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STOCHASTIC FUNCTIONAL DIFFERENTIAL

EQUATIONS ON MANIFOLDS

Rémi Léandre∗ and Salah-Eldin A. Mohammed‡

Abstract. In this paper, we study stochastic functional differential equations (sfde’s) whose
solutions are constrained to live on a smooth compact Riemannian manifold. We prove the
existence and uniqueness of solutions to such sfde’s. We consider examples of geometrical
sfde’s and establish the smooth dependence of the solution on finite-dimensional parameters.

I. Introduction.

The theory of stochastic functional differential equations (sfde’s) in Euclidean space

was developed by Itô and Nisio ([I.N]), Kushner ([Ku]), Mizel and Trutzer ([M.T]), Mo-

hammed ([Mo2], [Mo3]) and Mohammed and Scheutzow ([Mo.S1], [Mo.S2]). The purpose

of this work is to constrain solutions of such sfde’s to stay on a smooth compact subman-

ifold of Euclidean space, or more generally, to construct solutions of sfde’s which live on

any smooth compact Riemannian manifold M . Indeed, we wish to define and study sfde’s

on M of the form

dxt = F (t, x) ◦ dwt, t > 0,

and driven by Brownian motion wt ∈ Rk, on a probability space (Ω,F , P ).

The main difficulty in this study is that the tangent space along a solution path is

random, unlike in the flat case. To elaborate on this question, we shall designate entities
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2 LÉANDRE AND MOHAMMED

pertaining to the “curved” manifold M by the subscript c and the corresponding ones

in “flat” space by the subscript f . We shall use this notation throughout the article.

Let C([−δ, 0],M) be the space of all continuous paths γc,. : [−δ, 0] → M . Denote by

es : C([−δ, 0],M) → M, s ∈ [−δ, 0], the family of evaluation maps

es(γc,.) := γc,s, γc,. ∈ C([−δ, 0],M).

Let T (M) be the tangent bundle of M and denote by e∗−δT (M) and e∗0T (M) the pullback

vector bundles of T (M) over C([−δ, 0],M) by the evaluation maps e−δ and e0, respectively.

A deterministic functional differential equation (fde) is an (everywhere defined) section of

the bundle e∗0T (M) → C([−δ, 0],M). Given the Riemannian structure on M , deterministic

parallel transport is well defined everywhere on the space of differentiable paths on M .

Therefore, if the evaluations es are restricted to differentiable paths on M , then we can

identify the pull-backs e∗−δT (M) and e∗0T (M) by using deterministic parallel transport

τ0,−δ(γc,.) from γc,−δ to γc,0 along each differentiable path γc,. : [−δ, 0] → M .

However, the above setting is inadequate in the stochastic case. In this case, one

may wish to “randomize” the path γc,. by giving C([−δ, 0],M) a semimartingale measure.

Under such a measure the set of differentiable paths is negligible. If the noise w is one-

dimensional, one may define a stochastic functional differential equation (sfde) as an almost

everywhere defined section of the pull-back bundle e∗0T (M) over C([−δ, 0],M). An iden-

tification of the bundles e∗−δT (M) and e∗0T (M) is effected by stochastic parallel transport

along semimartingale paths, which is almost surely defined with respect to the underlying

semimartingale measure. These considerations show that it is necessary to change the

function space of initial paths in order to study sfde’s on manifolds. We will therefore

work in a space of semimartingales from [−δ, 0] into M , with a convenient topology and

with a filtration depending on time.
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Deterministic functional differential equations on Hilbert manifolds and the ex-

istence of their semiflows were studied by Mohammed in [Mo1]. The present work is

motivated in part by a conjecture in [Mo1] (Chapter 5, p. 143).

Now let us recall some aspects of the theory of sfde’s on flat space. The state space

is the set of continuous paths C([−δ, 0], Rd) or some other Banach space of paths on Rd,

and the trajectory of the sfde constitutes an infinite dimensional Feller process on the state

space. The problem of existence of a stochastic semiflow was studied by Mohammed [Mo3],

and Mohammed and Scheutzow ([Mo.S1], [Mo.S2]). See [Mo3] and the references therein.

In this paper, we will not address this issue for sfde’s on manifolds.

A theory of differential equations in a space of semimartingales on a manifold was

developed by B. Driver ([Dr], [Cr], [E.S], [Hs], [No], [Le1], [Ci.Cr], [Li]). It is useful to

compare our theory with that of Driver:

• Driver’s theory yields a deterministic flow on the space of semimartingales on the

manifold. Some of the techniques which we use in this paper are similar to those used

in the study of Driver’s flow. For instance, we use stochastic parallel transport to

“pull back” the calculus on the manifold onto the tangent space at the starting point

of the initial semimartingale. This gives a sfde in a linear space of semimartingales

with values in the tangent space Tx(M) at a given fixed point x ∈ M . In the delay

case when the coeffcient of the equation does not depend on the present state of the

solution, the structure of our equation is simpler in some sense than Driver’s. In

this case, our formulas are less involved than their counterparts in Driver’s theory,

because it is not necessary to differentiate the stochastic parallel transport with

respect to the semimartingale path.

• Throughout its evolution, Driver’s flow maintains the same filtration as that of the

initial semimartingale process. In our sfde, the state of the trajectory at any time

is adapted to a different filtration than that of the initial process.
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• In Driver’s theory, there is only one source of randomness, which arises from sto-

chastic parallel transport along Brownian paths. Our theory involves two sources

of randomness: One which arises from the initial semimartingale (via stochastic

parallel transport), and the other from the driving Brownian motion.

• Wiener measure on the manifold is quasi-invariant under Driver’s flow; that is, the

law of the solution of Driver’s ode at any subsequent time is absolutely continuous

with respect to that of the initial Brownian motion on the manifold ([Dr]). This is

not the case in our context. For a sfde on a manifold, one does not expect the law

of the solution at any given time to be absolutely continuous with respect to the

law of the initial semimartingale.

The present article falls into two parts.

In the first part, we define a large class of sfde’s on the manifold. Using parallel

transport, we “pull back” the sfde onto the tangent space at the starting point of the

initial semimartingale. This procedure yields a non geometric sfde defined on flat path

space, which can then be solved via Picard’s iteration method. In this part, we study

a geometrical example of a stochastic delay equation on the manifold, and show that it

possesses a Markov property in a suitably defined space of semimartingales.

In the second part, we examine the regularity in the initial semimartingale of the

solution of the geometric stochastic delay equation introduced in the first part. The anal-

ysis uses the stochastic Chen-Souriau calculus developed by Léandre in [Le2] and [Le3].

It turns out that the function space of semimartingales used in the first part does not

appear to give smoothness of the solution of the geometric stochastic delay equation in

the initial semimartingale. We therefore use a Fréchet space of semimartingales generated

by a countable family of semimartingale norms rather than a single norm. The techniques

used in this part are similar to those of Léandre [Le1].
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The research in this article was done while the second author was visiting Insti-

tut Elie Cartan, Université Nancy I, France. The second author appreciates the warm

hospitality of Institut Elie Cartan.

II. A general existence theorem.

In this section, we shall define a large class of sfde’s on a compact Riemannian

manifold. We then state and prove an existence theorem for this class of sfde’s.

We begin by fixing notation. Let M be a smooth compact d-dimensional Rie-

mannian manifold, δ > 0 and T > 0. Suppose (Ω,F , (Ft)t≥−δ, P ) is a complete filtered

probability space satisfying the usual conditions.

Let wt, t ≥ −δ, be a k-dimensional Brownian motion on (Ω,F , (Ft)t≥−δ, P ) adapted

to the filtration (Ft)t≥−δ. Suppose that w−δ = 0.

For any (finite-dimensional) manifold N , we will denote by L0(Ω, N) the space of

all N -valued (F-measurable) random variables Ω → N , given the topology of convergence

in probability.

If N is any smooth finite-dimensional Riemannian manifold and x ∈ N , denote by

S([−δ, T ], N ;−δ, x) the space of all N -valued (Ft)t≥−δ-adapted continuous semimartin-

gales γ : [−δ, T ]× Ω → N with γ−δ = x.

Fix x ∈ M . Define the Itô map by the association

S([−δ, T ],M ;−δ, x) 3 γc,. 7→ γf,. ∈ S([−δ, T ], Tx(M);−δ, 0)

where

(2.1)
{

dγf,t = τ−1
t,−δ(γc,.) ◦ dγc,t, −δ < t < T,

γf,−δ = 0.

The differential in the above equation is in the Stratonovich sense, and τt,−δ(γc,.) denotes

stochastic parallel transport from x = γc,−δ to γc,t along the semimartingale γc,. ([E.E],

[Em]). Observe that the Itô map is a bijection.
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Denote by ST
2,f the Hilbert space of all semimartingales γf,. ∈ S([−δ, T ], Tx(M);−δ, 0)

such that

(2.2) γf,t =
∫ t

−δ

As dws +
∫ t

−δ

Bs ds, −δ ≤ t ≤ T,

and

(2.3) ‖γf,.‖22 := E[
∫ T

−δ

‖As‖2 ds] + E[
∫ T

−δ

|Bs|2 ds] < ∞,

where A : [−δ, T ] × Ω → L(Rk, Tx(M)) and B : [−δ, T ] × Ω → Tx(M) are adapted,

previsible processes. In the sequel, we shall refer to the pair (A,B) as the characteristics

of γf,. (or γc,.). Note that the Hilbert norm ‖ · ‖2 induces a topology on ST
2,f slightly

different from the traditional semimartingale topologies that are often used in stochastic

analysis (cf. [D.M]).

Denote by ST
2,c the image of ST

2,f under the Itô map with the induced topology.

Let γc,. ∈ ST
2,c and fix any t ∈ [−δ, T ]. Set γt

c,s := γc,s∧t, s ∈ [−δ, T ]. Then

γt
c,. ∈ ST

2,c and (γt
c,.)f = (γf,.)t.

Consider the evaluation map e : [0, T ]× ST
2,c → L0(Ω,M) defined by

e(t, γc,.) := γc,t, (t, γc,.) ∈ [0, T ]× ST
2,c.

The tangent bundle T (M) → M induces the k-frame vector bundle L(Rk, T (M)) → M

whose fiber at each z ∈ M is given by L(Rk, T (M))z := L(Rk, Tz(M)). Furthermore,

the frame bundle L(Rk, T (M)) → M induces a vector bundle L0(Ω, L(Rk, T (M))) →
L0(Ω,M) whose fiber L0(Ω, L(Rk, T (M)))Z over each Z ∈ L0(Ω,M) is given by

L0(Ω, L(Rk, T (M)))Z := {Y : Y (ω) ∈ L(Rk, TZ(ω)(M)) a.a. ω ∈ Ω}.

Denote by e∗L0(Ω, L(Rk, T (M))) the pull-back bundle of L0(Ω, L(Rk, T (M))) → L0(Ω,M)

by e over [0, T ]× ST
2,c. A section of the bundle e∗L0(Ω, L(Rk, T (M))) → [0, T ]× ST

2,c is a
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map Fc : [0, T ] × ST
2,c → L0(Ω, L(Rk, T (M))) such that Fc(t, γt

c,.) ∈ L(Rk, Tγc,t
(M)) for

each (t, γc,.) ∈ [0, T ] × ST
2,c a.s.. Each such section has a flat version Ff : [0, T ] × ST

2,f →
L0(Ω, L(Rk, Tx(M))) given by

Ff (t, γf,.) := τ−1
t,−δ(γc,.)Fc(t, γc,.)

for all (t, γf,.) ∈ [0, T ]× ST
2,f . In the above relation, τ−1

t,−δ(γc,.) denotes stochastic parallel

transport of k-linear frames over Tγc,t
(M) to k-linear frames over Tγc,−δ

(M).

A stochastic functional differential equation (sfde) on M is a section Fc : [0, T ] ×
ST

2,c → L0(Ω, L(Rk, T (M))) of e∗L0(Ω, L(Rk, T (M))) → [0, T ]×ST
2,c satisfying the follow-

ing properties:

(i) Fc is “non-anticipating”: Fc(t, γc,.) = Fc(t, γt
c,.) for all (t, γc,.) ∈ [0, T ]× ST

2,c, a.s..

(ii) For each γf,. ∈ ST
2,f , the process [0, T ] 3 t 7→ Ff (t, γt

f,.) ∈ L(Rk, Tx(M)) is an

(Ft)0≤t≤T -semimartingale.

Consider the Stratonovich sfde

(I.c)





dxc,t =Fc(t, xt
c,.) ◦ dwt, 0 < t < T,

x0
c,. =γ0

c,.

In general, the above sfde does not have a solution. In order to establish the existence of

a unique solution, we will impose a Lipschitz-type condition on Fc. For this purpose, we

will use the Itô map to pullback the sfde (I.c) to an sfde on the flat space Tx(M). This

induces the following Stratonovich sfde on Tx(M):

(I.f)





dxf,t =Ff (t, xt
f,.) ◦ dwt, 0 < t < T,

x0
f,. =γ0

f,.

where Ff : [0, T ] × ST
2,f → L0(Ω, L(Rk, Tx(M))) is the flat version of Fc. In order to

establish existence and uniqueness of the solution to (I.c), we will impose “boundedness”
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and “Lipschitz conditions” on Fc that will be expressed in terms of its flat version Ff .

First, we convert (I.f) into the equivalent Itô form

(I.if)





dxf,t =Ff (t, xt
f,.)dwt + ∆Ff (t, xt

f,.) dt, 0 < t < T,

x0
f,. =γ0

f,.

In the above sfde, ∆Ff (., xt
f,.) : [0, T ] × ST

2,f → L0(Ω, L(Rk, Tx(M))) is the Stratonovich

correction term defined below.

In order to compute the Stratonovich correction terms for our examples, we will

use the following notation. For any γf,. ∈ ST
2,f , define the joint quadratic variation

〈Ff (., γ.
f,.), w〉 of the semimartingale [0, T ] 3 t 7→ Ff (t, γt

f,.) ∈ L(Rk, Tx(M)) and Brownian

motion w by setting

〈Ff (., γ.
f,.), w〉t :=

k∑

i=1

〈Ff (., γ.
f,.)(ei), wi〉t ∈ Tx(M), 0 ≤ t ≤ T,

where {ei}k
i=1 is the canonical orthonormal basis for Rk, wt =

k∑

i=1

wi
tei, t ≥ 0, and wi, 1 ≤

i ≤ k, are k independent one-dimensional standard Brownian motions. We now set

∆Ff (t, xt
f,.) :=

1
2
〈Ff (., x.

f,.), w〉′t, t > 0

where xf is the solution of (I.f).

Hypotheses (H).

(i) Boundedeness. There exists a deterministic constant C1 such that

(2.4) |Ff (t, γt
f,.)|+ |∆Ff (t, γt

f,.)| < C1 < ∞, a.s.

for all (t, γf,.) ∈ [0, T ]× ST
2,f .
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(ii) Lipschitz condition. Assume that for each positive real number R there is a positive

deterministic constant L := L(R) such that

(2.5)

E[|Ff (t, γt
f,.)−Ff (t, (γ′)t

f,.)|2 + |∆Ff (t, γt
f,.)−∆Ff (t, (γ′)t

f,.)|2] ≤ L‖γt
f,.− (γ′)t

f,.‖22

for all t ∈ [0, T ], and whenever γf,., γ
′
f,. ∈ ST

2,f have characteristics (A,B) and

(A′, B′) (resp.) a.s. bounded by R.

Remark.

Assume that the sfde Fc satisfies the delay condition

(2.6) Ff (t, γt
f,.) = Ff (t, γt−δ

f,. )

for all (t, γf,.) ∈ [0, T ]× ST
2,f . Note that (2.6) is equivalent to

(2.6′) Fc(t, γt
c,.) = τt,t−δ(γt

c,.)Fc(t, γt−δ
c,. )

for all (t, γc,.) ∈ [0, T ]× ST
2,c. It is easy to see that (2.6) implies that 〈Ff (., γ.

f,.), w〉(t) = 0

for all t ∈ [0, T ]. Therefore, under the delay condition (2.6), the Stratonovich equation

(I.f) now coincides with the Itô equation:

(2.7)





dxf,t =Ff (t, x(t−δ)
f ) dwt, 0 < t < T,

x0
f =γ0

f ,

with no correction term! (cf. [Mo3], p. 5). Thus for equation (2.7) one may drop the

Stratonovich correction term in (2.4) and (2.5) of Hypotheses (H).

We now give some geometrical examples of sfde’s that satisfy Hypotheses (H) above.

Examples.

Let X1, X2 be smooth sections of the k-frame bundle L(Rk, T (M)) → M . Consider

the geometrical sfde’s

(I.g1) dxc,t =
{∫ t

t−δ

τt,s(xc,.)X1(xc,s)ds + X2(xc,t)
}
◦ dwt, 0 < t < T,
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(I.g2) dxc,t = τt,t−δ(xc,.)X1(xc,t−δ) ◦ dwt, 0 < t < T,

with corresponding functionals

(2.8)





F 1
c (t, γc,.) :=

∫ t

t−δ

τt,s(γc,.)X1(γc,s) ds + X2(γc,t),

F 2
c (t, γc,.) := τt,t−δ(γc,.)X1(γc,t−δ),

F 1
f (t, γf,.) =

∫ t

t−δ

τ−δ,s(γc,.)X1(γc,s) ds + τ−δ,t(γc,.)X2(γc,t),

F 2
f (t, γf,.) = τ−δ,t−δ(γc,.)X1(γc,t−δ),

for t ∈ [0, T ], γc,. ∈ ST
2,c, γf,. ∈ ST

2,f . In the above relations, τt,s(xc,.) denotes stochas-

tic parallel transport along xc,. of k-linear frames over Txc,s(M) to k-linear frames over

Txc,t(M).

We will verify that the functionals F i
c , i = 1, 2, are sfde’s satisfying hypotheses

(H). Since these hypotheses are intrinsic, we may embed M (isometrically) in Rd′ (where

d′ > d) and extend the Riemannian structure to the whole of Rd′ in such a way that

the extended Riemannian metric has bounded derivatives of all orders and is uniformly

non-degenerate. Extend the Levi-Civita connection on M to a connection on Rd′ which

preserves the metric on Rd′ , and with Christoffel symbols having bounded derivatives of

all orders. The pair (γc,t, τt,−δ(γc,.)) then corresponds to a pathwise continuous process

x̂t ∈ Rd′ ×Rd′×d′ which solves the following Stratonovitch sde:

(2.9)





dx̂t = Ẑ(x̂t) ◦At dwt + Ẑ(x̂t)Bt dt, −δ < t < T,

x̂−δ = (x, IdRd)(≡ (x, IdTx(M)))

on Rd′×Rd′×d′ , where (A,B) are the characteristics of γc,., with At ∈ L(Rk,Rd), Bt ∈ Rd.

The coefficient Ẑ : Rd′×Rd′×d′ → L(Rd,Rd′×Rd′×d′) is C∞ (and hence locally Lipschitz

with derivatives of all orders bounded on bounded sets, uniformly in the characteristics

(A,B) of γc,..)
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We next convert (2.9) into Itô form. To do this, let {ei}d
i=1 be the standard basis

for Rd. Define

Ŷ i,j(·) :=
1
2
[DẐ(·) ◦ (Ẑ(·))](ei, ej), i, j = 1, · · · , d.

Then, for each t ∈ [−δ, T ], (Ŷ i,j(x̂t))d
i,j=1 may be viewed as a (d× d)-matrix with entries

in Rd′ × Rd′×d′ . This matrix will also be denoted by Ŷ (x̂t). With this notation, (2.9)

takes the Itô form

(2.10)





dx̂t = Ẑ(x̂t)At dwt + trace(Ŷ (x̂t)AtA
∗
t ) dt + Ẑ(x̂t)Bt dt, −δ < t < T,

x̂−δ = (x, IdRd).

Observe that, by its definition, Ŷ is C∞. The vector fields Xi, i = 1, 2, may be extended

to smooth vector fields on Rd′ with all derivatives globally bounded. These extensions will

be denoted by the same symbols.

Note first that

〈F 1
f (., γ.

f,.), w〉t = 〈τ−δ,.(γc,.)X2(γc,.), w〉t, 〈F 2
f (., γ.

f,.), w〉t = 0,

for all t ∈ [0, T ]. Denote by p2 : Rd′ ×Rd′×d′ → Rd′×d′ the projection of Rd′ ×Rd′×d′

onto the second factor. If xf is the solution of the sfde

(I.f.1)





dxf,t =F 1
f (t, xt

f,.) ◦ dwt, 0 < t < T,

x0
f,. =γ0

f,.,

then an application of Itô’s formula yields the following expression for the Stratonovich

correction term:

(2.11)





∆F 1
f (t, xt

f,.) =
1
2

k∑

i=1

{
(p2 ◦ Ẑ)(xc,t, τ−δ,t(xc,.))F 1

f (t, xt
f,.)(ei)X2(xc,t)(ei)

+ τ−δ,t(xc,.)DX2(xc,t)τt,−δ(xc,.)F 1
f (t, xt

f,.)(ei)
}

.

The above relation together with (2.8) immediately implies that F i
f , i = 1, 2, satisfy

Hypothesis (H)(i). This is because the vector fields Xi, i = 1, 2, are smooth, M is compact

and stochastic parallel transport is a rotation on frames.
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It remains to check that F i
f , i = 1, 2, in (2.8) satisfy H(ii). For this we need to

examine the Lipschitz dependence of the solution of (2.9) on the characteristics (A,B) of

the path γc,. In (2.9), we will indicate by x̂(A,B) the dependence of the solution on the

characteristics (A,B) of γc,.. In the proof of the next lemma and the rest of the paper, we

will denote by Ci, i = 1, 2, 3, · · · , generic deterministic positive constants.

Lemma II.1.

In the sde (2.9), suppose (A,B), (A′, B′) are such that there is a positive determin-

istic constant R where ‖At‖ + |Bt| + ‖A′t‖ + |B′
t| ≤ R almost surely for all t ∈ [−δ, T ].

Then there exists a positive constant K := K(R) such that

(2.12) E[ sup
−δ≤s≤t

|x̂s(A,B)− x̂s(A′, B′)|2] ≤ KE[
∫ t

−δ

(‖As −A′s‖2 + |Bs −B′
s|2)ds]

for all t ∈ [−δ, T ].

Proof.

Let the characteristics (A,B), (A′, B′) of γc,., γ
′
c,. satisfy the hypotheses of the

lemma. Then by (2.10) we have

(2.13)
dx̂t(A,B)− dx̂t(A′, B′)

= Ẑ(x̂t(A,B))(At −A′t)dwt + (Ẑ(x̂t(A,B))− Ẑ(x̂t(A′, B′)))A′tdwt

+ trace[Ŷ (x̂t(A,B)){AtA
∗
t −A′t(A

′
t)
∗}]dt + trace[{Ŷ (x̂t(A,B))− Ŷ (x̂t(A′, B′))}A′t(A′t)∗]dt

+ Ẑ(x̂t(A, B))(Bt −B′
t)dt + (Ẑ(x̂t(A,B))− Ẑ(x̂t(A′, B′)))B′

t dt

for all t ∈ [−δ, T ]. Now by compactness of M and the orthogonality of stochastic parallel

transport, it follows that there is a positive deterministic constant C1 := C1(R) (indepen-

dent of (A,B)) such that whenever ‖At‖+ |Bt| ≤ R a.s. for all t ∈ [−δ, T ], then

|x̂t(A, B)|+ |Ẑ(x̂t(A,B))|+ |Ŷ (x̂t(A,B))| ≤ C1
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for all t ∈ [−δ, T ]. Since ‖At‖ + ‖A′t‖ is a.s. uniformly bounded in t ∈ [0, T ] by R,

then ‖AtA
∗
t − A′t(A

′
t)
∗‖ ≤ R‖At − A′t‖ a.s. for all t ∈ [0, T ]. Using (2.12), Burkholder’s

inequality, the uniform boundedness of ‖A.‖, ‖A′.‖, |B′
. | and the fact that Ŷ , Ẑ are Lipschitz

on bounded sets, it is not hard to see that

E[ sup
−δ≤s≤t

|x̂s(A,B)− x̂s(A′, B′)|2]

≤ C2E[
∫ t

−δ

(‖As −A′s‖2 + |Bs −B′
s|2)ds] + C3

∫ t

−δ

E[ sup
−δ≤s≤u

|x̂s(A,B)− x̂s(A′, B′)|2] du

for all t ∈ [−δ, T ]. The conclusion of the lemma now follows from the above inequality and

Gronwall’s lemma. ♦

We now complete the proof of the local Lipschitz property (H)(ii) for F i
f , i = 1, 2.

We give the proof only for F 1
f ; the corresponding argument for F 2

f is similar and is left

to the reader. Let γf,., γ
′
f,. ∈ ST

2,f have characteristics (A, B), (A′, B′) a.s. bounded by

a deterministic constant R. Then ∆F 1
f (t, γt

f,.) is given by an expression similar to the

right-hand-side of (2.11) with xc, xf replaced by γc, γf . Now by the Lipschitz property of

X2 and Lemma II.1, one gets

(2.14) E|X2(γc,t)−X2(γ′c,t)|2 ≤ C4E[
∫ t

−δ

(‖As−A′s‖2+|Bs−B′
s|2)ds] = C4‖γt

f,.−(γ′)t
f,.‖22

and

(2.15) E|τ−δ,t(γc,.)− τ−δ,t(γ′c,.)|2 ≤ C5‖γt
f,. − (γ′)t

f,.‖22

for all t ∈ [−δ, T ]. Using the boundedness of Xi, i = 1, 2, τ−δ,s(γc,.), (2.14) and (2.15), it

follows from (2.8) that

(2.16) E|F 1
f (t, γt

f,.)− F 1
f (t, (γ′)t

f,.)|2 ≤ C6‖γt
f,. − (γ′)t

f,.‖22

for all t ∈ [−δ, T ]. Finally, use the representation (2.11) coupled with the Lipschitz prop-

erties (2.14), (2.15) and (2.16) in order to obtain

(2.17) E|∆F 1
f (t, γt

f,.)−∆F 1
f (t, (γ′)t

f,.)|2 ≤ C7‖γt
f,. − (γ′)t

f,.‖22
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for all t ∈ [0, T ]. The last inequality and (2.16) imply that F 1
f satisfies H(ii). This shows

that our geometrical examples (I.g1), (I.g2) satisfy Hypotheses (H).

We now state the main theorem of this section.

Theorem II.2.

Assume that the sfde (I.c) satisfies Hypotheses (H). Suppose that γ0
c,. ∈ S0

2,c has

characteristics (At, Bt), t ∈ [−δ, 0], which are adapted and almost surely bounded by a

deterministic constant C > 0. Then the sfde (I.c) has a unique global solution xc,. such

that xc,.|[−δ, T ] ∈ ST
2,c for every T > 0.

Proof.

It is sufficient to prove existence and uniqueness of the solution to the flat Itô sfde

(I.if). To do this, we use successive approximations. Define the sequence {xn
f,.}∞n=1 ⊂ ST

2,f

inductively by setting x1
f,. := γ0

f,., and

(2.18)





dxn+1
f,t :=Ff (t, xt,n

f,. )dwt + ∆Ff (t, xt,n
f,. ) dt, 0 < t < T,

x0,n+1
f,. :=γ0

f,.

for all n ≥ 2. By Hypothesis (H)(i), the characteristics of each xn
f,. are a.s. bounded by

a deterministic constant independent of t ∈ [−δ, T ] and n. From (2.18) and Hypothesis

(H)(ii), it is easy to see that

(2.19) ‖xt,n+1
f,. − xt,n

f,. ‖22 ≤ C8

∫ t

0

‖xs,n
f,. − xs,n−1

f,. ‖22ds, t ∈ [0, T ], n ≥ 1.

Therefore, by induction on n, we obtain

(2.20) ‖xt,n+1
f,. − xt,n

f,. ‖22 ≤
Cn

8 tn

n!

for all n ≥ 1 and all t ∈ [0, T ]. This shows that {xn
f,.}∞n=1 is a Cauchy sequence in ST

2,f

which coverges to a solution xf,. of (2.5). By the Itô map, this gives a solution of (I.c) in

ST
2,c.
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It remains to show uniqueness. Suppose that there are two solutions x1
f,. and x2

f,.

of (I.f). By Hypothesis (H)(i), the characteristics of these two solutions are almost surely

bounded. Therefore the relations

(2.21)





dx1
f,t =Ff (t, x1,t

f,.)dwt + ∆Ff (t, x1,t
f,.) dt, 0 < t < T,

dx2
f,t =Ff (t, x2,t

f,.)dwt + ∆Ff (t, x2,t
f,.) dt, 0 < t < T,

x1
f,0 =x2

f,0 = γ0
f ,

together with (H)(ii) imply that

(2.22) ‖x1,t
f,. − x2,t

f,.‖22 ≤ C9

∫ t

0

‖x1,s
f,. − x2,s

f,. ‖22ds, 0 < t < T.

This shows that ‖x1,t
f,. − x2,t

f,.‖22 = 0 for all t ∈ [0, T ] , and uniqueness follows. ♦

Remark.

For a sfde Fc satisfying the delay condition (2.6), one can prove existence of a

solution to (I.c) by using forward steps of length δ. In particular, given γ0
c,. ∈ ST

2,c, we

write

xf,t =γ0
f,t, −δ ≤ t ≤ 0,

xf,t =γ0
f,0 +

∫ t

0

F 1
f (u, γ0,u−δ

f,. ) dwu, 0 < t ≤ δ,

xf,t =xf,δ +
∫ t

δ

F 1
f (u, xu−δ

f,. ) dwu, δ < t ≤ 2δ,

and similarly for the delay periods [2δ, 3δ], [3δ, 4δ], · · · . Note that this procedure automati-

cally guarantees uniqueness of the solution to the sfde (I.c) without the Lipschitz condition

(H)(ii).

The following result shows that the solution of (I.c) (or (I.f)) depends in a Lipschitz

manner on sets of initial paths whose characteristics are almost surely bounded by a

deterministic constant.
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Theorem II.3.

Assume Hypotheses (H). Let γ0
f,., (γ

′)0f,. ∈ ST
2,f have characteristics (A, B), (A′, B′)

that are a.s. uniformly bounded on [−δ, 0] by a positive deterministic constant R. Denote

by xf,.(γ0
f,.), xf,.((γ′)0f,.) the solutions of the sfde (I.f) with initial states γ0

f,. and (γ′)0f,.

respectively. Then there is a positive constant C := C(R) such that

(2.23) ‖xf,.(γ0
f,.)− xf,.((γ′)0f,.)‖22 ≤ C‖γ0

f,. − (γ′)0f,.‖22

Proof.

Using (I.if), Burkholder’s inequality and property (H)(ii), we easily see that

(2.24) ‖xt
f,.(γ

0
f,.)−xt

f,.((γ
′)0f,.)‖22 ≤ ‖γ0

f,.− (γ′)0f,.‖22 +C10

∫ t

0

‖xs
f,.(γ

0
f,.)−xs

f,.((γ
′)0f,.)‖22ds

for all t ∈ [0, T ]. The conclusion of the theorem now follows from the above inequality and

Gronwall’s lemma. ♦

We will conclude this section by a discussion of a type of Markov property for

solutions of the geometrical example (I.g1). To do this, we will first parametrize the

flat sfde (I.f) with the initial point z ∈ M ; that is, consider a family of flat sfde’s

Ff (·, ·, z) : [0, T ] × ST
2,f (z) → L0(Ω, Tz(M)), z ∈ M , where ST

2,f (z) denotes the set of all

semimartingales γf,.(z) in Tz(M) satisfying γf,−δ(z) = 0 (or γc,−δ(z) = z) and (2.3). Now

“randomize” z by introducing a random variable Z ∈ L0(Ω, M) independent of wt, t ≥ −δ.

Then consider the equation

(2.25)





dxf,t(Z) =Ff (t, xt
f,.(Z), Z) ◦ dwt, t ≥ 0

x0
f,.(Z) =γ0

f,.(Z) ∈ ST
2,f (Z).

Note the starting condition xc,−δ(Z) = Z. Assume that Ff (·, ·, z) satisfies Hypotheses

(H)(i)(ii) uniformly in z ∈ M . If we fix z ∈ M , we get a unique solution xf,.(z) of the sfde

(2.25) when Z is replaced by z. Since Z is independent of wt, t ≥ −δ, one may obtain a
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unique solution xf,.(Z) of (2.25) starting from 0 in TZ(M). This folllows from a Picard

iteration argument on TZ(M), which is a linear space. By the Itô map, the corresponding

solution xc,.(Z) on M starts from Z instead of the deterministic point x.

Let us now turn to the geometrical sfde

(I.g1)





dxc,t =
{∫ t

t−δ

τt,s(xc,.)X1(xc,s) ds + X2(xc,t)
}
◦ dwt, 0 < t < T,

x0
c,. =γ0

c,..

If γc,. : [−δ, T ]×Ω → M is a semimartingale, we will denote by γc,.(t) its restriction

to the time interval [t− δ, t] for each t ∈ [0, T ].

Fix t0 > 0. Then, for t ∈ (t0, T ), xc,t is the unique solution of the sfde

(2.26)





dx′c,t =
{∫ t

t−δ

τt,s(x′c,.)X1(x′c,s) ds + X2(x′c,t)
}
◦ dwt, t0 < t < T,

x′c,.(t0) =xc,.(t0).

Now xc,t0−δ is independent of dwt, t ≥ t0 − δ, and (I.g1) has a unique solution.

Therefore,

(2.27) x′c,t = xc,t, t ≥ t0,

because the parallel transport in (I.g1) depends only on the path between t − δ and t.

The above identity constitutes a type of Markov property. Indeed, let x.(γ0
c,.)(w.) denote

the solution of the geometrical sfde (I.g1) with initial condition γ0
c,.. Then the following

equality holds almost surely

(2.28) xt(γ0
c,.)(w.) = xt−t′(xc,.(t′)(γ0

c,.))(wt′+.), t > t′,

where wt′+. is the Brownian shift wt′+. : s 7→ wt′+s − wt′ .

Remark.

Relation (2.28) also holds for the geometrical delay equation (I.g2). This follows

by a similar argument to the above.
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III. Differentiability in the Chen-Souriau sense.

In this part, we consider the following parametrized version of the geometrical sdde

(I.g2):

(3.1)





dxc,t(u) =τt,t−δ(xc,.(u))X1(xc,t−δ(u)) ◦ dwt, 0 < t < T,

x0
c,.(u) =γ0

c,.(u),

with u ∈ U , a bounded open subset of Rn, X1 a smooth section of the k-frame bundle

L(Rk, T (M)) → M , and initial conditions γ0
c,.(u).

We would like to study the sample-path differentiability of xc,t(u) in the parameter

u. It is sufficient to examine the flat version of the sdde (3.1):

(3.2)





dxf,t(u) =τ−δ,t−δ(xc,.(u))X1(xc,t−δ(u)) ◦ dwt, 0 < t < T,

x0
f,.(u) =γ0

f,.(u).

The fact that the parameter u is finite-dimensional will allow us to use traditional tools

such as Kolmogorov’s lemma, Sobolev’s embedding theorem, etc... In order to facilitate

this, we will first examine the a.s. dependence on u of the stochastic parallel transport term

τ−δ,t−δ(xc,.(u)) in (3.2). Introduce the following notation. Let ST
∞,f denote the Fréchet

space of all semimartingales γf,. ∈ S([−δ, T ], Tx(M);−δ, 0) such that

γf,t =
∫ t

−δ

As dws +
∫ t

−δ

Bs ds, 0 ≤ t ≤ T,

and

(3.3) ‖γf,.‖p
p :=

∫ T

−δ

E‖As‖p ds +
∫ T

−δ

E|Bs|p ds < ∞,

for all integers p ≥ 1. As before, A : [−δ, T ]× Ω → L(Rk, Tx(M)) and B : [−δ, T ]× Ω →
Tx(M) are adapted, previsible processes. We will denote by ST

∞,c the image of ST
∞,f

under the Itô map with the induced topology. (See section II). Let ‖ · ‖p,t denote the

corresponding norms when T is replaced by t in (3.3). Suppose α := (α1, · · ·αp) is a
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multi-index of order |α| :=
n∑

i=1

αi. The partial derivatives of of order |α| with respect

to u := (u1, u2, · · · , un) are denoted by Dα :=
∂|α|

∂uα1
1 . . . ∂uαn

n
. Consider the following

differentiability hypotheses on the characteristics (A.(u), B.(u)) of a parametrized family

γf,.(u) ∈ S([−δ, T ], Tx(M);−δ, 0).

Hypotheses (D).

(i) There exists a deterministic constant R (independent of u ∈ U) such that ‖At(u)‖+
|Bt(u)| ≤ R almost surely for all t ∈ [−δ, T ] and all u ∈ U .

(ii) (A.(u), B.(u)) have modifications which are a.s. smooth in u, with derivatives

(DαA.(u), DαB.(u)), and the mappings

U 3 u 7→ DαA.(u) ∈ Lp([−δ, T ]× Ω, L(Rk, Tx(M)))

U 3 u 7→ DαB.(u) ∈ Lp([−δ, T ]× Ω, Tx(M))

are continuous (in the underlying Lp-norms (3.3) ) for every positive integer p.

Lemma III.1.

Let the manifold M be embedded (isometrically) in Rd′ for some d′ > d, and

denote all embedded entities by the same symbols. Assume that the family γc,.(u) ∈
S([−δ, T ],M ;−δ, x), u ∈ U , satisfies Hypotheses (D). Then the pair

x̂t(u) := (γc,t(u), τ−1
t,−δ(γc,.(u)))

has a modification with almost all sample functions smooth in u. Furthermore, for any

multi-index α and any positive integer p, there exist positive deterministic constants Ki :=

Ki(p, α), i = 1, 2, independent of u ∈ U, t ∈ [−δ, T ], such that

(3.4) sup
u∈U

E sup
s∈[−δ,t]

‖Dαx̂s(u)‖p ≤ K1e
K2t

for all t ∈ [−δ, T ].
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Proof.

Using (2.10), the couple (γc,t(u), τ−1
t,−δ(γc,.(u))) := x̂t(u) satisfies the Itô stochastic

differential equation

(3.5)





dx̂t(u) = Ẑ(x̂t(u))At(u) dwt + trace(Ŷ (x̂t(u))At(u)A∗t (u)) dt

+ Ẑ(x̂t(u))Bt(u) dt, −δ < t < T,

x̂−δ(u) = (x, IdRd),

where Ẑ, Ŷ are as in (2.9). Since the characteristics (A.(u), B.(u)) have a.s. smooth modi-

fications in u, it follows from ([Kun], Theorem 4.6.5, p. 173) that x̂t(u) has a modification

which is a.s. smooth in u. In order to prove (3.4), we pick such a modification of x̂t(u)

and show first that (3.4) holds for |α| = 1. The derivative Dx̂t(u) of x̂t(u) with respect

to u satisfies the following stochastic differential equation which is obtained by formally

differentiating (3.5) with respect to u:

(3.6)





dDx̂t(u) = DẐ(x̂t(u))Dx̂t(u)At(u) dwt

+ Ẑ(x̂t(u))DAt(u) dwt + trace
{

DŶ (x̂t(u))Dx̂t(u)At(u)A∗t (u)

+ Ŷ (x̂t(u))DAt(u)A∗t (u) + Ŷ (x̂t(u))At(u)DA∗t (u)
}

dt

+ DẐ(x̂t(u))Dx̂t(u)Bt(u) dt + Ẑ(x̂t(u))DBt(u) dt, −δ < t < T,

Dx̂−δ(u) = (0, 0).

Note that in the above sde, the process x̂t(u) lives in a compact (non-random) set on

which Ŷ and Ẑ are bounded together with all their derivatives. Therefore we can take p-th

moments in (3.6), use Burkholder’s inequality and Hypotheses (D) to obtain

(3.7) αt ≤ C7 + C8

∫ t

−δ

αs ds, −δ ≤ t ≤ T,

where αt := sup
u∈U

E sup
s∈[−δ,t]

‖Dx̂s(u)‖p for −δ ≤ t ≤ T , and the constants C7, C8 are inde-

pendent of u ∈ U . Applying Gronwall’s lemma to (3.7) gives

sup
u∈U

E sup
s∈[−δ,t]

‖Dx̂s(u)‖p ≤ C7e
C8t
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for all t ∈ [−δ, T ]. This shows that (3.4) holds for α = 1. We complete the proof by

induction on |α|. Suppose the estimate (3.4) holds for all multi-indices α = α0 with

|α0| < |α|+1. Let α′ be a multi-index such that |α′| = |α|+1. By repeated differentiation

of (3.5) with respect u, it is not hard to see that there are polynomials Qi, i = 1, 2, such

that

(3.8)



dDα′ x̂t(u)

= DẐ(x̂t(u))Dα′ x̂t(u)At(u) dwt + DẐ(x̂t(u))Dα′ x̂t(u)Bt(u) dt

+ trace{DŶ (x̂t(u))Dα′ x̂t(u)At(u)A∗t (u)} dt

+
∑

αi:
∑5

i=1 |αi|<|α′|
Q1(Dα1

Ẑ(x̂t(u)), Dα2
x̂t(u), Dα3

At(u),

Dα4
A∗t (u), Dα5

Bt(u)) dwt

+
∑

βi:
∑6

i=1 |βi|<|α′|
Q2(Dβ1

Ŷ (x̂t(u)), Dβ2
Ẑ(x̂t(u)),

Dβ3
x̂t(u), Dβ4

At(u), Dβ5
A∗t (u), Dβ6

Bt(u)) dt,

− δ < t < T,

Dα′ x̂−δ(u) = (0, 0).

Note that in the above equation, the term Dα′ x̂t(u) appears linearly, while, by the inductive

hypothesis, the lower order derivatives Dα0 x̂t(u) satisfy the inequality (3.4) for |α0| < |α′|.
Using this fact, Hypotheses (D) and Burkholder’s inequality, it follows from (3.8) that

there are positive constants Ci, i = 9, 10, independent of u such that

(3.9) βt ≤ C9 + C10

∫ t

−δ

βs ds, −δ ≤ t ≤ T,

where βt := sup
u∈U

E sup
t∈[−δ,T ]

‖Dα′ x̂t(u)‖p for −δ ≤ t ≤ T . The conclusion of the lemma now

follows from (3.9) by Gronwall’s lemma and induction on |α|. ♦
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In the sequel, the abbreviation “l.o.” will denote lower order terms (e.g. the last two

terms on the right hand side of (3.8)) whose moments are readily computed and estimated

by induction on α.

Theorem III.2.

Assume that the characteristics (A0
. (u), B0

. (u)) of γ0
c,.(u) in (3.1) satisfy Hypotheses

(D). Then the solution xc,t(u) of (3.1) has a modification a.s. smooth in u. Furthermore,

the solution xf,.(u) of the flat equation (3.2) satisfies the inequality

(3.10) sup
u∈U

E sup
s∈[−δ,t]

‖Dαxf,s(u)‖p ≤ K3e
K4t

for all t ∈ [−δ, T ], and for some positive constants K3 := K3(p, α), K4 := K4(p, α), inde-

pendent of u ∈ U .

Proof.

To prove the first assertion of the theorem it is sufficient to show that for each

multindex α, xf,t(u) admits a version with continuous partial derivatives of order |α| in

u. Embed M (isometrically) in Rd′ for some d′ > d. We proceed by induction on α.

Let g(y, z) := zX(y), where z represents stochastic parallel transport and is therefore an

orthogonal matrix, and y belongs to M . Then g is bounded and has bounded derivatives

of all orders. Now rewrite (3.2) in the form

(3.11)





dxf,t(u) =g(x̂c,t−δ(u))dwt, t > 0,

x0
f,.(u) =γ0

f,.(u).

where x̂c,t := (xc,t, τ
−1
t,−δ(xc,.)).

In (3.11), the initial condition γ0
c,.(u) is given by γ0

f,t(u) =
∫ t

−δ
A0

s(u) dws+
∫ t

−δ
B0

s (u) ds

for −δ ≤ t ≤ 0, where A0
. (u) and B0

. (u) satisfy Hypotheses (D). These imply that γ0
f,t(u)

has a modification which is a.s. smooth in u (and Hölder continuous in t ∈ [−δ, 0] with

exponent < 1
2 ) ([Kun], Theorem 3.3.3, pp. 94-95).
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We will prove the differentiability of xf,t(u), t ∈ [0, T ], in u using forward steps of

length δ. On [0, δ], the identity

(3.12)





xf,t(u) =γ0
f,0(u) +

∫ t

0

g(γ0
c,s−δ(u), τ−1

s−δ,−δ(γ
0
c,.(u))) dws, t ∈ [0, δ]

x0
f,.(u) =γ0

f,.(u), u ∈ U,

and ([Kun], Theorem 3.3.3, pp. 94-95) imply that xf,t(u) has an a.s. smooth modification

in u. Indeed, Dαxf,t satisfies the equation obtained by taking partial derivatives of order

|α| under the stochastic integral sign in (3.12), viz.

(3.13)



Dαxf,t(u) =Dαγ0
f,0(u)+

+
∫ t

0

Dg(γ0
c,s−δ(u), τ−1

s−δ,−δ(γ
0
c,.(u)))(Dαγ0

c,s−δ(u), Dατ−1
s−δ,−δ(γ

0
c,.(u))) dws

+ l.o., t ∈ [0, δ],

Dαx0
f,.(u) =Dαγ0

f,.(u).

Using Burkholder’s inequality, Hypotheses (D) and Lemma III.1, it follows from (3.13)

that the estimate (3.10) holds for all t ∈ [−δ, δ].

A similar argument to the above works for the forward intervals [δ, 2δ], [2δ, 3δ], · · · ,
and hence by induction for all t ∈ [−δ, T ]. This completes the proof of the lemma. ♦

Remark.

Consider the following generalization of (3.1):

(3.14)





dxc,t(u) = τt,t−δ(xc,.(u))X1(xc,t−δ)(◦At(u)dwt + Bt(u)dt), t > 0,

x0
c,.(u) =γ0

c,.(u), u ∈ U,

where X1 is a smooth section of the k-frame bundle L(Rk, T (M)) → M , and At(u) ∈
L(Rk), Bt(u) ∈ Rk for t > 0, u ∈ U . Suppose that the characteristics (A0

. (u), B0
. (u)) of

γ0
c,.(u) and (A.(u), B.(u)) all satisfy Hypotheses (D). By a similar argument to the one

used in the proof of Lemma III.2, the solution xc,.(u) of (3.14) admits a smooth version in

u.
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We conclude this section by expressing the result in the above remark in terms of

the stochastic calculus of Chen-Souriau ([Le2], [Le3]).

Definitions III.3.

A stochastic plot on the space S∞,c([−δ, 0],M ;−δ, x)×S∞([0, T ],Rk; 0, 0) is a triplet

(U, φ,Rn) consisting of an open subset U of some Euclidean space Rn and a mapping

U 3 u 7→ φ.(u) := (γ.(u), z.(u)) ∈ S∞,c([−δ, 0],M ;−δ, x) × S∞([0, T ],Rk; 0, 0) such that

the characteristics of γ.(u) and z.(u) satisfy Hypotheses (D).

Let (U, φ,Rn) be a stochastic plot on S∞,c([−δ, 0],M ;−δ, x)× S∞([0, T ],Rk; 0, 0),

and let j : U1 → U be a smooth deterministic map where U1 is an open subset of Rn1 .

Define φ1
. (u1) := φ.(j ◦ u1) for all u1 ∈ U1. It is easy to check that (U1, φ

1,Rn1) is a

stochastic plot, called the composite plot.

Next we consider the effect of a measure-space isomorphism on a stochastic plot.

More specifically, let (U, φ,Rn) be a stochastic plot on S∞,c([−δ, 0],M ;−δ, x)×S∞([0, T ],Rk; 0, 0).

Suppose Ψ : (Ω,F) → (Ω,F) is a P -preserving measurable bijection. Assume that the

spaces S∞,c([−δ, 0],M ;−δ, x) and S∞([0, T ],Rk; 0, 0) consist of semimartingales based on

a Brownian motion wt,−δ ≤ t ≤ T on a filtered probability space (Ω,F , (Ft)t∈[−δ,T ], P ).

For any γ. ∈ S∞,c([−δ, 0],M ;−δ, x) and z. ∈ S∞([0, T ],Rk; 0, 0) define the processes

γΨ
. (ω) := γ.(Ψ(ω)), zΨ

. (ω) := z.(Ψ(ω))

for all ω ∈ Ω. Then γΨ
. and zΨ

. are semimartingales on the filtered probability space

(Ω,F , (Ψ−1(Ft)t∈[−δ,T ], P ) based on the Brownian motion wΨ
t (ω) := wt(Ψ(ω)), ω ∈ Ω.

If γ. has characteristics (A., B.) (with respect w), then γΨ
. has characteristics (AΨ

. , Bψ
. )

(with respect wΨ) where AΨ
. (ω) := A.(Ψ(ω)), BΨ

. (ω) := B.(Ψ(ω)) for all ω ∈ Ω. Let

SΨ
∞,c([−δ, 0],M ;−δ, x) denote the set of all γΨ

. whose characteristics satisfy a relation anal-

ogous to (3.3) for all integers p ≥ 1. Define φΨ
. (u)(ω) := φ.(u)(Ψ(ω)) for all u ∈ U and ω ∈

Ω. Then (U, φΨ,Rn) is a stochastic plot on SΨ
∞,c([−δ, 0],M ;−δ, x) × Sψ

∞([0, T ],Rk; 0, 0).
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It is clear that Ψ induces an isometry between S∞,f ([−δ, 0], Tx(M);−δ, 0) and

SΨ
∞,f ([−δ, 0], Tx(M);−δ, 0). A similar relatinoship holds for S∞([0, T ],Rk; 0, 0) and

Sψ
∞([0, T ],Rk; 0, 0). In what follows we shall identify these spaces and sfde’s defined on

them. In particular, we will drop the superscript Ψ from all entities and processes induced

by Ψ.

We next introduce the following definition of a smooth functional

S∞,c([−δ, 0], M ;−δ, x)× S∞([0, T ],Rk; 0, 0) → L0(Ω,M)

in the Chen-Souriau sense:

Definition III.4.

A functional Λ : S∞,c([−δ, 0],M ;−δ, x)×S∞([0, T ],Rk; 0, 0) → L0(Ω,M) is said to

be smooth in the Chen-Souriau sense if it satisfies the following requirements:

(i) To each stochastic plot (U, φ,Rn), the composite process Λ(φ.(u)) has an a.s.

smooth version in u ∈ U .

(ii) Let j : U1 → U2 be a smooth deterministic map from an open subset U1 of Rn1 into

an open subset U2 of Rn2 . Let (U2, φ
2,Rn2) be a stochastic plot, and denote by

(U1, φ
1,Rn1) the composite plot φ1

. (u1) := φ2
. (j ◦ u1) for all u1 ∈ U1. Then there is

a sure event Ωφ1,φ2 ⊆ Ω such that

(3.15) Λ(φ1
. (u1))(ω) = Λ(φ2

. (j ◦ u1))(ω)

for all ω ∈ Ωφ1,φ2 and all u1 ∈ U1.

(iii) Let (U, φ2
. ,R

n2) be a stochastic plot. Let Ψ : (Ω,F) → (Ω,F) be a P -preserving

measurable transformation. Define the stochastic plot (U, φ1
. ,R

n2) by φ1
. (u)(ω) :=

φ2
. (u)(Ψ(ω)) for almost all ω ∈ Ω. Then

(3.16) Λ(φ1
. (u))(ω) = Λ(φ2

. (u))(Ψ(ω))

for almost all ω ∈ Ω.
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Remark.

Using Kolmogorov’s lemma, we may, in part (iii) of Definition III.4, assume that our

plot φ1
t (u)(ω) has a smooth version in u for the Lp topology (and not the semimartingale

topology).

We now state the main result of this part of the article.

Theorem III.5.

Consider the solution xc,.(γ0
c,., z.) of the geometrical sdde (I.g2) starting from γ0

c,.

in S∞,c([−δ, 0],M ;−δ, x) and driven by a semimartingale path z. in S∞([0, T ],Rk; 0, 0).

Then the map (γ0
c,., z.) 7→ xc,.(γ0

c,., z.) is smooth in the Chen-Souriau sense.

Proof.

The requirements (i)- (iii) in Definition III.4 follows from the fact that they are

easily satisfied on [−δ, δ] by the Itô integral in (3.12), and hence on the whole interval

[−δ, T ] by using forward steps of length δ. ♦

Remark.

Using a (lengthy) Peano approximation argument, it can be shown that the solution

of the geometrical sfde (I.g1) is smooth in the Chen-Souriau sense. Note that the method

of forward steps does not apply for the sfde (I.g1).
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