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AN EXTENSION OF HÖRMANDER’S THEOREM FOR

INFINITELY DEGENERATE SECOND-ORDER OPERATORS∗

Denis R. Bell† and Salah-Eldin A. Mohammed‡

Abstract. We establish the hypoellipticity of a large class of highly degenerate second order
differential operators of Hörmander type. The hypotheses of our theorem allow Hörmander’s
general Lie algebra condition to fail on a collection of hypersurfaces. The proof of the theorem
is probabilistic in nature. It is based on the Malliavin calculus and requires new sharp
estimates for diffusion processes in Euclidean space.

1. Introduction.

Let X0, . . . , Xn denote a collection of smooth vector fields defined on an open subset

D of Rd, and c : D → R a smooth function. Consider the second order differential operator

L :=
1
2

n∑

i=1

X2
i + X0 + c. (1.1)

Let Lie(X0, . . . , Xn) be the Lie algebra generated by the vector fields X0, . . . , Xn. Accord-

ing to the theorem of Hörmander ([H], Theorem 1.1), L is hypoelliptic on D if the vector

space Lie(X0, . . . , Xn)(x) has dimension d at every x ∈ D. Hörmander’s condition char-

acterizes hypoellipticity for operators of the form (1.1) with analytic coefficients. However

this is not the case if the vector fields X0, . . . , Xn defining L are allowed to be smooth

non-analytic. A striking illustration of the non-necessity of the Hörmander condition in

the smooth non-analytic case is provided by a result of Kusuoka and Stroock, who have

made a complete study of hypoellipticity for the class of differential operators on R3 of

the form

Lσ :=
∂2

∂x2
1

+ σ2(x1)
∂2

∂x2
2

+
∂2

∂x2
3

. (1.2)
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Here σ is assumed to be a C∞ real-valued even function, non-decreasing on [0,∞), which

vanishes (only) at zero. It is shown in ([K-S], Theorem 8.41) that Lσ is hypoelliptic on R3

if and only if σ satisfies the condition lim
s→0+

s log σ(s) = 0. In particular, the operator Lσ

corresponding to σ(s) = exp(−|s|p) is hypoelliptic if p lies in the range (−1, 0); however

any such operator fails to satisfy Hörmander’s condition on the hyperplane x1 = 0.

Let L be the operator defined in (1.1). The purpose of this paper is to establish

a criterion for hypoellipticity sharper than that of Hörmander, in the case where L has

smooth non-analytic coefficients. Our main theorem (Theorem 1.0) asserts the hypoellip-

ticity of the operator L on D under hypotheses that allow Hörmander’s general condition

to fail at an exponential rate on a collection of surfaces in D. The precise sense in which

Hörmander’s condition fails is described in the hypotheses of Theorem 1.0 below. Our

second main result gives a parallel criterion for hypoellipticity of the parabolic operator

L+
∂

∂t
on R×D in the case when Hörmander’s restricted condition fails at an exponential

rate on a collection of surfaces in D.

In what follows, each vector field on D is considered as a column vector with respect

to a fixed (canonical) basis for the vector space of all smooth vector fields on D. For any

positive integer m, let E(m) denote a matrix whose columns consist of

X0; · · · ;Xn;

together with all vector fields of the form

[Xi1 , Xi2 ]
n
i1,i2=0 ; · · · ; [Xi1 , [Xi2 , [Xi3 , · · · , [Xim−1 , Xim ]] · · · ]]ni1,i2,··· ,im=0 ,

arranged in a specified order. The symbol [·, ·] denotes the Lie bracket operation on vector

fields. Denote by X(m) the matrix obtained by deleting the column X0 from E(m). For

any x ∈ D and m ≥ 1, define µ(m)(x) and λ(m) (x) to be the smallest eigenvalues of the

matrices E(m) (x)E(m)∗ (x) and X(m) (x) X(m)∗ (x), respectively. Note that µ(m) (x) and
2



λ(m) (x) are independent of the choice of the basis in the space of vector fields, and are

also independent of the specific ordering of the columns referred to above.

Observe that µ(m)(x) > 0 for some m ≥ 1 if and only if Hörmander’s general

condition holds for the operator L at x ∈ D. Similarly the condition λ(m)(x) > 0 for some

m ≥ 1 is equivalent to Hörmander’s general condition for the parabolic operator L +
∂

∂t

at (t, x) ∈ R × D for some t ∈ R (and hence for all t ∈ R ). We will say that x ∈ D

is an elliptic Hörmander point for the operator L if there is an integer m ≥ 1 such that

µ(m)(x) > 0. Similarly x ∈ D is said to be a parabolic Hörmander point for the operator L

if there is an integer m ≥ 1 such that λ(m)(x) > 0. The set of all elliptic Hörmander points

in D is dented by He, and the set of all parabolic Hörmander points is denoted by H.

Note that the sets He and H are open in D. The points in the closed sets Hc
e , Hc will be

called elliptic non-Hörmander points and parabolic non-Hörmander points, respectively.

It is easy to see that H ⊆ He and Hc
e ⊆ Hc. When L is formally self-adjoint, it follows

from Fefferman and Phong ([F-P]) that L is not subelliptic on Hc
e .

We are now ready to state our first main theorem.

Theorem 1.0.

Suppose that the elliptic non-Hörmander set Hc
e is contained in a C2 submanifold

M of D, of codimension 1. Assume that at every point in Hc
e , at least one of the vector

fields X1, · · · , Xn is transversal to M . Assume further that for every x ∈ Hc
e , there exists

an integer m ≥ 1, an open neighborhood U of x, and an exponent p ∈ (−1, 0) such that

µ(m)(y) ≥ exp{−[ρ(y, M)]p} for all y ∈ U , where ρ(y,M) is the Euclidean distance of y

from M .

Then L is hypoelliptic on D.

In Section 3, we will show that Theorem 1.0 is a consequence of the following

theorem which deals with parabolic hypoellpiticity when Hörmander’s restricted condition

is allowed to fail on a family of hypersurfaces in D.
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Theorem 1.1.

Suppose that the parabolic non-Hörmander set Hc is contained in a C2 submanifold

N of D, of codimension 1. Assume that at every point in Hc, at least one of the vector

fields X1, · · · , Xn is transversal to N . Assume further that for every x ∈ Hc, there exists

an integer m ≥ 1, an open neighborhood U1 of x, and an exponent p ∈ (−1, 0) such that

λ(m)(y) ≥ exp{−[ρ(y, N)]p} for all y ∈ U1.

Then the parabolic operator L +
∂

∂t
is hypoelliptic on R×D.

We make the following observations concerning the nature of the hypotheses in the

above theorems.

(i) The result of Kusuoka and Stroock cited above implies that the differential operator

L′ :=
∂2

∂x2
1

+ exp
{
− 1
|x1|

}
∂2

∂x2
2

+
∂2

∂x2
3

(1.3)

is not hypoelliptic on R3. This example shows that the lower bound −1 on p in

Theorems 1.0 and 1.1 is optimal.

(ii) Oleinik and Radekevich ([O-R], Theorem 2.5.3) have shown that if the elliptic non-

Hörmander set Hc
e of L is compact and L satisfies the transversality condition of

Theorem 1.0 at all points of Hc
e , then L is hypoelliptic. Example (1.3) shows that

if the compactness assumption on Hc
e is dropped, then a further hypothesis such as

the exponential degeneracy condition in Theorem 1.0 is required which controls the

rate at which the Hörmander condition fails as one approaches Hc
e .

(iii) In a series of papers, Y. Morimoto has obtained hypoellipticity results for operators

with exponential degneracies on hyperplanes (see, e.g., [Mo]). Morimoto’s tech-

niques are purely analytic and rely on the theory of pseudo differential operators.

A special case of Theorem 1.0, allowing a degeneracy of exponential order at an

isolated point, has been obtained by P. Malliavin ([M.2], Theorem 4.1).
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(iv) The following alternative form of Theorem 1.1 shows that the transversality con-

dition can be weakened, provided the range of p is restricted appropriately. In the

statement of Theorem 1.2 below, we will denote by Xiφ the action of the vector

field Xi on a given C∞ real-valued function φ : D → R, for 0 ≤ i ≤ n+1. We have

no reason to believe that the lower bound − 2
(18)r on the exponent p is optimal.

Theorem 1.2.

Let Xn+1 denote the action of the operator L−c on smooth functions on D. Suppose

that for every x ∈ D there exists an integer m ≥ 1 such that exactly one of the following

two conditions holds:

(a) λ(m)(x) > 0.

(b) There exists an integer r ≥ 1, an open neighborhood U ⊆ D of x, a C∞

function φ : U → R, and an exponent p ∈ (− 2
(18)r , 0

)
such that

(i) φ(x) = 0, and there exist 1 ≤ i1, i2, · · · , ir ≤ n + 1 such that

Xi1Xi2 · · ·Xirφ(x) 6= 0. (1.4)

(ii) λ(m)(y) ≥ exp(−|φ(y)|p), for all y ∈ U .

Then the parabolic operator L +
∂

∂t
is hypoelliptic on R×D.

(v) Without loss of generality, we may (and, from now on, will) assume that the maps

X0, · · · , Xn, c in (1.1) are smooth, defined on the whole of Rd and have compact

support. This follows from a simple argument using a partition of unity and the

fact that hypoellipticity of L +
∂

∂t
is a local property.

We prove Theorems 1.1 and 1.2 by probabilistic methods. Completing a program

initiated by Malliavin ([M.1] and [M.2]), Kusuoka and Stroock [K-S] developed the stochas-

tic analysis required to give a probabilistic proof of Hörmander’s theorem. The theory in

[K-S] appears to break down when applied to exponentially degenerate diffusion processes.
5



Thus new ideas are required in order to prove the results described here. The essential

new feature of this work is an analysis of the interaction between the diffusion process

ξ associated with the operator L and the hypersurface N containing Hc. This analysis

breaks down into two stages:

(a) The distance between the diffusion ξ(t) and the hypersurface N is measured by the

Itô process φ(ξ(t)), where φ is a local parametrization of N . We first isolate a class

of small random intervals which we call exponentially positive. (See Section 3.) We

then introduce Wiener functionals that correspond to higher-order time-moments

of φ(ξ(t)) over exponentially positive random intervals. We derive new probabilistic

lower bounds on the Lq-norms of the above Wiener functionals for arbitrary q ≥ 1.

These lower bounds are sharp in q in an asymptotic sense, as q →∞.

(b) We then study the rate at which the above probabilistic lower bounds are degraded

under the action of an exponentially degenerate diffusion covariance. This leads to

sharp estimates which allow us to establish the hypoellipticity of L +
∂

∂t
.

Although our analysis employs the Malliavin calculus, the above estimates are ob-

tained using only basic stochastic analytic tools, i.e. Itô’s formula, Girsanov’s theorem,

the time change theorem for stochastic integrals, and elementary properties of the Wiener

process. Thus our arguments provide insight into the relationship between the critical

exponent −1 occurring in Theorems 1.0, 1.1 and the stochastic structure underlying the

hypoellipticity problem.

The paper is laid out as follows. In Section 2, we provide background material and

establish notations. In Section 3, we give a proof of Theorem 1.1 based on two results,

Lemmas 3.2 and 3.3, which constitute steps (a) and (b) above. We then show how Theorem

1.0 follows from Theorem 1.1. The modifications to the proof of Theorem 1.1 required to

prove Theorem 1.2 are discussed at the end of Section 3. Finally, Section 4 contains the

proofs of the lemmas assumed in Section 3.
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An announcement of Theorem 1.1 has appeared in [B-M].

2. Differential operators and diffusion processes.

The purpose of this section is to establish the probabilistic framework upon which

our proof of Theorem 1.1 will be based. In particular, we introduce Wiener space and

summarize the elements of the Malliavin calculus, which plays a major role in our analysis

of the regularity of the operator L in (1.1). The central result of the Malliavin calculus

is an integration by parts formula for stochastic maps defined on the Wiener space. This

formula yields the important result stated below as Theorem 2.1 ([S]). One of the authors

([B], Chapter 4) has given an elementary proof of Malliavin’s integration by parts formula

based on classical finite dimensional calculus. Further information on the Malliavin calculus

can be found in ([B], [I-W], [S]) and the references therein.

Let Ω denote the space of all continuous paths ω : R+ → Rn, ω(0) = 0, endowed

with the topology of uniform convergence on compact sets. Let P denote the standard

Wiener measure on Ω, F the Borel σ-field of Ω completed under P , and (Ft)t≥0 the

filtration consisting of the sub-σ-fields Ft generated by the evaluations {ω → ωu, 0 ≤ u ≤ t}
and including all sets of P -measure zero in F . For each q ≥ 1 denote by Lq := Lq(Ω,R;P ),

the Banach space of all q-integrable Wiener functionals f : Ω → R with the norm ‖f‖q :=

(E|f |q)1/q. Throughout the paper we will denote the Euclidean norm on Rd by | · | . The

corresponding norm on the space Rd×d of d× d matrices will be denoted by ‖ · ‖ .

According to a fundamental theorem of Wiener, the Hilbert space L2 decomposes

as the direct sum

L2 =
∞⊕

k=0

Zk,

where, for each k ≥ 0, Zk is the space of kth order homogeneous chaos. Define D to be

the following dense subspace of L2

D :=
{

f : f ∈ L2,

∞∑

k=1

k2‖Πkf‖22 < ∞
}

,

7



where Πk : L2 → Zk is the orthogonal projection map.

Let L : D → R denote the number operator

L(f) := −
∞∑

k=1

(
k

2

)
Πkf, f ∈ D

and < ., . >: D ×D → L2(Ω,R) an associated bilinear form, defined as the unique closed

symmetric bilinear extension of the following form (which is denoted by the same symbol):

< f, g >:= L(fg)− fL(g)− gL(f), f, g ∈ D : fg ∈ D.

For any set G ⊂ D, define M(G) to be the union of G and the set obtained by applying L
to all elements of G, and < ·, · > to all pairs of elements of G.

Theorem 2.1. (Malliavin-Stroock)

Suppose that Θ = (Θ1, Θ2, . . . , Θd) ∈ Dd satisfies the following hypotheses

(i) G0 := {Θ1, Θ2, . . . , Θd} ⊂ D, and the sets defined inductively by Gn := M(Gn−1),

n ≥ 1 are all subsets of D, and for every n, q ≥ 1,Gn ⊂ Lq .

(ii) The (Malliavin) covariance matrix C defined by C := [< Θi, Θj >]dij=1 ∈ GL(d)

a.s. and

detC−1 ∈ Lq,

for all q ≥ 1. Then the measure P ◦Θ−1 is absolutely continuous with respect to Lebesgue

measure on Rd and has a C∞ density.

Let W := (W1, . . . ,Wn) : R+×Ω → Rn denote standard Brownian motion defined

on the complete filtered probability space (Ω,F , (Ft)t≥0, P ) by W (t, ω) = ω(t), t ∈ R+,

ω ∈ Ω. Consider the diffusion process

dξx(t) =
n∑

i=1

Xi(ξx(t)) ◦ dWi(t) + X0(ξx(t)) dt, t > 0,

ξx(0) = x,





(2.1)
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where the ◦dWi denote Stratonovich differentials. Then ξx is a time-homogeneous Markov

process.

Define a family of finite Borel measures ν(x, t, ·) by

ν(x, t, B) :=
∫

ξx(t)−1(B)

exp
{∫ t

0

c (ξx(u)) du

}
dP

for t ≥ 0, x ∈ Rd, and every Borel set B ⊆ Rd. The associated semigroup (Pt)t≥0 on the

space Cb(Rd,R) of all bounded continuous functions φ : Rd → R , is defined by

Pt(φ)(x) :=
∫

Rd

φ(y)ν(x, t, dy), (2.2)

for t ≥ 0, x ∈ Rd, and φ ∈ Cb(Rd,R) . Then for any bounded smooth initial function

φ : Rd → R, the function u(t, x) := Pt(φ)(x) is C∞ on R+ × Rd , and is the unique

solution of the Cauchy initial-value problem

∂u

∂t
= Lu, t > 0

u(0, .) = φ.





(2.3)

For all t ≥ 0, the map

ξx(t, ·) : Ω → Rd

ω 7→ ξx(t, ω)

satisfies hypothesis (i) of Theorem 2.1. The corresponding covariance matrix C(t, x) (de-

fined in Theorem 2.1(ii)) is given by

C(t, x) = Y x(t)
∫ t

0

Zx(s)X(ξx(s))X(ξx(s))∗Zx(s)∗ ds [Y x(t)]∗ . (2.4)

Here X is the d× n matrix-valued function [X1, . . . , Xn], where X1, . . . Xn are the vector

fields in (1.1), Y x(t) is the a.s. (non-singular) d × d matrix-valued process obtained by

differentiating the stochastic flow x → ξx(t, ω) on Rd with respect to x for a.a. ω ∈ Ω.

9



The inverse process Y x(t)−1 is denoted by Zx(t). It can be shown that the processes Y x

and Zx satisfy the stochastic integral equations

Y x(t) = I +
n∑

i=1

∫ t

0

DXi(ξx(s))Y x(s) ◦ dWi(s) +
∫ t

0

DX0(ξx(s))Y x(s) ds, (2.5)

and

Zx(t) = I −
n∑

i=1

∫ t

0

Zx(s)DXi(ξx(s)) ◦ dWi(s)−
∫ t

0

Zx(s)DX0(ξx(s)) ds. (2.6)

See ([K-S], p.3-4), ([B], p.75). We will apply Theorem 2.1 with θ := ξx(t). This yields the

following result:

Theorem 2.2.

Define ∆(t, x) := det C(t, x), where C(t, x) is as in (2.4). Suppose that C(t, x) ∈
GL(d) a.s. and ∆(t, x)−1 ∈ Lq for all q ≥ 1, t > 0 and x ∈ Rd. Then the transition

probabilities p(t, x, dy) := P (ξx(t) ∈ dy) admit a family of densities p(t, x, y) with respect

to Lebesgue measure on Rd. Furthermore, if the map

R+ ×Rd → Lq(Ω,R)

(t, x) 7→ ∆(t, x)−1

is locally bounded for every q ≥ 1, then the densities p(t, x, y) can be chosen to be C∞ in

(t, x, y). In particular, the semigroup (Pt)t≥0 defined in (2.2) is smoothing, i.e. for all t >

0, Pt takes continuous functions to smooth functions, and the function u(t, x) := Pt(φ)(x)

defines a smooth solution to the Cauchy problem (2.3) for any continuous initial function

φ : Rd → R with compact support.

Theorem 2.2 establishes a key relationship between invertibility of the covariance

matrices C(t, x) and the regularity of the differential operator L. This relationship can

be further developed to yield the following criterion for hypoellipticity of the parabolic

operator L +
∂

∂t
, due to Kusuoka and Stroock. See the proof of Theorem (8.6) and also

10



Theorem (8.13) in ([K-S], pp. 49-52). Recall that a differential operator A on R × D is

hypoelliptic on R×D if for every distribution φ on R×D, Aφ is C∞ implies that φ is a

C∞ function.

Theorem 2.3.

Let D be an open set in Rd. Suppose that for every q ≥ 1 and every x in D, there

exists a neighborhood V ⊆ D of x such that

lim
t→0+

t log
{

sup
y∈V

‖∆(t, y)−1‖q

}
= 0. (2.7)

Then the differential operator L +
∂

∂t
is hypoelliptic on R×D.

3. Proofs of Theorems.

Proof of Theorem 1.1.

Throughout this section, T > 0 will denote a fixed time. We first introduce a term

that will be used extensively in the sequel.

Definition.

A (non-negative) random variable X is exponentially positive if there exist positive

constants c1 and c2 (which we will refer to as the characteristics of X) such that

P (X < ε) < exp(−c1ε
−1)

for all ε ∈ (0, c2) .

We will also make frequent use of the following well-known result, ([I-W], Lemma

10.5, p. 398).

11



Lemma 3.1.

Let y : [0, T ]× Ω → Rd be an Itô process of the form

dy(t) =
n∑

i=1

ai(t) dWi(t) + b(t) dt, 0 ≤ t ≤ T, (3.1)

where a1, . . . , an, b : [0, T ] × Ω → Rd are measurable (Ft)0≤t≤T -adapted processes, all

bounded a.s. by a deterministic constant c3. Let r > 0 and define

τ := inf{s > 0 : |y(s)− y(0)| = r} ∧ T. (3.2)

Then τ is an exponentially positive (Ft)0≤t≤T -stopping time, and the characteristics of τ

depend only on r, c3, n and d.

We now state the two key lemmas upon which our argument turns. The first yields

sharp probabilistic lower bounds when applied to diffusion processes with at least one

non-zero initial time diffusion coefficient.

Lemma 3.2.

Let y : [0, T ]×Ω → Rd be the Itô process in Lemma 3.1. Suppose that τ ≤ T is an

exponentially positive (Ft)0≤t≤T -stopping time such that at least one diffusion coefficient

ai satisfies the condition: a.s., |ai(s)| ≥ δ, for all 0 ≤ s ≤ τ , for some deterministic

δ > 0. Then for every m ≥ 2, there exist positive constants c4, c5 and T0 such that for all

t ∈ (0, T0) and ε ∈ (0, c4 tm+1), the following holds

P

(∫ t∧τ

0

|y(u)|m du < ε

)
< exp

{
−c5ε

− 1
m+1

}
. (3.3)

The constants c4 and c5 can be chosen to depend only on m, c3, δ, and the characteristics

of τ . The constant T0 depends only on the characteristics of τ .

The following result describes precisely how the estimate (3.3) transforms under

composition of the integrand with a function that vanishes at zero, at (an appropriate)

exponential rate.
12



Lemma 3.3.

Let τ be an exponentially positive (Ft)0≤t≤T -stopping time and let p ∈ (−1, 0).

Suppose y is an Itô process as in Lemma 3.1. Suppose further that y and τ satisfy an

estimate of the form (3.3) for some m > − p

p + 1
. Then there exist positive constants T1,

c6, c7 and q > 1 such that for all t ∈ (0, T1) and all ε < exp{−c6t
− 1

q }, the following holds

P

(∫ t∧τ

0

exp(−|y(u)|p) du < ε

)
< exp{−c7| log ε|q}. (3.4)

Furthermore, the constants T1, c6, c7 and q are completely determined by c3 in Lemma

3.1, c4, c5, and m in (3.3), p, and the characteristics of τ .

Our goal is to verify the hypothesis of Theorem 2.3. Firstly, note that (2.7) can be

reduced to a more basic estimate by means of the following observation.

Let ∆(t, x) be as defined in Theorem 2.2. Then for every q ≥ 1 and every bounded

set V ⊂ Rd there exists a positive constant c8 such that for all t ∈ (0, T ) and x ∈ V , we

have

‖∆(t, x)−1‖2q
2q ≤ c8

{
1 +

∞∑

j=1

P

(
Q(t, x) < j−

1
2dq

)}
, (3.5)

where

Q(t, x) := inf
{ n∑

i=1

∫ t

0

< Zx(u)Xi(ξx(u)), h >2 du : h ∈ Rd, |h| = 1
}

. (3.6)

Secondly, we state the following lemma which contains a local version of the hy-

potheses underlying Theorem 1.1.

Lemma 3.4.

Suppose that the conditions of Theorem 1.1 are satisfied. Then for every x ∈ D

there exists an integer m ≥ 1 such that exactly one of the following two conditions holds:

(a) λ(m)(x) > 0.
13



(b) There exists an open neighborhood U ⊆ D of x, a C2 function φ : U → R,

and an exponent p ∈ (−1, 0) such that

(i) φ(x) = 0 and ∇φ(x) ·Xi(x) 6= 0, for at least one i = 1, . . . , n,

(ii) λ(m)(y) ≥ exp(−|φ(y)|p), for all y ∈ U .

We now assume the hypotheses and notations of Theorem 1.1. Without loss of

generality we take D = Rd. Suppose that m is an integer for which the conclusion of

Lemma 3.4 holds for the point x0 ∈ Rd. Assume that t ∈ (0, T ) and x lies in a fixed

bounded neighborhood W of x0. Define

τ1 := inf
{

s > 0 : |ξx(s)− x| ∨ ‖Zx(s)− I‖ =
1
2

}
∧ T . (3.7)

By Lemma 3.1, τ1 is an exponentially positive stopping time with characteristics indepen-

dent of x ∈ W .

Let Sd := {h ∈ Rd : |h| = 1} denote the unit sphere in Rd. Suppose h ∈ Sd. Then

P

( n∑

i=1

∫ t

0

< Zx(u)Xi(ξx(u)), h >2 du < ε

)
≤ P (A ∩ E) + P (A ∩ Ec),

where

A :=
( n∑

i=1

∫ t∧τ1

0

< Zx(u)Xi(ξx(u)), h >2 du < ε)
)

and

E :=
( n∑

i=1

∫ t∧τ1

0

[ n∑

j=1

< Zx(u)[Xi, Xj ](ξx(u)), h >2 +

< Zx(u)
{

[Xi, X0] +
1
2

n∑

j,k=1

[
Xi, [Xj , Xk]

]}
(ξx(u)), h >2

]
du < εα

)
,

with α =
1
18

. By the Kusuoka-Stroock-Norris lemma ([N], [B], Lemma 6.5; cf. [K-S],

Theorem A.24), there exist positive constants c9 and c10 such that

P (A ∩ Ec) ≤ c9 exp(−c10ε
−α). (3.8)
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The constants c9 and c10 are independent of h ∈ Sd. Note that E ⊆ F ∩G, where

F :=
( n∑

i,j=1

∫ t∧τ1

0

< Zx(u)[Xi, Xj ](ξx(u)), h >2 du < εα

)

G :=
( n∑

i=1

∫ t∧τ1

0

< Zx(u)
{

[Xi, X0] +
1
2

n∑

j,k=1

[
Xi, [Xj , Xk]]

}
(ξx(u)), h >2 du < εα

)
.

Thus

P

( n∑

i=1

∫ t

0

< Zx(u)Xi(ξx(u)), h >2 du < ε

)
≤ c9 exp(−c10ε

−α) + P (A ∩ F ∩G). (3.9)

Applying a similar argument to P (A ∩ F ∩G) gives

P (A ∩ F ∩G) ≤ c11 exp(−c12ε
−α2

) + P (A ∩ F ∩G ∩H) (3.10)

where

H :=
( n∑

i,j,k=1

∫ t∧τ1

0

< Zx(u)
[
Xi, [Xj , Xk]

]
(ξx(u)), h >2 du < εα2

)
.

It is easy to check that

G ∩H ⊆
( n∑

i=1

∫ t∧τ1

0

< Zx(u)[Xi, X0](ξx(u)), h >2 du < εr1

)

for some r1 ∈ (0, 1) and sufficiently small ε > 0.

Thus

A ∩ F ∩G ∩H ⊆
(∫ t∧τ1

0

{
<

n∑

i=1

(
Zx(u)Xi(ξx(u)), h >2

+
n∑

i,j=0

< Zx(u)[Xi, Xj ](ξx(u)), h >2

}
du < εr2

)

for some r2 ∈ (0, 1) and sufficiently small ε > 0.

Combining this with (3.9) and (3.10), one obtains

P

( n∑

i=1

∫ t

0

< Zx(u)Xi(ξx(u)), h >2 du < ε

)

≤ c9 exp(−c10ε
−α) + c11 exp(−c12ε

−α2
)

+P

(∫ t∧τ1

0

{ n∑

i=1

< Zx(u)Xi(ξx(u)), h >2 +
n∑

i,j=0

< Zx(u)[Xi, Xj ](ξx(u)), h >2

}
du < εr2

)
.

(3.11)
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Iterating the argument used to derive (3.11) proves the following:

For each m ≥ 1, there exist positive constants c13 and c14 and exponents r3 and

r4 ∈ (0, 1), all independent of h ∈ Sd, such that for all t ∈ (0, T ), x ∈ W , and ε ∈ (0, c14),

one has

P

( n∑

i=1

∫ t

0

< Zx(u)Xi(ξx(u)), h >2 du < ε

)

≤ exp(−c14ε
−r3) + P

( N∑

j=1

∫ t∧τ1

0

< Zx(u)Kj(ξx(u)), h >2 du < εr4

)
.

(3.12)

Here the vector fields K1, . . . , KN are the columns of the matrix function X(m).

Applying a straightforward compactness argument (cf. [B], Lemma 6.8) to (3.12), one

obtains

P (Q(t, x) < ε) ≤ exp(−c15ε
−r3)

+ c16ε
−d sup

{
P

( N∑

j=1

∫ t∧τ1

0

< Zx(u)Kj(ξx(u)), h >2 du < c17ε
r4

)
: |h| = 1

}

(3.13)

for ε ∈ (0, c18) and positive constants c15, c16, c17, c18.

The argument used to derive the estimate (3.13) above is due to Kusuoka and

Stroock ([K-S]).

Since (3.8) implies ‖Zx(u) − I‖ ≤ 1
2
, for all 0 ≤ u ≤ τ1, it is easy to deduce from

(3.13) that

P (Q(t, x) < ε) ≤ exp(−c15ε
−r3) + c16ε

−dP

(∫ t∧τ1

0

λ(m)(ξx(u)) du < c′18ε
r4

)
. (3.14)

We now consider each of the two cases (a) and (b) delineated in the conclusion of

Lemma 3.4. Suppose first that (a) holds at x0 for some m ≥ 1. Then by continuity of λ(m)

there exist ρ > 0 and δ > 0 such that

λ(m)(y) ≥ δ (3.15)
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for all y ∈ Bρ(x0), where Bρ(x0) denotes the open ball in Rd with center x0 and radius

ρ. Let V := Bρ/2(x0), assume x ∈ V , and let τ2 denote the first exit time of ξx from V .

Then (3.14) and (3.15) imply

P (Q(t, x) < ε) ≤ exp(−c15ε
−r3) + c16ε

−dP

(
τ1 ∧ τ2 ∧ t <

c18ε
r4

δ

)
(3.16)

≤ c19 exp(−c20ε
−c21r5) (3.17)

provided t >
c18ε

r4

δ
, where r5 := r3 ∧ r4 and c19, c20 and c21 are positive constants,

independent of (t, x) ∈ (0, T ) × V . Substituting (3.17) into (3.5) yields, for every q ≥ 1,

the following inequality

‖∆(t, x)−1‖2q
2q ≤ c8

{(
δt

c18

)− 2dq
r4

+ A(t)
}

,

where

A(t) := 1 +
∞∑

j=k

c19 exp(−c20j
r6),

≤ 1 +
∞∑

j=1

c19 exp(−c20j
r6) < ∞,

r6 :=
c21r5

2dq
> 0, and k :=

[(
δt

c18

)− 2dq
r4

]
is the integer part of

(
δt

c18

)− 2dq
r4

. We conclude

that ‖∆(t, x)−1‖2q grows no faster than a power of t as t ↓ 0, uniformly with respect to

x ∈ V . Hence (2.7) is satisfied.

We now turn to the case where (b) of Lemma 3.4 holds at the point x0. By the

transversality condition b(i) we may choose ρ > 0 small enough to ensure that Bρ(x0) ⊂ U

and such that

|∇φ(x).Xi(x)| ≥ 1
2 |∇φ(x0).Xi(x0)| > 0

for some 1 ≤ i ≤ n and every x ∈ Bρ(x0). Let V := Bρ/2(x0). Assume x ∈ V and let τ3

denote the first exit time of ξx from Bρ/2(x). In view of Lemma 3.4 (b)(ii), (3.14) implies

P (Q(t, x) < ε) ≤ exp(−c15ε
−r3)+c16ε

−d P

(∫ t∧τ1∧τ3

0

exp(−|ηx(u)|p) du < c18ε
r4

)
(3.18)
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where ηx(t) denotes the process φ(ξx(t)), t ≤ τ3. Applying Itô’s lemma to compute ηx(t)

gives

dηx(t) =
n∑

i=1

∇φ(ξx(t)).Xi(ξx(t))dWi(t) + (L− c)φ(ξx(t)) dt. (3.19)

Lemma 3.4 (b)(i), Lemma 3.1, and (3.19) imply that the process y := ηx and the stopping

time τ := τ1 ∧ τ2 satisfy the hypotheses of Lemma 3.2. Hence (3.3) is satisfied for every

m > 1 with τ = τ1 ∧ τ3 and y = ηx. Thus, by Lemma 3.3 there exist positive constants

c6, c7, T1 and q′ > 1, all independent of x ∈ V , such that for all t ∈ (0, T1) and ε <

exp(−c6t
− 1

q′ )

P

(∫ t∧τ1∧τ3

0

exp(−|ηx(u)|p) du < ε

)
< exp{−c7| log ε|q′}. (3.20)

Substituting this into (3.18) gives

P (Q(t, x) < ε) ≤ exp(−c15ε
−r3) + c16ε

−d exp(−c7| log εr4 |q′ ) (3.21)

for t ∈ (0, T1) and ε < exp(−c6t
− 1

q′ ). Combining (3.21) with (3.5), we arrive at

‖∆(t, x)−1‖2q
2q ≤ c8

{
exp(2dqc6t

− 1
q′ ) + c22

}
, 0 < t < T1 (3.22)

where

c22 := 1 +
∞∑

j=1

{
exp

(
−c15j

r3
2dq

)
+ c16j

1/2q exp(−c7| log j−
r4
2dq |q′ )

}
< ∞.

Note that the constants c6, c8 and c22 can all be chosen to be independent of x ∈ V . The

right hand side of (3.22) explodes exponentially fast as t ↓ 0. However, since q′ > 1 we

conclude that (2.7) holds also for this case, and the proof of Theorem 1.1 is complete. ¤

Proof of Theorem 1.0.

We employ a technique used by [K-S]. The idea is to imbed the operator L of The-

orem 1.0 in an another operator L̃ defined on a (d + 1)-dimensional domain and satisfying
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all the conditions of Theorem 1.1. The operator L̃ would then be parabolic hypoelliptic,

and this will then imply that L is hypoelliptic on D. Assume that the operator L satisfies

all the hypotheses of Theorem 1.0. Pick a smooth non-negative real-valued function ρ

on (0, 1) such that both ρ(s) and its derivative ρ′(s) are bounded away from zero for all

s ∈ (0, 1). Define the operator L̃ on the domain D × (0, 1) by L̃ := ρ(s)L +
1
2

∂2

∂s2
. It is

easy to see that L̃ has the Hörmander form

L̃ :=
1
2

n+1∑

i=1

X̃2
i + X̃0 + c̃.

where X̃0(x, s) := ρ(s)X0(x), X̃i(x, s) := ρ(s)1/2 Xi(x), 1 ≤ i ≤ n, X̃n+1 (x, s) :=
∂

∂s
,

c̃ (x, s) := ρ(s)c(x) for (x, s) ∈ D × (0, 1). For each positive integer m, let X̃(m) be

the matrix with columns X̃1, · · · , X̃n+1 together with all iterated Lie brackets formed

from X̃0, · · · , X̃n+1 with no more than m iterations. Denote by λ̃(m) (x, s) the smallest

eigenvalue of X̃(m) (x, s) X̃(m)∗ (x, s), for (x, s) ∈ D × (0, 1). Since ρ(s) and ρ′(s) are

bounded away from zero for all s ∈ (0, 1), it is easy to see that there are positive constants

δm such that λ̃(m)(x, s) ≥ δm µ(m) (x) for all (x, s) ∈ D × (0, 1), and all m ≥ 1. Let the

parabolic non-Hörmander set of the operator L̃ be H̃c ⊂ D × (0, 1). Then it follows from

the last inequality that H̃c ⊆ Hc
e× (0, 1). Since Hc

e is contained in a C2 hypersurface M in

D, then H̃c is contained in the C2 hypersurface M×(0, 1) in D×(0, 1). By the hypotheses

of Theorem 1.0, at least one the vector fields X1, · · · , Xn is transversal to M at every point

of Hc
e . Therefore one of the vectors fields X̃1, · · · , X̃n+1 is transversal to M×(0, 1) at every

point of H̃c. The exponential degeneracy condition of Theorem 1.0 easily implies that λ̃(m)

satisfies the corresponding degeneracy condition of Theorem 1.1 on the set H̃c. Hence we

conclude from Theorem 1.1 that the operator L̃ +
∂

∂t
is hypoelliptic on R × D × (0, 1).

Therefore L̃ is hypoelliptic on D × (0, 1), and consequently L is hypoelliptic on D. ¤

Proof of Theorem 1.2.

The proof of Theorem 1.2 requires the following modified form of Lemma 3.2.
19



Lemma 3.5.

Suppose that (1.4) holds, and let ηx denote the Itô process in (3.19). Let τ be

an exponentially positive (Ft)0≤t≤T -stopping time. Then there exist positive constants

c′1, c
′
2, and c′3, depending only on the characteristics of τ , such that for all t ∈ (0, c′1) and

ε ∈ (0, c′2 t(18)
r

), one has

P

(∫ t∧τ

0

|ηx(u)|2 du < ε

)
< exp(−c′3ε

− 1
(18)r ). (3.23)

The argument used to prove Lemma 3.3 now shows that (3.4) is satisfied with

y := ηx, provided p lies in the restricted range (− 2
(18)r

, 0). Once this is established, the

proof of Theorem 1.2 follows along the same lines as that of Theorem 1.1. ¤

4. Proofs of lemmas.

A proof of Lemma 3.1 can be found in ([I-W], Lemma 10.5, p. 398). Our proof of

Lemma 3.2 builds upon two preliminary results, which we first state and prove.

Proposition 4.1.

Suppose m ≥ 2 and a > 0. Let B : [0,∞)×Ω → R be a one-dimensional Brownian

motion. Then there exists a positive constant c23 such that

P

(∫ a

0

|B(u)|mdu < ε

)
≤
√

2 exp
(
−c23a

1+ 2
m ε−

2
m

)

for every ε > 0. The constant c23 may be chosen to be 2−7.

Proof.

The result is known to hold for m = 2, with c23 = 2−7 (cf. [I-W], Lemma V.10.6,

p. 399).

For m > 2 we apply Hölder’s inequality and use the result for m = 2 to obtain

P

(∫ a

0

|B(u)|mdu < ε

)
≤ P

(∫ a

0

|B(u)|2du < a1− 2
m ε

2
m

)

≤
√

2 exp(−c23a
1+ 2

m ε−
2
m )

for every ε > 0. This proves the proposition. ¤
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Proposition 4.2.

Assume the notation and hypotheses of Lemma 3.2. Then for every m ≥ 2 and

q > 0, there exist positive constants c24 and c25 such that for all ε > 0,

P

(∫ τ

0

|y(u)|mdu < ε, τ ≥ εq

)
< c24 exp

(
−c25ε

q+
2(q−1)

m

)
.

The constants c24 and c25 depend only on c3 (the bound for the drift and diffusion coeffi-

cients of y), δ, m, and q. In particular, they are independent of y(0) and the characteristics

of τ .

Proof.

Expressing (3.1) in coordinates, it is sufficient to treat the case d = 1, n ≥ 1. In

this case, the process y may be written in the form

y(t) = B(τ4(t)) +
∫ t

0

b(u) du, 0 ≤ t ≤ T,

where

τ4(t) :=
∫ t

0

|a(u)|2 du, 0 ≤ t ≤ T,

and B : [0,∞) × Ω → R is a one-dimensional (Fτ−1
4 (t) : 0 ≤ t ≤ T )-adapted Brownian

motion started at B(0) = y(0). By assumption, we may take |a(u)| ≥ δ > 0 for 0 ≤ u ≤ τ .

Hence τ ≥ εq implies τ4(τ) ≥ δ2εq. Furthermore, the function τ4(t) is strictly increasing

on (0, τ) and changes of the time variable yield

∫ τ

0

|y(u)|mdu ≥ c−1
26

∫ τ4(τ)

0

|y(τ−1
4 (s))|m ds

= c−1
26

∫ τ4(τ)

0

∣∣∣B(s) +
∫ s

0

b(τ−1
4 (u))

|a(τ−1
4 (u))|2 du

∣∣∣
m

ds,

where c26 := nc2
3. Thus

P

(∫ τ

0

|y(u)|mdu < ε, τ ≥ εq

)

≤ P

(∫ δ2εq

0

∣∣∣B(s) +
∫ s

0

b(τ−1
4 (u))

|a(τ−1
4 (u))|2 du

∣∣∣
m

ds < c26ε, τ4(τ) ≥ δ2εq

)
. (4.1)
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We now define a (bounded) process h : [0,∞)× Ω → R by

h(u) :=





b(τ−1
4 (u))

|a(τ−1
4 (u))|2 , u ∈ (0, τ4(τ))

b(τ)
|a(τ)|2 , u ≥ τ4(τ).

and we denote by B′ the process

B′(s) := B(s) +
∫ s

0

h(u)du, 0 ≤ s ≤ τ4(T ).

By the Girsanov theorem, B′ is an (Fτ−1
4 (t) : 0 ≤ t ≤ T )-adapted Brownian motion on Ω

with respect to the measure

dP ′ :=
{

exp
(
−

∫ τ4(T )

0

h(u) dB(u)− 1
2

∫ τ4(T )

0

h2(u) du

)}
dP.

Denote by Ωε the event

Ωε :=
(∫ δ2εq

0

|B′(s)|m ds < c26ε

)
,

and by G the Girsanov density

G := exp
(
−

∫ τ4(T )

0

h(u)dB(u)− 1
2

∫ τ4(T )

0

h2(u) du

)
.

We now apply Hölder’s inequality to (4.1) to obtain

P

(∫ τ

0

|y(u)|mdu < ε, τ ≥ εq

)
≤ P (Ωε)

≤
√

E(G−2)P ′(Ωε).

By Proposition 4.1, we have

P ′(Ωε) ≤
√

2 exp
(
−2c25ε

q+
2(q−1)

m

)
, (4.2)

where c25 := 1
2c23c

− 2
m

26 δ2(1+ 2
m ) . The boundedness of h and τ4(T ) imply the existence of a

constant c27, depending only on the bounds of the foregoing quantities, such that

G−2 ≤ c27 exp
(

2
∫ τ4(T )

0

h(u) dB(u)− 2
∫ τ4(T )

0

h2(u) du

)
. (4.3)

The desired conclusion follows from (4.2) and (4.3), together with the fact that the expo-

nential on the right hand side of (4.3) is a Girsanov density (note that it is obtained by

replacing h by (−2h) in the relation defining G), and therefore has expectation equal to

1. ¤
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Proof of Lemma 3.2.

Note that for every q > 0, we may write

P

(∫ t∧τ

0

|y(u)|mdu < ε

)
≤ P1 + P2, (4.4)

where

P1 := P

(∫ t∧τ

0

|y(u)|mdu < ε, t ∧ τ ≥ εq

)

and

P2 := P (t ∧ τ < εq).

By Proposition 4.2,

P1 < c24 exp
(
−c25ε

q+
2(q−1)

m

)
, (4.5)

where c24 and c25 are independent of t. Now τ is exponentially positive; so if T0 > t > εq,

then

P2 < exp(−c27ε
−q), (4.6)

where c27 and T0 denote the characteristics of τ . Combining (4.4), (4.5) and (4.6), we

obtain

P

(∫ t∧τ

0

|y(u)|m du < ε

)
≤ c24 exp

(
−c25ε

q+
2(q−1)

m

)
+ exp(−c27ε

−q)

for t ∈ (0, T0) and 0 < ε < t
1
q . The lemma now follows by choosing as q the value for

which the two exponents
{

q +
2(q − 1)

m

}
and −q coincide, namely

1
m + 1

. ¤

Proof of Lemma 3.3.

Choose and fix m ≥ max
{
− p

1 + p
, 2

}
and set q := − m

p(m + 1)
; so q > 1. Define a

function ψ : [0,∞) → [0, 1) by

ψ(z) :=
{

exp(−z
p
m ) z > 0

0 z = 0.

Note that
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(i) ψ is strictly increasing;

(ii) ψ is convex in an interval (0, c28), for some positive constant c28.

Furthermore

P

(∫ t∧τ

0

exp(−|y(u)|p)du < ε

)
= P

(∫ t∧τ

0

ψ(|y(u)|m) du < ε

)
.

We break the proof of the lemma into two cases. Firstly, suppose that |y(0)| ≥ c29

(:= ( 1
2c28)

1
m ). Let τ5 := inf{s > 0 : |y(s)− y(0)| = 1

2c29} ∧ τ . Then there exists a positive

constant c30, determined by m, p, and δ, such that

P

(∫ t∧τ

0

exp(−|y(u)|p)du < ε

)
≤ P (t ∧ τ5 ≤ c30ε). (4.7)

Applying Lemma 3.1 to the right hand side of (4.7), we deduce the existence of positive

constants c31 and c32, such that if t ∈ (0, c31) and 0 < ε <
t

c30
, then

P

(∫ t∧τ

0

exp(−|y(u)|p)du < ε

)
≤ exp

(
−c32

ε

)
.

The constants c30, c31, c32 depend only on m, p, c3, and the characteristics of τ . Thus the

conclusion of the lemma holds in this case.

Alternatively, suppose that |y(0)| < c29. We now set

τ6 := inf{s > 0 : |y(s)|m = c28} ∧ τ.

Jensen’s inequality yields

P

(∫ t∧τ

0

ψ(|y(u)|m)du < ε

)
≤ P

(∫ t∧τ6

0

|y(u)|m du ≤ (t ∧ τ6)ψ−1

(
ε

t ∧ τ6

))

≤ P1 + P2

where

P1 := P

(
t ∧ τ6 ≤ ε

c28

)
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and

P2 := P

(∫ t∧τ

0

|y(u)|mdu ≤ (t ∧ τ6)ψ−1

(
ε

t ∧ τ6

)
, t ∧ τ6 >

ε

c28

)
.

Note that P1 is of the same form as the probability on the right hand side of (4.7), and

hence satisfies a similar estimate.

We now consider P2. An elementary argument shows that the convexity of ψ in the

interval (0, c28) implies that the function θ(u) := uψ−1

(
ε

u

)
is increasing for u >

ε

c28
. In

particular, if t ∧ τ6 >
ε

c28
then

(t ∧ τ6)ψ−1

(
ε

t ∧ τ6

)
≤ Tψ−1

(
ε

T

)

where T is any upper bound for t. This implies

P2 ≤ P

(∫ t∧τ6

0

|y(u)|mdu ≤ Tψ−1

(
ε

T

))
. (4.8)

We now apply Lemma 3.2 to estimate the right hand side of (4.8). Thus

P2 < exp
(
−c5

{
Tψ−1

(
ε

T

)}− 1
m+1

)

≤ exp(−c7| log ε|q), (4.9)

for all 0 < t < c34 and ε < exp
(
−c33t

− 1
q

)
, where c7, c33, and c34 are positive constants

exhibiting the appropriate dependence. Clearly, (4.9) gives an estimate for P2 of the

required form, and the proof of the lemma is complete. ¤

Proof of Lemma 3.4.

It is sufficient to show that the conditions of Theorem 1.1 imply that conclusions

(b)(i),(ii) of Lemma 3.4 hold for every x ∈ Hc.

Suppose all the conditions of Theorem 1.1 are satisfied. Fix any x ∈ Hc. Since

N is a C2 hypersurface in Rd, there is a C2 chart (V, θ) centered at x such that θ :=
25



(θ1, θ2) : V → Rd−1 × R is a C2 diffeomorphism onto the open set θ(V ), θ(x) = (0, 0),

and θ(N ∩ V ) =
(
Rd−1 × {0}) ∩ θ(V ). Furthermore the coordinate maps θ1 : V → Rd−1

and θ2 : V → R are C2 with ∇θ2(z) 6= 0 for all z ∈ V and N ∩ V = θ−1
2 {0} ∩ V . By the

transversality hypothesis, there exists i = 1, · · · , n such that Xi(x) /∈ TxN , the tangent

space to N at x. Now TxN = [Dθ2(x)]−1{0}, where Dθ2(x) is the Fréchet derivative of

θ2 at x. Thus ∇θ2(x) · Xi(x) 6= 0. Let U1 be the open neighborhood of x given in the

statement of Theorem 1.1. Choose an open ball V1 := B(x, δ1) ⊆ U1∩V centered at x and

with radius δ1 > 0. Define V2 ⊂ V1 to be the ball B(x, δ1/2) of center x and radius δ1/2.

Then a simple argument using the triangle inequality shows that ρ(y,N) = ρ(y,N ∩ V1)

for all y ∈ V2. Now let y ∈ V2 and z ∈ N ∩ V1. Then by the Lipschitz property of θ there

is a positive constant k such that

|y − z| > k|θ(y)− θ(z)| ≥ k|θ2(y)|.

Therefore ρ(y, N) ≥ k |θ2(y)| for all y ∈ V2. Set U := V2 and φ := k θ2|U . If m ≥ 1 and

p ∈ (−1, 0) are as in Theorem 1.1, it is easy to see that

λ(m)(y) ≥ exp{−[ρ(y,N)]p} ≥ exp{−|φ(y)|p} ,

for all y ∈ U . Therefore (b)(ii) is satisfied, and the proof of Lemma 3.4 is complete. ¤

Proof of Lemma 3.5.

Suppose f : Rd → R is any C∞ function. Recall that L − c has been relabeled as

Xn+1 . For each 1 ≤ j ≤ n + 1 , one has

P

(∫ t∧τ

0

|f(ξx(u))|2 du < ε

)
≤ P1 + P2

where

P1 := P

(∫ t∧τ

0

|Xjf(ξx(u))|2 du < ε
1
18

)
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and

P2 := P

(∫ t∧τ

0

|f(ξx(u))|2 du < ε,

n+1∑

i=1

∫ t∧τ

0

|Xif(ξx(u))|2 du ≥ εα

)
.

where α = 1
18 .

Note that by Itô’s lemma,

df(ξx(t)) =
n∑

i=1

Xif(ξx(t)) dWi(t) + (L− c)f(ξx(t)) dt .

The Kusuoka-Stroock-Norris lemma shows that, for sufficiently small ε > 0, one has

P2 ≤ exp(−c35ε
−α) ,

where α =
1
18

. Thus, for 1 ≤ j ≤ n + 1 and sufficiently small ε,

P

(∫ t∧τ

0

|f(ξx(u))|2 du < ε

)
≤ exp(−c35ε

−α) + P

(∫ t∧τ

0

|Xjf(ξx(u))|2 du < εα

)
.

We now iterate the above relation r times, starting with the smooth function φ as the

initial choice for f . This gives the inequality

P

(∫ t∧τ

0

|ηx(u)|2 du < ε

)
≤ exp(−c35ε

−α) + exp(−c36ε
−α2

) + · · ·+ exp(−c35+r ε−αr

)+

+ P

(∫ t∧τ

0

|Xi1Xi2 · · ·Xirφ(ξx(u))|2 du < εαr

)
. (4.11)

Now Xi1Xi2 · · ·Xirφ is a continuous function and Xi1Xi2 · · ·Xirφ(x) 6= 0. Therefore by an

argument similar to the one used to derive (3.13) from (3.10), we obtain positive constants

c′4, c
′
5, c

′
37 depending only on the characteristics of τ , such that

P

(∫ t∧τ

0

|Xi1Xi2 · · ·Xirφ(ξx(u))|2 du < εαr

)
< exp(−c′29ε

−αr

) . (4.12)

for t ∈ (0, c′4) and ε ∈ (0, c′5 t(18)
r

). Substituting (4.12) into (4.11) yields the desired

conclusion. This completes the proof of Lemma 3.5. ¤
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