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THE STABLE MANIFOLD THEOREM

FOR NONLINEAR STOCHASTIC

SYSTEMS WITH MEMORY

II: THE LOCAL STABLE MANIFOLD THEOREM.∗

Salah-Eldin A. Mohammed‡ and Michael K. R. Scheutzow†

Abstract. We state and prove a Local Stable Manifold Theorem (Theorem 4.1) for non-
linear stochastic differential systems with finite memory (viz. stochastic functional differen-
tial equations (sfde’s)). We introduce the notion of hyperbolicity for stationary trajectories
of sfde’s. We then establish the existence of smooth stable and unstable manifolds in a
neighborhood of a hyperbolic stationary trajectory. The stable and unstable manifolds are
stationary and asymptotically invariant under the stochastic semiflow. The proof uses infinite-
dimensional multiplicative ergodic theory techniques developed by D. Ruelle, together with
interpolation arguments.

1. Preliminaries.

This paper is a sequel to [M-S.3]. In [M-S.3], we constructed a smooth locally

compact stochastic semiflow for a large class of non-linear stochastic functional differential

equations (sfde’s) exemplified by (I) below. In this paper, we will use the stochastic

semiflow constructed in [M-S.3] in order to develop a non-linear multiplicative ergodic

theory for sfde’s. The theory is used to characterize local stability of trajectories of the sfde

in the neighborhood of a stationary trajectory. In order to describe this characterization

‡The research of this author is supported in part by NSF grants DMS-9503702, DMS-9703596,
DMS-9975462, DMS-0203368 and by MSRI, Berkeley, California. Revised version, September 4, 2003.
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more precisely, and for the rest of the article, we will recall some of the formulation and

notation in [M-S.3].

Let (Ω,F , P ) be a probability space. Denote by F̄ the P -completion of F , and let

(Ω, F̄ , (Ft)t≥0, P ) be a complete filtered probability space satisfying the usual conditions

([Pr]).

Denote by W : R×Ω → Rp, p-dimensional Brownian motion on (Ω,F , (Ft)t∈R, P ).

Throughout the paper, we will adopt the following set-up:

(i) Let θ : R× Ω → Ω be a P -preserving flow on Ω, viz.

(a) θ is (B(R)⊗F ,F)-measurable,

(b) θ(t + s, ·) = θ(t, ·) ◦ θ(s, ·), s, t ∈ R,

(c) θ(0, ·) = IΩ, the identity map on Ω,

(d) P ◦ θ(t, ·)−1 = P, t ∈ R.

(ii) θ is ergodic.

(iii) Let {Fs
t : −∞ < s ≤ t < ∞} be a family of sub-σ-algebras of F̄ satisfying the

following conditions:

(a) θ(−r, ·)(Fs
t ) = Fs+r

t+r for all r ∈ R,−∞ < s ≤ t < ∞.

(b) For each s ∈ R, (Ω, F̄ , (Fs
s+u)u≥0, P ) is a filtered probability space satisfying

the usual conditions, and F0
t = Ft, t ≥ 0 ([Pr]).

(iv) The Brownian motion is a helix with respect to θ: For every s ∈ R, there exists a

sure event Ωs ∈ F such that

W (t + s, ω) = W (t, θ(s, ω)) + W (s, ω)

for all t ∈ R, all ω ∈ Ωs.
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Consider the autonomous sfde:

dx(t) = H(x(t), xt) dt + G(x(t)) dW (t), t > 0

x(0) = v ∈ Rd, x0 = η ∈ L2([−r, 0],Rd),



 (I)

driven by the Brownian motion W : R× Ω → Rp. Let r > 0. The solution

x : [−r,∞) × Ω → Rd is (B([−r,∞)) ⊗ F , B(Rd))-measurable and (Ft)t≥0-adapted. For

each t ≥ 0, xt ∈ L2([−r, 0],Rd) is the segment

xt(·, ω)(s) := x(t + s, ω), s ∈ [−r, 0], ω ∈ Ω.

The coefficients H and G in (I) are continuous non-linear functionals H : M2 → Rd, G :

Rd → L(Rp,Rd), satisfying the regularity hypotheses (SMW )k,δ stated below. Recall

that the space M2 := Rd × L2([−r, 0],Rd) carries the natural Hilbert norm

‖(v, η)‖2M2
:= |v|2 + ‖η‖2L2 , v ∈ Rd, η ∈ L2([−r, 0],Rd).

For a general theory of sfde’s of type (I) the reader may refer to [Mo.1] and [Mo.4].

In order to specify our regularity hypotheses on the coefficients of (I), we shall recall

some notation from [M-S.3] which will be used throughout this article.

Let E, N, K,L be real Banach spaces. Denote by Lk(E, N) the Banach space of all

continuous k-multilinear maps A : Ek → N with the uniform norm ‖A‖ := sup{|A(v1, v2, · · · , vk)| :
vi ∈ E, |vi| ≤ 1, i = 1, · · · , k}. Suppose U ⊆ E is an open set. A map f : U → N is said

to be of class Ck,δ (k ≥ 1, δ ∈ (0, 1]) if it is Ck and if Dkf : U → Lk(E,N) is δ-Hölder

continuous on bounded sets in U . A Ck,δ map f : U → N (k ≥ 1, δ ∈ (0, 1]) is said to be

of class Ck,δ
b if all its derivatives Djf : U → Lk(E, N), 1 ≤ j ≤ k, are globally bounded

on U , and Dkf : U → Lk(E, N) is δ-Hölder continuous on U . When U is bounded, we

denote by Ck,δ(U,N) the Banach space of all Ck,δ maps f : U → N given the norm

‖f‖k,δ :=
∑

0≤j≤k

sup
v∈U

‖Djf(v)‖+ sup
(v,v′)∈(U×U)∩4c

‖Dkf(v)−Dkf(v′)‖
|v − v′|δ
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where 4 := {(v, v) : v ∈ E}. Let

Y : R× E ×N ×K × Ω → L

(t, z, v, η, ω) 7→ Y (t, z, v, η, ω)

be a random field that is a.s. Fréchet differentiable in (z, v, η). We will denote its partial

Fréchet derivatives with respect to z, v, η by D2Y (t, z, v, η, ω) : E → L,D3Y (t, z, v, η, ω) :

N → L and D4Y (t, z, v, η, ω) : K → L respectively.

The following hypotheses will be imposed on (I) throughout this paper.

Hypotheses (SMW )k,δ.

(1) H : M2 → Rd is of class Ck,δ
b and is globally bounded.

(2) G : Rd → L(Rp,Rd) is of class Ck+1,δ
b .

Assume Hypotheses (SMW )k,δ for some k ≥ 1, δ ∈ (0, 1]. Then by Theorem 4.1

([M-S.3]), the sfde (I) has a stochastic semiflow which we will denote by X : R+×M2×Ω →
M2, where X(t, (v, η), ·) := (x(v,η)(t), x(v,η)

t ) a.s. for all (t, (v, η)) ∈ R+ ×M2, and x(v,η)

is the unique solution of (I) through (v, η) ∈ M2. The stochastic semiflow of (I) has a

version, also denoted by X, such that the pair (X, θ) is a perfect cocycle on M2, viz.

X(t1 + t2, (v, η), ω) = X(t2, X(t1, (v, η), ω), θ(t1, ω))

for all ω ∈ Ω, t1, t2 ≥ 0, (v, η) ∈ M2. Furthermore, each X(t, ·, ω) is locally compact

for t ≥ r, of class Ck,ε for any ε ∈ (0, δ), and DX(t, (v, η), ω) is compact linear for every

(v, η) ∈ M2 ([M-S.3], Theorem 4.1).

Our main objective in this article is to prove a random non-linear saddle-point

property for the sfde (I) under the regularity Hypotheses (SMW )k,δ on the coefficients

(Theorem 4.1). Theorem 4.1 is a local stable manifold theorem for the sfde (I). Like its

deterministic counterpart, this theorem gives a local non-linear random set of coordinates
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in a neighborhood of a hyperbolic stationary trajectory. Such a set of coordinates consists

of random stationary families of infinite-dimensional stable manifolds and a corresponding

stationary family of finite-dimensional unstable manifolds for the stochastic semiflow. The

stable and unstable manifolds intersect transversally at the stationary trajectory and are

asymptotically invariant under the stochastic semiflow.

We next give a broad outline of the key ideas that go into the proof of the above

result.

• By definition, a stationary random point Y (ω) ∈ M2 is invariant under the semiflow

X; viz X(t, Y ) = Y (θ(t, ·)) for all times t.

• We linearize the semiflow X along the stationary point Y (ω) in M2. In view of the

stationarity of Y and the cocycle property of X, this gives a linear perfect cocycle

(D2X(t, Y ), θ(t, ·)) in L(M2), where D2 denotes the first spatial (Fréchet) derivative

in the M2-variable.

• In view of the ergodicity of θ, we can introduce the notion of hyperbolicity for

a stationary trajectory of (I) as follows. Use local compactness of the semiflow

for times greater than the delay r (Part I, Theorem 4.1 (iii)), and apply Ruelle-

Oseledec’s multiplicative ergodic theorem in order to yield a discrete non-random

Lyapunov spectrum {λi : i ≥ 1} for the linearized cocycle. Say that Y is hyperbolic

if λi 6= 0 for every i ≥ 1.

• Assuming that ‖Y ‖ε is integrable (for small ε) and using the method of construc-

tion of the semiflow in Part I, we show that the linearized cocycle satisfies the

hypotheses for “perfect versions” of the ergodic theorem and Kingman’s subaddi-

tive ergodic theorem (Lemmas 5.1, 5.2). These refined versions yield invariance of

the Oseledec spaces under the continuous-time linearized cocycle. In particular, the

stable/unstable subspaces will serve as tangent spaces to the local stable/unstable

manifolds of the non-linear semiflow X.
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• We establish continuous-time integrability estimates on the spatial derivatives of the

non-linear cocycle X in a neighborhood of the stationary point Y . These estimates

follow from the construction of the stochastic semiflow in Part I coupled with known

global spatial estimates for finite-dimensional stochastic flows.

• We introduce the auxiliary perfect cocycle

Z(t, ·, ω) := X(t, (·) + Y (ω), ω)− Y (θ(t, ω)), t ∈ R+, ω ∈ Ω.

By refining the arguments in proofs by Ruelle ([Ru.2], Theorems 5.1 and 6.1), we

construct local stable/unstable manifolds for the discrete cocycle (Z(nr, ·, ω), θ(nr, ω))

near 0 and hence (by translation) for X(nr, ·, ω) near Y (ω) for all ω sampled from

a θ(t, ·)-invariant sure event in Ω. This is possible because of the continuous-time

integrability estimates, the perfect ergodic theorem and the perfect subadditive er-

godic theorem (Lemmas 3.2, 5.1, 5.2 ). By interpolating within delay periods of

length r and further refining the arguments in the proofs of Ruelle’s theorems (The-

orems 5.1, 6.1, [Ru.2]), we then show that the above manifolds also serve as local

stable/unstable manifolds for the continuous-time semiflow X near Y .

• The final key step is to establish the asymptotic invariance of the local stable man-

ifolds under the stochastic semiflow X. This is achieved by appealing to the ar-

guments underlying the proofs of Theorems 4.1 and 5.1 in Ruelle [Ru.2] and some

additional estimates using the continuous-time integrability properties, and the per-

fect subadditive ergodic theorem. The asymptotic invariance of the local unstable

manifolds follows by employing the concept of a history process for X (Theorem

4.1 (d)) coupled with similar arguments to the above. The existence of the history

process compensates for the lack of invertibility of the semiflow.
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Remark.

The results in this paper can be extended to cover the following class of sfde’s driven

by Kunita-type spatial semimartingales ([M-S.3]):

dx(t) = H(x(t), xt)µ(dt) + G(dt, x(t), g(xt)), t > 0

x(0) = v ∈ Rd, x0 = η ∈ L2([−r, 0],Rd).



 (I ′)

In (I ′), H,G, g, µ satisfy the hypotheses in Section 5(i), (GE)(i), and (C′) of [M-S.3].

In addition, assume that for every finite T > 0, the random variable sup
0≤t≤T

µ(t, ·) has

moments of all orders. We further assume that H and g are Ck,δ
b , Ck+1,δ

b (resp.) and are

globally bounded. Furthermore, G is a helix with respect to a P -preserving ergodic shift

θ : R× Ω → Ω and µ is an adapted non-decreasing continuous helix.

2. Stationary Trajectories. Hyperbolicity.

In this section, we will introduce the notion of a stationary hyperbolic trajectory

for the sfde (I). This is an essential ingredient of the local stable manifold theorem for (I)

(Theorem 4.1).

Definition 2.1.

Say that the sfde (I) has a stationary point if there exists an (F ,B(M2))-measurable

random variable Y : Ω → M2 such that

X(t, Y (ω), ω) = Y (θ(t, ω)) (1)

for all t ∈ R+ and every ω ∈ Ω. We will refer to X(t, Y ) as a stationary trajectory of (I).

Note that, in general, a stationary trajectory is anticipating. On the other hand,

the distribution of a non-anticipating stationary trajectory is an invariant measure for the

Markov trajectory {(x(v,η)(t), x(v,η)
t ) : (t, (v, η)) ∈ R+×M2} of (I). More precisely, suppose

Y : Ω → M2 is an F-measurable stationary random point for the sfde (I) satisfying the

identity (1) and independent of the Brownian motion W (t), t ≥ 0. Let ρ := P ◦ Y −1 be
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the distribution of Y . Using the independence of Y and and W (t), t ≥ 0, the reader may

check directly that ρ is an invariant probability measure on M2 for the Markov trajectory

{(x(v,η)(t), x(v,η)
t ) : (t, (v, η)) ∈ R+ ×M2} of (I). (Cf. [A], [Ba], [Cr], [Le], [L-Y].)

Example.

Consider the affine linear sfde

dx(t) = H(x(t), xt) dt + GdW (t), t > 0,

x(0) = v ∈ Rd, x0 = η ∈ L2([−r, 0],Rd),



 (I ′′)

where H : M2 → Rd is a continuous linear map, G : Rp → Rd is linear, and W is

p-dimensional Brownian motion. Assume that the linear deterministic fde

dy(t) = H(y(t), yt) dt, t ≥ 0,

has a semiflow Tt ∈ L(M2), t ≥ 0, which is uniformly asymptotically stable. Set

Y :=
∫ 0

−∞
T−u(GdW (u), 0). (2)

Using integration by parts and the fact that

W (t, θ(t1, ω)) = W (t + t1, ω)−W (t1, ω), t, t1 ∈ R, (3)

the reader may check that Y has an (F ,B(M2))-measurable version satisfying (1). Note

also that Y is Gaussian and thus has finite moments of all orders. See ([Mo.1], Theorem

4.2, Corollary 4.2.1, pp. 208-217.) More generally, when H is hyperbolic, one can show

that a stationary point of (I ′′) exists ([Mo.1]).

Sufficient conditions for the existence (and uniqueness) of stationary points for the

sfde (I) are given in [I-N] and the appendix to this paper.
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Remarks.

(i) If (1) holds for each t ∈ R+ on a sure event Ωt that may depend on t, then there is

a version of Y such that (1) holds identically for all ω ∈ Ω and all t ∈ R+ ([Sc]).

(ii) The stationary trajectory extends to a meaningful trajectory for negative times;

that is

X(t, Y (θ(s, ω)), θ(s, ω)) = Y (θ(t + s, ω)) (4)

for all s ∈ R, t ∈ R+ and every ω ∈ Ω. To see this, we let the sfde start at negative

initial instants t0 and then solve forward in time:

x(t) = v +
∫ t

t0

H(x(u), xu) du +
∫ t

t0

G(x(u)) dW (u), t ≥ t0

x(t) = η(t− t0), t0 − r < t < t0





(I ′′′)

where (v, η) ∈ L2(Ω, M2;Ft0). Denote by Xt0
t ((v, η), ω) the trajectory {(x(t), xt) :

t ≥ t0, (x(t0), xt0) = (v, η)} of (I ′′′). Then by the remark following the proof of The-

orem 4.1 ([M-S.3]), one has Xt0
t ((v, η), ω) = X(t − t0, (v, η), θ(t0, ω)), t ≥ t0, ω ∈

Ω, (v, η) ∈ M2. In particular, (1) implies that Xt0
t (Y (θ(t0, ω)), ω) = Y (θ(t, ω)), t ≥

t0, ω ∈ Ω.

We now describe a procedure for generating stationary points when the sfde (I)

admits stationary solutions in the sense of [I-N].

Without loss of generality, assume that the sfde (I) and its driving Brownian mo-

tion W are defined on the canonical filtered Wiener space (Ω,F , (Ft)t∈R, P ); viz. Ω :=

C(R,Rp; 0),F := B(C(R,Rp; 0)), P is Wiener measure on Ω, Ft := the P -completion of

the σ-algebra σ{eu−ev : v ≤ u ≤ t}, t ∈ R, and eu : C(R,Rp; 0) 3 ω 7→ ω(u) ∈ Rp, u ∈ R,

are evaluation maps.

Define Ω̃ := C(R,Rd)×C(R,Rp; 0). Furnish Ω̃ with the σ-algebra F̃ := B(C(R,Rd))⊗
B(C(R,Rp; 0)). In the following computations, sample points from Ω̃ will be denoted by
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ω̃ := (f, ω) ∈ C(R,Rd) × C(R,Rp; 0). Define the processes x∞ : R × Ω̃ → Rd and

W∞ : R× Ω̃ → Rp by

x∞(t, ω̃) := f(t), W∞(t, ω̃) := W (t, ω) = ω(t)

for all t ∈ R, ω̃ := (f, ω) ∈ Ω̃.

Assume that x∞ is a stationary solution of the sfde (I) (cf. [I-N], pp. 2-3). That is,

there exists a probability measure P∞ on (Ω̃, F̃) such that the following is true:

(i) W∞ is p-dimensional standard Brownian motion on (Ω̃, F̃ , P∞).

(ii) (x∞, dW∞) are strictly stationarily correlated in the sense that the law of the pro-

cess

(x∞(t, ·), W∞(u, ·)−W∞(v, ·), t ∈ R, v ≤ u)

is invariant under time-shifts.

(iii) The σ-algebra σ{x∞(u) : u ≤ t}∨σ{W∞(u, ·)−W∞(v, ·), v ≤ u ≤ t} is independent

of σ{W∞(u, ·)−W∞(v, ·), t ≤ v ≤ u} under P∞ for each t ∈ R.

(iv) x∞ is a two-sided solution of (I) when W is replaced by W∞:

dx∞(t) = H(x∞(t), x∞t ) dt + G(x∞(t)) dW∞(t), t > s > −∞. (I∞)

See ([I-N]) and the appendix to this article for a method of constructing stationary

solutions of (I).

We will show below that the stationary solution x∞ gives rise to a stationary point

in the sense of Definition 2.1.

Let θ̃ : R× Ω̃ → Ω̃ denote the two-sided shift

θ̃(t, ω̃) := (f(t + ·), θ(t, ω)), t ∈ R, ω̃ := (f, ω) ∈ Ω̃,

where θ : R× C(R,Rp; 0) → C(R,Rp; 0) is the canonical Brownian shift

θ(t, ω)(s) := ω(t + s)− ω(t), t, s ∈ R, ω ∈ C(R,Rp; 0).
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It is easy to check that (W∞, θ̃) is a helix. Next observe that P∞ is invariant under the

two-sided shift θ̃(t, ·) : Ω̃ → Ω̃, t ∈ R, viz. P∞ ◦ θ̃(t, ·)−1 = P∞ for all t ∈ R. This is

a consequence of the definition of θ̃ and the fact that (x∞, dW∞) are strictly stationarily

correlated.

Let (X(t, ·, ω), θ(t, ω)), t ≥ 0, be the perfect cocycle on M2 associated with the sfde

(I). Define the random field X̃ : R+ ×M2 × Ω̃ → M2 by

X̃(t, (v, η), ω̃) := X(t, (v, η), ω), t ≥ 0, ω̃ := (f, ω) ∈ Ω̃, (v, η) ∈ M2.

It is easy to see that (X̃(t, ·, ω̃), θ̃(t, ω̃)), t ≥ 0, is the perfect cocycle on M2 generated by

trajectories of the sfde (I) on the probability space (Ω̃, F̃ , P∞), and where W is replaced

by W∞.

Define the (F̃ ,B(C([−r, 0],Rd)))-measurable random variable Z : Ω̃ → C([−r, 0],Rd)

by Z(ω̃) := x∞0 (·, ω̃) for all ω̃ ∈ Ω̃. It follows directly from the definitions of x∞ and θ̃ that

Z(θ̃(t, ω̃)) = x∞t (·, ω̃), t ∈ R, ω̃ ∈ Ω̃.

Now define the random mapping Y : Ω̃ → M2 by

Y (ω̃) := (Z(ω̃)(0), Z(ω̃)), ω̃ ∈ Ω̃.

Clearly Y is (F̃ ,B(M2))-measurable. Furthermore, for P∞-a.a. ω̃ ∈ Ω̃, we have

Y (θ̃(t, ω̃)) = (x∞(t, ω̃), x∞t (·, ω̃))

= X̃(t, (x∞(0, ω̃), x∞0 (·, ω̃)), ω̃)

= X(t, (Z(ω̃)(0), Z(ω̃)), ω)

= X̃(t, Y (ω̃), ω̃)

for all t ≥ 0. Hence there is an F̃-measurable version of Y (also denoted by the same

symbol) such that the equality

Y (θ̃(t, ω̃)) = X̃(t, Y (ω̃), ω̃)
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holds for all ω̃ ∈ Ω̃ and all t ≥ 0 (Remark (i) above, [Sc]). This shows that Y is a stationary

point for the cocycle (X̃, θ̃) in the sense of Definition 2.1. Furthermore, and in order to

satisfy the set-up in Section 1, we stipulate that the stationary measure P∞ is ergodic

with respect to the two-sided shift θ̃.

Note that if we pick a stationary solution of (I) in the sense of [I-N] (Appendix, The-

orem 6.1), then Y will be independent of the forward increments {W∞(u, ·)−W∞(v, ·), 0 ≤
v ≤ u} under P∞, because in this case x∞0 will have the same property.

Lemma 2.1.

Assume Hypotheses (SMW )k,δ (k ≥ 1, δ ∈ (0, 1]). Let Y be a stationary point of

(I) such that E(‖Y ‖ε0) < ∞ for some ε0 > 0 . Then the semiflow X of (I) satisfies
∫

Ω

log+ sup
0≤t1,t2≤T

‖D2X(t2, Y (θ(t1, ω)), θ(t1, ω))‖L(M2) dP (ω) < ∞ (5)

for any fixed 0 < T < ∞.

In particular, the linearized semiflow (D2X(t, Y (ω), ω), θ(t, ω)) is an L(M2)-valued

perfect cocycle with a discrete fixed Lyapunov spectrum {−∞ < · · · < λi+1 < λi < · · · <

λ2 < λ1}. If the Lyapunov spectrum is infinite, then λi+1 < λi for all i ≥ 1; otherwise there

is a fixed (non-random) integer N > 1 such that {λN = −∞ < λN−1 < · · · < λ2 < λ1}.
Furthermore, each finite λi(∈ R) has finite non-random multiplicity.

Proof.

The proof of the lemma is based on linearizing the random variational integral

equation underlying (I), which was established in [M-S.3]. More specifically, the sfde (I) is

equivalent to the following random integral equation:

ζ(t, x(t, ω), ω) = v +
∫ t

0

F (u, ζ(u, x(u, ω), ω), x(u, ω), xu(·, ω), ω) du, (6)

where 0 ≤ t ≤ T, (v, η) ∈ M2, and F : [0,∞)×Rd ×M2 × Ω → Rd is given by

F (t, z, v, η, ω) := {Dψ(t, z, ω)}−1H(v, η) (7)
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for all t ≥ 0, z, v ∈ Rd, η ∈ L2([−r, 0],Rd), ω ∈ Ω. In (6), the random field ζ : [0,∞) ×
Rd × Ω → Rd is defined by

ζ(t, x, ω) := ψ(t, ·, ω)−1(x), t ≥ 0, x ∈ Rd, ω ∈ Ω.

In (6) and (7), ψ is the Ck+1,ε (0 < ε < δ) stochastic flow of the stochastic ordinary

differential equation (without delay)(sode):

dψ(t) = G(ψ(t)) dW (t), t ≥ 0

ψ(0) = x ∈ Rd.



 (8)

The sode (8) generates a perfect cocycle (ψ, θ):

ψ(t1 + t2, ·, ω) = ψ(t2, ·, θ(t1, ω)) ◦ ψ(t1, ·, ω), t1, t2 ≥ 0, ω ∈ Ω.

We quote the following estimates on ψ from [M-S.2] and [Ku]:

sup
0≤t≤T

|ψ(t, x, ω)| ≤ K(ω)[1 + |x|(log+ |x|)ε] (9)

sup
0≤t≤T

|ζ(t, x, ω)| ≤ K(ω)[1 + |x|(log+ |x|)ε] (10)

sup
0≤t≤T

‖Djψ(t, x, ω)‖ ≤ K(ω)(1 + |x|ε) (11)

sup
0≤t≤T

‖[Dψ(t, x, ω)]−1‖ ≤ K(ω)(1 + |x|ε) (12)

for each ε > 0, 1 ≤ j ≤ k+1, some K = K(ε, ω, T ) > 0 and all x ∈ Rd. The F-measurable

random variable K(ε, ·, T ) has moments of all orders.

Write x(t, (v, η), ω) := x0,(v,η)(t, ω) = ψ(t, ζ(t, x(t), ω), ω), and take Fréchet deriva-

tives in (v, η) to obtain

D2x(t, (v, η), θ(t1, ω))(v1, η1)

= D2ψ(t, ζ(t, x(t, (v, η), θ(t1ω)), θ(t1ω))
[
v1+

∫ t

0

{D2F (u, ζ(u, x(u, (v, η), θ(t1, ω)), θ(t1, ω)), x(u, (v, η), θ(t1, ω)), xu(·, (v, η), θ(t1, ω)), θ(t1, ω))·
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·D2ζ(u, x(u, (v, η), θ(t1, ω)), θ(t1, ω))D2x(u, (v, η), θ(t1, ω))(v1, η1)

+ D3F (u, ζ(u, x(u, (v, η), θ(t1, ω)), θ(t1, ω)), x(u, (v, η), θ(t1, ω)), xu(·, (v, η), ω), θ(t1, ω))·

·D2x(u, (v, η), θ(t1, ω))(v1, η1)

+ D4F (u, ζ(u, x(u, (v, η), θ(t1ω)), θ(t1, ω)), x(u, (v, η), θ(t1, ω)), xu(·, (v, η), ω), θ(t1, ω))·

·D2xu(·, (v, η), θ(t1, ω))(v1, η1)} du

]
(13)

for any fixed (v, η), (v1, η1) ∈ M2, ω ∈ Ω and 0 < t < T .

In the estimates below, we will denote by ε > 0 an arbitrarily small number, T a

positive real number and Ki := Ki(ε, ·, T ), i = 1, 2, 3, · · · , positive F-measurable random

constants that have moments of all orders. For the rest of this proof, the choice of ε > 0 may

vary from line to line. For brevity of notation, set y(t) := ζ(t, x(t, (v, η), θ(t1, ω)), θ(t1, ω)).

We claim that there is a random positive constant K1 such that

|F (t, z, v, η, θ(t1, ω))| ≤ K1(ω)(1 + |z|ε)

‖DiF (t, z, v, η, θ(t1, ω))‖ ≤ K1(ω)(1 + |z|ε)



 (14)

for 0 ≤ t, t1 ≤ T, ω ∈ Ω, z, v ∈ Rd, η ∈ L2([−r, 0],Rd), i = 2, 3, 4. We will prove the first

inequality in (14), and leave the proof of the second inequality to the reader. The following

inequalities follow directly from (7), the global boundedness of H, the cocycle property for

ψ, the chain rule, and (9)-(12):

|F (t, z, v, η,θ(t1, ω))|

≤ C1‖[Dψ(t, z, θ(t1, ω))]−1‖

≤ C2(ω)‖Dψ(t1, ψ(t1, ·, ω)−1(z), ω)‖ · ‖[Dψ(t + t1, ψ(t1, ·, ω)−1(z), ω)]−1‖

≤ C3(ω)[1 + |ψ(t1, ·, ω)−1(z)|ε]2

≤ C4(ω)[1 + |1 + |z|(log+ |z|)ε|ε]2

≤ K1(ω)[1 + |z|ε]
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for 0 ≤ t, t1 ≤ T, ω ∈ Ω, z, v ∈ Rd, η ∈ L2([−r, 0],Rd). In the above inequalities, Ci, i =

1, 2, · · · , 4, are (possibly) random positive constants with moments of all orders. This

completes the proof of the first inequality in (14).

From (13), (14) and (12), it follows that

‖D2x(t, (v, η), θ(t1, ω))‖ ≤ K2(ω)(1 + |y(t)|ε)·

·
[
1 + K3(ω)

∫ t

0

{(1 + |y(u)|ε)(1 + |x(u, (v, η), θ(t1, ω))|ε)‖D2x(u, (v, η), θ(t1, ω))‖

+ (1 + |y(u)|ε)‖D2xu(·, (v, η), θ(t1, ω))‖} du

]
(15)

for all (v, η) ∈ M2, t ∈ [0, T ], ω ∈ Ω. Now using the relation

x(t, (v, η), θ(t1, ω)) = ψ(t, y(t), θ(t1, ω)),

the estimate (9) and the cocycle property for ψ, it is easy to see that

|x(t, (v, η), θ(t1, ω))| ≤ K4(ω)[1 + |y(t)|(log+ |y(t)|)ε] (16)

for all ω ∈ Ω, and t, t1 ∈ [0, T ].

Fix ω ∈ Ω, and t, t1 ∈ [0, T ]. Then using (6) and (14), we get

|y(t)| ≤ |v|+ K1(ω)
∫ t

0

(1 + |y(u)|ε) du

≤ K5(ω) + |v|+ K1(ω)
∫ t

0

|y(u)|ε du

≤ K6(ω)
[
1 + |v|+

∫ t

0

|y(u)|ε du

]
. (17)

Define

y∗(t) := sup
0≤u≤t
0≤t1≤T

(|y(u)| ∨ 1).

Then (17) implies that

|y∗(t)| ≤ K7(ω)
[
1 + |v|+

∫ t

0

|y∗(u)|ε du

]
. (18)
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Now divide both sides of the above inequality by |y∗(t)|ε to obtain

|y∗(t)|1−ε ≤ K8(ω)[1 + |v|] (19)

Therefore, (replacing ε by 1− ε in (19)), we get

|y∗(t)| = |y∗(t)|ε · |y∗(t)|1−ε ≤ K9(ω)[1 + |v|2]. (20)

Let

x∗(t) := sup
0≤u≤t
0≤t1≤T

|x(u, (v, η), θ(t1, ω))|.

Then (16) and (20) imply that

|x∗(t)| ≤ K10(ω)[1 + |v|2(log+ |v|)ε]. (21)

Next let

α(t) := sup
0≤u≤t
0≤t1≤T

‖D2x(u, (v, η), θ(t1, ω))‖.

We will estimate ‖D2xt(·, (v, η), ω)‖ in terms of ‖D2x(u, (v, η), ω)‖, 0 ≤ u ≤ t. Let

(v, η), (v1, η1) ∈ M2, η2 ∈ L2([−r, 0],Rd), t ∈ [0, r], h ∈ R, ω ∈ Ω. Then

| < D2xt(·, (v, η), ω)(v1, η1), η2 > |

≤
∣∣∣∣ limh→0

1
h

∫ 0

−r

< [x(t + s, (v, η) + h(v1, η1), ω)− x(t + s, (v, η), ω)], η2(s) > ds

∣∣∣∣

≤
∣∣∣∣
∫ −t

−r

< η1(t + s), η2(s) > ds

∣∣∣∣ +
∣∣∣∣
∫ t

0

< [D2x(s, (v, η), ω)((v1, η1)), η2(s− t) > ds

∣∣∣∣
≤ ‖η1‖ · ‖η2‖+

√
r sup

0≤s≤t
‖D2x(s, (v, η), ω)((v1, η1))‖ · ‖η2‖ (22)

Therefore,

‖D2xt(·, (v, η), ω)‖L(M2,L2) ≤ 1 +
√

r sup
0≤s≤t

‖D2x(s, (v, η), ω)‖L(M2,Rd), (23)

for all t ∈ [0, r], (v, η) ∈ M2, ω ∈ Ω. For t ≥ r, a similar argument to the above also gives

(23).
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From (15), (20), (21) and (23), it follows that

α(t) ≤ K11(1 + |v|2ε)
[
1 +

∫ t

0

[1 + |v|2(log+ |v|)ε]εα(u) du

]
.

By Gronwall’s lemma, the above inequality implies that

α(t) ≤ K12(ω)(1 + |v|ε)eK13(ω)(1+|v|ε). (24)

Taking log+ in the above inequality, it is not difficult to see that, for sufficiently small

ε > 0,

log+ ‖D2X(t2, (v, η), θ(t1, ω)))‖L(M2) ≤ log+ K14(ω) + K15(ω)|v|ε (25)

for all (v, η) ∈ M2, ω ∈ Ω, t1, t2 ∈ [0, T ], where K14 = K14(ε, ·, T ),K15 = K15(ε, ·, T ) have

moments of all orders. Observe that the function on the left-hand side of (25) is jointly

measurable in (t1, t2, (v, η), ω) because of the remark following the proof of Theorem 4.1

([M-S.3]). Assertion (5) of the lemma now follows from the above inequality by replacing

(v, η) with Y (θ(t1, ω)) = X(t1, Y (ω), ω), using (21) and the fact that E(‖Y ‖ε) < ∞ for

0 < ε ≤ ε0.

The perfect cocycle property for (D2X(t, Y (ω), ω), θ(t, ω)) follows directly by taking

Fréchet derivatives at (v, η) = Y (ω) on both sides of the cocycle identity for (X, θ); viz.

D2X(t1 + t2, Y (ω), ω) = D2X(t2, X(t1, Y (ω), ω), θ(t1, ω)) ◦D2X(t1, Y (ω), ω)

= D2X(t2, Y (θ(t1, ω)), θ(t1, ω)) ◦D2X(t1, Y (ω), ω)

for all ω ∈ Ω, t1, t2 ≥ 0. The existence of a fixed discrete spectrum for the linearized

cocycle follows directly from the integrability property (5), the compactness of the deriv-

ative D2X(r, Y (ω), ω) ([M-S.3], Theorem 4.1 (iii)), and the analysis in [Ru.2], [Mo.2] and

[M-S.1]. This completes the proof of the lemma. ¤
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Remark.

If we differentiate the sfde (I) at any (v, η) ∈ M2, then the derivative flow

y(t) :=
{

[D2X(t, (v, η), ω)(v1, η1)]1, t > 0
η1(t), −r < t < 0

satisfies the linearized sfde

dy(t) = DH(X(t, (v, η)))(y(t), yt) dt + DG(X1(t, (v, η)))(y(t)) dW (t)

t > 0

y(0) = v1 ∈ Rd, y0 = η1 ∈ L2([−r, 0],Rd)





(II)

(cf. [Mo.1], Corollary 2.1.3, p. 136). In (II), the superscript 1 denotes the projection of

M2 onto the first factor Rd. On the other hand, it is not clear whether the anticipating

process

ỹ(t) :=
{

[D2X(t, Y (ω), ω)(v1, η1)]1, t > 0
η1(t), −r < t < 0

satisfies the linear sfde obtained from (II) by replacing (v, η) with Y (ω). The substitu-

tion theorems in [M-S.4], [N] and [M-N-S] do not seem to apply in our present infinite-

dimensional setting. Of course, the above difficulty does not arise in the rather special

case when Y (ω) is fixed independently of ω; e.g. H(0, 0) = 0, G(0) = 0.

Definition 2.2.

A stationary point Y (ω) of (I) is said to be hyperbolic if the linearized cocycle

(D2X(t, Y (ω), ω), θ(t, ω)) has a non-vanishing Lyapunov spectrum {· · · < λi+1 < λi <

· · · < λ2 < λ1}, viz. λi 6= 0 for all i ≥ 1.

By the integrability property (5) and Theorem 4 [Mo.2], one obtains the sequence

of closed finite-codimensional Oseledec spaces

· · ·Ei+1(ω) ⊂ Ei(ω) ⊂ · · · ⊂ E2(ω) ⊂ E1(ω) = M2
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where

Ei(ω) = {(v, η) ∈ M2 : lim
t→∞

1
t

log ‖D2X(t, Y (ω), ω)(v, η)‖ ≤ λi}, i ≥ 1,

for all ω ∈ Ω∗, a sure event in F satisfying θ(t, ·)(Ω∗) = Ω∗ for all t ∈ R.

Furthermore, we will denote by {U(ω),S(ω) : ω ∈ Ω∗} the unstable and stable

subspaces associated with the linearized cocycle (D2X, θ) as given by ([Mo.2], Section 4,

Corollary 2) and ([M-S.1], Theorem 5.3). In particular, one has the F-measurable invariant

splitting

M2 = U(ω)⊕ S(ω), ω ∈ Ω∗,

D2X(t, Y (ω), ω)(U(ω)) = U(θ(t, ω)), D2X(t, Y (ω), ω)(S(ω)) ⊆ S(θ(t, ω)), t ≥ 0,

together with the exponential dichotomies

‖D2X(t, Y (ω), ω)(v, η)‖M2 ≥ ‖(v, η)‖M2e
δ1t for all t ≥ τ∗1 , (v, η) ∈ U(ω),

‖D2X(t, Y (ω), ω)(v, η)‖M2 ≤ ‖(v, η)‖M2e
−δ2t for all t ≥ τ∗2 , (v, η) ∈ S(ω),

where τ∗i = τ∗i (v, η, ω) > 0, i = 1, 2, are random times and δi > 0, i = 1, 2, are fixed. Note

that the unstable subspaces U(ω), ω ∈ Ω∗, are constructed using long-term behavior of the

adjoint linearized cocycle ([D2X(t, ·)]∗, θ(−t, ·)) for t ≥ 0 ([Mo.2], Section 4, Corollary 2).
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3. Integrability estimates.

In the subsequent sections, we shall prove a local stable manifold theorem for the

sfde (I) near a hyperbolic stationary trajectory. This will be achieved by developing further

integrability estimates on higher-order Fréchet derivatives of X in the neighborhood of

the stationary point, and then applying Ruelle’s discrete non-linear infinite-dimensional

ergodic theorems ([Ru.2], Theorems 5.1, 6.1, pp. 272-282). In order to do this, we will first

assume throughout this section that Y : Ω → M2 is an F-measurable hyperbolic stationary

point of (I). Next, we introduce the following auxiliary cocycle Z : R+ ×M2 × Ω → M2,

which is essentially a “centering” of the semiflow X about the stationary trajectory:

Z(t, (v, η), ω) := X(t, (v, η) + Y (ω), ω)− Y (θ(t, ω)) (1)
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for t ≥ 0, (v, η) ∈ M2, ω ∈ Ω.

Lemma 3.1.

(Z, θ) is a perfect cocycle on M2 and Z(t, 0, ω) = 0 for all t ≥ 0, and all ω ∈ Ω.

Proof.

Let t1, t2 ≥ 0, ω ∈ Ω, (v, η) ∈ M2. Then by the cocycle property for X, we have

Z(t2, Z(t1, (v, η), ω), θ(t1, ω)) = X(t2, Z(t1, (v, η), ω) + Y (θ(t1, ω)), θ(t1, ω))− Y (θ(t2, θ(t1, ω)))

= X(t2, X(t1, (v, η) + Y (ω), ω), θ(t1, ω))− Y (θ(t2 + t1, ω))

= Z(t1 + t2, (v, η), ω).

Therefore, (Z, θ) is a perfect cocycle.

The assertion Z(t, 0, ω) = 0, t ≥ 0, ω ∈ Ω, follows directly from (1) and Definition

2.1. ¤

If ρ ∈ R+ and (v, η) ∈ M2, recall that B((v, η), ρ) is the open ball with center (v, η)

and radius ρ in M2. Denote by B̄((v, η), ρ) the corresponding closed ball. For any integer

k ≥ 1 and ε ∈ (0, 1), recall that ‖ · ‖k,ε is the Ck,ε-norm on the space Ck,ε(B̄(0, ρ),M2).

The following lemma will be needed for the construction of the stable/unstable

manifolds.

Lemma 3.2.

Assume Hypotheses (SMW )k,δ (k ≥ 1, δ ∈ (0, 1]). Let Y be a stationary point of

(I) such that E(‖Y ‖ε0) < ∞ for some ε0 > 0. Then the semiflow X of (I) satisfies

∫

Ω

log+ sup
0≤t1,t2≤T

‖X(t2, Y (θ(t1, ω)) + (·), θ(t1, ω))‖k,ε dP (ω) < ∞ (2)

for any fixed 0 < ρ, T < ∞ and ε ∈ (0, δ).
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Proof.

We first prove the estimate (2) for k = 1, ε = 0. Let t1, t2 ∈ [0, T ], (v, η) ∈
B̄(0, ρ), ω ∈ Ω, and Y be a stationary point satisfying the hypotheses of the lemma. In

this proof, we will use Ki := Ki(ε, T ), i = 1, 2, 3, · · · , to denote random positive constants

that have moments of all orders, for a sufficiently small positive ε. Unless stated otherwise,

all the inequalities in this proof are presumed to hold for sufficiently small ε ∈ (0, ε0). By

inequality (21) of the proof of Lemma 2.1, we get

log+ sup
0≤t1,t2≤T

‖X(t2, Y (θ(t1, ω))+(v, η), θ(t1, ω))‖

≤ K1(ω)[1 + log+ sup
0≤t1≤T

‖X(t1, Y (ω), ω) + (v, η)‖]

≤ K2(ω)[1 + log+ ‖Y (ω) + (v, η)‖]

≤ K3(ω)[1 + log+ ‖Y (ω)‖+ log+ ‖(v, η)‖]. (3)

Now, from (25) of the proof of Lemma 2.1, we obtain

log+ ‖D2X(t2, Y (θ(t1, ω))+(v, η), θ(t1, ω)))‖L(M2)

≤ log+ K4(ω) + K5(ω)[ sup
0≤t1≤T

‖X(t1, Y (ω), ω)‖ε + |v|ε]

≤ log+ K4(ω) + K6(ω)[‖Y (ω)‖ε + |v|ε]. (4)

Take suprema over (v, η) ∈ B̄(0, ρ) in (3) and (4), use the integrability of ‖Y (·)‖ε0 and

note the fact that K3,K4,K6 have moments of all orders. This immediately gives (2) for

k = 1, ε = 0.

We next prove (2) for k > 1, ε = 0. To do this, define

y(t, (v, η), ω) := ψ(t, ·, ω)−1(x(t, (v, η), ω)) = ζ(t, x(t, (v, η), ω), ω)

for t ≥ 0, (v, η) ∈ M2, ω ∈ Ω. Then take Fréchet derivatives of order k with respect to

(v, η) ∈ M2 in the following relation

x(t, (v, η), θ(t1, ω)) = ψ(t, , y(t, (v, η), θ(t1, ω)), θ(t1, ω)), t ≥ 0, (v, η) ∈ M2, ω ∈ Ω.
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Using induction, the chain rule, and the cocycle property for ψ, this implies the following:

‖D(k)
2 x(t, (v, η), θ(t1, ω))‖

≤ K7(ω)×
∑

m=2,··· ,k
j1+j2+···+jm=k

j1,j2,···jm≥1

‖D(m)
2 ψ(t, y(t, (v, η), θ(t1, ω)), θ(t1, ω))‖‖D(j1)

2 y(t, (v, η), θ(t1, ω))‖ · · ·

· ‖D(jm)
2 y(t, (v, η), θ(t1, ω))‖+ ‖D2ψ(t, y(t, (v, η), θ(t1, ω)), θ(t1, ω))‖‖D(k)

2 y(t, (v, η), θ(t1, ω))‖

≤ K8(ω)[1 + |y(t, (v, η), θ(t1, ω))|ε]
{

max
1≤j≤k−1
1≤m≤k

‖D(j)
2 y(t, (v, η), θ(t1, ω))‖m+

+ ‖D(k)
2 y(t, (v, η), θ(t1, ω))‖

}

≤ K9(ω)[1 + |v|2ε]
{

max
1≤j≤k−1
1≤m≤k

‖D(j)
2 y(t, (v, η), θ(t1, ω))‖m + ‖D(k)

2 y(t, (v, η), θ(t1, ω))‖
}

. (5)

for t ≥ 0, (v, η) ∈ M2, ω ∈ Ω. Therefore,

‖D(k)
2 x(t, (v, η), θ(t1, ω))‖

≤ K10(ω)[1 + |v|ε]
{

max
1≤j≤k−1
1≤m≤k

‖D(j)
2 y(t, (v, η), θ(t1, ω))‖m + ‖D(k)

2 y(t, (v, η), θ(t1, ω))‖
}

(6)

for all (v, η) ∈ M2, ω ∈ Ω, t, t1 ∈ [0, T ].

Our next task is to estimate the higher-order Fréchet derivatives of y(t, (v, η), θ(t1, ω))

appearing on the right hand side of (6) in terms of the corresponding derivatives of

x(u, (v, η), θ(t1, ω)) and xu(·, (v, η), θ(t1, ω)) for 0 ≤ u ≤ t. In order to do this, we will

adopt the following conventions for the sake of brevity:

D
(i)
2 [D2ψ]−1(v) := D

(i)
2 [D2ψ(t, ·, θ(t1, ω))]−1(v)

x(u) := x(u, (v, η), θ(t1, ω))

xu := xu(·, (v, η), θ(t1, ω))

ζ(u) := ζ(u, x(u, v, η, θ(t1, ω)), θ(t1, ω))

for u ≥ 0, (v, η) ∈ M2, ω ∈ Ω. With the above notation, we claim that there are (deter-

ministic) polynomials Pl, l = 1, 2, 3, and ql, l = 1, 2, such that the terms in each Pl consist
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of compositions of linear and multilinear maps, the terms in each ql are compositions of

powers of the Fréchet differentiation operators D1, D2, and the following relations hold:

D
(j)
2 y(t, (v, η), θ(t1, ω))

= aj +
∫ t

0

P1

(
D

(i)
2 [D2ψ]−1(ζ(u)), 0 ≤ i ≤ j; D(i)

2 x(u), 0 ≤ i ≤ j − 1;

D
(i)
2 xu, 0 ≤ i ≤ j − 1; q1(D1, D2)H(x(u), xu)

)
du

+
∫ t

0

P2

(
[D2ψ]−1(ζ(u)), D2[D2ψ]−1(ζ(u)); q2(D1)H(x(u), xu); D(j)

2 x(u)
)

du

+
∫ t

0

P3

(
[D2ψ]−1(ζ(u)); D2H(x(u), xu); D(j)

2 xu

)
du, (7)

for t ≥ 0, (v, η) ∈ M2, ω ∈ Ω, j ≥ 1. In the above relations, we further claim that the

polynomials P2, P3 are linear in the last variable (and do not depend explicitly on x(u)

and xu); aj = p1 if j = 1, where p1 : M2 → Rd is the projection onto the first factor of

M2 := Rd×L2([−r, 0],Rd); aj = 0 if j ≥ 2; the differential operator q1 has order less than

or equal to j, and the operator q2 has order one. To check (7), use induction on j ≥ 1.

First, we check it for j = 1. Take Fréchet derivatives of both sides of the following random

integral equation:

y(t, (v, η), θ(t1, ω)) = v +
∫ t

0

[D2ψ(u, ζ(u, x(u, v, η, θ(t1, ω)), θ(t1ω)), θ(t1, ω))]−1·

·H(x(u, (v, η), θ(t1, ω)), xu(·, (v, η), θ(t1, ω))) du,

t ≥ 0, (v, η) ∈ M2, ω ∈ Ω, and use the equality:

D2[ψ−1(u, ·, θ(t1, ω))](x(u, (v, η), θ(t1, ω))) = [D2ψ(u, ζ(u), θ(t1, ω))]−1,

for u ≥ 0, (v, η) ∈ M2, ω ∈ Ω, (which follows from the chain rule). This gives

D2y(t,(v, η), θ(t1, ω))

= p1 +
∫ t

0

D2[D2ψ]−1(ζ(u)) · [D2ψ]−1(ζ(u)) ·D2x(u) ·H(x(u), xu) du

+
∫ t

0

[D2ψ]−1(ζ(u)) ·D1H(x(u), xu) ·D2x(u) du

+
∫ t

0

[D2ψ]−1(ζ(u)) ·D2H(x(u), xu) ·D2xu du
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for t ≥ 0, (v, η) ∈ M2, ω ∈ Ω. The above equation clearly satisfies the general form given

in (7) when j = 1. To complete the proof, assume (7) holds for some j ≥ 1. Then

differentiating (7)-using the chain and product rules-easily gives a corresponding equation

for D
(j+1)
2 y(t, (v, η), θ(t1, ω)) with new choices of P1, q1, having the same properties as the

old ones. Details are left to the reader. This proves our claim (7).

Now take operator norms on both sides of (7). This gives a positive (deterministic)

constant K11 and non-negative fixed integers nl, l = 1, · · · , 5, such that

‖D(j)
2 y(t, (v, η), θ(t1, ω))‖

≤ 1 + K11

∫ t

0

max
0≤i≤j

[
‖D(i)

2 [D2ψ]−1(ζ(u))‖n1 ∨ 1
]
· max
0≤i≤j−1

[
‖D(i)

2 [D2ψ]−1(x(u))‖n2 ∨ 1
]

· max
1≤i≤j−1

[
‖D(i)

2 xu‖n3 ∨ 1
]
· max
1≤i≤j−1

[
‖D(i)

2 x(u)‖n4 ∨ 1
]

du +

+ K11

∫ t

0

max
i=0,1

[
‖D(i)

2 [D2ψ]−1(ζ(u))‖n5 ∨ 1
]
· (‖D(j)

2 x(u)‖+ ‖D(j)
2 xu‖) du (7′)

for j = 2, · · · , k, t, t1 ≥ 0, (v, η) ∈ M2, ω ∈ Ω.

We next establish the estimate

‖D(i)
2 [D2ψ(t, ·, θ(t1, ω))]−1(v)‖ ≤ K12(ω)[1 + |v|ε], (8)

for all t, t1 ∈ [0, T ], ω ∈ Ω, v ∈ Rd, 1 ≤ i ≤ k. To prove (8), first note the following identity

which is a consequence of the cocycle property for ψ and the chain rule:

[D2ψ(t, v, θ(t1, ω))]−1 = D2ψ(t1, ψ(t1, ·, ω)−1(v), ω) ◦ [D2ψ(t + t1, ψ(t1, ·, ω)−1(v), ω)]−1

for t, t1 ≥ 0, v ∈ Rd, ω ∈ Ω. Taking Fréchet derivatives with respect to v in the above

identity, and making use of the relation

D2[ψ(t1, ·, ω)−1](v) = [D2ψ(t1, ψ(t1, ·, ω)−1(v), ω)]−1, t1 ≥ 0, v ∈ Rd, ω ∈ Ω,
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one obtains

D
(i)
2 [D2ψ(t, ·, θ(t1, ω))]−1(v)

= P4

(
D

(j)
2 ψ(t1, ψ(t1, ·, ω)−1(v), ω), 1 ≤ j ≤ i; D(j)

2 ψ(t + t1, ψ(t1, ·, ω)−1(v), ω), 1 ≤ j ≤ i;

[D2ψ(t1, ψ(t1, ·, ω)−1(v), ω)]−1; [D2ψ(t + t1, ψ(t1, ·, ω)−1(v), ω)]−1

)
,

for t, t1 ≥ 0, v ∈ Rd, ω ∈ Ω, 1 ≤ i ≤ k, where P4 is a fixed polynomial depending on i. Now

(8) follows by taking norms in the above identity and using the estimates (9)-(12) in the

proof of Lemma 2.1.

We will next prove the following estimates by induction on k:

sup
1≤i≤k−1
1≤t,t1≤T

‖D(i)
2 x(t, (v, η), θ(t1, ω))‖ ≤ K13(ω)[1 + |v|ε] exp{K14(ω)[1 + |v|ε]}

sup
1≤i≤k−1
1≤t,t1≤T

‖D(i)
2 xt(·, (v, η), θ(t1, ω))‖ ≤ K15(ω)[1 + |v|ε] exp{K16(ω)[1 + |v|ε]}.





(9k)

for (v, η) ∈ M2, ω ∈ Ω, k ≥ 2.

From (25) of the proof of Lemma 2.1, it is easy to see that (9k) holds for k = 2.

Suppose (9k) holds for some k ≥ 2. Then by (7′), (8) and (9k), we obtain

sup
1≤j≤k−1
1≤t,t1≤T

‖D(j)
2 y(t, (v, η), θ(t1, ω))‖ ≤ K17(ω)[1 + |v|ε] exp{K18(ω)[1 + |v|ε]} (10)

Substituting from (10) and (7′) into (6), we get

‖D(k)
2 x(t, (v, η), θ(t1, ω))‖ ≤ K19(ω)[1 + |v|ε] exp{K20(ω)[1 + |v|ε]}+

+ K21(ω)
∫ t

0

{‖D(k)
2 x(u, (v, η), θ(t1, ω))‖+ ‖D(k)

2 xu(·, (v, η), θ(t1, ω))‖)} du
(11)

To complete the induction proof of (9k), we will relate D
(k)
2 x(t, (v, η), θ(t1, ω)) and

D
(k)
2 xt(·, (v, η), θ(t1, ω)). It is easy to see that

D2xt(·, (v, η), ω) = D2x(t + (·), (v, η), ω) (12)
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for all t ≥ 0, (v, η) ∈ M2, ω ∈ Ω. By repeated Fréchet differentiations, we see that

D
(k)
2 xt(·, (v, η), , ω) = D

(k)
2 x(t + (·), (v, η), ω) (13)

for all t ≥ 0, (v, η) ∈ M2, ω ∈ Ω. This means that

D
(k)
2 xt(·, (v, η), , ω)((v1, η1), · · · , (vk, ηk))(s) = D

(k)
2 x(t + s, (v, η), ω)((v1, η1), · · · , (vk, ηk))

(14)

for all t ≥ 0, (v, η) ∈ M2, ω ∈ Ω, (vi, ηi) ∈ M2, 1 ≤ i ≤ k, and almost every s ∈ [−r, 0]. The

above relation easily implies that

‖D(k)
2 xt(·, (v, η), ω)‖ ≤ 1 +

√
r sup

0≤s≤t
‖D(k)

2 x(s, (v, η), ω)‖ (15)

for all t ∈ [0, T ], (v, η) ∈ M2, ω ∈ Ω (cf. (23) in the proof of Lemma (2.1)). The norms in

the left-hand and right-hand-sides of (15) correspond to the spaces of k-multilinear maps

Lk(M2,M2) and Lk(M2,Rd), respectively. From (15), (11) and Gronwall’s lemma, we

obtain

sup
1≤t,t1≤T

‖D(k)
2 x(t, (v, η), θ(t1, ω))‖ ≤ K22(ω)[1 + |v|ε] exp{K23(ω)[1 + |v|ε]} (16)

Combining (15) and (16) gives

‖D(k)
2 X(t, (v, η), θ(t1, ω))‖ ≤ K24(ω)[1 + |v|ε] exp{K25(ω)[1 + |v|ε]} (17)

for all t, t1 ∈ [0, T ], (v, η) ∈ M2, ω ∈ Ω. Therefore (9k+1) holds. This completes the proof

of (9k).

In (17), we may replace (v, η) by X(t1, Y (ω), ω) + (v, η), and take log+ sup
0≤t,t1≤T

(v,η)∈B̄(0,ρ)

to obtain

log+ sup
0≤t1,t2≤T

‖X(t2,Y (θ(t1, ω)) + (·), θ(t1, ω))‖k

≤ log+ K26(ω) + K27(ω) + K28(ω) log+ ‖Y (ω)‖+ K29(ω)‖Y (ω)‖ε.
(18)
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From the remark following the proof of Theorem 4.1 ([M-S.3]), the function on the left-

hand side of the above inequality is F-measurable in ω. By hypotheses, the right-hand-side

of (18) belongs to L1(Ω,R) for 0 < ε ≤ ε0. Hence the lemma holds for k ≥ 1, ε = 0.

To treat the case k ≥ 1, ε ∈ (0, δ), let (vi, ηi) ∈ B̄(0, ρ), i = 1, 2, be such that

(v1, η1) 6= (v2, η2). Using (7), the Hölder properties of ψ, x, y and Hypotheses (SMW )k,δ,

we obtain

‖D(k)
2 y(t, (v1,η1), θ(t1, ω))−D

(k)
2 y(t, (v2, η2), θ(t2, ω))‖

≤ K30(ω)
m∑

j=1

‖(v1, η1)− (v2, η2)‖εj

+

+ K31(ω)
∫ t

0

[‖D(k)
2 x(u, (v1, η1), θ(t1, ω))−D

(k)
2 x(u, (v2, η2), θ(t2, ω))‖

+ ‖D(k)
2 xu(·, (v1, η1), θ(t1, ω))−D

(k)
2 xu(·, (v2, η2), θ(t2, ω))‖] du (19)

for t, t1 ≥ 0, ω ∈ Ω, where m is some positive integer. Therefore, choosing a sufficiently

small ε ∈ (0, δ), dividing both sides of (19) by ‖(v1, η1)− (v2, η2)‖ε and taking supremum

over all (vi, ηi) ∈ B̄(0, ρ), (v1, η1) 6= (v2, η2), we obtain

‖D(k)
2 y(t, ·, θ(t1, ω))‖ε ≤ K32(ω)+

+ K33(ω)
∫ t

0

[‖D(k)
2 x(u, ·, θ(t1, ω))‖ε + ‖D(k)

2 xu(·, ·, θ(t1, ω))‖ε] du,
(20)

for t, t1 ≥ 0, ω ∈ Ω. Taking k-th order Fréchet derivatives in the identity

x(t, (v, η), θ(t1, ω)) = ψ(t, , y(t, (v, η), θ(t1, ω)), θ(t1, ω)), t, t1 ≥ 0, (v, η) ∈ M2, ω ∈ Ω,

and using the inequality (20), we get

‖D(k)
2 x(t, ·, θ(t1, ω))‖ε

≤ K34(ω) + K35(ω)
∫ t

0

[‖D(k)
2 x(u, ·, θ(t1, ω))‖ε + ‖D(k)

2 xu(·, ·, θ(t1, ω))‖ε] du,
(21)
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for t, t1 ≥ 0, ω ∈ Ω. Now use (21), (15) and Gronwall’s lemma in order to obtain the

estimate

sup
0≤t,t1≤T

‖D(k)
2 X(t, ·, θ(t1, ω))‖ε ≤ K36(ω)eK37(ω), ω ∈ Ω.

This completes the proof of the lemma. ¤

4. The Local Stable Manifold Theorem.

In this section, we present a local stable manifold theorem for the sfde (I) (Theorem

4.1 below). This theorem characterizes the local stability/unstability of the stochastic

semiflow X of (I) in the neighborhood of a hyperbolic stationary point Y (ω) ∈ M2, ω ∈ Ω.

Theorem 4.1. (The local stable manifold theorem)

Assume Hypotheses (SMW )k,δ (k ≥ 1, δ ∈ (0, 1]). Let Y be a hyperbolic stationary

point of the sfde (I) such that E(‖Y (·)‖ε0) < ∞ for some ε0 > 0

Suppose the linearized cocycle (D2X(t, Y (ω), ω), θ(t, ω), t ≥ 0) of (I) has a Lyapunov

spectrum {· · · < λi+1 < λi < · · · < λ2 < λ1}. Define λi0 := max{λi : λi < 0} if at least

one λi < 0. If all finite λi are positive, set λi0 = −∞. (This implies that λi0−1 is the

smallest positive Lyapunov exponent of the linearized semiflow, if at least one λi > 0; in

case all λi are negative, set λi0−1 = ∞.)

Fix ε1 ∈ (0,−λi0) and ε2 ∈ (0, λi0−1). Then there exist

(i) a sure event Ω∗ ∈ F with θ(t, ·)(Ω∗) = Ω∗ for all t ∈ R,

(ii) F̄-measurable random variables ρi, βi : Ω∗ → (0, 1), βi > ρi > 0, i = 1, 2, such that

for each ω ∈ Ω∗, the following is true:

There are Ck,ε (ε ∈ (0, δ)) submanifolds S̃(ω), Ũ(ω) of B̄(Y (ω), ρ1(ω)) and

B̄(Y (ω), ρ2(ω)) (resp.) with the following properties:

(a) For λi0 > −∞, S̃(ω) is the set of all (v, η) ∈ B̄(Y (ω), ρ1(ω)) such that

‖X(nr, (v, η), ω)− Y (θ(nr, ω))‖ ≤ β1(ω) e(λi0+ε1)nr
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for all integers n ≥ 0. If λi0 = −∞, then S̃(ω) is the set of all (v, η) ∈ B̄(Y (ω), ρ1(ω))

such that

‖X(nr, (v, η), ω)− Y (θ(nr, ω))‖ ≤ β1(ω) eλnr

for all integers n ≥ 0 and any λ ∈ (−∞, 0). Furthermore,

lim sup
t→∞

1
t

log ‖X(t, (v, η), ω)− Y (θ(t, ω))‖ ≤ λi0 (1)

for all (v, η) ∈ S̃(ω). Each stable subspace S(ω) of the linearized semiflow D2X is

tangent at Y (ω) to the submanifold S̃(ω), viz. TY (ω)S̃(ω) = S(ω). In particular,

codim S̃(ω) = codim S(ω), is fixed and finite.

(b) lim sup
t→∞

1
t

log
[
sup

{‖X(t, (v1, η1), ω)−X(t, (v2, η2), ω)‖
‖(v1, η1)− (v2, η2)‖ : (v1, η1) 6= (v2, η2), (v1, η1),

(v2, η2) ∈ S̃(ω)
}]

≤ λi0 .

(c) (Cocycle-invariance of the stable manifolds):

There exists τ1(ω) ≥ 0 such that

X(t, ·, ω)(S̃(ω)) ⊆ S̃(θ(t, ω)) (2)

for all t ≥ τ1(ω). Also

D2X(t, Y (ω), ω)(S(ω)) ⊆ S(θ(t, ω)), t ≥ 0. (3)

(d) For λi0−1 < ∞, Ũ(ω) is the set of all (v, η) ∈ B̄(Y (ω), ρ2(ω)) with the property that

there is a discrete-time “history” process y(·, ω) : {−nr : n ≥ 0} → M2 such that

y(0, ω) = (v, η) and for each integer n ≥ 1, one has X(r, y(−nr, ω), θ(−nr, ω)) =

y(−(n− 1)r, ω) and

‖y(−nr, ω)− Y (θ(−nr, ω))‖M2 ≤ β2(ω)e−(λi0−1−ε2)nr.
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If λi0−1 = ∞, Ũ(ω) is the set of all (v, η) ∈ B̄(Y (ω), ρ2(ω)) with the property that

there is a discrete-time “history” process y(·, ω) : {−nr : n ≥ 0} → M2 such that

y(0, ω) = (v, η) and for each integer n ≥ 1,

‖y(−nr, ω)− Y (θ(−nr, ω))‖M2 ≤ β2(ω)e−λnr,

for any λ ∈ (0,∞). Furthermore, for each (v, η) ∈ Ũ(ω), there is a unique

continuous-time “history” process also denoted by y(·, ω) : (−∞, 0] → M2 such

that y(0, ω) = (v, η), X(t, y(s, ω), θ(s, ω)) = y(t + s, ω) for all s ≤ 0, 0 ≤ t ≤ −s,

and

lim sup
t→∞

1
t

log ‖y(−t, ω)− Y (θ(−t, ω))‖ ≤ −λi0−1.

Each unstable subspace U(ω) of the linearized semiflow D2X is tangent at Y (ω) to

Ũ(ω), viz. TY (ω)Ũ(ω) = U(ω). In particular, dim Ũ(ω) is finite and non-random.

(e) Let y(·, (vi, ηi), ω), i = 1, 2, be the history processes associated with (vi, ηi) =

y(0, (vi, ηi), ω) ∈ Ũ(ω), i = 1, 2. Then

lim sup
t→∞

1
t

log
[
sup

{‖y(−t, (v1, η1), ω)− y(−t, (v2, η2), ω)‖
‖(v1, η1)− (v2, η2)‖ :

(v1, η1) 6= (v2, η2), (vi, ηi) ∈ Ũ(ω), i = 1, 2
}]

≤ −λi0−1.

(f) (Cocycle-invariance of the unstable manifolds):

There exists τ2(ω) ≥ 0 such that

Ũ(ω) ⊆ X(t, ·, θ(−t, ω))(Ũ(θ(−t, ω)))

for all t ≥ τ2(ω). Also

D2X(t, ·, θ(−t, ω))(U(θ(−t, ω))) = U(ω), t ≥ 0; (4)

and the restriction

D2X(t, ·, θ(−t, ω))|U(θ(−t, ω)) : U(θ(−t, ω)) → U(ω), t ≥ 0,
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is a linear homeomorphism onto.

(g) The submanifolds Ũ(ω) and S̃(ω) are transversal, viz.

M2 = TY (ω)Ũ(ω)⊕ TY (ω)S̃(ω).

Assume, in addition, that Hypotheses (SMW )k,δ are satisfied for every k ≥ 1 and

δ ∈ (0, 1]. Then the local stable and unstable manifolds S̃(ω), Ũ(ω) are C∞.

Remarks.

(i) In the non-delay case r = 0, the conclusions of Theorem 4.1 give the stable manifold

theorem for sde’s when X is replaced by the stochastic flow φ : R+×Rd×Ω → Rd

associated with the sode

dφ(t) = h(φ(t)) dW (t), t > 0

x(0) = v ∈ Rd



 (III)

where h is Ck,δ
b for all k ≥ 1 and δ > 0 ([M-S.4]). The history process y corresponds

to a trajectory of the sode using Kunita’s backward stochastic integral. Note,

however, that the integrability condition on Y in Theorem 4.1 is stronger than the

corresponding one in Theorem 3.1 of [M-S.4].

(ii) It is not clear if the conclusions of Theorem 4.1 above are still valid (for r > 0)

when log+ ‖Y (·)‖ is integrable.

(iii) In view of Section 5(iii) in [M-S.3], one can impose sufficient regularity hypotheses

on the coefficients of the sfde

dx(t) = H(t, x(t− dm), · · · , x(t− d1), x(t), xt)µ(dt) + G(dt, x(t), g(xt)), t ≥ t0 ≥ 0

x(t0) = v ∈ Rd, xt0 = η ∈ L2([−r, 0],Rd)





to establish the existence of local stable and unstable manifolds satisfying the

conclusion of Theorem 4.1. However the local stable manifolds are only of class

C1,ε (ε ∈ (0, 1)) even if H, G, g are C∞b .



STABLE MANIFOLD THEOREM FOR STOCHASTIC SYSTEMS WITH MEMORY II 33

The figure below summarizes the essential features of Theorem 4.1.

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.............
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........


.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.................
.................

.............
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.......

.........................................................................................................................................................................................

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

..................................................................................................................................................................

.................
............

.............

....
............

................. ........

....

.............................

.................
............

.............
....
..........
..

................. ............

.............................

ω θ(t, ω)
Ω

........
........
........
.........
.........
.........
.........
..........
.......

................................................................................

........................
..............................

..............................................
............................................................................................................................................................................................

......................................................................................................................................

.............. ............

X(t, ·, ω)

........................
..............................

..............................................
.......................................................................................................................................................................................................... ............

θ(t, ·)

S̃(ω)
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As an important first step in the proof of the stable manifold theorem, we will

establish a discrete-time version of the theorem, viz. Proposition 4.1 below. This is an

immediate consequence of Ruelle’s theorems 5.1, 6.1 [Ru.2]. The rest of the proof in

continuous time will be given in the next section. This is done via perfection techniques

and interpolation between delay periods.
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Proposition 4.1.

Assume the hypotheses and notations of Theorem 4.1. Then all the assertions of

Theorem 4.1, with the exception of the invariance (2) and the corresponding invariance for

the unstable manifold in (f), are valid when t is replaced by nr for any positive integer n.

Proof.

All real-valued random variables in this proof will be taken to be F̄-measurable.

Consider the cocycle (Z, θ) defined by (1) in Section 3. Define the family of maps

Fω : B̄(0, 1) → M2, ω ∈ Ω, by Fω((v, η)) := Z(r, (v, η), ω), and let τ := θ(r, ·) : Ω → Ω.

Following Ruelle ([Ru.2], p. 272), define Fn
ω := Fτn−1(ω) ◦ · · · ◦ Fτ(ω) ◦ Fω. Then by the

cocycle property for Z, we get Fn
ω = Z(nr, ·, ω) for each n ≥ 1. Clearly, each Fω is Ck,ε

(ε ∈ (0, δ)) on B̄(0, 1) and (DFω)(0) = D2X(r, Y (ω), ω). From Theorem 4.1(iv) in [M-S.3]

and the measurability of Y , it follows that the map ω 7→ (DFω)(0) is (F ,Bs(L(M2)))-

measurable. By (5) of Lemma 2.1, it is clear that log+ ‖D2X(r, Y (·), ·)‖L(M2) is integrable.

Furthermore, the discrete-time cocycle ((DFn
ω )(0), θ(nr, ω)) has a Lyapunov spectrum

which coincides with that of the linearized continuous-time cocycle (D2X(t, Y (ω), ω), θ(t, ω)),

viz. {−∞ < · · · < λi+1 < λi < · · · < λ2 < λ1}. We now apply Theorem 5.1 of Ru-

elle ([Ru.2], p. 272) under his hypotheses (I). This gives a sure event Ω∗1 ∈ F such that

θ(n, ·)(Ω∗1) = Ω∗1 for all n ∈ Z, F̄-measurable positive random variables ρ1, β1 : Ω∗1 → (0, 1),

and a random family of Ck,ε stable submanifolds S̃d(ω) of B̄(0, ρ1(ω)) satisfying the fol-

lowing properties for each ω ∈ Ω∗1:

S̃d(ω) = {(v, η) ∈ B̄(0, ρ1(ω)) : ‖Z(nr, (v, η), ω)‖M2 ≤ β1(ω)e(λi0+ε1)nr for all integers n ≥ 0}
(5)

in case λi0 ∈ (−∞, 0). If λi0 = −∞, the second assertion in (a) holds. Each S̃d(ω) is

tangent at 0 to the stable subspace S(ω) of the linearized flow D2X, viz. T0S̃d(ω) = S(ω).
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In particular, codim S̃d(ω) is finite and non-random. Furthermore, according to ([Ru.2],

Theorem 5.1), one has:

lim sup
n→∞

1
nr

log
[

sup
(v1,η1),(v2,η2)∈S̃d(ω)

(v1,η1) 6=(v2,η2)

‖Z(nr, (v1, η1), ω)− Z(nr, (v2, η2), ω)‖
‖(v1, η1)− (v2, η2)‖

]
≤ λi0 .

(6)

Consider the set S̃(ω), ω ∈ Ω∗1, defined in part (a) of the theorem. Using (5) and

the definition of Z, it follows immediately that

S̃(ω) = S̃d(ω) + Y (ω) (7)

for all ω ∈ Ω∗1. Hence S̃(ω) is a Ck,ε manifold (k > 1, ε ∈ (0, δ)). Furthermore, TY (ω)S̃(ω) =

T0S̃d(ω) = S(ω). In particular, codim S̃(ω) = codim S(ω) is finite and non-random. From

(6) and (7), assertion (b) of Theorem 4.1 holds for t = nr.

We next show that assertion (1) in Theorem 4.1 holds when t = nr. By (6), we

have

lim sup
n→∞

1
nr

log ‖Z(nr, (v, η), ω)‖ ≤ λi0 (8)

for all ω ∈ Ω∗1 and all (v, η) ∈ S̃d(ω).

To prove the cocycle-invariance (c), apply the Oseledec theorem to the linearized dis-

crete cocycle (D2X(nr, Y (ω), ω), θ(nr, ω)) ([Mo.2], Theorem 4, Corollary 2). Hence there is

a sure θ(nr, ·)-invariant event, also denoted by Ω∗1 ∈ F , such that D2X(nr, Y (ω), ω)(S(ω)) ⊆
S(θ(nr, ω)) for all integers n ≥ 0 and all ω ∈ Ω∗1.

We now show the existence of the local unstable manifolds in (d) of Theorem 4.1 in

discrete time t = nr . Define the random field Ẑ(nr, (v, η), ω) ∈ M2, n ∈ Z+, (v, η) ∈ M2,

by

Ẑ(nr, (v, η), ω) := X(nr, (v, η) + Y (θ(−nr, ω)), θ(−nr, ω))− Y (ω) (9)

for all integers n ≥ 0, (v, η) ∈ M2 and ω ∈ Ω. Note that Ẑ(nr, ·, ω) = Z(nr, ·, θ(−nr, ω))

for all integers n ≥ 0 and ω ∈ Ω; and each Ẑ(nr, ·, ·) is (B(M2) ⊗ F ,B(M2))-measurable,
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by the remark following the proof of Theorem 4.1 ([M-S.3]). From (4) (Section 2) (with

s = −t = −nr), it follows immediately that Ẑ(nr, 0, ω) = 0 for all integers n ≥ 0 and

ω ∈ Ω. We claim that ([D2Ẑ(nr, 0, ω)]∗, θ(−nr, ω), n ≥ 0) is a discrete-time linear cocycle

(in L(M2)). To see this we argue as follows. Consider the following identity in L(M2):

D2X((n + m)r, Y (ω), ω) = D2X(nr, Y (θ(mr, ω)), θ(mr, ω)) ◦D2X(mr, Y (ω), ω)

for all ω ∈ Ω and all integers n,m ≥ 0. Taking adjoints in the above identity and replacing

ω by θ(−nr −mr, ω) gives

[D2X(nr + mr, Y (θ(−nr −mr, ω)), θ(−nr −mr, ω))]∗

= [D2X(mr, Y (θ(−nr −mr, ω)), θ(−nr −mr, ω))]∗ ◦ [D2X(nr, Y (θ(−nr, ω)), θ(−nr, ω)]∗

for all ω ∈ Ω and all integers n,m ≥ 0. Hence

[D2Ẑ(nr + mr, 0, ω)]∗ = [D2Ẑ(mr, 0, θ(−nr, ω))]∗ ◦ [D2Ẑ(nr, 0, ω)]∗

for all ω ∈ Ω and all integers n,m ≥ 0. This proves that ([D2Ẑ(nr, 0, ω)]∗, θ(−nr, ω), n ≥
0) is a cocycle in L(M2), as claimed.

Observe that the cocycles (D2X(nr, Y (ω), ω), θ(nr, ω), n ≥ 0) and ([D2Ẑ(nr, 0, ω)]∗,

θ(−nr, ω), n ≥ 0) have the same (discrete) fixed Lyapunov spectrum {· · ·λi+1 < λi < · · · <
λ2 < λ1} with multiplicities. This is because of the integrability property:

∫

Ω

log+ ‖[D2Ẑ(mr, 0, θ(−nr, ω))]∗‖L(M2) dP (ω)

=
∫

Ω

log+ ‖D2X(mr, Y (θ(−mr − nr, ω)), θ(−mr − nr, ω)))‖L(M2) dP (ω)

=
∫

Ω

log+ ‖D2X(mr, Y (ω), ω)‖L(M2) dP (ω) < ∞, m, n ≥ 0,

(cf. (5) of Lemma 2.1)) and the argument in [Ru.2], Section 3.5, p. 261. Note that λi 6= 0

for all i ≥ 1, by hyperbolicity.
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To construct the local unstable manifolds Ũ(ω), we will invoke Ruelle’s discrete

Theorem 6.1, ([Ru.2], p. 280) and its proof. Define the random family of smooth maps

F̃ω : (M2, 0) → (M2, 0), ω ∈ Ω, by F̃ω((v, η)) := Ẑ(r, (v, η), ω) for all (v, η) ∈ M2. Then

F̃ω(0) = 0, and DF̃ω(0) = D2X(r, Y (θ(−r, ω)), θ(−r, ω)) for all ω ∈ Ω. Furthermore, from

the above estimates, it follows that the map ω 7→ log+ ‖[DF̃ω(0)]∗‖ = log+ ‖[DF̃ω(0)]‖ is

in L1(Ω,R;F). Indeed, by the P -preserving property of θ(nr, ·), n ∈ Z, and Lemma 3.2,

it follows that ∫

Ω

log+ ‖Ẑ(mr, ·, θ(−nr, ω))‖k,ε dP (ω) < ∞.

Define i0 as before, so that λi0−1 is the smallest positive Lyapunov exponent of the lin-

earized cocycle. Fix 0 < ε2 < λi0−1. In view of the above integrability property, it follows

that the sequence T̃n(ω) := [D2Ẑ(r, 0, θ(−nr, ω))]∗, θ(−nr, ω), n ≥ 0, satisfies Condition

(S) of [Ru.2]. Therefore Proposition 3.3 in [Ru.2] implies that the sequence T̃n(ω), n ≥ 1,

satisfies Corollary 3.4 ([Ru.2], p. 260) for a.a. ω. This yields a θ(−nr, ·)-invariant sure

event Ω̂∗1 ∈ F and F̄-measurable random variables ρ2, β2 : Ω̂∗1 → (0, 1) with the following

properties. Let Ũd(ω) be the set of all (v0, η0) ∈ B̄(0, ρ2(ω)) with the property that there

is a discrete “history” process u(−nr, ·) : Ω → M2, n ≥ 0, such that u(0, ω) = (v0, η0),

Ẑ(r, u(−(n + 1)r, ω), θ(−nr, ω)) = u(−nr, ω) and ‖u(−nr, ω)‖ ≤ β2(ω)e−nr(λi0−1−ε2) for

all n ≥ 0. For λi0−1 = ∞, let Ũd(ω) be the set of all (v0, η0) ∈ B̄(0, ρ2(ω)) such that there

is a history process u(−nr, ·), n ≥ 0, with u(0, ω) = (v0, η0) and ‖u(−nr, ω)‖ ≤ β2(ω)e−λnr

for all n ≥ 0 and any λ > 0. The history process u(−nr, ·) is uniquely determined by

(v0, η0) ([Ru.2], p. 281). Furthermore, for every ω ∈ Ω̂∗1, Ũd(ω) is a Ck,ε (ε ∈ (0, δ)) finite-

dimensional submanifold of B̄(0, ρ2(ω)) with tangent space U(ω) at 0. Also dim Ũd(ω) is

fixed independently of ω and ε2.

We claim that the set Ũ(ω) defined in (d) of Theorem 4.1 coincides with Ũd(ω)+Y (ω)

for each ω ∈ Ω̂∗1. We first show that Ũd(ω) + Y (ω) ⊆ Ũ(ω). Let (v0, η0) ∈ Ũd(ω) and u be

as above. Set

y0(−nr) := u(−nr) + Y (θ(−nr, ω)), n ≥ 0. (10)
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It is easy to check that y0 is a discrete history process satisfying the first and second

assertions in (d) of the proposition. Hence (v0, η0) + Y (ω) ∈ Ũ(ω). Similarly, Ũ(ω) ⊆
Ũd(ω)+Y (ω) for all ω ∈ Ω̂∗1. Hence Ũ(ω) = Ũd(ω)+Y (ω) for all ω ∈ Ω̂∗1. This immediately

implies that Ũ(ω) is a Ck,ε (ε ∈ (0, δ)) finite-dimensional submanifold of B̄(Y (ω), ρ2(ω))

and

TY (ω)Ũ(ω) = T0Ũd(ω) = U(ω).

for all ω ∈ Ω̂∗1.

Assertion (e) of Theorem 4.1 in discrete time t = nr follows from ([Ru.2], Theorem

6.1).

For t = nr assertion (4) in Theorem 4.1 (f) follows from the Oseledec theorem and

the cocycle property for the linearized semiflow; cf. [Mo.2], Corollary 2 (v) of Theorem 4.

The transversality assertion in (g) of Theorem 4.1 is implied by the relations

TY (ω)Ũ(ω) = U(ω), TY (ω)S̃(ω) = S(ω), M2 = U(ω)⊕ S(ω)

which hold for a.a. ω.

Taking Ω∗ := Ω∗1 ∩ Ω̂∗1, completes the proof of assertions (a)-(g) of Theorem 4.1 for

discrete time t = nr, with the exception of of the invariance (2) and the corresponding

invariance for the unstable manifold in (f).

Suppose Hypothesis (SMW )k,δ holds for every k ≥ 1 and δ ∈ (0, 1]. Then a simple

adaptation of the argument in [Ru.2], Section (5.3) (p. 297) gives a θ(nr, ·)-invariant sure

event in F , also denoted by Ω∗, such that S̃(ω), Ũ(ω) are C∞ for all ω ∈ Ω∗. The proof

of Proposition 4.1 is now complete. ¤
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5. Proof of the local stable manifold theorem.

We devote this section to the proof of Theorem 4.1 in continuous time. A large part

of the computations are directed toward perfection arguments, whereby we show that the

local stable/unstable manifolds are parametrized by sure events which are invariant under

the continuous-time shift θ(t, ·) : Ω → Ω. The integrability properties of the cocycle (X, θ)

(Lemma 3.2) play a crucial role in controlling the excursions of the cocycle within delay

periods.

Our first lemma gives “perfect versions” of the ergodic theorem and Kingman’s

subadditive ergodic theorem. These results are needed in order to construct the shift-

invariant sure events appearing in the statement of the local stable manifold theorem

(Theorem 4.1). The reader may note that Lemmas 5.1-5.3 hold if θ(t, ·) is any group of

measure-preserving ergodic transformations on a probability space (Ω,F , P ), satisfying

appropriate measurability properties.

Lemma 5.1.

(i) Let Ω0 ∈ F̄ be a sure event such that θ(t, ·)(Ω0) ⊆ Ω0 for all t ≥ 0. Then there is a

sure event Ω∗0 ∈ F such that Ω∗0 ⊆ Ω0 and θ(t, ·)(Ω∗0) = Ω∗0 for all t ∈ R.

(ii) Let h : Ω → R+ be any function such that there exists an F̄-measurable function

g1 ∈ L1(Ω,R+;P ) and a sure event Ω1 ∈ F̄ such that sup
0≤u≤1

h(θ(u, ω)) ≤ g1(ω) for

all ω ∈ Ω1. Then there exists a sure event Ω∗ ∈ F such that θ(t, ·)(Ω∗) = Ω∗ for

all t ∈ R, and

lim
t→∞

1
t
h(θ(t, ω)) = 0

for all ω ∈ Ω∗.

(iii) Suppose f : R+ × Ω → R ∪ {−∞} is a process such that for each t ∈ R+, f(t, ·) is

(F̄ ,B(R ∪ {−∞}))-measurable and the following conditions hold:
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(a) There is an F̄-measurable function g2 ∈ L1(Ω,R+;P ) and a sure event Ω̃1 ∈
F̄ such that

[
sup

0≤u≤1
f+(u, ω) + sup

0≤u≤1
f+(1− u, θ(u, ω))

]
≤ g2(ω) for all ω ∈

Ω̃1.

(b) f(t1 + t2, ω) ≤ f(t1, ω) + f(t2, θ(t1, ω)) for all t1, t2 ≥ 0 and all ω ∈ Ω.

Then there is a sure event Ω2 ∈ F such that θ(t, ·)(Ω2) = Ω2 for all t ∈ R, and a

fixed number f∗ ∈ R ∪ {−∞} such that

lim
t→∞

1
t
f(t, ω) = f∗

for all ω ∈ Ω2.

Proof.

The proof of assertion (i) of the lemma is given in Proposition 2.3 ([M-S.4]).

Assertions (ii) and (iii) of the lemma follow from assertion (i) and easy adaptations

of the arguments in the proofs of Lemmas 5 and 7 in [Mo.2]. See also Lemma 3.3 in

[M-S.4]. ¤

The following lemma will be needed in order to construct the shift-invariant sure

events appearing in the statement of the local stable manifold theorem. The lemma essen-

tially gives a continuous-time “perfect version” of Corollary A.2 of [Ru.2], p. 288.

Lemma 5.2.

Suppose f : R+ × Ω → R ∪ {−∞} is a (B(R+) ⊗ F ,B(R ∪ {−∞}))-measurable

process satisfying the following conditions:

(a)
∫

Ω

[
sup

0≤t1,t2≤T
f+(t1, θ(t2, ω))

]
dP (ω) < ∞, T ∈ (0,∞).

(b) f(t1 + t2, ω) ≤ f(t1, ω) + f(t2, θ(t1, ω)) for all t1, t2 ≥ 0 and all ω ∈ Ω.

Then there exists f∗ ∈ R∪{−∞} and a sure event Ω3 ∈ F such that θ(t, ·)(Ω3) = Ω3

for all t ∈ R, and the following hold:
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(1) lim
t→∞

1
t
f(t, ω) = f∗, for all ω ∈ Ω3.

(2) If g∗ ∈ R is a finite number such that f∗ ≤ g∗, then for every ε > 0, there

exists an F̄-measurable function Kε : Ω3 → [0,∞) with the property that

f(t− s, θ(s, ω)) ≤ (t− s)g∗ + εt + Kε(ω)

for all ω ∈ Ω3 and whenever 0 ≤ s ≤ t < ∞. Furthermore, Kε may be

chosen such that Kε(θ(l, ω)) ≤ Kε(ω) + εl for all l ∈ [0,∞) and all ω ∈ Ω3.

Proof.

By Lemma 5.1 (iii), there exists f∗ ∈ R∪{−∞} and a sure event Ω2 ∈ F such that

θ(t, ·)(Ω2) = Ω2 for all t ∈ R and (1) holds for all ω ∈ Ω2. By hypotheses (a) and Lemma

5.1 (i), there is a sure event Ω0 ⊆ Ω2 such that Ω0 ∈ F , θ(t, ·)(Ω0) = Ω0 for all t ∈ R,

and sup
0≤t1,t2≤T

f+(t1, θ(t2, ω)) < ∞ for all T ≥ 0 and all ω ∈ Ω0. Suppose g∗ is a finite real

number such that f∗ ≤ g∗. Define the process g : R+ × Ω → R+ by

g(t, ω) :=
{

max{f(t, ω)− tg∗, 0}, t ≥ 0, ω ∈ Ω0,

0 t ≥ 0, ω /∈ Ω0.

It is easy to check that g is non-negative, (B(R+) ⊗ F ,B(R+))-measurable and satisfies

conditions (a) and (b).

Define the process g′ : R+ × Ω → R+ by

g′(t, ω) := sup
0≤s≤t

[g(s, ω) + g(t− s, θ(s, ω))], t ≥ 0, ω ∈ Ω.

Using the fact that the projection of a B(R+)⊗F-measurable set is F̄-measurable ([Co], p.

281), it follows that g′ satisfies the hypotheses of Lemma 5.1 (iii). Therefore, there exists

g′∗ ≥ 0, a sure event Ω4 ∈ F such that θ(t, ·)(Ω4) = Ω4 for all t ∈ R and lim
t→∞

1
t
g′(t, ω) =

g′∗ for all ω ∈ Ω4.

Next, we claim that

lim
t→∞

1
t

sup
0≤s≤t

g(t− s, θ(s, ω)) = 0 (∗)
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in probability. This claim easily implies g′∗ = 0. Hence there is a sure event Ω5 ∈ F such

that Ω5 ⊆ Ω0 ∩ Ω4, θ(t, ·)(Ω5) = Ω5 for all t ∈ R and (∗) holds for all ω ∈ Ω5. The proof

of assertion (2) is completed by setting

Kε(ω) := sup
0≤s≤t<∞

[g(t− s, θ(s, ω))− εt]

for all ω ∈ Ω5 and a fixed ε > 0. It is easy to see from the above definition that Kε : Ω5 →
[0,∞) is (F̄ ,B(R+))-measurable and Kε(θ(l, ω)) ≤ Kε(ω) + εl for all l ∈ [0,∞) and all

ω ∈ Ω5.

It remains to establish our claim (∗). The process h : R+ × Ω → R

h(t, ω) := g(t, θ(−t, ω)), t ∈ R+, ω ∈ Ω

satisfies the conditions of Lemma 5.1 (iii). Therefore

lim
t→∞

1
t
h(t, ω) = 0

for almost all ω ∈ Ω4 and hence in probability. Fix δ > 0 and t0 > 0 such that

P ( 1
t h(t, ·) ≥ δ) < δ for all t ≥ t0. Suppose t ≥ t0, and consider

sup
0≤s≤t

1
t
g(t− s, θ(s, ω)) ≤ sup

0≤s≤t−t0

1
t
g(t− s, θ(s, ω)) + sup

t−t0≤s≤t

1
t
g(t− s, θ(s, ω))

≤ sup
0≤s≤t−t0

1
t
g(t− s, θ(−(t− s), θ(t, ω))) + sup

t−t0≤s≤t

1
t
g(t− s, θ(s, ω)).

The first term in the right hand side of the last inequality is less than or equal to δ with

probability at least 1 − δ. The second term converges to 0 in probability by assumption

(a). Hence (∗) holds and the proof of the lemma is complete. ¤

For convenience, we shall frequently adopt the following convention:
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Definition 5.1.

Let {P (ω) : ω ∈ Ω} be a family of propositions. We say that P (ω) holds perfectly

in ω if there is a sure event Ω∗ ∈ F such that θ(t, ·)(Ω∗) = Ω∗ for all t ∈ R and P (ω) is

true for every ω ∈ Ω∗.

Our next result is basically a “perfect version” of Proposition 3.2 in [Ru.2], p.

257. The proof uses Lemma 5.2. We denote by Bs(L(H)) the Borel σ-algebra on L(H)

generated by the strong topology on L(H), viz. the smallest topology on L(H) for which

all evaluations L(H) 3 A 7→ A(z) ∈ H, z ∈ H, are continuous.

Lemma 5.3.

Let H be a real separable Hilbert space, θ(t, ·) : Ω → Ω be an ergodic measure-

preserving group of transformations on the probability space (Ω,F , P ). Suppose

(T t(ω), θ(t, ω)), t ≥ 0, is a perfect cocycle of bounded linear operators in H satisfying the

following hypotheses:

(i) The process R+×Ω 3 (t, ω) 7→ T t(ω) ∈ L(H) is (B(R+)⊗F ,Bs(L(H)))-measurable.

(ii) The map R+ × Ω 3 (t, ω) 7→ θ(t, ω) ∈ Ω is (B(R+)⊗F ,F)-measurable.

(iii) E sup
0≤t1,t2≤a

log+ ‖T t2(θ(t1, ·))‖L(H) < ∞ for any finite a > 0.

(iv) There is a fixed t0 > 0 such that for each t ≥ t0, T t(ω) is compact, perfectly in ω.

(v) For any u ∈ H, the map [0,∞) 3 t 7→ T t(ω)(u) ∈ H is continuous, perfectly in ω.

Let {· · · < λi+1 < λi < · · · < λ2 < λ1} be the Lyapunov spectrum of (T t(ω), θ(t, ω)),

with Oseledec spaces

· · ·Ei+1(ω) ⊂ Ei(ω) ⊂ · · · ⊂ E2(ω) ⊂ E1(ω) = H.

Let j0 ≥ 1 be any fixed integer with λj0 > −∞. Let the integer function r : {1, 2, · · · , Q} →
{1, 2, · · · , j0} “count” the multiplicities of the Lyapunov exponents in the sense that r(1) =
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1, r(Q) = j0, and for each 1 ≤ i ≤ j0, the number of integers in r−1(i) is the multiplicity

of λi. Set Vn(ω) := Ej0+1(θ(nt0, ω)), n ≥ 0.

Then the sequence Tn(ω) := T t0(θ((n − 1)t0, ω)), n ≥ 1, satisfies Condition (S) of

[Ru.2] perfectly in ω with Q = codimEj0+1(ω). In particular, there is an F-measurable set

of Q orthonormal vectors {ξ(1)
0 (ω), · · · , ξ

(Q)
0 (ω)} such that ξ

(k)
0 (ω) ∈ [Er(k)(ω)\Er(k)+1(ω)]

for k = 1, · · · , Q, perfectly in ω, and satisfying the following properties:

Set ξ
(k)
t (ω) :=

T t(ω)(ξ(k)
0 (ω))

‖T t(ω)(ξ(k)
0 (ω))‖

, and for any u ∈ H, write

u =
Q∑

k=1

u
(k)
t (ω)ξ(k)

t (ω) + u
(Q+1)
t (ω), u

(Q+1)
t (ω) ∈ V0(θ(t, ω)), ω ∈ Ω.

Then for any ε > 0, there is an F̄-measurable random constant Dε(ω) > 0 such that the

following inequalities hold perfectly in ω:

|u(k)
t (ω)| ≤ Dε(ω)eεt‖u‖

‖u(Q+1)
t (ω)‖ ≤ Dε(ω)eεt‖u‖

Dε(θ(l, ω)) ≤ Dε(ω)eεl

for all t ≥ 0, 1 ≤ k ≤ Q and for all l ∈ [0,∞).

Furthermore, all the random constants in Ruelle’s condition (S) may be chosen to

be F̄-measurable in ω.

Proof.

We will follow the proof of Proposition 3.2 in [Ru.2], ensuring that the relevant

parts of the argument hold perfectly in ω.

For simplicity of notation, we will assume (with no loss of generality) that t0 = 1.

First note that in view of (iii), the perfect cocycle property, Lemma 5.1 and the

argument in Theorem 4 ([Mo.2]), it follows that Tn(ω) satisfies Condition (S1) perfectly

in ω. (Observe that Condition 3.4 in [Ru.2] holds perfectly by the ordering of the fixed
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Lyapunov spectrum.) Let Ω∗ be the perfect event where (S1) holds. Let codim V0(ω) = Q,

for all ω ∈ Ω∗; then, by ergodicity, codimVn(ω) = codim Ej0+1(θ(n, ω)) = Q. Hence (S2)

holds for all ω ∈ Ω∗.

To establish a perfect version of (S3), we will prove the stronger statement that

(T t(ω), θ(t, ω)) satisfies (S3) perfectly in ω. Define T̂ t(ω) := T t(ω)|V0(ω), ω ∈ Ω∗, t ≥ 0.

Then T̂ t(ω)(V0(ω)) ⊆ V0(θ(t, ω)), and

T̂ t1+t2(ω) = T̂ t2(θ(t1, ω)) ◦ T̂ t1(ω) (1)

for all ω ∈ Ω∗, t ≥ 0. Define Ft(ω) := log ‖T̂ t(ω)‖, ω ∈ Ω∗, t ≥ 0. Then (1) implies

that (Ft(ω), θ(t, ω)) is perfectly subadditive, and (iii) implies that sup
0≤t1,t2≤T

F+
t2 (θ(t1, ·)) is

integrable for any finite T > 0. Hence Lemma 5.1 applies, and we get a fixed number

F ∗ ∈ R ∪ {−∞} such that

lim
t→∞

1
t
Ft(ω) = F ∗

perfectly in ω. Let S = j0, and µ(S+1) := λj0+1, when λj0+1 > −∞; if λj0+1 = −∞, we

set µ(S+1) to be any fixed finite number in (−∞, λj0). From (3.5), p. 258 in [Ru.2], we see

that F ∗ ≤ µ(S+1). Let ε > 0. If λj0+1 > −∞, then by Lemma 5.2(2), we get

log ‖T̂ t−s(θ(s, ω))‖ ≤ (t− s)µ(S+1) + εt + Kε(ω), 0 ≤ s ≤ t < ∞, (2)

perfectly in ω, with Kε F̄-measurable. Note that by Lemma 5.2, Kε(ω) is finite (perfectly

in ω) and satisfies the inequality

Kε(θ(l, ω)) ≤ Kε(ω) + εl

perfectly in ω for all l ∈ [0,∞). Putting t = n, s = m + 1 in (2) where 0 < m < n are

integers, shows that Tn(ω) satisfies (S3) perfectly in ω.

Finally, we show that the above sequence also satisfies (S4) perfectly in ω. In the

spirit of the preceding analysis, it is sufficient to prove that the continuous-time cocycle
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(T t(ω), θ(t, ω)) satisfies (S4) perfectly in ω. Define the family of operators Ť t(ω) : H →
V0(θ(t, ω))⊥ ⊆ H, T̃ t(ω) : H → V0(θ(t, ω)) ⊆ H via the orthogonal decomposition

T t(ω)(ξ) = Ť t(ω)(ξ) + T̃ t(ω)(ξ) (3)

for all ξ ∈ H, t ≥ 0, ω ∈ Ω∗, where T̃ t(ω)(ξ) ∈ V0(θ(t, ω)), Ť t(ω)(ξ) ∈ V0(θ(t, ω))⊥ are the

orthogonal projections of T t(ω)(ξ) on V0(θ(t, ω)) and V0(θ(t, ω))⊥, respectively. We claim

that (Ť t(ω), θ(t, ω)) satisfies the perfect cocycle identity in L(H) ([M-S.3], Definition 1.2

(ii)). To see this, fix ω ∈ Ω, t1, t2 ≥ 0, ξ ∈ H and consider

T t1+t2(ω)(ξ) = T t2(θ(t1, ω))[T t1(ω)(ξ)]

= Ť t2(θ(t1, ω))[Ť t1(ω)(ξ)] + Ť t2(θ(t1, ω))[T̃ t1(ω)(ξ)] + T̃ t2(θ(t1, ω))[Ť t1(ω)(ξ)]

+ T̃ t2(θ(t1, ω))[T̃ t1(ω)(ξ)]. (4)

Now by the cocycle invariance of V0(ω) under T t(ω), it follows that Ť t(ω)(ξ) = 0 whenever

ξ ∈ V0(ω). Therefore Ť t2(θ(t1, ω))[T̃ t1(ω)(ξ)] = 0. Thus (4) gives

T t1+t2(ω)(ξ) = Ť t2(θ(t1, ω))[Ť t1(ω)(ξ)] + T̃ t2(θ(t1, ω))[Ť t1(ω)(ξ)] + T̃ t2(θ(t1, ω))[T̃ t1(ω)(ξ)]
(5)

= Ť t1+t2(ω)(ξ) + T̃ t1+t2(ω)(ξ) (6)

for all ξ ∈ H. The first term on the right-hand side of (5) belongs to V0(θ(t1 + t2, ω))⊥ and

the second two terms belong to V0(θ(t1+t2, ω)). Therefore by uniqueness of the direct-sum

representation on the right-hand side of (6), it follows that

Ť t1+t2(ω)(ξ) = Ť t2(θ(t1, ω))[Ť t1(ω)(ξ)] (7)

for all ξ ∈ H. This proves that (Ť t(ω), θ(t, ω)) satisfies the perfect cocycle identity in L(H)

([M-S.3], Definition 1.2 (ii)). To complete the proof of (S4), note first that the integrability

property (iii) of the lemma implies that

E sup
0≤t1,t2≤a

log+ ‖Ť t2(θ(t1, ·))‖L(H) < ∞ (8)
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for any finite a > 0. Applying the perfect Oseledec theorem to (T t(ω), θ(t, ω)) and

(Ť t(ω), θ(t, ω)) shows that the following limits exist perfectly in ω for all ξ ∈ H:

lim
t→∞

1
t

log ‖Ť t(ω)(ξ)‖ = ľξ, lim
t→∞

1
t

log ‖T t(ω)(ξ)‖ = lξ

where lξ, ľξ are fixed numbers in R ∪ {−∞}. Now from (3.6) in ([Ru.2], p. 259), we know

that

ľξ = lim
n→∞

1
n

log ‖Ťn(ω)(ξ)‖ = lim
n→∞

1
n

log ‖Tn(ω)(ξ)‖ = lξ

for a.a. ω and for all ξ ∈ H\V0(ω). Therefore the equality

lim
t→∞

1
t

log ‖Ť t(ω)(ξ)‖ = lim
t→∞

1
t

log ‖T t(ω)(ξ)‖

holds perfectly in ω for all ξ ∈ H\V0(ω). Hence, relation (3.6) in ([Ru.2], p. 259) may be

replaced by the continuous-time “perfect” relation

lim
t→∞

1
t

log
‖Ť t(ω)(ξ)‖
‖T t(ω)(ξ)‖ = 0 (9)

for all ξ ∈ H\V0(ω).

We now complete the proof of the lemma by following the rest of the argument in the

proof of Proposition 3.2 in ([Ru.2], p. 259). By ([C-V], Theorem III.6, p. 65) and Gram-

Schmidt orthogonalization , we may select a set of Q, F-measurable, orthonormal vectors

{ξ(1)
0 (ω), · · · , ξ

(Q)
0 (ω)} such that ξ

(k)
0 (ω) ∈ [Er(k)(ω)\Er(k)+1(ω)]∩V0(ω)⊥ for k = 1, · · · , Q,

perfectly in ω. In the argument in [Ru.2], p. 259, replace (3.6) by (9), n by t, ξ
(k)
n by

ξ
(k)
t (ω) :=

T t(ω)(ξ(k)
0 (ω))

‖T t(ω)(ξ(k)
0 (ω))‖

, Vn by V0(θ(t, ω)), and η
(k)
n by η

(k)
t (ω) :=

Ť t(ω)(ξ(k)
0 (ω))

‖T t(ω)(ξ(k)
0 (ω))‖

.

Therefore for u ∈ H, we write

u =
Q∑

k=1

u
(k)
t (ω)ξ(k)

t (ω) + u
(Q+1)
t (ω), u

(Q+1)
t (ω) ∈ V0(θ(t, ω)), (10)

perfectly in ω for all t ≥ 0. Furthermore, as in [Ru.2], p. 259, (9) implies that

lim
t→∞

1
t

log| det(η(1)
t (ω), · · · , η

(Q)
t (ω))| = 0, (11)
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perfectly in ω.

Finally, we will show that for any ε > 0, there is an F̄-measurable non-negative

function Dε : Ω → (0,∞) such that the following inequalities hold perfectly in ω:

|u(k)
t (ω)| ≤ Dε(ω)eεt‖u‖

‖u(Q+1)
t (ω)‖ ≤ Dε(ω)eεt‖u‖

Dε(θ(l, ω)) ≤ Dε(ω)eεl





(12)

for all t ≥ 0, 1 ≤ k ≤ Q and for all l ∈ [0,∞).

To prove the above inequalities, define

Dε(ω) := 1 + Q · sup
0≤s≤t<∞

e−εt|det(η(1)
t−s(θ(s, ω)), η(2)

t−s(θ(s, ω)), · · · , η
(Q)
t−s(θ(s, ω)))|−1 (13)

perfectly in ω. We will first show that Dε(ω) < ∞ perfectly in ω. Let 0 ≤ s ≤ t.

Using the fact that the determinant of the linear operator Ť t−s(θ(s, ω)) is given by
‖ ∧Q

k=1 Ť t−s(θ(s, ω))(vk)‖
‖ ∧Q

k=1 vk‖
for any choice of basis {v1, · · · , vQ} in V0(θ(s, ω))⊥, it is easy

to see that

| det(η(1)
t−s(θ(s, ω)), · · · , η

(Q)
t−s(θ(s, ω)))|−1

=
ΠQ

k=1‖T t−s(θ(s, ω))(ξ(k)
0 (θ(s, ω)))‖

| det(Ť t−s(θ(s, ω))(ξ(1)
0 (θ(s, ω))), · · · , Ť t−s(θ(s, ω))(ξ(Q)

0 (θ(s, ω))))|

=
ΠQ

k=1[‖T t−s(θ(s, ω))(ξ(k)
0 (θ(s, ω)))‖] · ‖ ∧Q

k=1 [Ť s(ω)(ξ(k)
0 (ω))]‖

| det(Ť t−s(θ(s, ω))(Ť s(ω)(ξ(1)
0 (ω))), · · · , Ť t−s(θ(s, ω))(Ť s(ω)(ξ(Q)

0 (ω))))|

≤ ΠQ
k=1[‖T t−s(θ(s, ω))(ξ(k)

0 (θ(s, ω)))‖ · ‖Ť s(ω)(ξ(k)
0 (ω))‖]

| det(Ť t(ω)(ξ(1)
0 (ω)), · · · , Ť t(ω)(ξ(Q)

0 (ω)))|

=
ΠQ

k=1[‖T t−s(θ(s, ω))(ξ(k)
0 (θ(s, ω)))‖ · ‖Ť s(ω)(ξ(k)

0 (ω))‖]
‖[Ť t(ω)|V0(ω)⊥]∧Q‖ (14)

≤ ‖T t−s(θ(s, ω))‖Q · ‖Ť s(ω)‖Q

‖[Ť t(ω)|V0(ω)⊥]∧Q‖ (15)

perfectly in ω. The integrability condition (iii) implies that

sup
0≤s≤t≤a

‖T t−s(θ(s, ω))‖Q · ‖Ť s(ω)‖Q < ∞
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perfectly in ω for any finite a > 0. We next show that

sup
0≤s≤t≤a

| det(η(1)
t−s(θ(s, ω)), · · · , η

(Q)
t−s(θ(s, ω)))|−1 < ∞ (16)

perfectly in ω for any finite a > 0. To prove (16), it suffices to show that

inf
(t,v1,··· ,vQ)∈S(ω)

‖ ∧Q
k=1 [Ť t(ω)(vk)]‖ > 0 (17)

perfectly in ω, where S(ω) stands for the compact set

S(ω) := {(t, v1, · · · , vQ) : t ∈ [0, a], vk ∈ V0(ω)⊥, ‖vk‖ = 1, < vk, vl >= 0, 1 ≤ k < l ≤ Q}.

To establish (17), note that each map Ť t(ω)|V0(ω)⊥ : V0(ω)⊥ → V0(θ(t, ω))⊥ is injective

for each t ≥ 0 perfectly in ω. This follows easily from the cocycle property and the fact

that λj0 > −∞. Indeed,

‖ ∧Q
k=1 [Ť t(ω)(vk)]‖ > 0 (18)

for all (t, v1, · · · , vQ) ∈ S(ω). From hypothesis (v) of the lemma, the map

[0, a]× [V0(ω)⊥]Q 3 (t, v1, · · · , vQ) 7→ ‖ ∧Q
k=1 [Ť t(ω)(vk)]‖ ∈ [0,∞)

is jointly continuous. Hence by (18) and the compactness of S(ω), (17) follows. In view of

(15) and (17), one gets (16).

Next, we claim that

lim
t→∞

1
t

log sup
0≤s≤t

| det(η(1)
t−s(θ(s, ω)), · · · , η

(Q)
t−s(θ(s, ω)))|−1 = 0 (19)

perfectly in ω. To prove (19), use (14) to obtain the estimate

|det(η(1)
t−s(θ(s, ω)), · · · ,η

(Q)
t−s(θ(s, ω)))|−1

≤ ΠQ
k=1{‖[T t−s(θ(s, ω))|Er(k)(θ(s, ω))]‖ · ‖[Ť s(ω)|Er(k)(ω)]‖}

‖[Ť t(ω)|V0(ω)⊥]∧Q‖
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for 0 ≤ s ≤ t perfectly in ω. Take
1
t

log sup
0≤s≤t

on both sides of the above inequality and

use Lemma 5.2 (2) to obtain

1
t

log sup
0≤s≤t

|det(η(1)
t−s(θ(s, ω)), · · · , η

(Q)
t−s(θ(s, ω)))|−1

≤ 1
t

sup
0≤s≤t

{ Q∑

k=1

(log ‖[T t−s(θ(s, ω))|Er(k)(θ(s, ω)]‖+ log ‖[Ť s(ω)|Er(k)(ω)]‖)
}

− 1
t

log ‖[Ť t(ω)|V0(ω)⊥]∧Q‖

≤ 1
t

sup
0≤s≤t

{ Q∑

k=1

(t− s)λr(k) + εt + K1
ε (ω) +

Q∑

k=1

sλr(k) + εs + K2
ε (ω)

}

− 1
t

log ‖[Ť t(ω)|V0(ω)⊥]∧Q‖

=
Q∑

k=1

λr(k) + 2ε +
1
t
[K1

ε (ω) + K2
ε (ω)]− 1

t
log ‖[Ť t(ω)|V0(ω)⊥]∧Q‖, t > 0,

for arbitrary ε > 0 where Ki
ε(ω), i = 1, 2, are finite positive constants (independent of t).

The above inequality holds perfectly in ω. Letting t → ∞ in the above inequality, we

obtain

lim sup
t→∞

1
t

log sup
0≤s≤t

|det(η(1)
t−s(θ(s,ω)), · · · , η

(Q)
t−s(θ(s, ω)))|−1

≤
Q∑

k=1

λr(k) + 2ε− lim inf
t→∞

1
t

log ‖[Ť t(ω)|V0(ω)⊥]∧Q‖

=
Q∑

k=1

λr(k) + 2ε−
Q∑

k=1

λr(k)

= 2ε.

Since ε > 0 is arbitrary, the above inequality implies

lim sup
t→∞

1
t

log sup
0≤s≤t

|det(η(1)
t−s(θ(s, ω)), · · · , η

(Q)
t−s(θ(s, ω)))|−1 ≤ 0 (20)

perfectly in ω. The inequality

lim inf
t→∞

1
t

log sup
0≤s≤t

| det(η(1)
t−s(θ(s, ω)), · · · , η

(Q)
t−s(θ(s, ω)))|−1

≥ lim inf
t→∞

1
t

log |det(η(1)
t (ω), · · · , η

(Q)
t (ω))|−1 = 0 (21)
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follows immediately from (11). Combining (20) and (21) yields (19).

Using (16), (19) and (13), it is now easy to see that Dε(ω) is finite perfectly in ω.

The reader may check that the last inequality in (12) follows directly from (13).

We next prove the first two inequalities in (12). Consider the equation

ǔ(ω) =
Q∑

k=1

u
(k)
t (ω)η(k)

t (ω), u ∈ H, t ≥ 0.

View ǔ(ω), η
(k)
t (ω), 1 ≤ k ≤ Q, as column vectors in RQ with respect to the basis

{ξ(k)
0 (θ(t, ω)) : 1 ≤ k ≤ Q}. Solving the above equation for each u

(k)
t (ω) gives

|u(k)
t (ω)| =

∣∣∣∣
det(η(1)

t (ω), · · · , η
(k−1)
t (ω), ǔ(ω), η(k+1)

t (ω), · · · , η
(Q)
t (ω))

det(η(1)
t (ω), · · · , η

(Q)
t (ω))

∣∣∣∣

≤ ‖ǔ(ω)‖
| det(η(1)

t (ω), · · · , η
(Q)
t (ω))|

≤ [Dε(ω)− 1]
Q

‖u‖eεt (22)

≤ Dε(ω)‖u‖eεt, 1 ≤ k ≤ Q, t ≥ 0,

perfectly in ω, by Cramer’s rule and (13). Using (10), the triangle inequality and (22), we

obtain

‖u(Q+1)
t (ω)‖ ≤ ‖u‖+

Q∑

k=1

|u(k)
t (ω)| ≤ Dε(ω)‖u‖eεt, t ≥ 0,

perfectly in ω. This proves that Tn(ω) satisfies (S4) perfectly in ω, and completes the

proof of the proposition. ¤

The following lemma is used in the discretization argument underlying the proof of

the local stable-manifold theorem (Theorem 4.1).
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Lemma 5.4.

Assume the hypotheses of Lemma 3.2. Then there is a sure event Ω3 ∈ F with the

following properties:

(i) θ(t, ·)(Ω3) = Ω3 for all t ∈ R,

(ii) For every ω ∈ Ω3 and any (v, η) ∈ M2, the statement

lim sup
n→∞

1
n

log ‖Z(nr, (v, η), ω)‖ < 0 (23)

implies

lim sup
t→∞

1
t

log ‖Z(t, (v, η), ω)‖ = lim sup
n→∞

1
nr

log ‖Z(nr, (v, η), ω)‖. (24)

Proof.

Using the integrability condition (2) of Lemma 3.2, the proof of the lemma is exactly

analogous to that of Lemma 3.4 in [M-S.4]. ¤

Proof of Theorem 4.1.

All real-valued random variables in this proof will be taken to be F̄-measurable.

It is sufficient to assume that r > 0. The case r = 0 is handled in [M-S.4], Theorem

3.1.

The proof of Theorem 4.1 will build on Proposition 4.1 and its proof. Recall the

notations and assertions of Proposition 4.1 and its proof. Our first task is to show that

the sure event Ω∗1 ∈ F can be chosen such that θ(t, ·)(Ω∗1) = Ω∗1 for all t ∈ R; and for each

ω ∈ Ω∗1, the random family of Ck,ε discrete-time stable submanifolds S̃d(ω) of B̄(0, ρ1(ω))

are given by:

S̃d(ω) = {(v, η) ∈ B̄(0, ρ1(ω)) : ‖Z(nr, (v, η), ω)‖M2 ≤ β1(ω)e(λi0+ε1)nr for all integers n ≥ 0},
(25)
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where ρ1, β1 : Ω∗1 → (0, 1) are F̄-measurable positive random variables. Each S̃d(ω) is

tangent at 0 to the stable subspace S(ω) of the linearized flow D2X, viz. T0S̃d(ω) = S(ω).

In particular, codim S̃d(ω) is finite and non-random. Furthermore,

lim sup
n→∞

1
nr

log
[

sup
(v1,η1),(v2,η2)∈S̃d(ω)

(v1,η1) 6=(v2,η2)

‖Z(nr, (v1, η1), ω)− Z(nr, (v2, η2), ω)‖
‖(v1, η1)− (v2, η2)‖

]
≤ λi0 .

(26)

We will outline the construction of the θ(t, ·)-invariant sure event Ω∗1 referred to

above. This will follow from the proof of Theorem 5.1 ([Ru.2], p. 272) coupled with ad-

ditional perfection arguments given in Lemmas 5.1, 5.2, 5.3. More specifically, and in the

notation of [Ru.2], let T t(ω) := D2Z(rt, 0, ω), f(ω) := θ(r, ω), Tn(ω) := D2Z(r, 0, θ((n −
1)r, ω)), t ∈ R+, n ∈ Z+. By the integrability property (2) of Lemma 3.2 and the per-

fect ergodic theorem (Lemma 5.1 (ii)), one may replace (5.3) in [Ru.2], p. 274) by its

continuous-time analogue

lim
t→∞

1
t

log+ ‖Z(r, ·, θ(t, ω))‖1,ε = 0. (27)

The above relation holds perfectly in ω, viz. there is a sure event Ω∗1 ∈ F such that

θ(t, ·)(Ω∗1) = Ω∗1 for all t ∈ R and (27) holds for all ω ∈ Ω∗1. In the notation of Theorem

1.1 ([Ru.2], p. 248), set S = i0−1, fixed, and µ(S+1) = λi0 , when λi0 > −∞; if λi0 = −∞,

we replace µ(S+1) by any fixed number in (−∞, 0). In view of the integrability property

(2) of Lemma 3.2, and Lemma 5.3 (with t0 = r, j0 = i0 − 1), it follows that there is a

sure event Ω∗2 ∈ F such that Ω∗2 ⊆ Ω∗1, θ(t, ·)(Ω∗2) = Ω∗2 for all t ∈ R, and the sequence

{Tn(ω), Vn(ω) := Ei0(θ(nr, ω)), n ≥ 1}, satisfies Conditions (S) of ([Ru.2], p. 256) for

every ω ∈ Ω∗2. Fixing any ω ∈ Ω∗2, we continue to follow the proof of Theorem 5.1 in [Ru.2],

pp. 274-278. In particular, Ruelle’s “perturbation theorem” (Theorem 4.1, [Ru.2], pp. 262-

263) holds for the sequence Tn(ω), n ≥ 1, and therefore the results quoted in the previous

paragraph hold for k = 1, ε ∈ (0, δ). To see that the Ck,ε manifolds (k > 1, ε ∈ (0, δ))
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S̃d(ω) are defined perfectly in ω, we follow the inductive argument in [Ru.2], pp. 278-279,

by applying the previous analysis to the following perfect cocycle on M2 ⊕M2:

(
Ž(t, (v, η), (v1, η1), ω) := (Z(t, (v, η), ω), D2Z(t, (v, η), ω)(v1, η1)), θ(t, ω)

)
,

for (v, η), (v1, η1) ∈ M2, t ≥ 0. The inductive argument yields that S̃d(ω) is a Ck,ε manifold

perfectly in ω.

Consider the set S̃(ω), ω ∈ Ω∗1, defined in part (a) of the theorem. Then as in the

proof of Proposition 4.1, it follows that S̃(ω) is a Ck,ε manifold (k > 1, ε ∈ (0, δ)) for

all ω ∈ Ω∗1, TY (ω)S̃(ω) = T0S̃d(ω) = S(ω); and codim S̃(ω) = codim S(ω) is finite and

non-random.

We next show the inequality (1) in (a) of the theorem. By (b) of Proposition 4.1,

we have

lim sup
n→∞

1
nr

log ‖Z(nr, (v, η), ω)‖ ≤ λi0 (28)

for all ω in the shift-invariant sure event Ω∗1 and all (v, η) ∈ S̃d(ω). Therefore by Lemma

5.4, there is a sure event Ω∗3 ⊆ Ω∗2, Ω∗3 ∈ F , such that θ(t, ·)(Ω∗3) = Ω∗3 for all t ∈ R, and

lim sup
t→∞

1
t

log ‖Z(t, (v, η), ω)‖ ≤ λi0 (29)

for all ω ∈ Ω∗3 and all (v, η) ∈ S̃d(ω). Now inequality (1) of the theorem follows directly

from (29) and the definition of Z ((1) in Section 3).

We next prove assertion (b) of the theorem. Take any ω ∈ Ω∗1. By (26), there is a

positive integer N0 := N0(ω) (independent of (v, η) ∈ S̃d(ω)) such that Z(nr, (v, η), ω) ∈
B̄(0, 1) for all n ≥ N0. Let Ω3 be a θ(t, ·)-invariant sure event such that

lim
t→∞

1
t

log+ sup
0≤u≤r,

(v∗,η∗)∈B̄(0,1)

‖D2Z(u, (v∗, η∗), θ(t, ω))‖L(M2) = 0
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for all ω ∈ Ω3 (Lemma 5.1 (ii)). Let Ω∗4 := Ω∗3 ∩ Ω3. Then Ω∗4 ∈ F , is a sure event and

θ(t, ·)(Ω∗4) = Ω∗4 for all t ∈ R. By a similar argument to the one used in the proof of

Lemma 3.4 in [M-S.4], it follows that

sup
nr≤t≤(n+1)r

1
t

log
[

sup
(v1,η1) 6=(v2,η2),

(v1,η1),(v2,η2)∈S̃(ω)

‖X(t, (v1, η1), ω)−X(t, (v2, η2), ω)‖
‖(v1, η1)− (v2, η2)‖

]

= sup
nr≤t≤(n+1)r

1
t

log
[

sup
(v1,η1) 6=(v2,η2),

(v1,η1),(v2,η2)∈S̃d(ω)

‖Z(t, (v1, η1), ω)− Z(t, (v2, η2), ω)‖
‖(v1, η1)− (v2, η2)‖

]

≤ 1
nr

log+ sup
0≤u≤r,

(v∗,η∗)∈B̄(0,1)

‖D2Z(u, (v∗, η∗), θ(nr, ω))‖L(M2)

+
n

(n + 1)
1
nr

log
[

sup
(v1,η1) 6=(v2,η2),

(v1,η1),(v2,η2)∈S̃d(ω)

‖Z(nr, (v1, η1), ω)− Z(nr, (v2, η2), ω)‖
‖(v1, η1)− (v2, η2)‖

]

for all ω ∈ Ω∗4, all n ≥ N0(ω) and sufficiently large. Taking lim sup
n→∞

in the above inequality

and using (26), immediately gives assertion (b) of the theorem.

To prove the cocycle-invariance statements (c), we begin by the inclusion (3) in

the theorem. This is proved by applying the (perfect continuous-time version of the)

Oseledec theorem to the linearized cocycle (D2X(t, Y (ω), ω), θ(t, ω)) ([Mo.2], Theorem 4,

Corollary 2). Hence there is a sure θ(t, ·)-invariant event, also denoted by Ω∗1 ∈ F , such

that D2X(t, Y (ω), ω)(S(ω)) ⊆ S(θ(t, ω)) for all t ≥ 0 and all ω ∈ Ω∗1.

We next prove the asymptotic invariance property (2) of the theorem. To this end,

we will need to modify the proofs of Theorems 5.1 and 4.1 in [Ru.2], pp. 262-279. We will

first show that two random variables ρ1, β1 and a sure event (also denoted by) Ω∗1 may be

chosen such that θ(t, ·)(Ω∗1) = Ω∗1 for all t ∈ R, and

ρ1(θ(t, ω)) ≥ ρ1(ω)e(λi0+ε1)t, β1(θ(t, ω)) ≥ β1(ω)e(λi0+ε1)t (30)

for every ω ∈ Ω∗1 and all t ≥ 0. For the given choice of ε1, fix 0 < ε3 < −ε(λi0 + ε1)/4. The

above inequalities hold in the discrete case (when t = n, a positive integer) from Theorem

5.1 (c) ([Ru.2], p. 274). We claim that ρ1 and β1 may be redefined so that the relations
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(30) hold for continuous time. To see this, we will modify the definitions of these random

variables in the proofs of Theorems 5.1 and 4.1 in [Ru.2]. In the notation of the proof of

Theorem 5.1 ([Ru.2], p. 274), we replace the random variable G in (5.4) ([Ru.2], p. 274)

by the larger one

G̃(ω) := sup
t≥0

‖Z(r, ·, θ(t, ω))‖1,ε e(−tε3−λε). (31)

In (31), ε ∈ (0, δ) stands for the Hölder exponent of the semiflow X. By (27) and Lemma

3.2, it is easy to see that G̃(ω) < ∞ perfectly in ω. Following ([Ru.2], pp. 266, 274), the

random variables ρ1, β1 may be chosen according to the relations

β1 :=
[δ1 ∧

(
1√
2A

)

2G̃

] 1
ε

∧ 1 (32)

ρ1 :=
β1

Bε3

(33)

where A, δ1 and Bε3 are random positive constants that are defined via continuous-time

analogues of the relations (4.26), (4.18)-(4.21), (4.24), (4.25) in [Ru.2], pp. 265-267, with η

replaced by ε3. In particular, the “ancestry” of A, δ1 and Bε3 in Ruelle’s argument may be

traced back to the constants Dε3 ,Kε3 which appear in Lemmas 5.3 and 5.2 of this article.

Thus, in order to establish (30), it suffices to observe that, for sufficiently small ε3 > 0,

the following inequalities

Kε3(θ(l, ω)) ≤ Kε3(ω) +
ε3l

2

Dε3(θ(l, ω)) ≤ e
ε3l
2 Dε3(ω)

G̃(θ(l, ω)) ≤ eε3lG̃(ω)





(34)

hold perfectly in ω for all l ≥ 0. The first inequality in (34) follows from Lemma 5.2 (2),

while the second inequality is a consequence of Lemma 5.3. The third inequality in (34)

follows directly from (31). In view of (32) and (33), (30) holds. This completes the proof

of (30).
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We are now ready to prove the asymptotic invariance property (2) in (c) of the

theorem. Use (b) to obtain a sure event Ω∗5 ⊆ Ω∗4 such that θ(t, ·)(Ω∗5) = Ω∗5 for all t ∈ R,

and for any 0 < ε′ < ε1 and ω ∈ Ω∗5, there exists βε′(ω) > 0 (independent of (v, η)) with

|X(t, (v, η), ω)− Y (θ(t, ω))| ≤ βε′(ω)e(λi0+ε′)t (35)

for all (v, η) ∈ S̃(ω), t ≥ 0. Fix any real t ≥ 0, ω ∈ Ω∗5 and (v, η) ∈ S̃(ω). Let n be a

non-negative integer. Then the cocycle property and (35) imply that

|X(nr,X(t, (v, η), ω), θ(t, ω))− Y (θ(nr, θ(t, ω)))| = |X(nr + t, (v, η), ω)− Y (θ(nr + t, ω))|

≤ βε′(ω)e(λi0+ε′)(nr+t)

≤ βε′(ω)e(λi0+ε′)te(λi0+ε1)nr. (36)

If ω ∈ Ω∗5, then it follows from (30),(35), (36) and the definition of S̃(θ(t, ω)) that there

exists τ1(ω) > 0 such that X(t, (v, η), ω) ∈ S̃(θ(t, ω)) for all t ≥ τ1(ω). This proves the

invariance property (2) and completes the proof of assertion (c) of the theorem.

We now prove assertion (d) of the theorem, regarding the existence of the local

unstable manifolds Ũ(ω) perfectly in ω . Define the random field Ẑ : R+ ×M2 × Ω → M2

by

Ẑ(t, (v, η), ω) := X(t, (v, η) + Y (θ(−t, ω)), θ(−t, ω))− Y (ω) (37)

for all t ≥ 0, (v, η) ∈ M2, ω ∈ Ω. Observe that Ẑ(t, ·, ω) = Z(t, ·, θ(−t, ω)), t ≥ 0, ω ∈ Ω;

and Ẑ is (B(R+)⊗ B(M2)⊗ F ,B(M2))-measurable, by the remark following the proof of

Theorem 4.1 in ([M-S.3]). From (4) (Section 2) (with s = −t), it follows immediately that

Ẑ(t, 0, ω) = 0 for all t ≥ 0, ω ∈ Ω. Using the fact that (D2X(t, Y (ω), ω), θ(t, ω)) is an

L(M2)-valued perfect cocycle, it is easy to see that ([D2Ẑ(t, 0, ω)]∗, θ(−t, ω), t ≥ 0) is a

perfect linear cocycle (in L(M2)).
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We next show that the cocycles (D2X(t, Y (ω), ω), θ(t, ω), t ≥ 0) and ([D2Ẑ(t, 0, ω)]∗,

θ(−t, ω), t ≥ 0) have the same Lyapunov spectrum with multiplicities. First, we need to

verify the integrability condition

∫

Ω

log+ sup
0≤t1,t2≤T

‖[D2Ẑ(t2, 0, θ(−t1, ω))]∗‖L(M2) dP (ω) < ∞ (38)

for any fixed T ∈ (0,∞). To prove (38), use (5) of Lemma 2.1 and the P -preserving

property of θ(t, ·) in order to obtain the following relations:

∫

Ω

log+ sup
0≤t1,t2≤T

‖[D2Ẑ(t2, 0, θ(−t1, ω))]∗‖L(M2) dP (ω)

=
∫

Ω

log+ sup
0≤t1,t2≤T

‖D2X(t2, Y (θ(−t2 − t1, ω)), θ(−t2 − t1, ω))‖L(M2) dP (ω)

≤
∫

Ω

log+ sup
0≤t1≤2T, 0≤t2≤T

‖D2X(t2, Y (θ(t1, ω)), θ(t1, ω))‖L(M2) dP (ω)

≤
∫

Ω

log+ sup
0≤t1≤T, 0≤t2≤T

‖D2X(t2, Y (θ(t1, ω)), θ(t1, ω))‖L(M2) dP (ω)

+
∫

Ω

log+ sup
T≤t1≤2T, 0≤t2≤T

‖D2X(t2, Y (θ(t1 − T, ω)), θ(t1 − T, ω))‖L(M2) dP (ω)

= 2
∫

Ω

log+ sup
0≤t1,t2≤T

‖D2X(t2, Y (θ(t1, ω)), θ(t1, ω))‖L(M2) dP (ω) < ∞.

In view of the integrability property (38), it follows that the linear cocycle

([D2Ẑ(t, 0, ω)]∗, θ(−t, ω), t ≥ 0) has a fixed discrete Lyapunov spectrum which coincides

with that of (D2X(t, Y (ω), ω), θ(t, ω)), viz. {· · ·λi+1 < λi < · · · < λ2 < λ1} where λi 6= 0

for all i ≥ 1, by hyperbolicity. See [Ru.2], Section 3.5, p. 261.

To establish a perfect version of the local unstable manifolds Ũ(ω), we begin with

the estimate ∫

Ω

log+ sup
0≤t1,t2≤r

‖Ẑ(t2, ·, θ(−t1, ω))‖k,ε dP (ω) < ∞,

which follows from the P -preserving property of θ(t, ·), t ∈ R, and Lemma 3.2. Define

i0 as before, so that λi0−1 is the smallest positive Lyapunov exponent of the linearized

cocycle. Fix 0 < ε2 < λi0−1. In view of the above integrability property, it follows
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from Lemma 5.3 that the sequence T̃n(ω) := [D2Ẑ(r, 0, θ(−nr, ω))]∗, θ(−nr, ω), n ≥ 0,

satisfies Condition (S) of [Ru.2] perfectly in ω. Therefore Proposition 3.3 in [Ru.2] implies

that the sequence T̃n(ω), n ≥ 1, satisfies Corollary 3.4 ([Ru.2], p. 260) perfectly in ω.

Now one can adapt the proof of Theorem 6.1 ([Ru.2], p. 280) along similar lines to the

preceding arguments in this proof. This yields a θ(−t, ·)-invariant sure event Ω̂∗1 ∈ F and

F̄-measurable random variables ρ2, β2 : Ω̂∗1 → (0, 1) with the following properties. For

λi0−1 < ∞, let Ũd(ω) be the set of all (v0, η0) ∈ B̄(0, ρ2(ω)) with the property that there

is a discrete “history” process u(−nr, ·) : Ω → M2, n ≥ 0, such that u(0, ω) = (v0, η0),

Ẑ(r, u(−(n + 1)r, ω), θ(−nr, ω)) = u(−nr, ω) and ‖u(−nr, ω)‖ ≤ β2(ω)e−nr(λi0−1−ε2) for

all n ≥ 0. When λi0−1 = ∞, take Ũd(ω) to be the set of all (v0, η0) ∈ M2 with the

property that there is a discrete history process u(−nr, ·) : Ω → M2, n ≥ 0, such that

u(0, ω) = (v0, η0), and ‖u(−nr, ω)‖ ≤ β2(ω)e−λnr for all n ≥ 0 and arbitrary λ > 0. The

history process u(−nr, ·) is uniquely determined by (v0, η0) ([Ru.2], p. 281). Furthermore,

for every ω ∈ Ω̂∗1, Ũd(ω) is a Ck,ε (ε ∈ (0, δ)) finite-dimensional submanifold of B̄(0, ρ2(ω))

with tangent space U(ω) at 0. Also dim Ũd(ω) is fixed independently of ω and ε2; and the

following estimates hold perfectly in ω for all t ≥ 0:

ρ2(θ(−t, ω)) ≥ ρ2(ω)e−(λi0−1−ε2)t, β2(θ(−t, ω)) ≥ β2(ω)e−(λi0−1−ε2)t. (39)

The first two assertions in (d) of the theorem follow by the same argument as the

one used in the proof of Proposition 4.1 (d).

To prove the third assertion in part (d) of the theorem, let (v, η) ∈ Ũ(ω) and write

(v, η) = (v0, η0) + Y (ω) where (v0, η0) ∈ Ud(ω). Recall that y0 is defined by

y0(−nr) := u(−nr) + Y (θ(−nr, ω)), n ≥ 0. (40)

We will prove that y0 extends to a continuous-time history process y(·, ω) : (−∞, 0] → M2

such that y(0, ω) = (v, η), andy(·, ω) satisfies the third assertion in (d) of the theorem. To

do this, we use the cocycle property of X to interpolate within the delay periods
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[−(n + 1)r,−nr], n ≥ 0. Let s ∈ (−(n + 1)r,−nr). and write s = α − (n + 1)r for some

α ∈ (0, r). Define

y(s, ω) := X(s + (n + 1)r, y0(−(n + 1)r, ω), θ(−(n + 1)r, ω)).

Clearly y(0, ω) = (v0, η0) + Y (ω) = (v, η). Fix s ∈ (−(n + 1)r,−nr) as above and let

0 < t ≤ −s. Then there is a positive integer m < n such that s + t ∈ [−(m + 1)r,−mr].

Using the perfect cocycle property for X and the above definition of y, the reader may

check that

y(t + s, ω) = X(t, y(s, ω), θ(s, ω)). (41)

(Note that if we put s = −t in (41), we get X(t, y(−t, ω), θ(−t, ω)) = (v, η) for all t ≥ 0.)

Next we show that

lim sup
t→∞

1
t

log ‖y(−t, ω)− Y (θ(−t, ω))‖ ≤ −λi0−1 (42)

perfectly in ω. From Theorem 6.1 (b) in [Ru.2], we have

lim sup
n→∞

1
nr

log ‖y(−nr, ω)− Y (θ(−nr, ω))‖M2 ≤ −λi0−1 (43)

perfectly in ω. For each t ∈ (nr, (n + 1)r), write −t = α − (n + 1)r for some α ∈ (0, r).

Then by the definition of y and the Mean Value Theorem, we have

‖y(−t, ω)− Y (θ(−t, ω))‖M2

= ‖X(α, y(−(n + 1)r, ω), θ(−(n + 1)r, ω))−X(α, Y (θ(−(n + 1)r, ω), θ(−(n + 1)r, ω))‖M2

≤ sup
(v∗,η∗)∈B̄(0,1),

α∈(0,r)

‖D2X(α, (v∗, η∗) + Y (θ(−(n + 1)r, ω)), θ(−(n + 1)r, ω))‖L(M2)

× ‖y(−(n + 1)r, ω)− Y (θ(−(n + 1)r, ω))‖M2
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perfectly in ω. Therefore

lim sup
t→∞

1
t

log ‖y(−t, ω)− Y (θ(−t, ω))‖M2

≤ lim sup
n→∞

1
nr

log+ sup
(v∗,η∗)∈B̄(0,1),

α∈(0,r)

‖D2X(α, (v∗, η∗) + Y (θ(−(n + 1)r, ω)), θ(−(n + 1)r, ω))‖L(M2)

+ lim sup
n→∞

1
nr

log ‖y(−(n + 1)r, ω)− Y (θ(−(n + 1)r, ω)))‖M2 .

The first term on the right hand side of the above inequality is zero, perfectly in ω ∈
Ω, because of Lemma 5.1 (ii) and the integrability condition (2) of Lemma 3.2. The

second term is less than or equal to −λi0−1 because y(0) ∈ Ũ(ω). The uniqueness of the

continuous-time history process for a given (v, η) ∈ Ũ(ω) follows from that of the discrete-

time process, (41) and forward uniqueness of the trajectories of (I). Hence the proof of

assertion (d) of the theorem is complete.

The proof of assertion (e) of the theorem uses an interpolation argument similar to

the above. The reader may check the details.

We will now verify the asymptotic invariance property in (f), that is

Ũ(ω) ⊆ X(t, ·, θ(−t, ω))(Ũ(θ(−t, ω))), t ≥ τ2(ω) (44)

perfectly in ω for some τ2(ω) > 0. To do this, let (v, η) ∈ Ũ(ω). Then by assertions

(d), (e) of the theorem and inequalities (39), there exists a (unique) history process

y(−t, ω), t ≥ 0, and a random time τ2(ω) > 0 such that y(0, ω) = (v, η), y(−t, ω) ∈
B̄(Y (θ(−t, ω)), ρ2(θ(−t, ω))) for all t ≥ τ2(ω), and

y(t′ − t, ω) = X(t′, y(−t, ω), θ(−t, ω)), 0 < t′ ≤ t, (45)

perfectly in ω. Fix t1 ≥ τ2(ω). Note that by (45) (for t = t′ = t1), we have (v, η) =

X(t1, y(−t1, ω), θ(−t1, ω)). We claim that y(−t1, ω) ∈ Ũ(θ(−t1, ω))) (and in fact y(−u, ω) ∈
Ũ(θ(−u, ω))) for all u ≥ τ2(ω)). To see this, define the process

y1(−t, ω) := y(−t−t1, ω), t ≥ 0. Then y1(·, ω) is a history process with y1(0, ω) = y(−t1, ω)
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∈ B̄(Y (ω), ρ2(θ(−t1, ω))). Therefore y(−t1, ω) ∈ Ũ(θ(−t1, ω))). Since t1 ≥ τ2(ω) is arbi-

trary, (44) follows. The invariance assertion (4) in (f) of the theorem and the fact that

D2X(t, ·, θ(−t, ω))|U(θ(−t, ω)) : U(θ(−t, ω)) → U(ω), t ≥ 0,

is a linear homeomorphism onto, are consequences of the Oseledec theorem and the cocycle

property for the linearized semiflow; cf. [Mo.2], Corollary 2 (v) of Theorem 4.

The transversality assertion in (g) of the theorem follows immediately from the

relations

TY (ω)Ũ(ω) = U(ω), TY (ω)S̃(ω) = S(ω), M2 = U(ω)⊕ S(ω)

which hold perfectly in ω.

Taking Ω∗ := Ω∗1 ∩ Ω̂∗1, completes the proof of assertions (a)-(g) of the theorem.

Suppose Hypothesis (SMW )k,δ holds for every k ≥ 1 and δ ∈ (0, 1]. Then a simple

adaptation of the argument in [Ru.2], Section (5.3) (p. 297) gives a θ(t, ·)-invariant sure

event in F , also denoted by Ω∗, such that S̃(ω) and Ũ(ω) are C∞ for all ω ∈ Ω∗. The

proof of Theorem 4.1 is now complete. ¤

6. Appendix.

The following result is due to Itô and Nisio ([I-N]). It gives sufficient conditions

for the existence of stationary solutions of the sfde (I). In [I-N], various conditions on the

coefficients H,G of the sfde (I) are given which guarantee the existence (and uniqueness)

of stationary solutions of (I) hence of stationary points ([I-N], Theorems 4, 5, 6, 7, 12,

13). More specifically, let (Ω,F , (Ft)t∈R, P ) be the standard filtered Wiener space, with

Ω := C(R,Rp; 0), the space of all continuous paths ω : R → Rp such that ω(0) = 0, given

the topology of uniform convergence on compacta and the Borel σ-algebra F . For each t,

let Ft be the P -completed σ-algebra generated by all evaluations Ω 3 ω 7→ ω(u)− ω(v) ∈
Rp, v ≤ u ≤ t. Denote by θ : R× Ω → Ω the canonical two-sided Wiener shift

θ(t, ω)(s) = ω(t + s)− ω(t), t, s ∈ R, ω ∈ Ω,
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and by W : R× Ω → Rp the p-dimensional Brownian motion:

W (t, ω) := ω(t), ω ∈ Ω, t ∈ R.

Define Ω̃ := C(R,Rd)×C(R,Rp; 0). Denote by F̃ := B(C(R,Rd))⊗B(C(R,Rp; 0))

the Borel σ-algebra of Ω̃. Define the processes x∞ : R× Ω̃ → Rd and W∞ : R× Ω̃ → Rp

by

x∞(t, ω̃) := f(t), W∞(t, ω̃) := W (t, ω) = ω(t),

for all t ∈ R, ω̃ := (f, ω) ∈ Ω̃.

Following [I-N], say that x∞ is a stationary solution of (I) if there exists a probability

measure P∞ on (Ω̃, F̃) such that the following is true:

(i) W∞ is p-dimensional standard Brownian motion on (Ω̃, F̃ , P∞).

(ii) (x∞, dW∞) are strictly stationarily correlated in the sense that the law of the pro-

cess

(x∞(t, ·), W∞(u, ·)−W∞(v, ·), t ∈ R, v ≤ u)

is invariant under time-shifts.

(iii) The σ-algebra σ{x∞(u) : u ≤ t}∨σ{W∞(u, ·)−W∞(v, ·), v ≤ u ≤ t} is independent

of σ{W∞(u, ·)−W∞(v, ·), t ≤ v ≤ u} under P∞ for each t ∈ R.

(iv) x∞ is a two-sided solution of (I) when W is replaced by W∞:

dx∞(t) = H(x∞(t), x∞t ) dt + G(x∞(t)) dW∞(t), t > s > −∞. (I∞)

The following result is proved in [I-N] for the one-dimensional case d = 1. The

reader may note the argument in the proof of Theorem 3 ([I-N], p. 25) extends to cover

the multidimensional case d > 1.
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Theorem 6.1. (K. Itô and M. Nisio (1964))

Assume that the coefficients H and G of the sfde (I) satisfy Hypotheses (SMW )k,δ.

Suppose (I) has a solution x(0,0) : [−r,∞)×Ω → Rd which satisfies sup
t≥0

E|x(0,0)(t)|2 < ∞.

Then (I) has a stationary solution x∞ satisfying E‖(x∞(t), x∞t )‖2M2
< ∞ for all t ∈ R.

Proof.

We will use the proof of Theorem 3, p. 25, in [I-N].

First, we will reconcile our set-up with that of [I-N]. The hypotheses on the coeffi-

cients of (I) imply that H : M2 → Rd, G : Rd → L(Rp,Rd) are globally Lipschitz and H

is globally bounded. Define the map Q : C((−∞, 0],Rd) → M2 := Rd×L2([−r, 0],Rd) by

Q(f) := (f(0), f |[−r, 0]), f ∈ C((−∞, 0],Rd).

It is easy to see that Q is continuous linear if C((−∞, 0],Rd) is furnished with the compact-

open topology. Define the mappings H̃ : C((−∞, 0],Rd) → Rd, G̃ : C((−∞, 0],Rd) →
L(Rp,Rd) by

H̃(f) := H(Q(f)), G̃(f) := G(f(0))

for all f ∈ C((−∞, 0],Rd). Therefore, H̃, G̃ are continuous on C((−∞, 0],Rd), and there

are positive (deterministic) constants M1,M2 such that the following inequality holds:

|H̃(f)|2 + |G̃(f)|2 ≤ M1 + M2|f(0)|2

for all f ∈ C((−∞, 0],Rd). This means that H̃, G̃ satisfy Condition (A.2′′) (p. 25) of

[I-N]. Now consider the unique solution x(0,0) : [−r,∞)× Ω → Rd of the sfde

dx(0,0)(t) = H(x(0,0)(t), x(0,0)
t ) dt + G(x(0,0)(t)) dW (t), t > 0,

x(0,0)(t) = 0 − r ≤ t ≤ 0.



 (I)

Define x̃ : R× Ω → Rd by

x̃(t) :=
{

x(0,0)(t), t > 0,

0 t ≤ 0
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Clearly x̃ is (Ft)t∈R-adapted and sample-continuous. Following [I-N], define πt : C(R,Rd) →
C((−∞, 0],Rd), t ∈ R, by

πt(f)(s) := f(t + s), s ≤ 0

for all f ∈ C(R,Rd). Hence πt(x̃)|[−r, 0] = xt for any t ∈ R. Furthermore, a straightfor-

ward computation shows that

dx̃(t) = H̃(πt(x̃)) dt + G̃(πt(x̃)) dW (t), t > 0,

x̃(t) = 0, −∞ < t ≤ 0.



 (Ĩ)

Now by hypothesis, sup
t≥0

E|x(t)|2 < ∞. Therefore, sup
t≥0

E|x̃(t)|2 < ∞. Hence the sfde

dx̃(t) = H̃(πt(x̃)) dt + G̃(πt(x̃)) dW∞(t), t > s > −∞, (Ĩ∞)

admits a stationary solution x∞ : R×Ω̃ → Rd defined on the probability space (Ω̃, F̃ , P∞)

(cf. [I-N], Theorem 3, p. 25). Now x∞ is also a stationary solution of (I) when W is replaced

by W∞. To see this, note first that πt(x∞)|[−r, 0] = x∞t for all t ∈ R. Therefore,

dx∞(t) = H̃(πt(x∞)) dt + G̃(πt(x∞)) dW∞(t),

= H(Q(πt(x∞))) dt + G(πt(x∞)(0)) dW∞(t),

= H(x∞(t), x∞t ) dt + G(x∞(t)) dW∞(t),

for t > s > −∞, P∞-a.s.. Furthermore, E‖(x∞(t), x∞t )‖2M2
< ∞ for all t ∈ R. This

completes the proof of the theorem. ¤
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indépendants, Ann. Inst. Henri Poincaré, Probabilités et Statistiques, Vol. 23,(1987),
111-120.

[L-Y] Ledrappier, F. and Young, L.-S., Entropy formula for random transformations,
Probab. Th. Rel. Fields, 80 (1988), 217-240.

[M-N-S] Millet, A., Nualart, D., and Sanz, M., Large deviations for a class of anticipating
stochastic differential equations, The Annals of Probability , 20 (1992), 1902-1931.

[Mo.1] Mohammed, S.-E.A., Stochastic Functional Differential Equations, Research Notes
in Mathematics, no. 99, Pitman Advanced Publishing Program, Boston-London-
Melbourne (1984).

[Mo.2] Mohammed, S.-E. A., The Lyapunov spectrum and stable manifolds for stochastic
linear delay equations, Stochastics and Stochastic Reports, Vol. 29 (1990), 89-131.

[Mo.3] Mohammed, S.-E. A., Lyapunov exponents and stochastic flows of linear and affine
hereditary Systems, Diffusion Processes and Related Problems in Analysis, Vol. II,
edited by Mark Pinsky and Volker Wihstutz, Birkhäuser (1992), 141-169.
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