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FOUR EVENTS OF HOST SWITCHING IN ASPIDODERIDAE (NEMATODA) INVOLVE

CONVERGENT LINEAGES OF MAMMALS

F. Agustı́n Jiménez, Scott L. Gardner*, Graciela Navone, and Guillermo Ortı́†

Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901-6501. e-mail: agustinjz@zoology.siu.edu

ABSTRACT: The Great American Interchange resulted in the mixing of faunistic groups with different origins and evolutionary
trajectories that underwent rapid diversification in North and South America. As a result, groups of animals of recent arrival
converged into similar habits and formed ecological guilds with some of the endemics. We present a reconstruction of the evolutionary
events in Aspidoderidae, a family of nematodes that infect mammals that are part of this interchange, i.e., dasypodids, opossums, and
sigmodontine, geomyid, and hystricognath rodents. By treating hosts as discrete states of character and using parsimony and Bayesian
inferences to optimize these traits into the phylogeny of Aspidoderidae, we reconstructed Dasypodidae (armadillos) as the
synapomorphic host for the family. In addition, 4 events of host switching were detected. One consisted of the switch from dasypodids
to hystricognath rodents, and subsequently to geomyid rodents. The remaining set of events consisted of a switch from dasypodids to
didelphid marsupials and then to sigmodontine rodents. The reconstruction of the ancestral distribution suggests 3 events of dispersal
into the Nearctic. Two of these invasions would suggest that 2 different lineages of dasypodid parasites entered the Northern
Hemisphere at different times, which is consistent with the presence of 2 lineages of armadillos in Mexico.

Parasites establish themselves in individuals that offer the

resources necessary for their survival, growth, and reproduction

(Smyth, 1962). This establishment also depends on the chance of

parasites and host to encounter each other and on their

compatibility (Combes, 1991). The resources a parasite depends

on may be available in individuals from an ecological guild or be

unique to a group sharing a common ancestor (Choudhury and

Dick, 2001). In the latter case, specificity of the parasites toward

their hosts would be reflected in taxonomic concordance among

the associates (Choudhury and Dick, 2001). Vicariant speciation

in organisms serving as hosts may result in the isolation and

subsequent speciation of their parasites (Light and Hafner, 2008).

However, potential hosts may belong to different taxonomic

groups occurring in sympatry, forming an ecological guild. In this

case, the physical proximity of potential hosts may have an effect

on the distribution of parasites in their hosts and result in

ecological or evolutionary patterns different from cospeciation

(Janzen, 1980; Choudhury and Dick, 2001; Weckstein, 2004;

Huyse and Volckaert, 2005; Bueter et al., 2009). Discerning

evolutionary patterns from ecological associations may be

difficult because the distribution of parasites in a diverse array

of hosts may follow temporary changes in the distribution and

availability of the hosts, as well as changes in traits present in

both parasites and hosts (Janzen, 1980; Kelly et al., 2009; Agosta

et al., 2010).

The extant distribution of parasites in their hosts is used as the

foundation for the reconstruction of historical associations. In the

case of cophylogenetic studies, the associations should be studied

using different methods so patterns of cophylogeny can be

contrasted with stochasticity (Light and Hafner, 2008). These

methods can be grouped as either data-based (Kishino and

Hasegawa, 1989; Huelsenbeck and Rannala, 1997) or topology-

based (Charleston, 1998; Ronquist, 2001). The premise of these

methods is the optimization of reciprocally congruent trees

known without error. As a consequence, these methods may not

perform optimally in reconstructing historical associations

between parasites occurring in distantly related hosts (not sharing

an immediate common ancestor). In these cases, reconstruction of

historical associations can be achieved by treating hosts as traits

to be optimized in the parasite phylogeny. Diverse methods

facilitate the reconstruction of ancestral states, including hosts, by

framing the distribution of the traits into the phylogeny of a

group of organisms. These include optimization using parsimony

(Brooks, 1985; Ronquist, 2003), maximum likelihood (Huelsen-

beck and Rannala, 1997), and Bayesian approaches (Huelsenbeck

et al., 2000; Pagel et al., 2004).

The New World experienced rapid faunistic changes as the

result of dispersal of organisms from South to North America and

vice versa due to geological and biotic factors (Simpson, 1980).

This phenomenon, known as the Great American Interchange,

resulted in the evolutionary diversification of several groups with

different origins and evolutionary trajectories (D’Elı́a, 2003;

Opazo, 2005; Poux et al., 2006; Weksler, 2006; Dunnum and

Salazar-Bravo, 2010). As a result of this diversification, some of

these groups converged to exhibit similar habits, as well as

morphological and even physiological features. This includes

semifossorial habits and similar metabolic rates observed in

insectivorous and semi-insectivorous mammals like armadillos,

opossums, and sigmodontine rodents (McNab, 1984). This faunal

diversification and subsequent convergence may increase the

spectrum of host species that may offer compatibility with the

parasites already established in a single area.

The Aspidoderidae Skrjabin and Schikhobalova, 1947 (Ascar-

idida: Heterakoidea) currently includes 17 species divided among

4 genera. These nematodes occur in the cecum and large intestine

of mammals with distributions restricted to southern Nearctic and

Neotropical regions. The known host range for aspidoderids

includes xenarthrans (armadillos and anteaters), didelphiomorphs

(opossums), hystricognath and sigmodontine rodents (Inglis,

1967), and a carnivore (Gomes and Pereira, 1970). The host

spectrum has been established for several species of Aspidodera

Railliet and Henry, 1912 (Santos et al., 1990). Two species in this

family are notorious for their presence in several localities on the

continent and for covering a wide host spectrum. These include

Aspidodera raillieti Travassos, 1913 and Paraspidodera uncinata

(Rudolphi, 1819). Both species appear to occur from Argentina to

Mexico, with the former species reaching southern Illinois. Their

ubiquitousness should expose them to almost any mammal in

Received 23 November 2011; revised 7 May 2012; accepted 4 June 2012.

* Department of Biological Sciences, The George Washington Univer-
sity, 2023 G St. NW, Washington, D.C. 20052.

† The Harold W. Manter Laboratory of Parasitology, University of
Nebraska-Lincoln, Lincoln, Nebraska 68588-0547, and Centro de
Estudios Parasitológicos y de Vectores- CEPAVE- CONICET-UNLP
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their range; however, they appear to infect a defined set of
mammals. Three examples illustrate this point. First, in central

Argentina, concurrent infections of any species of Paraspidodera,

Aspidodera, and Nematomystes have not been reported in

armadillos, didelphiomorph, and sigmodontine rodents (Navone,

1986, 1990; Navone and Suriano, 1992; Navone et al., 2009).
Second, marsupials from French Guiana are infected exclusively

by A. raillieti, not by P. uncinata, or any other species of

Aspidodera (Byles, pers. comm.). Finally, A. raillieti commonly

reaches 70% prevalence in marsupials (Gomes et al., 2003;

Jiménez-Ruiz et al., 2011), yet it occurs in low prevalence and

abundance in sympatric sigmodontine rodents, including Nec-
tomys squamipes (Pinto et al., 1982; Vicente et al., 1982; Gomes,

1984) and Euryoryzomys nitidus (unpubl. data). The presence of

Proencaia heterospiculata Gomes and Pereira, 1970 in the margay,

Leopardus weidii, has been considered as an accidental infection,

on the basis of the presence of a sole individual in the large
intestine of this carnivore (Jiménez-Ruiz et al., 2008).

On the basis of the evaluation of their morphological
characters, it has been suggested that the ancestor of Aspidoder-

idae occurred in members of Dasypodidae (armadillos), and these

subsequently switched in 3 separate events to hystricognath and

geomyid rodents (cavy-like and pocket gophers, respectively) to

myrmecophagans (anteaters), and finally to didelphids (opos-
sums) and sigmodontine rodents (Jiménez-Ruiz et al., 2008).

To evaluate the evolutionary events that shaped the association

among parasites and mammals, we attempted to reconstruct the

ancestral distribution of the species involved in this putative

switch. The emphasis was on those parasites known to occur in 4

groups of mammals, including didelphids, and sigmodontine,

geomyid, and hystricognath rodents, as well as Nearctic species of
Aspidoderidae.

MATERIALS AND METHODS

Several thousand mammals have been surveyed for parasites across the
Neotropics since 1984 (Gardner and Hugot, 1995). The vast majority of
individuals examined resulted from the inventory of the mammal diversity
of Bolivia (Anderson, 1997), and includes a vast list of species from
different orders. Some of the specimens infected with aspidoderid
nematodes, as well as the localities where they were collected, are listed
in Table I. For this study, the large intestine was opened, washed in water,
and contents were examined with a dissecting microscope. Nematodes
found were washed in water and immediately preserved in 95% ethanol or
placed in cryotubes, frozen in liquid nitrogen, and stored at �80 C. Both
tail and anterior ends were cut and used to identify species and to serve as
vouchers for deposit in museums. The rest of the body was used for
extraction of DNA. Eleven species of Aspidoderidae were available for
this study; at least 2 individuals of each species were analyzed, except for
Aspidodera binansata Railliet and Henry, 1913, Lauroia bolivari Jiménez-
Ruiz and Gardner, 2003, and Nematomystes rodentiphilus Sutton,
Chabaud and Durette-Desset, 1980.

An 800-bp fragment of the mitochondrial 16S rDNA (rrnL) and 900-bp
fragment including internal transcriber spacers (ITS) 1 and 2 and 5.8
rDNA were amplified from whole-genome DNA extracted from
individual male worms (QIAGEN DNeasy, Alameda, California). The
rrnL fragment was amplified using primers 16SCE (50-ATTCTATCTCA-
CAATGAATTAAAC-3 0) and C2F3 (5 0-CGTCAATGTTCA-
GAAATTTGTGG-30) with cycling conditions of 94 C/4 min; (94 C/0:30
min; 488C/45 sec; 70 C/1 min) 3 35; and 72 C/5 min. The ITS fragment
was amplified using primers NC2 (50-TTAGTTTCTTTTCCTCCGCT-30)
and NC5 (50-GTAGGTGAACCTGCGGAAGGATCATT-30) (Gasser et
al., 1993; Zhu et al., 1999) with cycling conditions of 90 C/135 sec; (90 C/
30 sec; 55 C/30 sec; 70 C/30 sec) 3 35; 70 C/10 min. Reactions were
conducted in volumes of 25 ll with 2.5 ll of 103 buffer, 1.6 ll of 50 mM
MgCl2, 3.0 ll of dNTP, 1 unit of Taq polymerase, and 1.0 ll of each

primer at a concentration of 10 lM/ll and 100 ng of DNA template,
adjusting the volume with water.

Successfully amplified PCR products were purified using ExoSap-IT
(GE Healthcare, Cleveland, Ohio) following manufacturer’s recommen-
dations. Purified products were processed with BigDye 3.2 (BigDyee
Chemstry Perkin-Elmer Applied Biosystems) and direct sequenced in a
Base Station 51 DNA Fragment Analyzer (MJ Research, Inc., Water-
town, Massachusetts).

Resulting amplicons were aligned with Clustal W (http://www.genome.
jp/tools/clustalw/), with gap opening penalty set at 40, and gap extension
penalty set at 10. Sites of low probability were detected and removed using
the algorithms implemented in the program GBlocks (http://molevol.
cmima.csic.es/castresana/Gblocks_server.html), using default settings
(Castresana, 2000). The cured alignments resulted in matrices of 665 bp
for rrnL and 595 bp for ITS. The model of evolution GTR þ G was
selected for both matrices using Akaike information criterion as
implemented in JModeltest (Posada, 2008).

Phylogenetic signal was analyzed using PAUP*, TreeFinder version
November, 2008, and MrBayes 3.1.2 (Ronquist and Huelsenbeck, 2003;
Swofford, 2003; Jobb et al., 2004), using parsimony and maximum
likelihood as optimality criteria, and a Bayesian inference to estimate
posterior probability of the nodes. In PAUP*, the phylogeny was
reconstructed by means of a heuristic search with tree bisection
reconnection branch swapping, 100 random additions of sequences, and
10 trees held at each replicate. One thousand bootstrap replicates were
performed using a heuristic search in PAUP* and TreeFinder. MrBayes
was set to run for 20 million generations with resampling every 1,000
iterations and a burn-in of 25% of the resulting trees. The remaining trees
were used to reconstruct the consensus.

Cured matrices for rrnL and ITS were used to reconstruct the
phylogeny of species for the 10 taxa included using the program BEAST*
version 1.7 (Heled and Drummond, 2010). The species tree was
reconstructed under a Yule model (Steel and McKenzie, 2001) with the
following assumptions: constant population size; molecular clock with
uniform rates across branches, and a general time reversible substitution
model with gamma shape and 4 categories for both matrices.

Voucher specimens were deposited in the Harold W. Manter
Laboratory of Parasitology of the University of Nebraska State Museum
(Lincoln, Nebraska), resulting sequences were uploaded to Genbank ID
JN852753–JN852778, JQ995297–JQ995322, and resulting trees were
uploaded to TreeBase (http://purl.org/phylo/treebase/phylows/study/
TB2:S11985?x-access-code¼44c612afe664950e8bb05cd469f4b8a5&format
¼html and http://purl.org/phylo/treebase/phylows/study/TB2:S12695
?x-access-code¼a0d51406af8e3b4a5ff2c2143c7d1f5b&format¼html).

Historical associations among parasites and hosts were reconstructed
by optimizing the mammals involved in the association in the phylogeny
of Aspidoderidae. In this manner, every terminal in the phylogenetic tree
was associated with a host taxon and used to reconstruct the ancestral host
for the common ancestor of the parasites. Thirteen species of mammals
belonging to 4 suprafamilial mammalian groups served as hosts for these
parasites (Table I). Suprafamilial groups were selected to represent the
association between species of nematodes and mammals. The purpose of
this served 2 objectives, i.e., simplifying the reconstruction of ancestral
states to reconstruct macroevolutionary events and avoiding sample bias
toward a particular species in a given group. For example, we used the
family name Dasypodidae to include Chaetophractus villosus, Dasypus
novemcinctus, and Euphractus sexcinctus, common and abundant species
of armadillos sampled for aspidoderid nematodes throughout their range
(see Table I). We also used Hystricognathi, an infraorder of rodents with
10 families occurring in South America; from that total, 3 families include
species infected by aspidoderids (Agoutidae, Caviidae, and Ctenomydae;
Table I). These taxa were coded with a unique identifier: 0¼Dasypodidae,
1 ¼Hyscticognathi, 2 ¼Geomyidae, 3 ¼ Sigmodontine, 4 ¼Didelphidae,
which include armadillos, cavy-like rodents, pocket gophers, Neotropical
sigmodontines, and opossums, respectively (Table I). In this manner, the
associations between parasites and hosts were treated as discrete
characters to be optimized into the most parsimonious topologies of the
parasite phylogeny reconstructed with both data sets. Reconstruction of
associations was performed using parsimony and Bayesian inferences.
Parsimony was used as optimality criteria as implemented in DIVA 1.1
(Ronquist, 1996). This method for reconstruction of ancestral states
minimizes the number of extinctions and host-switching events to favor
vicariant (cospeciation) events. The distribution of parasites in their hosts
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was converted to a binary matrix that was optimized into the phylogeny of
Aspidoderidae.

A Bayesian reversible-jump Markov chain Monte Carlo simulation as
implemented in BayesTraits 1.0 (Pagel et al., 2004) was used to reconstruct
the ancestral hosts in all nodes of the parasite phylogeny. The algorithms
implemented in BayesTraits derive the posterior probability and values of
alternative traits at ancestral nodes of phylogenies. Traits showing the best
fit to the node are selected as the optimal reconstructed character for that
given node, making it possible to reconstruct evolutionary changes. The
ancestral states of nodes in the phylogeny of Aspidoderidae were
reconstructed for each of the 30,000 trees resulting from both chains of
the Bayesian analyses. The distribution of the parasites in their hosts was
scored as described above and treated as multistate characters. Bayes-
Multistate allowed free host change among the 5 mammal groups mapped
into the nodes of the parasite phylogeny. For the reconstruction of
ancestral hosts, hyperprior exponential was seeded between 0 and 30 and
the rate deviation was set at 10, which resulted in acceptance rates between
20 and 40%. A total of 100 million iterations was performed for each
analysis with the first 100,000 samples discarded as burn-in with sampling
every 1,000th generation. Each analysis was performed 3 times and the
average of the harmonic mean was used for comparison against the results
from the other constraints. Differences ,2 units suggest strong support
for the reconstruction of 1 character state over the others at a given node
(Pagel et al., 2004).

The continental distribution of the parasites and their possible
dispersion in the Nearctic was tested by scoring each of the terminals in
the phylogeny of the Aspidoderidae as either Neotropical (0) or Nearctic
(1). For purposes of this investigation, the divide between the Neotropical
and Nearctic boundary was set at the Mexican transvolcanic axis; the
Neotropics included the Pacific Province southward and the Nearctic
included the Mesoamerican mountainous zone and the Xerophile Mexican
Province northward (Cabrera and Willink, 1973). The ancestral geo-
graphical distribution of the parasites was reconstructed using parsimony
and Bayesian approaches as described above. In this case, the 2 alternate
states of character were analyzed using a hyperprior approach with an

exponential prior seeded between 0 and 30 and setting the rate deviation to
90, which resulted in acceptance rates that oscillated between 20 and 40%.
Multiple preliminary analyses were performed to estimate the value of rate
deviation that would produce acceptance levels within this range.

RESULTS

Phylogeny

A phylogenetic tree for Aspidoderidae using mitochondrial

marker rrnL is presented on Figure 1A. This tree is the consensus

resulting from the Bayesian inference and it includes the support

for internal branches as calculated with each of the 3 algorithms.

From the 665 bp included, 259 are parsimony informative. The

analysis of the rrnL using parsimony results in 3 equally

parsimonious trees, which vary in the reciprocal relationships

among species of Aspidodera. The topology resulting from

Bayesian inference, parsimony, and maximum likelihood is

concordant in that Aspidoderidae is a monophyletic group nested

within the Heterakoidea and its support is higher than 90% using

Bayesian inference and parsimony as optimality criteria, but 60%

using maximum likelihood. In addition, the relationships among

species of Aspidodera relative to Nematomystes appear unre-

solved, yet support for the monophyly of species of Lauroia

Proença, 1938 and Paraspidodera Travassos, 1914, as well as for

Aspidodera scoleciformis (Diesing, 1851) Railliet and Henry, 1912

and A. sogandaresi Jiménez-Ruiz, Gardner and Varela-Stokes,

2003, is higher than 90%.

The phylogenetic tree resulting from the analysis of the ITS

data set is shown in Figure 1B. This tree shows the topology

FIGURE 1. Bayesian inference of the relationships among aspidoderid nematodes. (A) Inference based on the mitochondrial ribosomal large
subunit—rrnL. (B) Inference based on the internal transcriber spacers (ITS) 1 and 2 and 5.8 rDNA. Reconstructions based on 20 million generations.
Posterior probabilities appear on the right and bootstrap values on the left; bootstrap values based on parsimony and maximum likelihood as optimality
criteria appear on the upper and lower left, respectively. The symbol * in B indicates a bootstrap support of 100% for parsimony and 96% for maximum
likelihood. All trees are available at Tree Base (http://purl.org/phylo/treebase/phylows/study/TB2:S12695?x-access-code¼a0d51406af8e3b4a5ff2c2143c7
d1f5b&format¼html).
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reconstructed by means of Bayesian inference and includes the

support for the branches estimated by parsimony and maximum

likelihood. The family is recovered as monophyletic irrespective

of the optimality criteria used for the reconstruction. However,

support is 75% when maximum likelihood was used as optimality

criterion. From the 595 bp included, 224 are parsimony
informative. The analysis based on parsimony results in 8 equally

parsimonious trees, all of which show A. raillieti forming a

polytomy with N. rodentiphilus. Deep nodes of the phylogeny, as

well as those including A. raillieti, remain unresolved. All

topologies show 3 groupings including species of Lauroia and

Paraspidodera uncinata, as well as Aspidodera sp.

The species tree is presented in Figure 2. It shows a
monophyletic family with support of 0.96 and 3 main clades, 1

including P. uncinata, which appears as the sister group for the

rest of the species in the family. The other 2 clades show a support

of 0.88 and contain both species of Lauroia with a support of 0.99,

and finally, the third clade has a support of 0.81 and it includes

the 5 studied species of Aspidodera plus 2 of Nematomystes. In this
latter clade, only the relationships between the 2 species of

Nematomystes and A. raillieti show support greater than 0.95

(Fig. 2).

Reconstruction of ancestral states: Continental distribution

A total of 7 fully bifurcating trees was used in the

reconstruction of ancestral states using parsimony as criteria.

Three resulted from the analyses of rrnL and 4 from ITS; 4 were

eliminated from the latter because they were not bifurcated. These

trees are available at http://purl.org/phylo/treebase/phylows/

study/TB2:S12695?x-access-code¼a0d51406af8e3b4a5ff2c2143c7d
1f5b&format¼html. The solution for the area reconstruction on

the basis of these parsimonious trees suggest a Neotropical
common ancestor for Aspidoderidae and 4 dispersion events in

the Neartcic. Results using Bayesian inference do not show any

significant difference in the reconstruction of the common

ancestor of Aspidoderidae as either Neotropical or Nearctic.

However, dispersion into the Nearctic is significant in 3 clades,

including P. uncinata in Tlaxcala and Morelos (Mexico),
Aspidodera sp. in Oaxaca and Nayarit (Mexico), and A.

sogandaresi in Nayarit (Mexico) and Texas, which are supported

by Bayes factor values of 1.38, 1.25, and 4.48, respectively. The

same clades had a support of 2.65, 2.68, and 2.17 using ITS

topologies (Table II). Optimization of character states on 3 fully

resolved species trees reveals the same 3 dispersals described

above, yet it is ambiguous on the reconstruction of the ancestral
origin for the family.

Reconstruction of ancestral states: Associations with hosts

The solution for the reconstruction of the association among

aspidoderid nematodes and their hosts suggests 4 events of host

switching (Fig. 3). First, a sigmodontine rodent is reconstructed

as the host for the common ancestor of both species of

FIGURE 2. Phylogeny for 10 species of Aspidoderidae on the basis of the analysis of the mitochondrial ribosomal large subunit—rrnL—and internal
transcriber spacers (ITS) 1 and 2 and 5.8 rDNA.
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Nematomystes. Second, a didelphiomorph is reconstructed as the

host for the common ancestor of A. raillieti and the 2 species of

Nematomystes. Third, a hystricognath rodent is reconstructed as

the host for the ancestor of P. uncinata occurring in Argentina

and Bolivia. Finally, a geomyid rodent is reconstructed as the

common ancestor for P. uncinata occurring in Mexico. The

common ancestor of P. uncinata is ambiguously reconstructed as

hystricognath or geomyid. Similarly, the common ancestor for

TABLE II. Bayes factors for the reconstruction of the ancestral host at nodes of the phylogeny of Aspidoderidae. Historical associations between parasites
and hosts were treated as discrete characters and reconstructed using a Bayesian reversible-jump Markov chain Monte Carlo simulation as implemented
in BayesTraits (version 1.0). Reconstruction was made on trees resulting from the Bayesian inference of the posterior probabilities for the data sets rrnL
and ITS, each consisting of 30,000 trees. Values in bold show the lowest average harmonic mean that permits the reconstruction of the ancestral host
(columns) in selected nodes (rows).

Node name

Dasypodidae Hystricognathi Geomyidae Sigmodontinae Didelphidae

rrnL ITS rrnL ITS rrnL ITS rrnL ITS rrnL ITS

Family �21.32/ �21.68 �24.18/ �24.65 �24.37/ �25.11 �24.56/ �24.27 �24.22/ �23.094
Lauroia �20.91/ �21.15 �27.71/ �29.95 �27.89/ �30.03/ �27.62/ �30.07 �27.45/ �29.15
Paraspidodera uncinata �25.23 �23.1 �21.25/ �22.48 �23.26/ �23.58 – –

P. uncinata South America – �21.372/ �21.69 �23.28/ �23.63 – –

P. uncinata Mexico – �23.66/ �25.04 �21.05/ �21.28 – –

Aspidodera raillieti þ Nematomystes �24.434/ �24.94 – – �23.34/ �23.41 �21.35/ �21.4
Nematomystes – – – �21. 21/ �21.2 �24.82/ �24.12

FIGURE 3. Reconstruction of evolutionary events in the diversification of Aspidoderidae. Four events of host switching localized in 2 clades are
identified. Three dispersion events into the Nearctic are also illustrated.
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Aspidoderidae is ambiguously reconstructed as a dasypodid or

dasypodid/hystricognath/geomyid. The optimization of the host

used on the phylogeny of the family using ITS resulted in the

reconstruction of a dasypodid as the host for the ancestor of

Aspidoderidae.

The reconstruction of ancestral states on the basis of Bayes

factors is summarized in Table III. These results reveal lower

harmonic means for Dasypodidae as the ancestral host at the 4

main nodes, including the common ancestor of the family and at

least 3 deep clades (Fig. 3; Table III). Bayes factor values reveal

lower harmonic means for didelphid marsupials as the ancestral

host for A. raillieti and species of Nematomystes (Table III). A

sigmodontine rodent is reconstructed as the ancestor for the 3

specimens in Nematomystes (3.7; 2.92). The internal node

supporting individuals of P. uncinata collected in both continents

show similar values for Bayes factors for geomyid (2.85) and

hystricognath rodents (3.16) relative to dasypodids. The indepen-

dent analysis of each clade results in lower harmonic means for a

hystricognath as the ancestral host for P. uncinata collected in

South America, and for a geomyid as the ancestor for the

parasites collected in Mexico. The reconstruction of ancestral

distributions on 3 fully resolved species trees reveals 2 host-

switching events in the clade including Nematomystes and A.

raillieti and in the basal splitting between P. uncinata and the rest

of the species.

DISCUSSION

Phylogenetic signal

Both data partitions reveal that species traditionally included in

Aspidodera are paraphyletic relative to species of Nematomystes

and P. uncinata. Aspidodera does not appear to be monophyletic

in that nominal species are included in 2 different clades with

moderate support. The type species of the genus, A. scoleciformis,

appears to be the sister group for P. uncinata, and the grouping of

A. raillieti, N. rodentiphilus, and N. scapteromi shows a very high

support. The rest of the species analyzed including Aspidodera sp.

A. binansata and A. sogandaresi are part of independent clades

with low support. The relationship among these species challenges

the traditional division into subfamilies and highlights the

unreliability of the anostomosing cordons in the definition of

Aspidodera. This is apparent by the relative placement of Lauroia

as the sister group for the rest of the species in the family and the

grouping of A. scoleciformis and P. uncinata as sister groups. The

synapomorphies that define the new groupings as well as the

names proposed for each clade will be proposed elsewhere. It

should be noted that several species endemic to Brazil, including

A. ansirupta Proença, 1937, A. lacombae Vicente, 1964, Aspido-

dera subulata (Molin, 1860), A. vazi Proença, 1937, L. travassosi

Proença, 1938, and Proencaia heterospiculata Gomes and Pereira

1970, were not available for this analysis. The inclusion of these

missing species should help resolve the internal branches,

improving the resolution of the relationships among members

of Aspidodera.

Inclusion of additional specimens is also necessary for species

already sampled, since it may provide evidence on their genetic

variability. For example, A. binansata is represented by a single

specimen collected in Bolivia, yet the species has a wide

distribution and shows a relatively long branch. The problem is

evident in the parsimony-based analyses, in which the species is

included with specimens of an unnamed species of Aspidodera

present in Mexico (Fig. 2).

The topology of the species tree is different from the rrnL and

ITS trees in the placement of P. uncinata as the basal species for

the family, yet it reveals Aspidodera as paraphyletic and it is

congruent in the strong support for the sister group relationship

among A. raillieti and both species of Nematomystes. In addition,

it shows that the 2 species in Aspidodera present in Mexico and

the United States are not reciprocal sister groups. In Figure 1A,

A. sogandaresi appears as the sister group for A. scoleciformis,

whereas the unnamed species of Aspidodera is part of a clade with

low support grouping A. binansata, A. raillieti, and the 2 species

of Nematomystes. Since specimens labeled as P. uncinata in

Mexico appear to form a tight monophyletic group, it would be

convenient treating these as a separate species in the reconstruc-

tion of the species tree. Additional samples throughout the

continent are necessary to estimate any grouping formed by P.

uncinata in South America.

Reconstruction of ancestral states: Continental distribution

The distribution of individual parasites was coded as either

Neotropical or Nearctic depending on their collecting sites (Table

I). For data sets rrnL and ITS, the parsimony-based analysis

unequivocally reconstructs a Neotropical origin for the common

ancestor of Aspidoderidae and reveals 3 dispersal events into the

Nearctic. The only exception is the clade formed for A.

sogandaresi, on the basis of optimization on the ITS topology

since the reconstruction of its ancestral state is ambiguous.

Perhaps because of the conflicting resolution at basal branches of

the trees, values of Bayes factors are not conclusive for the

reconstruction of the ancestor of the family as either Neotropical

or Nearctic. This was also the case for most of the internal nodes;

only 3 of the 11 nodes analyzed showed a perceptible difference in

Bayes factor values (Pagel et al., 2004). This difference was

strongly positive for the clade including A. sogandaresi. In the

other 2 cases, the Bayes factor values were lower than 2, and

could be interpreted as a moderate support for a Nearctic affinity

of individuals of Aspidodera sp. and P. uncinata occurring in

Mexico (Table II). This pattern suggests that 3 independent

TABLE III. Bayes factors for the reconstruction of the ancestral area at
nodes of the phylogeny of Aspidoderidae. Historical associations between
parasites and hosts were treated as discrete characters and reconstructed
using a Bayesian reversible-jump Markov chain Monte Carlo simulation
as implemented in BayesTraits (version 1.0). Reconstruction was made on
trees resulting from the Bayesian inference of the posterior probabilities
for the data sets rrnL and ITS, each consisting of 30,000 trees. Values in
bold show the lowest average harmonic mean that permits the
reconstruction of the ancestral area (columns) for selected nodes (rows).

Node name

Neotropical Nearctic

rrnL ITS rrnL ITS

Family �12.37/ �13.18 �12.31/ �14.01
Aspidodera sp. �12.96/ �13.03 �11.79/ �15.72
Aspidodera sogandaresi �16.47/ �14.9 �11.85/ �12.96
Paraspidodera uncinata �12.04/ �12.05 �12.15/ �12.05
P. uncinata Mexico �13.81/ �15.79 �11.84/ �13.24
P. uncinata South America �12.1/ �12.09 �12.14/ �13.98

1172 THE JOURNAL OF PARASITOLOGY, VOL. 98, NO. 6, DECEMBER 2012



lineages dispersed into the Nearctic. In the case of P. uncinata,

this dispersion would have been associated to hystricognath

rodents moving northward (Simpson, 1980). The other 2 events

involve Aspidodera sp. and A. sogandaresi, strict parasites of 9-

banded armadillos. These 2 species belong to different clades in

the phylogeny (Figs. 1–3). This relationship suggests that at least

2 parasite lineages of Aspidodera entered the Nearctic indepen-

dently, and it is consistent with empirical evidence showing the

presence of 2 lineages of 9-banded armadillos that dispersed

though Mexico (Arteaga et al., 2012). The origin and affinities of

these 2 species of Aspidodera cannot be established with certainty

because of the low support and credibility of the internal branches

supporting Aspidodera sp.

Reconstruction of ancestral states: Associations with hosts

The reconstruction of Dasypodidae as the ancestor of the

family appears strongly supported by Bayes factors (Table III).

This suggests that the lineage that originated aspidoderid

nematodes and the early diversification may have been associated

with an ancestor of dasypodids (armadillos). Although this

observation is congruent with the sequence of origin and

diversification for Dasypodidae, dated 40 6 9 mya (Delsuc et

al., 2004), and hystricognaths in the new World, dated 33.8 6 1.8

mya (Opazo, 2005), the reconstruction of the ancestor should be

treated as ambiguous as indicated by all parsimony-based

analyses. In addition, Dasypodidae is ambiguously reconstructed

as the synapomorphic host for Aspidoderidae, as well as for each

of the 3 main clades recovered in the phylogeny (Fig. 3).

Relative to the records that we presented herein, most of the

specimens assigned to Aspidodera collected from dasypodids were

recovered from 9-banded armadillos. Dasypus novemcinctus is the

most common species in the family as well as the one showing the

widest geographical distribution. The scale of our sampling

prevents us from understanding the distribution of the parasites

across the different species of dasypodids, especially in those

localities where several species occur in sympatry. On the basis of

this, it is yet unclear the degree of specificity of several species in

Aspidodera toward the 21 recognized species in Dasypodidae

(Gardner, 2007). There is no data set that allows a direct

comparison of the distribution of these parasites in any of the

species of armadillos occurring in sympatry.

In the phylogeny of the family, 2 of the internal nodes show an

optimal reconstruction for ancestors other than dasypodids. This

signifies that the 4 events of host switching are localized in 2

clades of the phylogeny of Aspidoderidae (Fig. 3). This suggests

that, in Aspidoderidae, host switching is likely to occur in

members of the same clade and perhaps there is an inherited

ability that allow these parasites to do so. The features or ability

that would allow these parasites to undergo host switching are

presently unknown. Yet, it must be correlated with their ability to

survive on the resources available in a wide host spectrum.

The first of these clades groups specimens of P. uncinata and

the second includes A. raillieti and the 2 known species of

Nematomystes. The hosts used by A. raillieti comprise didelphids

(opossums) and sigmodontine rodents (water rats, long-nosed

rats, among others), whereas N. rodentiphilus and N. scapteromi

have been recorded only in sigmodontine rodents (Sutton et al.,

1980; Gomes, 1984; Santos et al., 1990; Jiménez-Ruiz and

Gardner, 2003; Chagas-Moutinho et al., 2007; Navone et al.,

2009). The ancestor for species of Nematomystes is reconstructed

as a sigmodontine rodent, whereas the ancestor for A. raillieti þ
Nematomystes is reconstructed as a didelphid marsupial. This

suggests a double event of host switching, first from dasypodids to

didelphids, and then from didelphids to sigmodontine rodents.

These events would coincide with the patterns of diversification of

marsupials in South America (Voss and Jansa, 2009) and the

invasion and subsequent patterns of diversification of sigmodon-

tine rodents in South America (D’Elı́a, 2003; Steppan et al., 2004).

The study of the timing and evolution of lineages of parasites is

necessary to test this correlation. Aspidodera raillieti has been

recorded in Illinois and other localities in the United States,

always associated with didelphids (Chandler, 1932; Cordell,

1974). The species has also been recorded in sigmodontine

rodents in South America (Pinto et al., 1982; Gomes, 1984).

Since it appears that convergence in diet, life styles, and

physiology play an important role in the distribution of the

parasite in different mammals, one could be expected to find this

parasite in insectivorous rodents endemic to North America,

including grasshopper mice of the genus Onychomys.

The reconstruction of the ancestral host for the clade A.

scoleciformis þ P. uncinata suggests an event of host switching

from dasypodids to either geomyid or hystricognath rodents.

Both hystricognath and geomyid rodents show similar Bayes

factor values, although these are slightly better for hystricognaths

(Table III). Analyses of the 2 branches of this clade allow an

unequivocal reconstruction of geomyids as the host for the

ancestor of P. uncinata in Mexico. In the other branch,

hysticognath rodents are reconstructed as a synapomorphy for

P. uncinata collected in South America (Fig. 3). Hystricognaths

and geomyids have quite distinct evolutionary histories and

geographic origins (Spradling et al., 2004; Opazo, 2005; Poux et

al., 2006). The dispersal of hystricognaths northward would have

resulted in a host-switching event toward geomyids. Some species

of geomyid and hystricognath rodents are sympatric across

Central America (Hall, 2001). We attempted to collect aspidoder-

id nematodes in localities where both hystricognaths and

geomyids are known to occur in sympatry, with no success.

In addition to physical proximity there are other traits that

mammals involved in this host–parasite association have in

common. For instance, geomyids (pocket gophers) and cteno-

myds (tuco-tucos) display convergence in fossorial life styles and

herbivorous diets, yet these contrast with the herbivorous diets of

Guinea pigs and other hystricognaths known to be infected with

P. uncinata. The rest of the mammals show variations of

semifossorial habits, and insectivorous or omnivorous diets

(armadillos and opossums). However, representatives of the

groups sampled are known to display low metabolic rates, some

as the result of their insectivorous diet (McNab, 2000), fossorial

and semifossorial habits, and uptake of large amounts of dirt

(McNab, 1984). The identification of the resource that species of

Aspidoderidae depend on in these mammals, as well as the role, if

any, of physiology in this association remain to be discovered.

Our results suggest that 4 events of host switching in

Aspidoderidae allowed their establishment in didelphid marsupi-

als, and sigmodontine, hystricognath, and geomyid rodents (Fig.

3). The compatibility of P. uncinata with both hystricognath and

geomyid rodents, as well as the compatibility of A. raillieti with

marsupials and sigmodontine rodents, suggests the capability of

these parasites to infect mammals with similar characteristics. It
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also appears that the northward dispersion of 9-banded armadil-

los (Taulman and Robbins, 1996) carried 2 lineages of parasites

with them, perhaps independently. The geographical expansion of

hystricognaths and geomyids may have exposed geomyids to the

parasites of hystricognaths and facilitated a switch and dissem-

ination of this parasite through the southern edge of the Nearctic

(Fig. 3). The analyses of protein-coding genes would allow the

timing of the events of parasite diversification.
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