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The soybean GmSNAP18 gene underlies two types
of resistance to soybean cyst nematode
Shiming Liu1, Pramod K. Kandoth2, Naoufal Lakhssassi1, Jingwen Kang2, Vincent Colantonio1, Robert Heinz2,

Greg Yeckel2, Zhou Zhou1, Sadia Bekal1, Johannes Dapprich3, Bjorn Rotter4, Silvia Cianzio5, Melissa G. Mitchum2

& Khalid Meksem1

Two types of resistant soybean (Glycine max (L.) Merr.) sources are widely used against

soybean cyst nematode (SCN, Heterodera glycines Ichinohe). These include Peking-type

soybean, whose resistance requires both the rhg1-a and Rhg4 alleles, and PI 88788-type

soybean, whose resistance requires only the rhg1-b allele. Multiple copy number of PI 88788-

type GmSNAP18, GmAAT, and GmWI12 in one genomic segment simultaneously contribute to

rhg1-b resistance. Using an integrated set of genetic and genomic approaches, we

demonstrate that the rhg1-a Peking-type GmSNAP18 is sufficient for resistance to SCN in

combination with Rhg4. The two SNAPs (soluble NSF attachment proteins) differ by only five

amino acids. Our findings suggest that Peking-type GmSNAP18 is performing a different role

in SCN resistance than PI 88788-type GmSNAP18. As such, this is an example of a pathogen

resistance gene that has evolved to underlie two types of resistance, yet ensure the same

function within a single plant species.
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S
oybean cyst nematode (SCN), Heterodera glycines Ichinohe,
one of the most devastating pathogens of soybean,
causes more than $1 billion in yield losses annually in the

United States alone1. Although planting resistant cultivars forms
the core management strategy for this pathogen, the mechanism
of soybean resistance to SCN is still unknown. Moreover, the
genetic diversity of resistance is limited and virulent nematode
populations have been identified for most known resistant
sources. Therefore, understanding the molecular nature of
soybean’s resistance to SCN is increasingly important for the
long-term management of this devastating nematode disease.

The first Rhg genes (for resistance to H. glycines) were
identified in the early 1960s. Numerous reports are available
on the identification and mapping of quantitative trait loci
(QTL) in soybeans with underlying resistance to SCN from
a variety of different germplasm sources. QTL on chromosomes
18 (rhg1) and 8 (Rhg4) are the two major resistance QTL that
have been consistently mapped and reported in a variety
of soybean germplasm. In some accessions, such as plant intro-
duction (PI) 88788, rhg1 is sufficient to provide resistance
against the nematode with the gene itself displaying incomplete
dominance2. In other cases, such as the soybean cultivar (cv.)
Forrest, resistance to SCN requires both rhg1 and Rhg4
(ref. 3). Brucker et al. classified the resistant rhg1 into
two types: rhg1-a in Peking-type soybeans and rhg1-b in
PI 88788-type soybeans4. Here we define the susceptible
rhg1 type in Essex and Williams 82 as rhg1-s; otherwise, we
use rhg1 to refer to the locus in general.

Resistant soybean lines carrying the Rhg resistance genes display
an incompatible interaction with the nematode.
Although infective juvenile nematodes penetrate the plant root,
the feeding cells eventually degenerate causing the nematodes to
die before they reach the adult stage. H. glycines exhibits genetic
variability and nematodes carrying the as yet undefined
ror (reproduction on a resistant host) alleles are able to survive
on resistance cultivars thus causing population shifts in the field
associated with monoculture or resistant soybean varieties5.
Recently, progress has been made in the identification of
the major soybean genes underlying SCN resistance at the
rhg1-b and Rhg4 loci, and in the development of specific
DNA markers for SCN resistance selection. Liu et al.6 identified
and functionally validated a serine hydroxymethyltransferase on
chromosome 8 (GmSHMT08) as the Rhg4 gene by high-density
genetic mapping, targeting-induced local lesions in genomes
(TILLING), gene silencing (virus induced gene silencing (VIGS)
and RNA interference) and genetic complementation. Serine
hydroxymethyltransferases (SHMTs) are important in one-
carbon folate metabolism, but how this particular soybean
SHMT functions in resistance to the nematode remains
unknown. Cook et al. reported that the resistance of soybean
rhg1-b to SCN is simultaneously mediated by the high copy
number of three genes (Glyma18g02580, Glyma18g02590 and
Glyma18g02610) within a 31 kb PI 88788 rhg1-b segment7. This
segment also includes partial gene sequences for Glyma18g02570
and Glyma18g02610. Direct repeats (2–10) are present in
SCN-resistant soybean lines, whereas only one copy is present in
SCN-susceptible soybean lines7–9. Using the Glyma18g02590 gene
sequences, two specific KASP (kompetitive allele-specific PCR)
single-nucleotide polymorphism (SNP) markers were developed to
select the rhg1 resistance alleles and the assay can be used to
differentiate Peking-type and PI 88788-type resistance10.

Using a positional cloning approach, we identified rhg1-a
candidate genes within a contrasting 370 kb chromosomal
interval between the resistant line Forrest and the susceptible
line Essex. We then applied ‘region-specific extraction sequen-
cing’ (RSE-Seq), a capture technology developed to enrich

a targeted chromosomal segment for genome sequencing11–13,
to identify SCN resistance genes within the identified 300 kb
chromosomal segment carrying the rhg1 locus. RSE-Seq has been
applied successfully to study yeast, human and zebrafish11–15.
The SNPs and insertions and deletions (InDels) of four soybean
lines (Essex, Forrest, Peking and PI 88788) were analysed using
the Williams 82 genomic sequence as a reference16. The analysis
of the relevant SNPs and InDels identified the GmSNAP18 as the
strongest candidate gene conferring resistance to SCN at the
rhg1 locus. Genetic complementation analyses of the Forrest
GmSNAP18 confirmed its major role in resistance to SCN. The
complementation analyses also showed the Forrest GmSNAP18 is
specifically required for Peking-type resistance, as the resistant
GmSNAP18 allele of PI 88788 or the susceptible rhg1-s could not
restore resistance in the Forrest (Peking-type) Rhg4 background.

Results
Map-based cloning of rhg1-a gene conferring SCN resistance.
To perform positional cloning by high-density genetic mapping of
the rhg1-a gene conferring resistance to SCN, three F5:6 recombi-
nant inbred line (RIL) populations segregating for resistance to
SCN were developed from crosses of the SCN-resistant cv. Forrest
(F) with the SCN-susceptible soybean cvs. Williams 82 (W) and
Essex (E). As Forrest-type resistance to SCN requires both the
rhg1-a and Rhg4, identification of recombinants was conducted
using DNA markers flanking both loci to detect informative
recombinants at the rhg1-a locus (Supplementary Table 1). We
identified a total of 222 recombinant lines with chromosomal
breakpoints around the rhg1-a locus, of which three recombinants
(ExF4361, ExF3126 and WxF6034) were crucial in defining the
interval carrying the rhg1-a or rhg1-s gene. All three lines carried
the Forrest allele at the Rhg4 locus; ExF4361 and ExF3126 were
resistant, whereas WxF6034 was susceptible to SCN (Fig. 1a). The
ExF4361 recombinant suggested that the rhg1-a gene(s) was (were)
located on the left side of marker 37591. The WxF6034 recombi-
nant indicated that the rhg1-a gene(s) was (were) located to the left
of marker 600, excluding the DNA marker 600. The ExF3126
recombination event showed that the rhg1-a gene(s) was (were)
located in the interval between DNA maker 560 and the DNA
marker SIUC-SAT185, excluding DNA marker 560. Taken toge-
ther, the recombinant analyses suggested that the interval
(B14.3 kb) carrying DNA markers 570, 580 and 590 was under-
lying resistance to SCN at the rhg1-a locus in Forrest. Three genes
were identified within the 14.3 kb interval; one codes for an
armadillo/b-catenin-like repeat (Glyma18g02570) at the interval
carrying marker 570; the second is an amino acid transporter
(AAT, Glyma18g02580) at the interval carrying marker 580; the
third is a soluble N-ethylmelaimide sensitive factor (NSF)
attachment protein (GmSNAP18, Glyma18g02590) at the interval
carrying marker 590. The complementary DNAs for each of the
three identified genes were cloned and sequenced. Amino acid
alignments of the predicted armadillo/b-catenin-like repeat and
amino acid transporter protein sequences of Forrest and Essex
revealed identical amino acid sequences between both the resistant
and susceptible lines (Supplementary Fig. 1). A GmSNAP18
genomic DNA sequence comparison of Forrest and PI 88788 with
Essex identified six SNPs (C2447A, C2464G, G4203C, G4206C,
G4206T and C4215A) and four InDels (� 4211G, � 4212G,
� 4213T and � 4213G) within the exons (Fig. 1b), resulting in
nine amino acid changes (Fig. 1c). Thus, GmSNAP18 was deemed
as the strongest candidate gene for conferring resistance to SCN at
the rhg1-a locus.

SNPs and InDels of the targeted rhg1 genomic DNA segment.
In total, 68,638, 68,986, 179,088 and 128,819 high-quality reads with
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an average coverage of about 22.5� , 22.6� , 58.5� and
42.3� were obtained from the RSE-Seq of the targeted 300 kb rhg1
genomic DNA segment of Essex, Forrest, Peking and PI 88788,
respectively. These reads were then mapped to the Williams 82
genomic sequence. Compared with the reference genomic sequence
of Williams 82, 1,472 SNPs and InDels (1081 SNPs, 183 insertions
and 208 deletions) were identified at the targeted 300 kb rhg1
genomic DNA segment (Gm18: 1480001..1780000) of the soybean
lines Essex, Forrest, Peking and PI 88788 (Table 1 and
Supplementary Data 1), equating to 4.91 polymorphisms per kb of
genomic DNA. Within the targeted 300 kb region, 632 SNPs, 109
insertions and 146 deletions were identified in Essex, whereas 835
(618 SNPs, 120 insertions and 97 deletions), 872 (649 SNPs, 123
insertions and 100 deletions) and 1,021 (736 SNPs, 120 insertions
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Figure 1 | Map-based cloning of the soybean rhg1-a gene conferring resistance to SCN. (a) The high-density genetic maps of the rhg1-a locus of three

RILs. The results indicate that the resistant candidates are the region directed by the markers 570, 580 and 590, including 3 genes: Glyma18g02570,

Glyma18g02580 and Glyma18g02590. The black horizontal lines represent approximately 370 kb of the rhg1-a chromosomal interval. The arrows under the

black lines designate the position of each DNA marker and its name. Numbers above the black horizontal line denote the genomic position of each marker

in Williams 82 genome (http://soybase.org). Blue, red and green arrows represent the markers with Williams 82 or Essex alleles, Forrest alleles and

heterozygote alleles (Forrest allele with Essex allele), respectively. Purple arrows represent the marker 600 not showing polymorphisms between Williams

82 and Forrest, but displaying polymorphisms between Forrest/Williams 82 and Essex. (b) Gene model for the GmSNAP18 (Glyma18g02590) genomic DNA

sequence. The gene is 4,223 bp long and contains nine exons (green boxes) and eight introns (solid black lines). The numbers above the green boxes and

the solid black lines indicate the length (bp) of each exon or intron and the numbers under the dotted lines indicate the nucleotide position relative to the

first nucleotide of the start codon. Six SNPs and four InDels within the exons were identified. (c) Comparison of the predicted GmSNAP18 protein

sequences among Forrest, PI88788 (Type I) and Essex, with the amino acid differences (Q203K, D208E, E285Q, D286Y, D286H, D287E, � 288A, � 288V

and L289I). Red, black and blue represent Forrest, PI 88788 and Essex, respectively, in b,c.

Table 1 | The polymorphisms detected at the targeted
300 kb region of Gm18 in four SCN-susceptible or -resistant
soybean lines by RSE-Seq.

Essex Forrest Peking PI 88788 Total

SNPs 632 618 649 736 1,081
Insertions 109 120 123 120 183
Deletions 146 97 100 165 208
Total 887 835 872 1,021 1,472

RSE-Seq, region-specific extraction sequencing; SCN, soybean cyst nematode; SNP, single-
nucleotide polymorphism.
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and 165 deletions) SNPs and InDels were identified in Forrest,
Peking and PI 88788, respectively (Table 1 and Supplementary Data
1). This came to about 2.96, 2.78, 2.91 and 3.40 polymorphisms per
kb of genomic DNA in Essex, Forrest, Peking and PI 88788,
respectively.

Among all of the polymorphisms called, there are many
overlapping polymorphisms. As shown in Fig. 2, 246 SNPs
(EFP88-S246), 42 insertions (EFP88-I42) and 42 deletions
(EFP88-D42) are found in common among Essex, Forrest,
Peking and PI 88788. In addition, 127 more SNPs (FP88-S127),
21 more insertions (FP88-I21) and 27 more deletions (FP88-D27)
are in common among Forrest, Peking and PI 88788. Forrest
and Peking uniquely retained 232 SNPs (FP-S232), 47 insertions
(FP-I47) and 28 deletions (FP-D28). Peking and PI 88788
uniquely retained 19 SNPs (P88-S19) and 3 insertions (P88-I3),
whereas PI 88788 uniquely retained 49 SNPs (88-S49),
3 insertions (88-I3) and 4 deletions (88-D4).

Direct identification of the rhg1 candidate gene GmSNAP18.
Compared with susceptible soybeans, we identified 408 SNPs
(FP88-S127, FP-S232 and 88-S49), 71 insertions (FP88-I21, FP-I47

and 88-I3) and 59 deletions (FP88-D27, FP-D28 and 88-D4) in
the resistant Forrest, Peking and/or PI 88788 (Fig. 2 and
Supplementary Data 1). Among them, 175 SNPs and InDels,
including 127 SNPs (FP88-S127), 21 insertions (PF88-I21) and 27
deletions (PF88-D27), were considered to be associated with the
alleles underlying resistance to SCN. Furthermore, 26 SNPs and
InDels resulted in 25 amino acid changes (Supplementary Table 2
and Supplementary Data 1). However, when the genomic DNA
sequences of the GmSNAP18 from Forrest and PI 88788 were
compared with those of the susceptible line Essex, only six SNPs
(C2447A, C2464G, G4203C, G4206C, G4206T and C4215A) and
four InDels (� 4211G, � 4212G, � 4213T and � 4213G) were
mapped to the exons of gene Glyma18g02590 (GmSNAP18). The
identified polymorphisms resulted in nine amino acid changes
(Supplementary Table 2). Thus, GmSNAP18 was identified to be
the most probable candidate gene conferring resistance to SCN at
the rhg1 locus, consistent with the results of map-based cloning
(Fig. 1). The predicted GmSNAP18 protein of Forrest and Peking
is different from that of PI 88788. This is consistent with previous
genetic results (termed as rhg1-a in Peking-type soybeans and
rhg1-b in PI 88788-type soybeans)4.
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Figure 2 | Analysis of the polymorphisms associated with the alleles underlying resistance to SCN. The results suggest that 127 SNPs (FP88-S127,

green), 21 insertions (FP88-I21, green) and 27 deletions (FP88-D27, green) possessed by Forrest, Peking and PI88788, but not by Essex, are most possibly

associated with the alleles underlying resistance to SCN. The number after S, I and D stands for the number of SNPs (S), insertions (I) or deletions (D),

respectively. EFP88, EFP, EF88, EP88, FP88, EP, E88, FP, F88 and P88 stand for the overlapped SNPs, insertions or deletions of Essex (E), Forrest (F), Peking

(P) and PI 88788 (88), respectively.

Table 2 | Multiple types of GmSNAP18 of four SCN-susceptible or -resistant soybean lines identified by RSE-Seq compared with
Williams 82

Type Reads
no.

203 208 Type Reads
no.

285 286 287 288

Williams
82

CAA
Q

GAC
D

GAG
E

GAT
D

GAT
D

CTT
L

Essex I 49 CAA
Q

GAC
D

I 56 GAG
E

GAT
D

GAT
D

CTT
L

Forrest I 76 CAA
Q

GAG
E

I 92 GAG
E

TAT
Y

GAGGTT
E V

ATT
I

Peking I 198 CAA
Q

GAG
E

I 152 GAG
E

TAT
Y

GAGGTT
E V

ATT
I

PI88788 I 163 AAA
K

GAC
D

I 150 CAG
Q

CAT
H

GAGGCT
E A

ATT
I

II 19 CAA
Q

GAC
D

II 15 GAG
E

GAT
D

GAT
D

CTT
L

RSE-Seq, region-specific extraction sequencing; SCN, soybean cyst nematode.
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Multiple types of GmSNAP18 at the rhg1 locus. The RSE-Seq
data indicated that multiple types of GmSNAP18 existed within
rhg1 (Gm18: 1480001..1780000). In Forrest and Peking, only
one type was identified within the whole segment between
Glyma18g02570 and Glyma18g02610, whereas PI 88788 was
different. All types of GmSNAP18 within the exons with or
without amino acid changes, compared with the predicted
GmSNAP18 protein of Williams 82, are summarized in Table 2.
PI 88788 showed two types of GmSNAP18 (Type I, whose
sequence is identical to that in the map-based cloning section
mentioned above, and Type II, identical to the specific type of

Williams 82 and Essex) at amino acid positions 203 and 285–288.
These two types of GmSNAP18 are the same as the two types of
GmSNAP18 in PI 88788 reported previously7,9. However, the
third type of GmSNAP18 in PI 88788 (deletion at position 203)
reported previously7 was not detected within the 150 or more
RSE-Seq reads at each position. The ratio of number of reads of
Type I and Type II of the GmSNAP18 in PI 88788 is about 8–9:1.
Meanwhile, the sole type of GmSNAP18 in both Forrest and
Peking is different from the two types of GmSNAP18 in PI 88788.
In addition, Glyma18g02610 also exhibited two types at the
50-untranslated region in PI 88788: one is the same as that

Table 3 | Genetic mapping of rhg1 and Rhg4 loci of 11 soybean lines using 4 DNA markers for rhg1 locus and 1 DNA marker with
GmSHMT08 sequencing for Rhg4 locus.

Soybean lines SCN infection phenotype rhg1 Locus Rhg4 locus

560 570 590 Satt309 GmSHMT08 Sat_162

Forrest R R R R R R R
Peking R R R R R R R
PI 437654 R R R R R R R
PI 89772 R R R R R R R
PI 90763 R R R R R R R

PI 88788 R R R R S S R
PI 548316 R R R R S S R
PI 209332 R R R R S S S

Essex S S S S S S S
Williams 82 S S S S S S S
PI 603428C S S S S R S R

FI, female index; R, resistant; S, susceptible; SCN, soybean cyst nematode.The Forrest genotype is classified as the R genotype and the Essex genotype is the S genotype. Lines are classified R to SCN if FI
r10% and S if FI 410%.

Haplotype

ATG
TGA

Soybean lines 203 208 251 261 263 285 286 287 288 289 Rhg4 genotype SCN infection phenotype

Forrest

Peking

PI 437654

PI 89772

PI 90763
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A Q E T T L E Y E V I R R R

A Q E T T L E Y E V I R R R

A Q E T T L E Y E V I R R R

A Q E T T L E Y E V I R R R

A Q E T A L E Y E V I R R R

II

A K D T T L Q H E A I R S R

D K D T T L Q H E A I R S R

A K D S T L Q H E A I R S R

III
A Q D T T L E D D - L S S S

PI 603428C A Q D T T L E D D - L S S S

Essex A Q D T T L E D D - L S S S

Q203K D208E E285Q  D286Y D286H D287E –288V –288A L289I

Figure 3 | Haplotypes identified at GmSNAP18 in 11 soybean lines. The GmSNAP18 coding region for the 11 lines shown here was sequenced. The amino

acid differences resulting from the nucleotide polymorphisms in the predicted protein sequences of GmSNAP18 in 11 soybean lines are shown in the top

and bottom panels where the number indicates the position of an amino acid in the predicted protein. The nucleotide polymorphisms and amino acid

differences detected in the exons among Forrest, PI 88788, and Essex are in red boxes with dotted lines linking them. Haplotyping results from these

11 soybean lines clearly indicate three types of GmSNAP18 haplotypes: two resistant types (Peking-Type I including Peking, Forrest, PI 437654, PI 89772 and

PI 90763; and PI 88788-Type II including PI 88788, PI 548316 and PI 209332) and one susceptible Type III including Essex, Williams 82 and PI 603428C.
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of Williams 82, whereas the other is a new type identical to that
of Forrest and Peking.

Haplotypes of the GmSNAP18 predict SCN resistance.
To establish a link between GmSNAP18 alleles and soybean
resistance to SCN, we scored 81 soybean lines (including PIs,
landraces and elite cultivars, as described previously6)
representing 95% of the sequence diversity of soybeans for their
SCN female index (FI)17 and then determined their SNP-based
GmSNAP18 haplotype after genotyping them at the rhg1
and Rhg4 loci (Table 3). The genotyping data were clustered
(Fig. 2 and Supplementary Table 1 of Liu et al.6) and 11 soybean
lines were selected to fully sequence their GmSNAP18 genes.
As a result, 14 polymorphisms (10 SNPs and 4 InDels) at
13 positions were identified within the exons of GmSNAP18
(Fig. 3). In total, three different GmSNAP18 haplotypes were
identified. Soybean lines with Haplotype I carry resistant alleles at
both GmSNAP18 and Rhg4 (GmSHMT08), and are resistant
to SCN (Table 3 and Liu et al.6). This includes soybean lines
PI 548402 (Peking), Forrest, PI 90763, PI 437654 and PI 89772,
all of which exhibit ‘Peking-type’ resistance and require both
rhg1 and Rhg4 (GmSHMT08). Soybean lines with Haplotype III
carry the susceptible GmSNAP18, but vary for either the resistant
or susceptible allele at the Rhg4 GmSHMT08 (Table 3 and
Liu et al.6). These lines are susceptible to SCN, regardless of the
Rhg4 GmSHMT08 genotype, and include soybean cultivars Essex,
Williams 82 and PI 603428C. Soybean lines with Haplotype II
carry the resistant allele at GmSNAP18, but vary for either
the resistant or susceptible allele at the Rhg4 GmSHMT08
(Table 3 and Liu et al.6). These lines are resistant to SCN and
include PI 88788, PI 209332 and PI 548316 (cv. Cloud), all of
which exhibit ‘PI 88788-type’ resistance. In summary, the
GmSNAP18 haplotyping analysis is in agreement with previous
SCN-resistance QTL reports and confirms the requirement
of rhg1 for the SCN resistance in both PI 88788 and Peking.

Expression analyses of GmSNAP18. To gain more insight
into the genetic responses of GmSNAP18 to SCN, we analysed

the expression of GmSNAP18 in Essex, Forrest and PI 88788
during SCN infection through quantitative reverse transcriptase–
PCR (qRT–PCR). The results (Fig. 4) show that the transcripts
of GmSNAP18 were induced in the resistant lines Forrest and
PI 88788, whereas the susceptible line Essex showed very
low transcription levels of GmSNAP18 during SCN infection.
Without SCN infection, GmSNAP18 was expressed 2.1 times
more in Forrest than in Essex and 8.3 times more in PI 88788
than in Essex. Under SCN infection, GmSNAP18 transcripts
were induced 2.3 and 2.5 times more in Forrest than in
uninfected Forrest, and 2 and 1.1 times more in PI 88788 than in
uninfected PI88788 at 3 and 5 days after SCN infection,
respectively.

We successively analysed the GmSNAP18 expression in the
ExF RILs together with GmSNAP18 and GmSHMT08 genotyping
and phenotyping (Fig. 4 and Supplementary Data 2). In this
work, GmSNAP18þ and GmSNAP18� , and GmSHMT08þ and
GmSHMT08� represent Forrest and Essex GmSNAP18, and Forrest
and Essex GmSHMT08, respectively; GmSNAP18-Pþ represents PI
88788 GmSNAP18. The results demonstrate that GmSNAP18
transcripts were induced in the ExF RILs carrying GmSNAP18þ /
GmSHMT08þ (ExF7) and GmSNAP18þ /GmSHMT08� (ExF12),
whereas the ExF RILs carrying GmSNAP18� /GmSHMT08þ

(ExF68) did not show significant changes in the expression
of GmSNAP18, after SCN infection (3 days). ExF RILs carrying
GmSNAP18þ /GmSHMT08þ display resistance to SCN, whereas the
ExF RILs carrying GmSNAP18� /GmSHMT08þ or GmSNAP18þ /
GmSHMT08� do not show resistance to SCN (Fig. 4 and
Supplementary Data 2). These results further support a role for
GmSNAP18 in resistance to SCN.

Genetic complementation of Forrest rhg1-a resistance. In
Forrest, both rhg1-a and Rhg4 alleles are required for resistance to
SCN. VIGS silencing of Forrest GmSNAP18 (rhg1-a) in resistant
soybean RIL ExF67 carrying GmSNAP18þ /GmSHMT08þ

resulted in a strong cell death phenotype in the shoots, ultimately
killing the plant (Supplementary Fig. 2). Therefore, to test the
Forrest GmSNAP18 for contribution to rhg1-a resistance, we used

0

E-C
E-3

D
E-5

D
F-C

F-3
D

F-5
D

ExF
7a

-C

ExF
68

a-
C

ExF
68

a-
3D

ExF
68

a-
5D

ExF
12

a-
C

PI-C
PI-3

D
PI-5

D

ExF
12

a-
3D

ExF
12

a-
5D

ExF
7a

-3
D

ExF
7a

-5
D

0.1

0.2

0.3

0.4

0.5

0.6

0.7

** **

****

****

****

Genotype    

FI (%) 100±6.86 3.65±0.80 3.84±1.52 100.38±7.71 106.34±3.69 2.11±0.80

GmSNAP18–/GmSHMT08– GmSNAP18+/GmSHMT08+ GmSNAP18+/GmSHMT08+ GmSNAP18–/GmSHMT08+ GmSNAP18+/GmSHMT08– GmSNAP18 -P+/GmSHMT08–

R
el

at
iv

e 
tr

an
sc

rip
tio

n 
le

ve
l
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and Essex GmSHMT08, respectively; GmSNAP18-Pþ represents PI 88788 GmSNAP18. Five replicates each line were performed, except for few lines with

only three or four replicates due to one or two seeds that did not germinate. The error bar stands for the s.e.m. Asterisks indicate significant differences

between samples as determined by t-test (****Po.0001 and **Po.01).
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the SCN-susceptible RIL ExF50 carrying GmSNAP18� /
GmSHMT08þ , which has the resistant Forrest allele at the Rhg4
locus and the susceptible Essex allele at the rhg1 (rhg1-s) locus.
As GmSNAP18 occurs in multiple copies at this locus in the
resistant soybean7–9, the construct was made to express the gene
under the control of a CaMV 35S promoter in planta. Roots of
RIL ExF67 transformed with the plasmid vector were used as a
positive control for resistance. The transgenic hairy roots
overexpressing Forrest GmSNAP18 (rhg1-a) grew normally, but
showed a significant reduction in SCN development compared
with the control transgenic hairy roots in infection assays (Fig. 5a
and Supplementary Figs 3a and 4). We also tested the amino acid
transporter (AAT, Glyma18g02580, the predicted protein
sequences between Forrest and Essex are identical (Supple-
mentary Fig. 1) and did not observe a significant reduction in
SCN development compared with the control transgenic hairy
roots in infection assays (Fig. 5a and Supplementary Figs 3b
and 4). The predicted protein sequences of Glyma18g02570
of both Forrest and Essex are identical to that of Williams
82 (http://soybase.org) (Supplementary Fig. 1). Glyma18g02570
did not contribute to SCN resistance7 and therefore was not
tested in this study. These data suggest that the GmSNAP18 gene
at the rhg1-a locus is sufficient to confer SCN resistance in
Forrest. We also expressed the GmSNAP18 genes from two other
soybean lines: Essex (rhg1-s) and PI 88788 (rhg1-b). Expression of
the GmSNAP18 gene from either Essex or PI 88788 in RIL ExF50
did not result in a significant reduction in SCN development
compared with the control (Fig. 5b and Supplementary Fig. 4),
demonstrating the specificity of Forrest GmSNAP18 in conferring
Peking-type soybean resistance to SCN.

Modelling of GmSNAP18. To understand the locations of the
different identified haplotypes of GmSNAP18 and how they may
confer SCN resistance, the Forrest GmSNAP18 was modelled and

then each haplotype of the other soybean lines (Fig. 3) was
mapped. The modelling showed that most of the identified
differences were at the carboxy-terminus of the GmSNAP18.
These haplotypes not only varied between PI 88788-type and
Peking-type resistant lines, but also between the resistant and
susceptible lines (Fig. 6). Through structural analyses, variations
in the GmSNAP18 C-terminal residues 285–289 (E285, Y286,
E287, V288 and I289) may play a role in establishing protein–
protein interactions or modulating vesicular exocytosis18. It has
been reported that the C-terminus of soluble N-ethylmaleimide
sensitive fusion attachment proteins (SNAPs; last 25 residues)
determines its functionality in vesicle trafficking and
localization19. The Q203K haplotype in PI 88788-type soybeans
(Fig. 3) has an altered charge of the immediate environment from
an uncharged glutamine to a positively charged lysine. The
T261A variation only occurring in PI 90763 (Fig. 3) shows a
polarity shift from a polar threonine in all other soybean lines to a
non-polar alanine, which probably enables PI 90763 to acquire
new resistance to certain SCN Hg Types. Similarly, the T251S
variation in PI 209332 and A39D in PI 548316 may play a role in
nematode effector recognition, as this ability differs from its
closest soybean haplotypes (Fig. 3).

Discussion
In this study, GmSNAP18 was identified as the rhg1-a gene
conferring resistance to SCN using an integrated set of genomic
and genetic approaches in combination with genetic comple-
mentation analyses. A high-density genetic map of a 370 kb
chromosomal segment carrying the Forrest rhg1-a locus was
developed using three RIL populations (Fig. 1a). Three recombi-
nation events (ExF3126, ExF4361 and WxF6034) narrowed
the rhg1-a gene candidate to a region containing three
genes, Glyma18g02570, Glyma18g02580 and Glyma18g02590
(GmSNAP18) (Fig. 1a). Similar to Peking7, three tandem copies
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Figure 5 | SCN infection of transgenic hairy roots of ExF50 expressing GmSNAP18 or AAT. (a) SCN infection of RIL ExF50 transgenic hairy roots
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represents the number of cysts on a single hairy root line. The number of dots corresponds to the number of independent hairy root lines used. Mean

values significantly different from the control were determined using an unpaired t-test (Po0.0004) and are denoted by different letters. Similar results

were obtained from at least five independent experiments with Forrest GmSNAP18 and at least two independent experiments with AAT. Data from one

representative experiment are shown. (b) SCN infection of RIL ExF50 transgenic hairy roots expressing GmSNAP18 of Forrest, Essex or PI 88788.

Vector-transformed ExF50 (SCN-susceptible) hairy roots were used as a control. Each dot represents the number of cysts on a single hairy root line.

The number of dots corresponds to the number of independent hairy root lines used. Mean values significantly different from the control were determined

using an unpaired t-test (Po0.0015) and are denoted by different letters. Similar results were obtained from at least three independent experiments.
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of the Glyma18g02570, Glyma18g02580 and Glyma18g02590 are
present within the rhg1-a locus in the cultivar Forrest. The
recombinant WxF6034 carried the Forrest allele for
Glyma18g02610, but was susceptible to SCN, indicating that the
Glyma18g02610 gene is not contributing to the SCN resistance in
the Forrest background. Previously, the leucine-rich repeat
receptor-like kinase (LRR-RLK) genes at the rhg1 and Rhg4
loci were claimed as the resistance genes20–24. However,
Melito et al.25 and Liu et al.26 demonstrated that the LRR-RLK
genes at the rhg1 and Rhg4 loci did not confer SCN resistance. In
the present work, the rhg1-a genetic map of susceptible RIL
WxF6034 clearly showed that WxF6034 carried the Forrest
genotype at the TMD1 marker and the flanking region carrying
the LRR-RLK gene (Fig. 1a), excluding the rhg1-a LRR-RLK
candidate resistance gene in support of earlier work.

To further confirm the reliability of the constructed genetic
map, RSE-Seq was used to study the SNPs and InDels among
resistant and susceptible genotypes to pinpoint candidate genes
for resistance to SCN at the rhg1 locus. RSE has been successfully
applied to yeast, human and zebrafish11–15, but has not yet
been applied to plants. Here we show that RSE-Seq of a targeted
300 kb genomic DNA segment (Gm18: 1480001..1780000) of

contrasting chromosomal regions underlying resistance was
effective in the direct identification of a candidate rhg1
SCN resistance gene (Table 1 and Fig. 2). We postulated that
the SNPs and InDels at rhg1 most likely to be associated with the
alleles underlying resistance to SCN would be shared by Forrest,
Peking, and/or PI 88788, but not present in the genomic DNA of
susceptible line Essex at the rhg1 locus. Furthermore, those
with changes within exons that resulted in amino acid changes
would be considered high priority candidates. Compared with
the genomic sequence of Williams 82 at that targeted 300 kb
rhg1 genomic DNA segment, the sequence analysis of Forrest,
Peking and PI 88788 resulted in the identification of 835, 872, and
1021 SNPs and InDels, respectively. In contrast, Essex showed
886 SNPs and InDels (Table 1 and Supplementary Data 1), of
which only 26 SNPs and InDels were potentially associated with
the alleles underlying resistance to SCN (Supplementary Table 2).
Furthermore, of those 26 SNPs and InDels, 10 were specific to
Forrest, Peking, and PI 88788, and all were located within the
exons of one gene Glyma18g02590 (GmSNAP18). This resulted in
nine amino acid changes to the predicted GmSNAP18 protein
(Supplementary Table 2). The other SNPs and InDels identified
did not result in any amino acid changes. Thus, consistent with
the genetic mapping results, GmSNAP18 was identified as the
rhg1 candidate gene probably conferring resistance to SCN. The
results obtained in this study suggest that the RSE method is a
powerful tool for the preparation of specific genomic regions for
next-generation sequencing (NGS). However, the design of
specific primers is critical when working with organisms
possessing repetitive genome sequences. For instance, the
soybean genome is about 1.115 Gb in size27, but 40–60% of the
soybean genome is repetitive sequence and heterochromatic28–30.
To enrich the specific region (Gm18: 1480001..1780000), one
primer was designed approximately every 5 kb for a total of
60 primers spanning the targeted genomic DNA region. Specific
primers ensured that other homeologous genomic DNA segments
(that is, chromosome 11) were not enriched to avoid biased
sequence reads which could have complicated the sequence
data analyses.

The genetic complementation analyses of GmSNAP18 clearly
showed that the transgenic ExF50 (GmSNAP18� /GmSHMT08þ )
gained resistance to SCN after being complemented with the
Forrest GmSNAP18, but not when complemented with Forrest
AAT (Fig. 5a and Supplementary Fig. 4), indicating that the
Forrest GmSNAP18 is the gene at the rhg1-a locus that confers
resistance to SCN. In addition, the PI 88788 GmSNAP18 (rhg1-b)
or Essex GmSNAP18 (rhg1-s) could not restore resistance to
ExF50 (Fig. 5b and Supplementary Fig. 4), showing that the
only form of GmSNAP18 that could complement the ExF50
RIL is the Forrest-type GmSNAP18 (rhg1-a). These data suggest
that the resistant form of the PI 88788 GmSNAP18 is unable
to communicate with the Forrest GmSHMT08 (Rhg4), to confer
resistance to SCN. Our genetic mapping results did not include
Glyma18g02610 among the rhg1-a candidate genes (Fig. 1a).
Thus, the complementation results indicate that the SCN
resistance at the rhg1-a locus in Forrest is triggered by
GmSNAP18 alone, contrasting with the rhg1-b in PI 88788,
whose resistance is due to the high copy number and concerted
activity of three genes7.

Forrest, Peking and PI 88788 require the presence of either the
resistant rhg1-a or rhg1-b allele to exhibit resistance to SCN2,3,6,7.
In addition, the resistance of Forrest and Peking to SCN requires
the Rhg4 gene6. The resistance reaction of Peking-type soybeans
to nematodes is quick and forceful leading to a rapid
degeneration of the syncytium, whereas PI 88788-type soybeans
react to nematodes comparatively slower31. SCN populations that
have adapted to reproduce on soybeans with either Peking-type
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or PI 88788-type resistance have been reported32. According to
the different haplotypes of GmSNAP18 identified from
a collection of 81 soybean lines, Peking, Forrest, PI 90763,
PI 437654 and PI 89772 were classified as Peking-type soybeans;
PI 88788, PI 209332 and PI 548316 were classified as PI 88788-
type soybeans; and Essex, Williams 82 and PI 603428C were
classified as SCN-susceptible-type soybeans (Table 3 and Fig. 3).
All are in agreement with the previous genetic results, showing
that the SCN resistance of Peking-type soybeans such as
Forrest requires both rhg1-a and Rhg4 (GmSHMT08)2,3,6.
The genomic and cDNA sequences of the GmSNAP18
conferring SCN resistance were different between Peking-type
soybeans and PI 88788-type soybeans (Fig. 1b), consistent
with the different rhg1 loci identified in both lines (rhg1-a and
rhg1-b)4.

SNAPs are highly conserved proteins and belong to the
tetratricopeptide repeat containing protein family. Tetratricopep-
tide repeat proteins are known to be involved in vesicular
trafficking, cytokinesis and plasma membrane repair and
stability33–37. SNAP proteins have been described as the
member of the SNARE complex involved in many pathogen
resistance pathways. It has been reported that SNAP, together
with syntaxins SYP121 and SYP132, contributes to the resistance
to fungi and bacteria38,39. The major amino acid changes of
GmSNAP18 between susceptible, Peking-type and PI 88788-type
soybean lines were mostly mapped in the C-terminus of the
protein (Fig. 6), which we classified into different haplotypes
(Fig. 3). Considering that the C-terminus of SNAP proteins have
been found to control vesicular trafficking19, the haplotype
differences among susceptible, Peking-type and PI 88788-type
soybeans may alter the destination of a GmSNAP18-guided
vesicle. In addition to the two major resistant haplotypes
(Peking and PI 88788), there are also the PI 90763 (T261A),
PI 548316 (A39D), and PI 209332 (T251S) haplotypes. SNAP
proteins have also been found to have their activity altered by
phosphorylation. As most kinases act on serine or threonine, the
T261A and T251S may have altered phosphorylation capabilities.
Various a-SNAP haplotypes may also play a role in nematode
effector recognition40 or in establishing protein–protein
interactions41,42. Thus, the differences in GmSNAP18 among
soybean genotypes could determine the type of interactions
between the nematode and the soybean host.

Taken together, our results support a model wherein
GmSNAP18 is a major factor mediating the different types of
soybean resistance to SCN. Our findings suggest that the Peking-
type GmSNAP18 is performing a different role in SCN resistance
than PI 88788-type GmSNAP18. This is an example of a pathogen
resistance gene that has evolved to underly two types of
resistance, yet ensure the same function within a single plant
species. Now that the major genes for resistance to SCN have
been discovered, the molecular and biochemical mechanisms of
soybean resistance to SCN can be explored in detail.

Methods
Nematode and plant materials. The inbred SCN population PA3 (Hg Type 0)
used in this study was mass selected on soybean cv. Williams 82 according to
standard procedures32 at the University of Missouri. The soybean cultivars Forrest43,
Peking and PI88788 are resistant to SCN PA3. The soybean cultivars Essex44 and
Williams 82 (ref. 45) are susceptible to SCN PA3. The three RIL populations (crosses
between Forrest and Essex (ExF) or Williams 82 (FxW or WxF), 3,913 RILs in total)
were bred by Iowa State University and phenotyped for SCN resistance by the
University of Missouri using established methodology46. The collection of soybean
lines used in this study was obtained from the United States Department of
Agriculture (USDA) Soybean Germplasm Collection, University of Illinois.

Extraction of soybean genomic DNA. The soybean seeds were planted in the
greenhouse at Southern Illinois University, germinating and growing at 25–30 �C.
One top young trifoliate leaf of a seedling from each soybean line was collected

for the extraction of genomic DNA about 2 weeks after germination. The genomic
DNA extraction was performed using a Qiagen DNeasy Plant Mini Kit or a Qiagen
DNeasy 96 Plant Kit (Qiagen Sciences, USA) per the manufacturer’s manual
instructions. The DNA extracted was quantified to 100 ng ml� 1 for RSE-Seq,
genetic mapping, haplotyping and TILLING mutation screening.

Map-based cloning of the rhg1-a gene. Three genetic populations segregating
for resistance to SCN PA3 (Hg Type 0) were used for mapping. These included an
F5:6 RIL population from a cross between Forrest and Essex (98 individuals) and
two large F5:6 RIL populations generated from crosses between Forrest and either
Essex (1,755 lines) or Williams 82 (2,060 lines) to enrich the chromosomal interval
carrying the rhg1 gene recombinants.

As Forrest resistance to SCN requires both the rhg1-a and Rhg4 genes3,
genotyping was conducted using DNA markers flanking both loci to detect
informative recombinants at the rhg1 locus (Supplementary Table 1). The
simple sequence repeat (SSR) markers Sat_210, Satt309 and SIUC-SAT143 were
used to identify chromosomal breakpoints at the rhg1-a locus. PCR amplifications
were performed using DNA from individuals from each of the three genetic
populations. Cycling parameters were as follows: 35 cycles of 94 �C for 30 s, 50 �C
for 30 s and 72 �C for 30 s with 7 min of extension at 72 �C. The PCR products were
separated on 3–4% metaphor agarose gels. The identified recombinants were
subjected to a second screening by using the EcoTILLING marker SHMT6 and the
simple sequence repeat (SSR) marker Sat_162 to identify the Rhg4 genotype of each
recombinant.

To enrich the chromosomal regions carrying the rhg1-a locus with
DNA markers, the GenBank published sequence AX196295 spanning the region
and the Williams 82 reference sequence on http://soybase.org, spanning this region
were used to design PCR primers every 5–10 kb of the 370 kb carrying the rhg1
locus (Supplementary Table 1). DNA from Forrest, Essex and Williams 82 was
tested with each primer, using a modified EcoTILLING protocol, to find and map
polymorphic sequences at the rhg1 locus6,26,47. The identified SNP and InDel
DNA markers were integrated into the informative recombinants to identify
chromosomal breakpoints and the interval that carried the rhg1-a gene.

Isolation of the genomic and cDNA sequences of GmSNAP18. The genomic
DNA and cDNA of GmSNAP18 in Forrest, Essex and PI 88788 were cloned and
sequenced. Genomic DNA was isolated from young leaves using the DNeasy Plant
Mini Kit (Qiagen Sciences). Total RNA was isolated from roots using the RNeasy
Plant Mini Kit (Qiagen Sciences) and cDNA was synthesized using a cDNA
synthesis kit (Invitrogen, USA). PCR primers based on the Forrest and Essex
genomic DNA sequences were used to amplify the corresponding cDNA sequences
(Supplementary Table 1).

Enrichment of one targeted 300 kb rhg1 genomic DNA segment. Using
Williams 82 genomic sequence as the reference sequence, a specific oligonucleotide
primer was designed about each 5 kb between Gm18: 1480001 and 1780000 for the
RSE of one targeted 300 kb rhg1 genomic DNA segment (Supplementary Table 3).
RSE was performed using the genomic DNA of Essex, Forrest, Peking and PI 88788
as described by Gabriel et al.11 and Dapprich et al.12, by Generation Biotech
(Lawrenceville, NJ, USA). Briefly, capture primers designed were designed to
hybridize to targeted areas of the genome by exploiting sequence elements that are
unique to the region of interest. The bound oligos are extended with biotinylated
nucleotides to label the targeted DNA segments. Streptavidin-coated magnetic
microparticles are then added to the reaction mix to isolate the targeted DNA,
along with its flanking regions. The 30 ml RSE reaction mix consisted of a premixed
set of targeting primers combined with 600 ng of genomic DNA. The genomic
DNA was denatured and an automated capture was performed, followed by
washing and elution in preloaded reagent cartridges. After RSE, the enriched
DNA from each sample was removed from the microparticles by heating the
solution at 80 oC for 15 min to disrupt the biotin–streptavidin complex12. The
microparticles were magnetically collected and the elute containing the enriched
regional genomic DNA was retained for theNGS.

NGS of the targeted 300 kb rhg1 genomic DNA segment. The NGS of the
targeted 300 kb rhg1 genomic DNA segment of the soybean lines Essex, Forrest,
Peking and PI 88788 was carried out by GenXPro GmbH in Frankfurt, Germany.
Briefly, the enriched samples RSEed in the last step were amplified with an Illustra
GenomiPhi V2 DNA amplification kit (GE Healthcare) according to the
manufacturer’s protocol. Residual primers and dNTPs were deactivated with
ExoSAP-IT as per the manufacturer’s protocol. For each sample, approximately
2 mg of enriched, amplified genomic DNA was used as input for the preparation
of the sequencing library. The library was prepared for sequencing using the
Illumina Genomic DNA Sample Prep Kit. Sequencing was performed using an
Illumina Hiseq2000.

Reads mapping and calling of SNPs and InDels. After the reads were analysed
and filtered following sequencing, the high-quality reads were mapped with
novoalign version 2.07.14 to the Williams 82 genomic sequence, resulting
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in a BAM file for each soybean line with the SAMTools48. The sequences were
analysed with a Tablet viewer49 and an IGV viewer50 for the building of consensus
sequences, and the manual calling of SNPs and InDels using the Williams 82
genomic sequence as a reference sequence.

Haplotyping of GmSNAP18 in soybean lines. A total of 81 soybean lines
(PIs, landraces and elite cultivars), representing 95% of the genetic variability
of soybeans17, were scored for their SCN FI. Lines were classified resistant (R) to
SCN if the FI was r10% and susceptible (S) if the FI was 410%. Soybean lines
were genotyped at the rhg1 locus by using the DNA markers 560, 570 and Satt309.
They were also genotyped at the Rhg4 locus, using the DNA marker Sat_162 and by
the sequencing of GmSHMT08 (ref. 6). The coding region of GmSNAP18 was
sequenced for 11 lines. Common SNPs and InDels were identified and used to
determine the different GmSNAP18 haplotypes.

Quantitative RT–PCR of the GmSNAP18 gene. Soybean seedlings from the
susceptible line Essex, the resistant lines Forrest and PI 88788, and two RILs ExF7
(GmSNAP18þ /GmSHMT08þ ) and ExF68 (GmSNAP18� /GmSHMT08þ ) were
grown in autoclaved sandy soil in the growth chamber for 1 week and then infected
with infective eggs from the PA3 population. Total RNA was isolated from root
samples 3 and 5 days after SCN infection using Qiagen RNeasy Plant Mini Kit
(Qiagen Sciences). Total RNA was DNase treated and purified using a Turbo
DNA-free Kit (Life Technologies, USA). RNA was quantified using NanoDrop
1000 (V3.7), then a total of 400 ng of treated RNA was used to generate cDNA
using the cDNA synthesis kit (Life Technologies) with random hexamers and 2 ml
of cDNA was used for the GmSNAP18 quantitative PCR with the specific primers
(Supplementary Table 1), using the Power SYBR Green PCR Master Mix kit
(Life Technologies). Gene transcription from three individual biological replicates
was used for quantification, then normalized by the deltadelta Cq method using
Ubiquitin as a reference gene (DCq¼Cq(TAR)–Cq(REF)). GmSNAP18 expression was
exponentially converted using the formula: DCq Expression¼ 2�DCq.

VIGS infection analyses. BPMV VIGS vectors pBPMV IA-R1M and pBPMV-IA-
V1 were used in this study51. Briefly, a 302 bp fragment (spanning base pairs
365–667) of GmSNAP18 (Glyma18g02590) cDNA sequence (GenBank accession
number: KX147332) was amplified from soybean cv. Forrest root cDNA
by RT–PCR, using primers listed in Supplementary Table 1. PCR products were
digested with BamH1 and ligated into pBPMV-IA-V1, then digested with the same
enzyme to generate pBPMV-SNAP18-AS (BPMV-SNAP18-AS) with the insert in
the antisense orientation. Gold particles coated with pBPMV-IA-R1M and BPMV-
SNAP18-AS were co-bombarded into soybean leaf tissue as described previously52.
For vector control, pBPMV-R1M and pBPMV-GFP-AS were used. At 3–4 weeks
after inoculation, trifoliate leaves showing virus symptoms were collected,
lyophilized and stored at � 20 �C to be used as virus inoculum for plants. The
SCN-resistant RIL ExF67 (GmSNAP18þ /GmSHMT08þ ) seedlings were
inoculated with virus carrying pBPMV-SNAP18-AS or a vector at 7–9 days
post germination and the plants were maintained at 20 �C, 16 h light/8 h dark
for 30 days post virus infection. The experiment was repeated twice with
similar results.

Candidate gene complementation experiments. Based on the aforementioned
mapping data, the candidate gene GmSNAP18 and a putative amino acid trans-
porter (AAT) were selected for complementation experiments. For this, Forrest
GmSNAP18 and Forrest AAT were subcloned into a 35S pAKK gateway vector by
recombination cloning. Briefly, the 873 bp open reading frame of GmSNAP18 or
the 1311 bp open reading frame of AAT were PCR amplified from Forrest root
cDNA using gateway primers (Supplementary Table 1). They were cloned into
pDONR/Zeo and subsequently moved into the gateway vector pAKK downstream
of CaMV 35S promoter. Transgenic hairy roots were generated from the
RIL ExF50, which carries the Forrest Rhg4 (resistant allele) and Essex rhg1
(rhg1-s, susceptible allele) as described previously53. Transgenic hairy roots of
vector transformed RIL ExF67 (ref. 6) were used as an SCN-resistant control. The
infection experiments were done in square Petri plates as described previously6. In
all experiments, at least 12 independent transgenic hairy root lines were used per
treatment. The experiments with GmSNAP18 were repeated at least five times and
those with AAT were repeated twice. For experiments with GmSNAP18 of Essex
(rhg1-s) or PI 88788 (rhg1-b), the constructs were made as described above, using
GmSNAP18 cloned from the root cDNA of these lines, respectively. Three
biological replicates of transgenic root generation and infection assays were
conducted as described above. The results from infection assays were plotted
and analyzed for statistical significance by an unpaired t-test using GraphPad
PRISM software.

Modelling GmSNAP18. Homology modelling of a putative GmSNAP18 protein
structure was conducted with Deepview and Swiss Model Workspace software54,
using the predicted GmSNAP18 protein sequence from Forrest and an available
a-SNAP crystal structure from Rattus norvegicus as a template; PDB accession
is 3J96 chain G55–57. Residues 6–284 were modelled against this template with

a sequence identity of 39%. The remaining residues were appended on the structure
with Deepview, followed by an energy minimization using the ModRefiner
server58. Haplotype mapping and visualizations were performed using the
UCSF Chimera package59.

Statistical analysis. All the presented qRT–PCR results were performed with
the analysis of variance by Student’s t-test means comparison using JMP Pro
V12 software.

Data availability. The genomic DNA and cDNA sequences of GmSNAP18 in
Forrest, Essex and PI 88788 have been deposited in NCBI GenBank with the
accession number of KX147329, KX147331, KX147330, KX147332, KX147333 and
KX147334, respectively. The sequences of the 300 kb rhg1 segment of four soybean
lines have been deposited in NCBI Sequence Read Archive with the study number
of SRP090423. The authors declare that all other data supporting the findings of
this study are available upon request.

References
1. Koenning, S. R. & Wrather, J. A. Suppression of soybean yield potential

in the continental United States from plant diseases estimated from 2006
to 2009. Plant Health Prog. http://dx.doi.org/10.1094/PHP-2010-1122-01-RS
(2010).

2. Concibido, V. C., Diers, B. W. & Arelli, P. R. A decade of QTL mapping for cyst
nematode resistance in soybean. Crop Sci. 44, 1121–1131 (2004).

3. Meksem, K. et al. ‘Forrest’ resistance to the soybean cyst nematode is
bigenic: saturation mapping of the Rhg1 and Rhg4 loci. Theor. Appl. Genet. 103,
710–717 (2001).

4. Brucker, E., Carlson, S., Wright, E., Niblack, T. & Diers, B. Rhg1 alleles
from soybean PI 437654 and PI 88788 respond differentially to isolates
of Heterodera glycines in the greenhouse. Theoret. Appl. Genet. 111, 44–49
(2005).

5. Opperman, C. H. & Bird, D. M. The soybean cyst nematode, Heterodera
glycines: a genetic model system for the study of plant-parasitic nematodes.
Curr. Opin. Plant Biol. 1, 342–346 (1998).

6. Liu, S. et al. A soybean cyst nematode resistance gene points to a new
mechanism of plant resistance to pathogens. Nature 492, 256–260 (2012).

7. Cook, D. E. et al. Copy number variation of multiple genes at Rhg1 mediates
nematode resistance in soybean. Science 338, 1206–1209 (2012).

8. Cook, D. E. et al. Distinct copy number, coding sequence, and locus
methylation patterns underlie Rhg1-mediated soybean resistance to soybean
cyst nematode. Plant Physiol. 165, 630–647 (2014).

9. Lee, T. G., Kumar, I., Diers, B. W. & Hudson, M. E. Evolution and selection of
Rhg1, a copy-number variant nematode-resistance locus. Mol. Ecol. 24,
1774–1791 (2015).

10. Shi, Z. et al. SNP identification and marker assay development for high-
throughput selection of soybean cyst nematode resistance. BMC Genomics 16,
314 (2015).

11. Gabriel, A. et al. Global mapping of transposon location. PLoS Genet. 2, e212
(2006).

12. Dapprich, J., Ferriola, D., Magira, E. E., Kunkel, M. & Monos, D. SNP-specific
extraction of haplotype-resolved targeted genomic regions. Nucleic Acids Res.
36, e94 (2008).

13. Dapprich, J. et al. The next generation of target capture technologies -large
DNA fragment enrichment and sequencing determines regional genomic
variation of high complexity. BMC Genomics 17, 486 (2016).

14. Nagy, M. et al. Haplotype-specific extraction: a universal method to resolve
ambiguous genotypes and detect new alleles - demonstrated on HLA-B. Tissue
Antigens 69, 176–180 (2007).

15. Gupta, T. et al. Microtubule actin crosslinking factor 1 regulates the Balbiani
body and animal-vegetal polarity of the Zebrafish oocyte. PLoS Genet. 6,
e1001073 (2010).

16. Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature
463, 178–183 (2010).

17. Gizlice, Z., Carter, T. E. & Burton, J. W. Genetic base for North American
public soybean cultivars released between 1947 and 1988. Crop Sci. 34,
1143–1151 (1994).

18. Barnard, R. J., Morgan, A. & Burgoyne, R. D. Domains of alpha-SNAP
required for the stimulation of exocytosis and for N-ethylmalemide-sensitive
fusion protein (NSF) binding and activation. Mol. Biol. Cell 7, 693–701
ð1996Þ:

19. Chen, Y. A. & Scheller, R. H. SNARE-mediated membrane fusion. Nat. Rev.
Mol. Cell Biol. 2, 98–106 (2001).

20. Lightfoot, D. A. & Meksem, K. Isolation of polynucleotides and polypeptides
relating to loci underlying resistance to soybean cyst nematode and soybean
sudden death syndrome and methods employing same. US Patent 2002144310
(2002).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14822

10 NATURE COMMUNICATIONS | 8:14822 | DOI: 10.1038/ncomms14822 | www.nature.com/naturecommunications

http://dx.doi.org/10.1094/PHP-2010-1122-01-RS
http://www.nature.com/naturecommunications


21. Hauge, B. M., Wang, M. L., Parsons, J. D. & Parnell, L. D. Nucleic acid
molecules and other molecules associated with soybean cyst nematode
resistance. US Patent 20030005491 (2003).

22. Hauge, B. M., Wang, M. L., Parsons, J. D. & Parnell, L. D. Nucleic acid
molecules and other molecules associated with soybean cyst nematode
resistance. US Patent 7154021 (2006).

23. Hauge, B. M., Wang, M. L., Parsons, J. D. & Parnell, L. D. Methods of
introgressing nucleic acid molecules associated with soybean cyst nematode
resistance into soybean. US Patent 7485770 (2009).

24. Ruben, E. et al. Genomic analysis of the ‘Peking’ rhg1 locus: candidate genes
that underlie soybean resistance to the cyst nematode. Mol. Genet. Genomics
276, 320–330 (2006).

25. Melito, S. et al. A nematode demographics assay in transgenic roots reveals no
significant impacts of the Rhg1 locus LRR-Kinase on soybean cyst nematode
resistance. BMC Plant Biol. 10, 104 (2010).

26. Liu, X. et al. Soybean cyst nematode resistance in soybean is independent of the
Rhg4 locus LRR-RLK gene. Funct. Integr. Genomics 11, 539–549 (2011).

27. Arumuganathan, K. & Earle, E. D. Nuclear DNA content of some important
plant species. Plant Mol. Biol. Rep. 9, 208–219 (1991).

28. Goldberg, R. B. DNA sequence organization in the soybean plant. Biochem.
Genet. 16, 45–68 (1978).

29. Gurley, W. B., Hepburn, A. G. & Key, J. L. Sequence organization of the
soybean genome. Biochem. Biophys. Acta 51, 167–183 (1979).

30. Singh, R. J. & Hymowitz, T. The genomic relationship between Glycine max (L.)
Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosomal
analysis. Theoret. Appl. Genet. 76, 705–711 (1988).

31. Mitchum, M. G. Soybean resistance to the soybean cyst nematode Heterodera
glycines: an update. Phytopathol 106, 1444–1450 (2016).

32. Niblack, T. L., Heinz, R. D., Smith, G. S. & Donald, P. A. Distribution, density,
and diversity of Heterodera glycines in Missouri. J. Nematol. 25, 880–886 (1993).

33. Andrews, N. W. & Chakrabarti, S. There’s more to life than neurotransmission:
the regulation of exocytosis by synaptotagmin VII. Trends Cell Biol. 15,
626–631 (2005).

34. Schapire, A. L. et al. Arabidopsis synaptotagmin 1 is required for the
maintenance of plasma membrane integrity and cell viability. Plant Cell 20,
3374–3388 (2008).

35. El Kasmi, F. et al. SNARE complexes of different composition jointly mediate
membrane fusion in Arabidopsis cytokinesis. Mol. Biol. Cell 24, 1593–1601
(2013).

36. Sudhof, T. C. A molecular machine for neurotransmitter release:
synaptotagmin and beyond. Nat. Med. 19, 1227–1231 (2013).

37. Sudhof, T. C. Neurotransmitter release: the last millisecond in the life
of a synaptic vesicle. Neuron 80, 675–690 (2013).

38. Kalde, M., Nühse, T. S., Findlay, K. & Peck, S. C. The syntaxin SYP132
contributes to plant resistance against bacteria and secretion of pathogenesis-
related protein 1. Proc. Natl Acad. Sci. USA 104, 11850–11855 (2007).

39. Kwon, C. Co-option of a default secretory pathway for plant immune
responses. Nature 451, 835–840 (2008).

40. Bekal, S. et al. A SNARE-like protein and biotin are implicated in soybean cyst
nematode virulence. PLoS ONE 10, e0145601 (2015).
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