|µ1| e|δ0|r. (12)

If µ1 = 0 and ν1 ≥ 0, then λ1 ≤ 1
2

(
ν1 +

√
ν2
1 + ‖σ2‖22

)
. If µ1 = 0 and ν1 < 0, then

λ1 ≤ ν1 + 1
2‖σ2‖2e−ν1r.

Proof.

Suppose µ1 6= 0. Denote by f(δ), δ ∈ R, the left-hand-side of (11). Then f(δ) is an
increasing function of δ. f has a unique real zero δ0. Using (10), we may put δ = δ0 and
α = |µ1|−1e−δ0r in the expression for θ(δ, α). This gives (12).

Suppose µ1 = 0. Put δ = (−ν1)+ in θ(δ, α) and minimize the resulting expression
over all α > 0. This proves the last two assertions of the corollary ([MS2], pp. 35-36). ¤
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Remarks.

(i) The upper bounds for λ1 in Theorem (V.3) and Corollary V.3.1 agree with the
corresponding bounds in the deterministic case (for µ1 ≥ 0), but are not optimal
when µ1 = 0 and σ2 is strictly positive and sufficiently small; cf. Theorem V.1 for
small ‖σ2‖2.

(ii) It is an interesting problem to develop the asymptotics of λ1 for small delays r ↓ 0?

Our second example is the stochastic delay equation

dx(t) = {ν1x(t) + µ1x(t− r)} dt + x(t)dM(t), t > 0, (XV III)

where M is the continuous helix local martingale appearing in (XVII) and satisfying the
conditions therein. Hence (XVIII) is regular with respect to M2. Theorem V.4 below gives
an estimate on its top exponent.

Theorem V.4. ([MS2])

In (XVIII), define δ0 as in Corollary V.3.1. Then the top a.s. Lyapunov exponent
λ1 of (XVIII) satisfies

λ1 ≤ −δ0 +
β

16
. (13)

Proof.

First maximize the following functions separately over their appropriate ranges:

Qα(z1, z2) := ν1z
2
1 +

√
α µ1z1z2 + 1

2

z2
1

α
− 1

2z2
2 ,

Q̃α(z1) := ( 1
2 − z2

1)z2
1 , |z1| ≤ 1, z2 ∈ R.

Then use an exponential shift of the Lyapunov spectrum by an amount δ (cf. proof of
Theorem V.3). Minimize the resulting bound over all α (for fixed δ) and then over all
δ ∈ R. This minimum is attained if δ solves the transcendental equation (11). Hence the
conclusion of the theorem holds ([MS2]). ¤

Remarks.

(i) The above estimate for λ1 is sharp in the deterministic case β = 0 and µ1 ≥ 0, but
is not sharp when β 6= 0; e.g. M = W and µ1 = 0.

(ii) When M = ν2W for a fixed real ν2, the above bound may be considerably sharpened
as in Theorem V.5 below. The sdde in this theorem corresponds to the model of
dye circulation in the blood stream given by equation (VI) of Chapter I, Section 1
(cf. Bailey and Williams [BW]; Lenhart and Travis [LT]).
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Theorem V.5. ([MS2])

For the equation

dx(t) = {ν1x(t) + µ1x(t− r)}dt + ν2x(t) dW (t), t > 0, (V I)

set

φ(δ) := −δ +
1

4ν2
2

[(
|µ1|eδr + ν1 + δ +

1
2
ν2
2

)+]2

, (14)

for ν2 6= 0. Then
λ1 ≤ inf

δ∈R
φ(δ). (15)

In particular, if δ0 is the unique solution of the equation

ν1 + δ + |µ1|eδr +
1
2
ν2
2 = 0, (16)

then λ1 ≤ −δ0.

Proof.

Maximize

Qα(z1, z2, 0) + Q̃α(z1, 0) =
(

ν1 +
1
2α

+
ν2
2

2

)
z2
1 +

√
α µ1z1z2 − 1

2
z2
2 − ν2

2z4
1 (17)

over |z1| ≤ 1, z2 ∈ R, and then minimize the resulting bound for λ1 over α > 0. This gives

λ1 ≤ 1
4ν2

2

[
(ν1 + |µ1|+ ν2

2

2
)+

]2
.

The first assertion of the theorem follows from the above estimate by applying an expo-
nential shift to (VI). The last assertion of the theorem is obvious. ¤

Problem:

Is λ1 = inf
δ∈R

φ(δ) ?

Remark.

The estimate in Theorem V.5 agrees with the nondelay case µ1 = 0 whereby λ1 =
ν1 − 1

2ν2
2 = inf

δ∈R
φ(δ). Cf. also [AOP], [B] and [AKO].
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3. An sdde with Poisson noise.

Consider the one-dimensional linear delay equation

dx(t) = x((t− 1)−) dN(t), t > 0

x0 = η ∈ D := D([−1, 0],R).

}
(V )

The process N(t) ∈ R is a Poisson process with i.i.d. inter-arrival times {Ti}∞i=1 which are
exponentially distributed with the same parameter µ. The jumps {Yi}∞i=1 of N are i.i.d.

and independent of all the Ti’s. Let j(t) := sup
{

j ≥ 0 :
j∑

i=1

Ti ≤ t

}
. Then N(t) =

j(t)∑

i=1

Yi.

Equation (V) can be solved pathwise in forward steps of lengths 1, using the almost sure
relation

xη(t) = η(0) +
j(t)∑

i=1

Yix

(( i∑

j=1

Tj − 1
)−

)
a.s.

The trajectory {xt : t ≥ 0} of (V) is a Markov process in the state space D (with
the supremum norm ‖ · ‖∞). Furthermore, the above relation implies that (V) is regular
with respect to D; i.e., it admits a measurable flow X : R+×D×Ω → D with X(t, ·, ω) :=
ηxt(·, ω), continuous linear in η for all t ≥ 0 and almost all ω ∈ Ω (cf. the singular equation
(I)).

The almost sure Lyapunov spectrum of (V) may be characterized directly (without
appealing to the Oseledec Theorem) by interpolating between the following sequence of
random times:

τ0(ω) := 0,

τ1(ω) := inf
{

n ≥ 1 :
k∑

j=1

Tj /∈ [n− 1, n] for all k ≥ 1
}

,

τi+1(ω) := inf
{

n > τi(ω) :
k∑

j=1

Tj /∈ [n− 1, n] for all k ≥ 1
}

, i ≥ 1.

It is easy to see that {τ1, τ2 − τ1, τ3 − τ2, · · · } are i.i.d. and Eτ1 = eµ.

Theorem V.6. ([S], [MS2])

Let ξ ∈ D be the constant path ξ(s) = 1 for all s ∈ [−1, 0]. Suppose
E log ‖X(τ1(·), ξ, ·)‖∞ exists (possibly = +∞ or −∞). Then the almost sure Lyapunov
spectrum

λ(η) := lim
t→∞

1
t

log ‖X(t, η, ω)‖∞, η ∈ D, ω ∈ Ω
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of (V) is {−∞, λ1} where λ1 = e−µ E log ‖X(τ1(·), ξ, ·)‖∞. In fact,

lim
t→∞

1
t

log ‖X(t, η, ω)‖∞ =
{

λ1, η /∈ Ker X(τ1(ω), ·, ω),
−∞, η ∈ Ker X(τ1(ω), ·, ω).

Proof.

The i.i.d. sequence

Si :=
‖(X(τi, ξ, ·))‖
‖(X(τi−1, ξ, ·))‖ i = 1, 2, . . .

and the law of large numbers give

lim
n→∞

1
τn

log ‖(X(τn, ξ, ω))‖ = e−µ(E log S1)

for almost all ω ∈ Ω.

Now interpolate between the times τ1, τ2, τ3, · · · to get the continuous limit

lim
t→∞

1
t

log ‖X(t, η, ω)‖∞ ([MS2], Proof of Theorem 3.1). ¤
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Chapter VI

Miscellanea

1. Malliavin calculus of sfde’s.

Our main objective in this section is to establish the existence of smooth densities
for solutions of Rd-valued sfde’s of the form

dx(t) = H(t, xt) dt + g(t, x(t− r)) dW (t). (XIX)

In the above equation, W is an m-dimensional Wiener process, r is a positive time delay,
H is a map [0,∞) × C([−r, 0],Rd) → Rd and g : [0,∞) × Rd → Rd×m is a d × m-
matrix-valued function. For each t ≥ 0, the d × d-matrix g(t, x)g(t, x)∗ has degeneracies
of polynomial order as x runs on a hypersurface in Rd. Our analysis of (XIX) gives a
very general criterion for the hypoellipticity of a class of degenerate parabolic second-
order time-dependent differential operators with space-independent principal parts. More
generally, the analysis of the sfde (XIX) works when H is replaced by a non-anticipating
functional which may depend on the whole history of the path ([BM4]).

The special case H ≡ 0 was studied in [BM1]. In [BM1], it is shown that the
solution x(t) has a smooth density with respect to Lebesgue measure on Rd, under the
hypothesis that the matrix g(t, x)g(t, x)∗ degenerates like |x|2 near 0 (e.g. when g(t, ·) is
linear.) Our approach to (XIX) (as in [BM1]) uses the Malliavin calculus. However there
are difficulties, which we outline below.

Difficulties.

(i) The infinitesimal generator of the trajectory Feller process {xt : t ≥ 0} is a highly
degenerate second-order differential operator on the state space: Its principal part
degenerates on a surface of finite codimension (Theorem II.3). Hence one cannot
use existing techniques from pde’s.

(ii) The analysis by the Malliavin calculus requires the derivation of probabilistic lower
bounds on the Malliavin covariance matrix of the solution x. These bounds are
difficult because there is no stochastic flow in the singular case (Theorem III.3).
Cf. the sode case, where the stochastic flow is invertible. See work by Kusuoka and
Stroock in the uniformly elliptic case ([KS1]).

(iii) The form of the Malliavin covariance allows only a polynomial (finite-type) rate of
degeneracy near a hypersurface, coupled with limited contact of the initial path
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with the hypersurface. Note the sode case where degeneracies of infinite type are
compatible with hypellipticity ([BM2]).

Hypotheses (S).

(i) W : [0,∞) × Ω → Rm is standard m-dimensional Wiener process, defined on a
complete filtered probability space (Ω,F , (Ft)t≥0, P ).

(ii) g : [0,∞)×Rd → Rd×m is a continuous map into the space of d×m matrices, with
bounded Fréchet derivatives of all orders in the space variable.

(iii) r is a positive real number, and η : [−r, 0] → Rd is a continuous initial path.

(iv) H : [0,∞)×C → Rd is a globally bounded continuous map with all partial Fréchet
derivatives of H(t, η) with respect to η, globally bounded in (t, η) ∈ R+×C. Think
of H(t, ξt) as a smooth Rd-valued functional in ξ ∈ C([−r, t],Rd). Denote its
Fréchet derivative with respect to ξ ∈ C([−r, t],Rd) by Hξ(t, ξ). Set

αt := sup{‖Hξ(u, ξ)‖ : u ∈ [0, t], ξ ∈ C([−r, u],Rd)} , t > 0 ,

and
α∞ := sup{‖Hξ(u, ξ)‖ : u ∈ [0,∞), ξ ∈ C([−r, u],Rd)} ,

where ‖Hξ(u, ξ)‖ is the operator norm of the partial Fréchet derivative Hξ(u, ξ) :
C([−r, u],Rd) → Rd.

Theorem VI.1. ([BM4])

Assume Hypotheses (S) for the sfde (XIX). Suppose there exist positive constants ρ,
δ, an integer p ≥ 2 and a function φ : [0,∞)×Rd → R satisfying the following conditions:

(i)

g(t, x)g(t, x)∗ ≥
{ |φ(t, x)|pI, |φ(t, x)| < ρ

δI, |φ(t, x)| ≥ ρ
(1)

for (t, x) ∈ [0,∞)×Rd.

(ii) φ(t, x) is C1 in t and C2 in x, with bounded first derivatives in (t, x) and bounded
second derivatives in x ∈ Rd.

(iii) There is a positive constant c such that

‖∇φ(t, x)‖ ≥ c > 0 (2)
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for all (t, x) ∈ [0,∞) × Rd, with |φ(t, x)| ≤ ρ. In (2), ∇ denotes the gradient
operator with respect to the space variable x ∈ Rd.

(iv) The set {s : s ∈ [−r, 0], φ(s + r, η(s)) = 0} has Lebesgue measure less than
(3α∞)−1 ∧ r.

Define s0 ∈ [−r, 0] by

s0 := sup{s ∈ [−r, 0] :
∫ s

−r

φ(u + r, η(u))2 du = 0}.

Then for all t > s0 + r the solution x(t) of (XIX) is absolutely continuous with respect to
d-dimensional Lebesgue measure, and has a C∞ density.

Remark.

Condition (iv) of Theorem VI.1 is equivalent to the following:

(iv)′ There is a positive number δ0 such that δ0 < (3α∞)−1 ∧ r and for every Borel set
J0 ⊆ [−r, 0] of Lebesgue measure δ0 the following holds

∫

J0

φ(t + r, η(t))2 dt > 0.

Theorem VI.2. ([BM4])

In the sfde
dy(t) = H(t, yt) dt + F (t)dW (t), t > a

y(t) = x(t), a− r ≤ t ≤ a, a ≥ r

}
(XX)

suppose that F : [a,∞) → Rd×m and x : [a − r, a] → Rd are continuous. Assume that H

satisfies regularity hypotheses analogous to (S). For each t > a, let

α′t := sup{‖Hξ(u, ξ)‖ : u ∈ [0, t], ξ ∈ C} .

Suppose there exists a positive number δ∗ < 1/(3α′t) such that
∫ t

t−δ∗
µ1(s) ds > 0,

where µ1(s), s ≥ a, is the smallest eigenvalue of the non-negative definite matrix F (s)F (s)∗.
Then for each t > a the solution y(t) of (XX) has an absolutely continuous distribution
with respect to d-dimensional Lebesgue measure and has a C∞ density.

In (XX), suppose H(t, y) = h(t, y(t)) for some Lipschitz function h : R+×Rd → Rd.
Then y is a (time-inhomogeneous) diffusion process. In this case the proof of Theorem
VI.2 gives the following pde result:
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Theorem VI.3. ([BM4])

For each t > 0, let A(t) = [aij(t)]di,j=1 denote a symmetric non-negative definite
d× d-matrix. Let µ2(t) be the smallest eigenvalue of A(t). Assume the following:

(i) The map t 7−→ A(t) is continuous.

(ii) There exists T > 0 such that
∫ T

0
µ2(s) ds > 0.

(iii) The functions bi, i = 1, . . . , d, c : R+ ×Rd → R are bounded, jointly continuous
in (t, x) and have partial derivatives of all orders in x, all of which are bounded in
(t, x). Let T0 := sup{T > 0 :

∫ T

0
µ2(s) ds = 0}, and let Lt,x denote the differential

operator

Lt,x :=
1
2

d∑

j=1

aij(t)
∂2

∂xi∂xj
+

d∑

i=1

bi(t, x)
∂

∂xi
+ c(t, x).

Then the parabolic equation
∂u

∂t
= Lt,xu has a fundamental solution Γ(t, x, y) defined

on (T0,∞)×R2d, which is C1 in t and C∞ in (x, y). Furthermore, if the coefficients
aij(t), bi(t, x), c(t, x), i, j = 1, . . . , d, are C∞ in (t, x), and

lim
t→T0+

(t− T0) log
{∫ t

T0

µ2(s) ds

}
= 0,

then
∂

∂t
−Lt,x is a hypoelliptic operator on (T0,∞)×Rd; (viz. if φ is a distribution

on (T0,∞)×Rd such that
(

∂

∂t
− Lt,x

)
φ is C∞, then φ is also C∞.)

The mean ellipticity hypothesis in (ii) is much weaker than classical pointwise el-
lipticity that is usually assumed in the pde literature.

Problem.

Can Theorem VI.3 be proved using existing pde’s techniques?

Proof of Theorem VI.1. (Outline).

Our objective is to get good probabilistic lower bounds on the Malliavin covariance
matrix of the solution x(t) of (XIX); (cf. the “conditioning argument” in [BM4] which uses
(XX)). We establish the above-mentioned lower bounds using the following steps:
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Step 1.

In (XIX), we use piecewise linear approximations of W to compute the Malliavin
covariance matrix C(T ) of x(T ) as

C(T ) =
∫ T

0

Z(u)g
(
u, x(u− r)

)
g
(
u, x(u− r)

)∗
Z(u)∗ du,

where the (d × d)-matrix-valued process Z : [0, T ] × Ω → Rd×d satisfies the advanced
anticipating Stratonovich integral equation

Z(t) = I +
∫ T

T∧(t+r)

Z(u)D2g
(
u, x(u− r)

)
(·) ◦ dW (u) +

∫ T

t

Z(u)
[{Hx(u, x)∗(·)}′(t)]∗ du,

for 0 ≤ t ≤ T . In the above integral equation, Hx(u, x) is the Fréchet partial derivative of
the map (u, x) 7→ H(u, xu) with respect to x ∈ C

(
[−r, u],Rd

)
; and D2g(t, v) : Rd → Rd×m

is the partial (Fréchet) derivative of g with respect to v ∈ Rd. Let W 1,2 be the Cameron-
Martin subspace of C

(
[−r, u],Rd

)
, and denote by Hx(u, x)∗ the Hilbert-space adjoint of

the restriction Hx(u, x)|W 1,2 : W 1,2 → Rd.

We solve the above integral equation as follows.

Start with the terminal condition Z(T ) = I. On the last delay period [(T−r)∨0, T ]
define Z to be the unique solution of the linear integral equation

Z(t) = I +
∫ T

t

Z(u)
[{Hx(u, x)∗(·)}′(t)]∗ du

for a.e. t ∈ ((T − r) ∨ 0, T ). When T > r, use successive approximations to solve the
anticipating integral equation, treating the stochastic integral as a predefined random
forcing term. This gives a unique solution of the integral equation by successive backward
steps of length r. The matrix Z(t) need not be invertible for small t. It is interesting to
compare Z(t) with the analogous process for the diffusion case (sode). In the latter case
Z(t) is invertible for all t and anticipating integrals are not needed.

Step 2.

Since Hx(u, x) is globally bounded in (u, x), then so is [Hx(u, x)∗(·)]′(t) in (u, x, t)
([BM4], Lemma 3.3). Hence we can choose a deterministic time t0 < T sufficiently close to
T such that almost surely Z(t) is invertible and ‖Z(t)−1‖ ≤ 2 for a.e. t ∈ (t0, T ] ([BM4],
Lemma 3.4).
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Step 3.

The above lower bound on ‖Z(t)‖ and the representation of C(T ) imply that

det C(T ) ≥
[
1
4

∫ T

t0

{ĝ(u, x(u− r))}2 du

]d

a.s.,

where ĝ(u, v) := inf
{|g(u, v)∗(e)| : e ∈ Rd, |e| = 1

}
, for all u ≥ 0, v ∈ Rd.

Step 4.

Note the

Propagation Lemma.

Let −r < a < b < a + r. Then the statement

P

(∫ b

a

|φ(u + r, x(u))|2 du < ε

)
= o(εk)

as ε → 0+ for every k ≥ 1,
implies that

P

(∫ b+r

a+r

|φ(u + r, x(u))|2 du < ε

)
= o(εk)

as ε → 0+ for every k ≥ 1.

The proof of the above lemma uses Itô’s formula, the lower bound on ‖∇φ‖, the poly-
nomial degeneracy condition, and the Kusuoka-Stroock ε1/(18)-lemma! ([BM4], Lemma
4.2).

Step 5.

Using (iv)′ of the remark following Theorem VI.1, we may successively apply Step 4
to propagate the “limited contact” hypothesis on the initial path η ((i) of Theorem VI.1).
This yields the estimate:

P

(∫ T

t0

|φ(u, x(u− r))|2du < ε

)
= o(εk)

as ε → 0+ for every k ≥ 1.
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Step 6.

Using the polynomial degeneracy hypothesis ((i) of Theorem VI.1), Step 5, Jensen’s
inequality, and Lemma 4.3 of ([BM4]), we obtain

P

(∫ T

t0

{ĝ(
u, x(u− r)

)}2 du < ε

)
= o(εk)

as ε → 0+ for every k ≥ 1.

Step 7.

Combining Steps 3 and 6 gives P
(
det C(T ) < ε

)
= o(εk) as ε → 0+ for every k ≥ 1.

This implies that C(T )−1 exists almost surely and det C(T )−1 ∈
∞⋂

q=1
Lq(Ω,R). ¤

2. Diffusions via sdde’s.

In this section, we will prove the following well-known existence theorem for classical
diffusions ([GS]). The proof uses Caratheodory approximations by small delays:

Theorem VI.4.

Let h : Rd → Rd, g : Rd → Rd×m be globally Lipschitz, and W be m-dimensional
Brownian motion on a filtered probability space (Ω,F , (Ft)t≥0, P ). Suppose x0 ∈ Rd. Then
the sode

dx(t) = h(x(t)) dt + g(x(t)) dW (t), t > 0

x(0) = x0

}
(XXI)

has an (Ft)t≥0-adapted solution with continuous sample paths.

Proof. ([BM5])

For simplicity assume that h ≡ 0 and d = m = 1.

Fix 0 < T < ∞. Define the sequence of processes{xk}∞k=1 by

xk(t) =

{
x0 +

∫ t

0
g
[
xk

(
u− 1/k)

]
dW (u), 0 ≤ t ≤ T,

x0, − 1
k ≤ t ≤ 0,

(∗)

for each integer k ≥ 1. Note that each xk exists, is (Ft)t≥0-adapted and continuous.
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Step 1.

Each xk : [0,∞) → L2(Ω,R) is ( 1
2 )-Hölder continuous with Hölder constant inde-

pendent of k. To prove this, observe first that by (∗) and the linear growth property of g,
there is a positive constant K independent of k and such that

E sup
0≤t≤T

(|xk(t)|2 + |g(xk(t))|2) ≤ K

for all k ≥ 1. Then E[xk(t)− xk(s)]2 ≤ K(t− s) for all t, s ∈ [0, T ].

Step 2.

For each t ≥ 0, xk(t) converges to a limit x(t) in L2(Ω,R).

Let L be the Lipschitz constant for g. Then for l > k and 0 ≤ t ≤ T , we have

E[xl(t)− xk(t)]2 = E

{∫ t

0

[
g
(
xl

(
u− 1/l

)
)− g

(
xk

(
u− 1/k)

)]
dW (u)

}2

≤ L2

∫ t

0

E
[
xl(u− 1/l)− xk(u− 1/k)

]2
du

≤ 2L2

∫ t

0

E
[
xl

(
u− 1/l

)− xk
(
u− 1/l

)]2
du

+ 2L2

∫ t

0

E
[
xk

(
u− 1/l

)− xk
(
u− 1/k

)]2
du

≤ 2L2

∫ t−(1/l)

−(1/l)

E[xl(u)− xk(u)]2 du + 2KL2t

(
1
k
− 1

l

)

≤ 2L2

∫ t

0

E[xl(u)− xk(u)]2 du + 2TKL2

(
1
k
− 1

l

)

by Step 1. Thus, by Gronwall’s lemma,

E[xl(t)− xk(t)]2 ≤ 2TKL2

(
1
k
− 1

l

)
e2L2t, 0 ≤ t ≤ T.

Therefore the sequence {xk(t)}∞k=1 converges in L2(Ω,R) to x(t). Also

E[x(t)− xk(t)]2 ≤ 2TKL2

k
e2L2t, 0 ≤ t ≤ T.
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Step 3.

To show that the process x satisfies the sode (XXI) (for h ≡ 0), simply take limits as
k →∞ in both sides of (∗). The left-hand side of (∗) converges to x(t) in L2. Furthermore,
x is (Ft)t≥0-adapted, since each xk is. Also

E

{ ∫ t

0

[
g
(
xk

(
u− 1/k

))− g(x(u))
]

dW (u)
}2

≤ L2

∫ t

0

E
[
xk(u− 1/k)− x(u)

]2
du

≤ 2L2

∫ t

0

E
[
xk(u− 1/k)− xk(u)

]2
du + 2L2

∫ t

0

E[xk(u)− x(u)]2 du

≤ 2L2Kt

k
+

4L4KT

k

∫ t

0

e2L2u du

≤ 2KL2

k

[
t + T

(
e2L2t − 1

)]
, 0 ≤ t ≤ T.

From the above inequality, it follows that the right-hand side of (*) converges in L2 to
x0 +

∫ t

0
g(x(u)) dW (u) as k → ∞. Therefore x satisfies the sode (XXI). Since the Itô

integral has an almost surely continuous modification, it follows from Doob’s inequality
that x also has such a modification. ¤

3. Affine sfde’s. A simple model of population growth.

Recall the following simple population growth model introduced in Chapter I (Ex-
ample 2):

dx(t) = {−αx(t) + βx(t− r)} dt + σdW (t), t > 0, (II)

for a large population x(t) with constant birth rate β > 0 (per capita), constant death rate
α > 0 (per capita), development period r and a migration rate given by white noise with
variance σ.

To determine the stability and growth rates of the population, we will consider the
more general affine system :

dx(t) =
{∫

[−r,0]

µ(ds)x(t + s)
}

dt + dQ(t), t > 0

x0 = η ∈ D := D([−r, 0],Rd).





(X)

In (X), D is the space of all cadlag paths [−r, 0] → Rd with the sup norm ‖ · ‖∞, µ is a
finite Borel measure on [−r, 0], and Q is a cadlag Rd-valued process.
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Theorem VI.5. ([MS3])

Let AH : D(AH) ⊂ D → D be the generator of the homogeneous equation

dx(t) =
{∫

[−r,0]

µ(ds)x(t + s)
}

dt, t > 0

x0 = η ∈ D.





(X ′)

Let {βi : i ≥ 1} be the set of all real parts of the spectrum of AH . Then the Lyapunov
spectrum of (X) coincides with {βi : i ≥ 1} together with possibly −∞.

We now consider the hyperbolic case when βi 6= 0 for all i ≥ 1. In this case, the
following result establishes the existence of a hyperbolic splitting along a unique stationary
solution of (X) ([MS3], Theorem 20) .

Theorem VI.6. ([MS3])

Suppose that Q is cadlag and has stationary increments. Assume that the charac-
teristic equation

det
(

λI −
∫

[−r,0]

eλsµ(ds)
)

= 0

has no roots on the imaginary axis; i.e., βi 6= 0 for all i ≥ 1. Suppose also that

lim sup
t→±∞

1
|t| log |Q(t)| < |βi| a.s.

for all i ≥ 1. Then there is a unique D-valued random variable η∞ such that the tra-
jectory {xη∞

t : t ≥ 0} of (X) is a D-valued stationary process. The random variable η∞
is measurable with respect to the σ-algebra generated by {Q(t) : t ∈ R}. Furthermore, let
β1 > β2 > · · · , be an ordering of the Lyapunov spectrum of (X). Let m be such that βm > 0
and βm+1 < 0. Then there exists a decreasing sequence of finite-codimensional subspaces
{Ei : i ≥ 1} of D such that

lim
t→∞

1
t

log ‖xt(ω)‖∞ = βi, i ≥ 1

if x0(ω) ∈ η∞ + Ei−1\Ei, 1 ≤ i ≤ m, and

lim
t→∞

1
t

log ‖xt(ω)‖∞ ≤ βm+1

if x0(ω) ∈ η∞ + Em.

Results on the existence of p-th moment Lyapunov exponents appear in ([MS3]).
Under a mild non-degeneracy condition on the stationary solution, one gets the existence
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of only one p-th moment exponent (= pβ1) which is independent of all random (possibly
anticipating) initial conditions in D. This result is in agreement with the affine linear
(finite-dimensional) nondelay case (r = 0) ([AOP], [B], [AKO]).

Problem.

Under what conditions on the parameters α, β does (II) have a stationary solution?

We conclude this section by noting the following interesting fact:

The affine hereditary system (X) may be viewed as a finite-dimensional stochas-
tic perturbation of the associated infinitely degenerate deterministic homogeneous system
(X ′) with countably many Lyapunov exponents. However, these finite-dimensional pertur-
bations provide noise that is generically rich enough to account for a single p-th moment
Lyapunov exponent in the affine stochastic system (X).

4. Random delays.

Sfde’s with random delays are discussed in the monograph ([M1], pp. 167-186).
In [M1], the delays are allowed to be random, independent of the noise and essentially
bounded. The Markov property fails, but one gets a measure-valued process with random
Markov transition measures on the state space C.

5. Infinite delays. Stationary solutions.

For a discussion of these issues, the reader may consult the pioneering work of Itô
and Nisio ([IN], pp. 1-75). The main results in [IN] are summarized in [M1], pp. 230-233.
For sfde’s with fading memory, see the works of Mizel and Trutzer [MT], and Marcus and
Mizel [MM].
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linear Itô equations, in Lyapunov Exponents, Springer Lecture Notes in Mathemat-
ics, 1186 (ed. L. Arnold and V. Wihstutz) (1986), 129–159.

[B] Baxendale, P. H., Moment stability and large deviations for linear stochastic dif-
ferential equations, in Ikeda, N. (ed.) Proceedings of the Taniguchi Symposium on
Probabilistic Methods in Mathematical Physics, Katata and Kyoto (1985), 31–54,
Tokyo: Kinokuniya (1987).

[BW] Bailey, H. R. and Williams, M. Z., Some results on the differential difference equa-
tion x′(t) =

∑N
i=0 Aix(t− Ti), J. Math. Anal. Appl. 15 (1966), 569–587.

[B] Bell, D. R., Degenerate Stochastic Differential Equations and Hypoellipticity, Pit-
man Monographs and Surveys in Pure and Applied Mathematics, Vol. 79, Longman,
Essex, 1995.

[BM1] Bell, D. R. and Mohammed, S.-E. A., The Malliavin calculus and stochastic delay
equations, J. Funct. Anal. 99, No. 1 (1991), 75–99.

[BM2] Bell, D.R. and Mohammed, S.-E. A., An extension of Hörmander’s theorem for
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