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DISCRETE-TIME APPROXIMATIONS OF STOCHASTIC

DIFFERENTIAL SYSTEMS WITH MEMORY∗

Yaozhong Hu∗, Salah-Eldin A. Mohammed‡ and Feng Yan

Abstract. In this paper, we develop two discrete-time strong approximation schemes for
solving stochastic differential systems with memory: strong Euler-Maruyama schemes for
stochastic delay differential equations (SDDE’s) and stochastic functional differential equa-
tions (SFDE’s) with continuous memory, and a strong Milstein scheme for SDDE’s. The
convergence orders of the Euler-Maruyama and Milstein schemes are 0.5 and 1 respectively.
In order to establish the Milstein scheme, we prove an infinite-dimensional Itô formula for
“tame” functions acting on the segment process of the solution of an SDDE. It is interesting to
note that the presence of the memory in the SDDE requires the use of the Malliavin calculus
and the anticipating stochastic analysis of Nualart and Pardoux. Given the non-anticipating
nature of the sfde’s, the use of anticipating calculus methods appears to be novel.

1. Introduction

Discrete-time strong approximation schemes for stochastic ordinary differential equa-

tions (SODE’s) are well developed. For an extensive study of these numerical schemes,

one may refer to ([16]), ([17]), and ([19], Chapters 5 and 6). Some basic ideas of strong

and weak orders of convergence are illustrated in ([11]).

If the rate of change of a physical system depends only on its present state and some

noisy input, then the system can often be described by a stochastic ordinary differential

equation (SODE). However, in many physical situations the rate of change of the state

depends not only on the present but also on the past states of the system. In such

∗The research of this author is supported in part by an NSF EPSCOR grant and the General Research
Fund of the University of Kansas. April 27, 2001
‡The research of this author is supported in part by NSF grants DMS-9703596 and DMS-9975462.
AMS 1991 subject classifications. Primary 60H10, 60H20; secondary 60H25.
Key words and phrases. Euler-Maruyama scheme, Milstein scheme, Itô’s formula, anticipating calculus,
Malliavin calculus, weak derivatives.
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cases, stochastic delay differential equations (SDDE’s) or stochastic functional differential

equations (SFDE’s) provide an important tool to describe and analyze these systems. For

various aspects of the qualitiative theory of SFDE’s the reader may refer to ([20], [21]) and

the references therein.

SDDE’s and SFDE’s arising in many applications cannot be solved explicitly, and

hence the need for developing effective numerical techniques for such systems. Depending

on the particular physical model, it may be necessary to design strong Lp (or almost sure)

numerical schemes for pathwise solutions of the underlying SFDE. Strong approximation

schemes for SFDE’s may be used to simulate directly the a.s. stochastic dynamics of their

trajectories or their random attractors. SFDE’s are used to model population growth with

incubation/gestation period ([21]). In such models, one is often interested in estimating the

actual population rather than its distribution, and hence the need for strong approximation

schemes.

In this article, we will not consider the order of convergence of weak numerical

schemes, although such schemes are useful for some applications of SODE’s (see [11], [16]

and the references therein). In this connection, it is important to note that stochastic

systems with memory do not correspond to deterministic PDE’s (in finitely many space

variables) ([20], [21]). Typically, a stochastic system with memory corresponds to an

infinite-dimensional Feller diffusion whose principal coefficient degenerates on a hypersur-

face with finite-codimension ([20], Chapter IV, Theorem 3.2, [21], Theorem II.3 ). This

aspect of SFDE’s is in sharp contrast with the theory of SODE’s where the latter theory

has traditional ties to diffusions in Euclidean space. In a sense, the numerics of stochastic

systems with memory resemble those of SPDE’s in one space dimension.

A strong Cauchy-Maruyama scheme for a class of SFDE’s with continuous memory,

in the context of the Delfour-Mitter state space Rm × L2([−r, 0],Rm), was developed by

T.A. Ahmed, S.A. Elsanousi and S.-E. A. Mohammed ([1]). See also [20], p. 227, and [13].
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In sections 3 and 4 of this paper, we develop strong Euler-Maruyama schemes for

SDDE’s with several discrete delays and for stochastic functional differential equations

(SFDE’s) (with mixed discrete and continuous memory dependence). Our estimates are

formulated using the supremum norm in the state space C([−r, 0],Rm) (cf. [1]).

In sections 5-8, we establish the strong Milstein scheme for SDDE’s with several

delays. Although the solution of the SDDE is non-anticipating, methods from anticipating

stochastic analysis and the Malliavin calculus are necessary in order to derive an Itô formula

for the segment of the solution process. The Itô formula is essential for the development

of the Milstein scheme.

In order to describe our set-up, we need the following notation.

Let Rm be m-dimensional Euclidean space with the Euclidean norm

|x| :=
√

x2
1 + · · ·+ x2

m, x = (x1, · · · , xm) ∈ Rm. Denote T := [0, a], J := [−r, 0], C :=

C(J ;Rm), where m is a positive integer, r > 0 and a > 0. Furnish C with the supremum

norm:

‖η‖C := sup
−r≤s≤0

|η(s)|

for all η ∈ C.

Define the projection Π : C → Rmk associated with s1, · · · , sk ∈ [−r, 0] by

(1.1) Π(η) := (η(s1), · · · , η(sk)) ∈ Rmk

for all η ∈ C.

Definition 1.1.

A function Φ ∈ C(T ×C(J ;Rm);R) is tame if there exist φ ∈ C(T ×Rmk,R) and

a projection Π such that

(1.2) Φ(t, η) = φ(t,Π(η)).

for all t ∈ T and η ∈ C.
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For any continuous m-dimensional process {X(t)}t∈[−r,a], define the segment pro-

cess Xt, t ∈ [0, a], by

(1.3) Xt(u) = X(t + u), t ∈ [0, a], u ∈ [−r, 0].

Observe that {Xt} may be considered as a C-valued or L2(J ;Rm)-valued process.

It is important that one should distinguish between the finite-dimensional current

state X(t) and the infinite-dimensional segment Xt, t ∈ [0, a].

Assume that g : T × Rmk1 → L(Rd;Rm) and h : T × Rmk2 → Rm satisfy the

following Lipschitz condition for all t ∈ T , x, y ∈ Rmk1 and z, w ∈ Rmk2 :

(1.4) |g(t, x)− g(t, y)| ≤ L|x− y|, |h(t, z)− h(t, w)| ≤ L|z − w|

where L > 0 is a constant, together with the boundedness condition:

(1.5) sup
0≤t≤a

[|g(t, 0)|+ |h(t, 0)|] < ∞.

Let Π1 and and Π2 be two projections associated with two sets of points s1,1, · · · , s1,k1 ∈
[−r, 0] and s2,1, · · · , s2,k2 ∈ [−r, 0], respectively. Suppose {W (t) := (W 1(t), · · · ,W d(t)) :

t ≥ 0} is a d-dimensional standard Brownian motion defined on a probability space

(Ω,F , P ). Let η : Ω → C([−r, 0];Rm) be a random initial path independent of {W (t) :

t ≥ 0}.
We will first consider the following class of Itô SDDE’s:

(1.6) X(t) =





η(0) +
∫ t

0

g(s, Π1(Xs)) dW (s) +
∫ t

0

h(s,Π2(Xs)) ds, t ≥ 0

η(t), −r ≤ t < 0.

Under conditions (1.4) and (1.5) the SDDE (1.6) has a unique strong solution (c.f.

[20], Theorem II.2.1, p. 36; and Theorem V.4.3, pp. 151-152). To see this, let G(t, η) :=

g(t,Π1(η)) and H(t, η) := h(t, Π2(η)) for t ∈ [0, a], η ∈ C. It is easy to check that G and

H satisfy the Lipschitz and local boundedness conditions (with respect to the supremum
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norm on C) of Theorems II.2.1 and V.4.3 of [20]. Therefore, for each m ≥ 1, there exists

a constant C = C(m,L, a) > 0 such that

(1.7) E||Xt||2m
C ≤ C(1 + E||η||2m

C )

for all η ∈ C, t ∈ [0, a].

First, we propose an Euler-Maruyama scheme for (1.6) as follows. Let π : 0 =

t0 < t1 < t2 < · · · < tn be a partition of [0, a] to be specified later. Denote by |π| :=

max
0≤i≤n−1

(ti+1 − ti), the mesh of π. Define the Euler-Maruyama approximation Xπ for the

solution X of (1.6) by

(1.8)

Xπ(t) =
{

Xπ(ti) + g(ti,Π1(Xπ
ti

))(W (t)−W (ti)) + h(ti,Π2(Xπ
ti

))(t− ti), t ∈ (ti, ti+1]
η(t), −r ≤ t ≤ 0,

where Xπ
t (s) = Xπ(t + s), s ∈ [−r, 0], t ≥ 0. It will be shown that under some regularity

conditions on the coefficients, one has the error estimate

(1.9) E sup
0≤t≤a

||Xπ
t −Xt||qC ≤ C(q)|π| q

2

for any q ≥ 1. As in the SODE case, the above estimate shows that the Euler-Maruyama

scheme has 0.5 as a strong order of convergence. These results are presented in section

3.1.

There are many ways to partition an interval into subintervals. For example, when

we graph a function h : [0, a] → R, we should evaluate it very frequently in those intervals

where h changes dramatically. If a fixed number of evaluations are permitted, then there

is a problem deciding exactly which points one should use for the above Euler-Maruyama

scheme. See ([6]) and ([12]) for a discussion of this issue. In section 4, we shall consider this

question for SDDE’s. A non-negative function h with finitely many zeros is used to express

a “way” of partitioning an interval into sub-intervals. An optimal way to achieve such a

partition is also given in section 4 (Theorem 4.1). This result yields an exact convergence
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rate for the Euler-Maruyama scheme when applied to a one-dimensional linear SDDE with

a single delay.

The second class of SFDE’s that we will consider are those with mixed discrete and

continuous memory:

(1.10)

X(t) =





η(0) +
∫ t

0

g(s, Π1(Xs), Q1(Xs)) dW (s) +
∫ t

0

h(s,Π2(Xs), Q2(Xs)) ds, t ≥ 0 ,

η(t), −r ≤ t ≤ 0,

where Π1 and Π2 are two projections of “discrete type”, Q1 and Q2 are two projections of

“continuous type” defined by

Qi(η) := (Qi,1(η), · · · , Qi,mi(η)), i = 1, 2,

Qij(η) :=
∫ 0

−1

φij(η(s))aij(s) ds , j = 1, · · · ,mi,

where m1,m2 ≥ 1 are integers, aij ∈ C
1
2 (J,R) and φij : Rm → R, i = 1, 2, j = 1, · · · ,mi,

are functions satisfying Lipschitz and linear growth conditions.

For the SFDE (1.10), we can define the Euler-Maruyama approximations by

Xπ(t) = Xπ(ti) + g(ti,Π1(Xπ
ti

), Qπ
1 (Xπ

ti
))(W (t)−W (ti))(1.11)

+ h(ti, Π2(Xπ
ti

), Qπ
2 (Xπ

ti
))(t− ti), t ∈ (ti, ti+1],

Xπ(t) = ηπ(t), −r ≤ t ≤ 0,

where Qπ
i (η), i = 1, 2, are approximations of Qi(η) to be specified in section 3. We prove

in section 3.2 that the Euler-Maruyama scheme for (1.10) has strong order of convergence

0.5.

We then introduce the following Milstein scheme for the SDDE (1.6):

Xi,π(t) = Xi,π(tk) + hi(tk, Π2(Xπ
tk

))(t− tk) + gil(tk, Π1(Xπ
tk

))(W l(t)−W l(tk))
(1.12)

+
∂gil

∂xi1j1

(tk, Π1(Xπ
tk

))ui1j1,π(tk + s1,j1)Il,l1(tk + s1,j1 , t + s1,j1 ; s1,j1),
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for tk < t ≤ tk+1, where

(1.13) ui1j1,π(t) =
{

gi1j1(t,Π1(Xπ
t )), t ≥ 0,

0, −1 ≤ t < 0,

and

(1.14) Il,l1(t0 + si,j , t + si,j ; si,j) =
∫ t

t0

∫ t1+si,j

t0+si,j

◦dW l(t2) ◦ dW l1(t1).

In (1.12), Xi, hi and gil denote coordinate representations of X,h and g with respect to

standard bases in the underlying Euclidean spaces, and the Einstein summation convention

is used for repeated indices.

In order to establish strong convergence of the above Milstein scheme for the SDDE

(1.6), it turns out -surprisingly-that one requires the use of anticipating calculus techniques

developed by Nualart and Pardoux ([22]). In particular, one needs to develop an infinite-

dimensional Itô formula for “tame” functions acting on the segment Xt of the solution X

of (1.6). Such an Itô formula is given in Section 3, Theorem 3.3. The formula is proved

via anticipating calculus methods ([22]). To understand the need for anticipating calculus

in such an intrinsically adapted setting, it is instructive to look at the following simple

one-dimensional SDDE:

dX(t) = g(X(t− 1), X(t)) dW (t), t ≥ 0

X(t) = W (t), −1 ≤ t < 0.

where g : R2 → R is a smooth function and W (t), t ≥ −1, is one-dimensional Brownian

motion. For a second-order scheme, we formally seek a stochastic differential of the coeffi-

cient g(X(t− 1), X(t)) on the right hand side of the above SDDE. For t ∈ (0, 1], this gives

formally:

d{g(X(t− 1), X(t))}

= d{g(W (t− 1), X(t))}

=
∂g

∂x
(W (t− 1), X(t)) dW (t− 1) +

∂g

∂y
(W (t− 1), X(t))g(X(t− 1), X(t)) dW (t)

+ second-order terms.
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Note that although the coefficient g(X(t − 1), X(t)) is Ft-measurable, the first term
∂g

∂x
(W (t − 1), X(t)) dW (t − 1) in the right hand side of the last equality is an antici-

pating differential. Furthermore, it appears that the (Ft)0≤t≤1-adapted process [0, 1] 3
t → (X(t − 1), X(t)) ∈ R2 is not a semimartingale with respect to any natural filtration.

In addition to this difficulty, the components X(t−1) and X(t) are not independent, so the

existing anticipating versions of Itô’s formula do not apply (cf. [2], [3] and [22]); hence the

need for a new Itô formula for tame functions in order to justify the above computation.

In section 5 (Theorem 5.3), we establish such a formula.

Using the Itô formula of section 5 and appropriate estimates on the weak Cameron-

Martin derivatives of X, it is shown in section 8 that, under suitable regularity conditions

on the coefficients of (1.6), one gets the following global error estimate for the Milstein

approximations

(1.15) E sup
0≤t≤a

||Xπ
t −Xt||qC ≤ C(q)|π|q

for any q ≥ 1. This says that the Milstein scheme has strong order of convergence 1.

2. Preliminary Results

Let η : [−r, 0] → Rm be a given continuous initial path, and let W be a d-

dimensional Brownian motion on a filtered probability space (Ω,F , (Ft)t≥0, P ).

We shall use the notations introduced in section 1.

Assume that the functions g : T ×Rmk1 → L(Rd;Rm) and h : T ×Rmk2 → Rm

satisfy (1.4) and (1.5). Let Π1 and Π2 be two projections associated with two sets of points

s1,1, · · · , s1,k1 and s2,1, · · · , s2,k2 , respectively. Consider the SDDE

(2.1) X(t) =





η(0) +
∫ t

0

g(s,Π1(Xs)) dW (s) +
∫ t

0

h(s, Π2(Xs)) ds, t ≥ 0

η(t),−r ≤ t < 0,

where η ∈ C([−r, 0];Rm) almost surely and is independent of the Brownian motion {W (t) :

t > 0}.
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Recall that the SDDE (2.1) has a unique strong solution X, and for each integer

k ≥ 1, there exists a constant C = C(k, L, a) > 0 such that

(2.2) E||Xt||2k
C ≤ C(1 + E||η||2k

C )] ,

for all η ∈ C and t ∈ [0, a] ([20]).

Next we define convergence, consistency and stability.

Suppose that X = {X(t) : t ∈ T} is the solution of some SDDE, and Y π is a

discrete-time approximation of X based on a partition π := {ti : i = 1, · · · , n} of T .

Definition 2.1.

We say that a discrete-time approximation Y π converges strongly with order γ > 0

at time t to X if there exists a positive constant C, independent of π, and a δ0 > 0 such

that

(2.3) E|Y π(t)−X(t)| ≤ C|π|γ

whenever |π| ∈ (0, δ0).

Definition 2.2.

We say that a discrete-time approximation Y π is strongly consistent if there exists

a nonnegative function c = c(δ) with

(2.4) lim
δ↓0

c(δ) = 0

such that

(2.5) E

∣∣∣∣E
(

Y π(tk+1)− Y π(tk)
∆k

∣∣∣∣Ftk

)
− h(tk, Π2(Y π

tk
))

∣∣∣∣
2

≤ c(|π|)

and

E(
∣∣∣∣

1
∆k

[
Y π(tk+1)− Y π(tk)− E(Y π(tk+1)− Y π(tk)|Ftk

)
](2.6)

− g(tk,Π1(Y π
tk

))(W (tk+1)−W (tk))
∣∣∣∣
2

) ≤ c(|π|)

for all fixed values Y π
tk

= η and where ∆k := tk+1 − tk.
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Definition 2.3.

Suppose that a numerical scheme for an SDDE gives rise to discrete-time approx-

imations Y π, Ȳ π starting at time t0 at Y π
t0 , Ȳ

π
t0 , respectively. We say that the numerical

scheme is (stochastically) numerically stable if for any finite interval [t0, a] there exists a

positive constant δ0 such that for each ε > 0 one has

(2.7) lim
||Y π

t0
−Ȳ π

t0
||C→0

sup
t0≤t≤a

P{||Y π
tnt
− Ȳ π

tnt
||C ≥ ε} = 0,

whenever |π| ∈ (0, δ0), and where nt := max{i : ti ≤ t < ti+1}.

To obtain the order of convergence, one needs to study the dependence of the

solution of the SDDE (2.1) on the delays. Define the distance d(Π1, Π2) between two

projections Π1 and Π2 associated with two sets of points s1,1 < · · · < s1,k1 and s2,1 <

· · · < s2,k2 , by the formula

d(Π1, Π2) =

{
+∞ if k1 6= k2

max
1≤j≤k1

|s1,j − s2,j | if k1 = k2 .

Let us consider two SDDE’s

(2.8) X(t) =
{

η(0) +
∫ t

0
g(s, Π11(Xs)) dW (s) +

∫ t

0
h(s, Π12(Xs)) ds, t ∈ T,

η(t), −r ≤ t < 0,

and

(2.9) Y (t) =
{

η(0) +
∫ t

0
g(s, Π21(Ys)) dW (s) +

∫ t

0
h(s, Π22(Ys)) ds, t ∈ T,

η(t), −r ≤ t < 0.

We shall estimate the difference between X(t) and Y (t). When k1 = k2 = 1, Bell and

Mohammed ([5]) showed that if s1,1 → 0 and s2,1 → 0, then the solution X(t) of (2.1)

converges in L2(Ω,Rm) to the solution of the corresponding SODE.

The following lemma extends the result in [5] to the case of several delays. This

extension will be useful in studying the order of convergence of the numerical schemes for

SDDE’s.
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Lemma 2.4.

Suppose that g, h satisfy (1.4) and (1.5). Let 0 < γ ≤ 1, η ∈ Cγ([−r, 0],Rm), and

suppose that X and Y are solutions of (2.8) and (2.9), respectively. Then for each q ≥ 2,

there exists a constant C(q) > 0 such that

(2.10) E sup
0≤t≤a

||Yt −Xt||qC ≤ C(q) {d(Π11, Π21) + d(Π12, Π22)}qγ
.

Proof.

Note first that there exists a constant M > 0 such that

(2.11) sup
−r≤t1≤z1<z2≤t2≤a

E|Y (z1)− Y (z2)|q ≤ M |t2 − t1|qγ .

Let Π11 , Π12 ,Π21 , Π22 be associated with {s1,1 < s1,2 < · · · < s1,k1}, {s2,1 < s2,2 < · · · <
s2,k2}, {r1,1 < r1,2 < · · · < r1,k1}, and {r2,1 < r2,2 < · · · < r2,k2}, respectively, with

ri,j , si,j ∈ [−r, 0]. Suppose 0 ≤ t ≤ a. Then by the Burkholder-Davis-Gundy inequality

and (1.7), we have

E sup
0≤u≤t

|Y (u)−X(u)|q

≤ C1(q)E
∫ t

0

|h(s, Π22(Ys))− h(s, Π12(Xs))|q ds

+ C2(q)E
∫ t

0

|g(s,Π21(Ys))− g(s, Π11(Xs))|q ds

≤ C3(q)
∫ t

0

E(
k2∑

i=1

|Y (s + r2,i)−X(s + s2,i)|q) ds

+ C4(q)
∫ t

0

E(
k1∑

i=1

|Y (s + r1,i)−X(s + s1,i)|q) ds

≤ C5(q)
∫ t

0

E

k2∑

i=1

{|Y (s + r2,i)− Y (s + s2,i)|q + |Y (s + s2,i)−X(s + s2,i)|q} ds

+ C6(q)
∫ t

0

E

k1∑

i=1

{|Y (s + r1,i)− Y (s + s1,i)|q + |Y (s + s1,i)−X(s + s1,i)|q} ds
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for all t ∈ T . Thus from the above inequality, (2.11) and the definition of d(Π1,Π2), it

follows that

E sup
0≤u≤t

|Y (u)−X(u)|q ≤ C7(q)
{

Mδqγ +
∫ t

0

E sup
0≤u≤s

||Yu −Xu||qC ds

}
, t ∈ T,

where δ := d(Π11,Π21) + d(Π12, Π22). Hence

(2.12) E sup
0≤u≤t

||Yu −Xu||qC ≤ C8(q)Mδqγ + C9(q)
∫ t

0

E sup
0≤u≤s

||Yu −Xu||qC ds,

for all t ∈ T . By Gronwall’s lemma, this implies that

(2.14) E sup
0≤s≤t

||Ys −Xs||qC ≤ C(q)δqγ , t ∈ [0, a].

The proof of the lemma is complete. ¤

Note that the constant C(q) in Lemma 2.4 also depends on the process Y . Since

the rationals Q are dense in R, by Lemma 2.4, we need only deal with rational delays,

i.e., we can assume that the delays si,j in (2.1) are in Q. This makes computer simulation

possible, since one can then control the system error when the delays are irrational.

3. The strong Euler-Maruyama scheme

In this section, we shall develop Euler-Maruyama schemes for SFDE’s with discrete

and/or continuous memory. For simplicity, we assume that a is a positive integer, T :=

[0, a] and J := [−1, 0]. We also assume rational delays:

{sj,i = −pj,i

qj,i
: j = 1, 2, 1 ≤ i ≤ kj , pj,i ≥ 0, pj,i ∈ Z, qj,i ∈ N}.

We will adopt the following notation throughout this section.

Let N0 be the least common multiple of qj,i, j = 1, 2, 1 ≤ i ≤ kj . Let p ∈ N and set

n := apN0, l := pN0. Then l and n are positive integers. We define the rational partition

points

(3.1) ti =

{ −1 + 1
pN0

(i + pN0), −l ≤ i ≤ 0
i

pN0
, 0 < i ≤ n.
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Note that for all 1 ≤ i ≤ kj and j = 1, 2, ti + sj,i belongs to the partition πp := {ti : −l ≤
i ≤ n} of [−1, a]. Set δp := |πp| = 1/(pN0) and nt := max{n ∈ N : tn ≤ t}. If −1 ≤ s ≤ t

define

bsc :=
{

ti, if ti ≤ s < ti+1

tnt
, if tnt

≤ s ≤ t.

for −1 ≤ i ≤ n − 1. For each positive integer p, the superscript p will denote numerical

quantities pertaining to the partition πp, e.g. Xp := Xπp .

3.1. The Euler-Maruyama scheme for SDDE’s

Recall the SDDE

(2.1) X(t) =





η(0) +
∫ t

0

g(s, Π1(Xs)) dW (s) +
∫ t

0

h(s,Π2(Xs)) ds, t ≥ 0

η(t), −1 ≤ t < 0,

with r = 1.

The Euler-Maruyama scheme for (2.1) is given by

(3.2)

Xp(t) =
{

Xp(ti) + g(ti,Π1(X
p
ti

))(W (t)−W (ti)) + h(ti, Π2(X
p
ti

))(t− ti), t ∈ (ti, ti+1]
ηp(t), −1 ≤ t ≤ 0

where the starting path ηp ∈ C(J,Rm) is prescribed (e.g. a piece-wise linear approximation

of η using the partition points {t−l, · · · , t0}). Define the error function Zp by

(3.3)
{

Zp(t) = Xp(t)−X(t), 0 ≤ t ≤ a,

Zp
0 = Xp

0 −X0.

Theorem 3.1.

Assume that the coefficients g and h in (2.1) satisfy (1.4), (1.5) and the following

condition

(3.4)
{ |g(s, x)− g(t, x)| ≤ L1(1 + |x|)|s− t|γ , for all x ∈ Rmk1 , s, t ∈ T

|h(s, x)− h(t, x)| ≤ L1(1 + |x|)|s− t|γ , for all x ∈ Rmk2 , s, t ∈ T

for some positive constant L1. Fix any integer q ≥ 2. Suppose that η : [−1, 0] → Lq(Ω,Rm)

is Hölder continuous with exponent γ ∈ (0, 1], i.e., there is a positive constant K such that

E|η(s)− η(t)|q ≤ K|s− t|γq
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for all s, t ∈ [−1, 0]. Suppose also that there is a positive constant C ′ := C ′(q) such that

E||ηp − η||qC ≤ C ′δγq
p

Then there exists a constant C ′′ := C ′′(q, a) > 0, depending on a and q, such that

E sup
0≤s≤a

||Zp
s ||qC ≤ C ′′δγ̃q

p

where γ̃ := γ ∧ (1/2).

Proof.

Since the SDDE (2.1) is a special case of the SFDE (3.12), the reader may consult

the proof of Theorem 3.4 in the next section. ¤

The requirement

E||ηp − η||qC ≤ C ′δγq
p

in the statement of Theorem 3.1 is fulfilled if one takes ηp to be the piecewise-linear

approximation

ηp(s) := [(ti+1 − s)η(ti) + (s− ti)η(ti+1)](ti+1 − ti)−1, s ∈ [ti, ti+1]

for −l ≤ i ≤ 0.

3.2. The Euler-Maruyama scheme for SFDE’s with mixed discrete and contin-

uous memory.

Let m1,m2 ≥ 1, aij ∈ C
1
2 (J), and let φij : Rm → R, i = 1, 2, j = 1, · · · , mi, satisfy

Lipschitz and linear growth conditions. Consider the following SFDE with mixed discrete

and continuous memories:

(3.12)

X(t) = η(0) +
∫ t

0

g(s, Π1(Xs), Q1(Xs)) dW (s) +
∫ t

0

h(s,Π2(Xs), Q2(Xs)) ds, t ∈ [0, a],

X0 = η ∈ C = C(J ;Rm)
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where Π1 and Π2 are two projections of discrete type, Q1 and Q2 are two projections of

continuous type defined by

Qi(η) := (Qi,1(η), · · · , Qi,mi
(η)), i = 1, 2,

Qij(η) :=
∫ 0

−1

φij(η(s))aij(s) ds , j = 1, · · · ,mi.

We assume that g : T ×Rk1m+m1 → R and h : T ×Rk2m+m2 → R satisfy the uniform

Lipschitz condition:

{ |g(t, x)− g(t, y)| ≤ L|x− y| , x, y ∈ Rk1m+m1

|h(t, z)− h(t, w)| ≤ L|z − w|, z, w ∈ Rk2m+m2 , t ∈ [0, a],

and local boundedness condition:

sup
0≤t≤a

[|g(t, 0)|+ |h(t, 0)|] < ∞,

where L is a positive constant independent of t ∈ [0, a].

Under the above conditions, the SFDE (3.12) has a unique strong solution (c.f. [20],

Theorem II.2.1 and Theorem V.4.3).

Define the approximations Qp
ij of Qij by

(3.15) Qp
ij(η) =

−1∑

k=−l

φij(η(sk))aij(sk)(sk+1 − sk).

Remark 3.2.

If η : [−1, 0] → Lq(Ω,Rm) is Hölder continuous with exponent γ, 0 < γ ≤ 1, and

q ≥ 2, then it is easy to show that there is a constant C(q) > 0 such that

(3.16) E|Qp
ij(η)−Qij(η)|q ≤ C(q)δγ̃q

p ,

where γ̃ := γ ∧ (1/2).
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Lemma 3.3.

If η : [−1, 0] → Lq(Ω,Rm), (q ≥ 2), is Hölder continuous with exponent γ, then

there exists a constant C(q) > 0 such that

(3.17) sup
0≤t≤a

E|Qp
ij(Xt)−Qij(Xt)|q ≤ C(q)δγ̃q

p

for all i = 1, 2 and j = 1, · · · , mi, where γ̃ = γ ∧ (1/2).

Proof.

Fix i, j, where i = 1, 2, 1 ≤ j ≤ mi, and let t ∈ [0, a]. Using the notation bsc, we

may write

Qp
ij(Xt)−Qij(Xt) =

∫ 0

−1

[φij(X(t + bsc))aij(bsc)− φij(X(t + s))aij(s)] ds

(3.18)

=
∫ 0

−1

aij(bsc)[φij(X(t + bsc))− φij(X(t + s))] ds

+
∫ 0

−1

φij(X(t + s))[aij(bsc)− aij(s)] ds

= I1(t) + I2(t),

where

I1(t) :=
∫ 0

−1

aij(bsc)[φij(X(t + bsc))− φij(X(t + s))] ds

I2(t) :=
∫ 0

−1

φij(X(t + s))[aij(bsc)− aij(s)] ds.

It follows from (3.12) and standard properties of the Itô integral that there exists a constant

C1(q) > 0 such that

(3.19) sup
−1≤r1≤α<β≤r2≤a

E(|X(β)−X(α)|q) ≤ C1(q)|r2 − r1|γ̃q
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for all q ≥ 1. By (3.19) and the Lipschitz property of φij , i = 1, 2, j = 1, · · · ,mi, it follows

that

sup
0≤t≤a

E(|I1(t)|q) ≤ C1(q)||aij ||qC
∫ 0

−1

sup
0≤t≤a

E(|X(t + bsc)−X(t + s)|q) ds

≤ C2(q)‖aij‖q
Cδγ̃q

p

≤ C3(q)δγ̃q
p .

Using the Hölder continuity of aij and the linear growth property of φij , I2 can be estimated

as follows:

sup
0≤t≤a

E(|I2(t)|q) ≤ C1(q)
∫ 0

−1

sup
0≤t≤a

E(|φij(X(t + s))|q)|aij(bsc)− aij(s)|q ds

≤ C4(q)δq/2
p

∫ 0

−1

sup
0≤t≤a

E(|φij(X(t + s))|q) ds

≤ C5(q)δq/2
p

∫ 0

−1

sup
0≤t≤a

E(1 + |X(t + s)|q) ds

≤ C6(q)δq/2
p

∫ 0

−1

E(1 + ||η||qC) ds

≤ C7(q)δq/2
p .

So there exists a constant C(q) > 0 such that

(3.20) sup
0≤t≤a

E|Qp
ij(Xt)−Qij(Xt)|q ≤ C(q)δγ̃q

p . ¤

We now introduce the Euler-Maruyama scheme for (3.12) as follows:

Xp(t) = Xp(ti) + h(ti, Π2(X
p
ti

), Qp
2(X

p
ti

))(t− ti)
(3.21)

+ g(ti,Π1(X
p
ti

), Qp
1(X

p
ti

))(W (t)−W (ti)), t ∈ (ti, ti+1],

Xp(t) = ηp(t), −1 ≤ t ≤ 0,

where ηp ∈ C(J,Rm) is prescribed subject to the conditions of Theorem 3.4 below.
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Theorem 3.4.

Fix any q ≥ 2. Assume that η : [−1, 0] → Lq(Ω,Rm), is Hölder continuous with

exponent γ. Let Zp(t) := Xp(t)−X(t) denote the error function of the Euler-Maruyama

scheme (3.21). Suppose that

E‖ηp − η‖q
C ≤ C ′(q)δγ̃q

p

for some constant C ′(q) > 0, where γ̃ := γ ∧ (1/2). Assume also that the coefficients g

and h satisfy the Lipschitz and boundedness conditions stated before Remark (3.2) together

with the regularity condition
{ |g(s, x)− g(t, x)| ≤ L1(1 + |x|)|s− t|γ , for all x ∈ Rmk1+m1 , s, t ∈ T

|h(s, x)− h(t, x)| ≤ L1(1 + |x|)|s− t|γ , for all x ∈ Rmk2+m2 , s, t ∈ T

for some positive constant L1. Then there exists a constant C(q) > 0 such that

sup
−1≤s≤a

E|Zp(s)|q ≤ C(q)δγ̃q
p .

Proof.

Let ti ≤ t < ti+1. Then the global error Zp(t) := Xp(t) −X(t) may be written in

the form:

Zp(t) = Zp(0) + Ip
1 (t) + Ip

2 (t)− Up
1 (t)− V p

1 (t)− Up
2 (t)− V p

2 (t),

where

Ip
1 (t) =

∫ t

0

[h(bsc, Π2(X
p
bsc), Q

p
2(X

p
bsc))− h(bsc,Π2(Xbsc), Q

p
2(Xbsc))] ds,

Ip
2 (t) =

∫ t

0

[g(bsc, Π1(X
p
bsc), Q

p
1(X

p
bsc))− g(bsc,Π1(Xbsc), Q

p
1(Xbsc))] dW (s),

Up
1 (t) =

∫ t

0

(h(s,Π2(Xs), Q2(Xs))− h(bsc,Π2(Xbsc), Q2(Xbsc))) ds,

V p
1 (t) =

∫ t

0

(g(s, Π1(Xs), Q1(Xs))− g(bsc,Π1(Xbsc), Q1(Xbsc))) dW (s),

Up
2 (t) =

∫ t

0

(h(bsc,Π2(Xbsc), Q2(Xbsc))− h(bsc, Π2(Xbsc), Q
p
2(Xbsc))) ds,

V p
2 (t) =

∫ t

0

(g(bsc,Π1(Xbsc), Q1(Xbsc))− g(bsc,Π1(Xbsc), Q
p
1(Xbsc))) dW (s).
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By Hölder’s inequality, we get

E sup
0≤s≤t

|Ip
1 (s)|q

= sup
0≤s≤t

E|
∫ s

0

[h(brc, Π2(X
p
brc), Q

p
2(X

p
brc))− h(brc, Π2(Xbrc), Q

p
2(Xbrc))] dr|q

≤ C1(q)
∫ t

0

sup
0≤u≤s

(E|h(u, Π2(Xp
u), Qp

2(X
p
u))− h(u, Π2(Xu), Qp

2(Xu))|q) ds .

Therefore, by the Lipschitz property of h and φij , it follows that

(3.22) E sup
0≤s≤t

|Ip
1 (s)|q ≤ C2(q)

∫ t

0

sup
−1≤u≤s

E|Xp(u)−X(u)|q ds

for some constant C2(q) > 0. The Burkholder-Davis-Gundy inequality implies that

E sup
0≤s≤t

|Ip
2 (s)|q

≤ C3(q)E(
∫ t

0

|g(bsc, Π1(X
p
bsc), Q

p
1(X

p
bsc))− g(bsc, Π1(Xbsc), Q

p
1(Xbsc))|2 ds)

q
2

≤ C4(q)E(
∫ t

0

|g(bsc, Π1(X
p
bsc), Q

p
1(X

p
bsc))− g(bsc, Π1(Xbsc), Q

p
1(Xbsc))|q ds)

≤ C4(q)
∫ t

0

sup
0≤u≤s

E(|g(u, Π1(Xp
u), Qp

1(X
p
u))− g(u, Π1(Xu), Q1(pXu))|q) ds .

Using the Lipschitz property of g, we obtain

(3.23) E sup
0≤s≤t

|Ip
2 (s)|q ≤ C5(q)

∫ t

0

sup
−1≤u≤s

E|Xp(u)−X(u)|q ds

for some constant C5(q) > 0. Similarly,

E sup
0≤s≤t

|V p
1 (s)|q

≤ C6(q)E(
∫ t

0

|g(s, Π1(Xs), Q1(Xs))− g(bsc, Π1(Xbsc), Q1(Xbsc))|2 ds)
q
2

≤ C7(q)E(
∫ t

0

|g(s, Π1(Xs), Q1(Xs))− g(bsc, Π1(Xbsc), Q1(Xbsc))|q ds)

≤ C7(q){
nt∑

i=1

E

∫ ti

ti−1

|g(s,Π1(Xs), Q1(Xs))
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− g(ti−1, Π1(Xti−1), Q1(Xti−1))|q ds

+ E

∫ t

tnt

|g(s,Π1(Xs), Q1(Xs))− g(tnt
, Π1(Xtnt

), Q1(Xtnt
))|q ds}

≤ C8(q){
nt∑

i=1

(
∫ ti

ti−1

(δγ̃q
p + sup

−1≤u≤0
E|X(s + u)−X(ti−1 + u)|q) ds

+ E

∫ t

tnt

(δγ̃q
p + sup

−1≤u≤0
E|X(s + u)−X(tnt + u)|q) ds}.

Hence

(3.24) E sup
0≤s≤t

|V p
1 (s)|q ≤ C9(q)(δγ̃q

p +
∫ t

0

sup
−1≤u≤0

E|X(s + u)−X(bsc+ u)|q ds)

for some constant C9(q) > 0. In a similar manner, Up
1 can be estimated as

(3.25) E sup
0≤s≤t

|Up
1 (s)|q ≤ C10(q)(δγ̃q

p +
∫ t

0

sup
−1≤u≤0

E|X(s + u)−X(bsc+ u)|q ds)

for some constant C10(q) > 0. Now use the inequality

(3.19) sup
−1≤r1≤s<t≤r2≤a

E(|X(s)−X(t)|q) ≤ C7|r2 − r1|γ̃q.

Therefore,

(3.26)
{

E sup0≤s≤t |V p
1 (s)|q ≤ C11(q)δγ̃q

p

E sup0≤s≤t |Up
1 (s)|q ≤ C11(q)δγ̃q

p .

By Lemma 3.3, there exists a constant C12(q) > 0 such that

(3.27)
{ sup0≤s≤t E|V p

2 (s)|q ≤ C12(q)δγ̃q
p

sup0≤s≤t E|Up
2 (s)|q ≤ C12(q)δγ̃q

p .

From (3.22), (3.23), (3.26) and (3.27), we get

(3.28) sup
0≤s≤t

E|Zp(s)|q ≤ C13(q)
∫ t

0

sup
−1≤u≤s

E|Zp(u)|q ds + C13(q)δγ̃q
p .

Thus

sup
−1≤s≤t

E|Zp(s)|q = C14(q)( sup
−1≤s≤0

E|Zp(s)|q) + sup
0≤s≤t

E|Zp(s)|q)

≤ C14(q)E||Zp
0 ||qC + C15(q)

∫ t

0

sup
−1≤u≤s

E|Zp(u)|q ds + C15(q)δγ̃q
p

≤ C15(q)
∫ t

0

sup
0≤u≤s

E|Zp(u)|q ds + C16(q)δγ̃q
p .
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By Gronwall’s lemma, there exists a constant C(q) > 0 such that

sup
−1≤s≤t

E|Zp(s)|q ≤ C(q)δγ̃q
p .

This completes the proof of the theorem. ¤

Remarks 3.6.

(i) The Cauchy Maruyama scheme can be extended to cover general SFDE’s of the

form

(3.29) X(t) =





η(0) +
∫ t

0

G(s,Xs) dW (s) +
∫ t

0

H(s,Xs) ds, t ≥ 0,

η(t), −r ≤ t < 0.

Define the approximations to the solution X of (3.29) by

(3.30)

Xp(t) =
{

Xp(ti) + G(ti, X
p
ti

)(W (t)−W (ti)) + H(ti, X
p
ti

)(t− ti), t ∈ (ti, ti+1]
ηp(t), −r ≤ t ≤ 0

where the starting path ηp ∈ C([−r, 0],Rm) is prescribed so as to satisfy the re-

quirements of Theorem 3.1 (e.g. a piece-wise linear approximation of η using the

partition points {tl, · · · , t0}). Then the conclusion of Theorem 3.4 holds under the

following hypotheses on the functionals G : T × C([−r, 0],Rm) → L(Rd;Rm) and

H : T × C([−r, 0],Rm) → Rm:

(3.31)

‖G(t, η)−G(t, ξ)‖+ |H(t, η)−H(t, ξ)| ≤ L‖η− ξ‖C , t ∈ T, η, ξ ∈ C([−r, 0],Rm)

(3.32) sup
0≤t≤a

[‖G(t, 0)‖+ |H(t, 0)|] < ∞.

(3.33)
{ ‖G(s, η)−G(t, η)‖ ≤ L1(1 + ‖η‖C)|s− t|γ , for all η ∈ C(J,Rm), s, t ∈ T,

|H(s, η)−H(t, η)| ≤ L1(1 + ‖η‖C)|s− t|γ , for all η ∈ C(J,Rm), s, t ∈ T,

where L and L1 are positive constants.
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(ii) The Euler-Maruyama schemes (3.2) and (3.21) are strongly consistent (Definition

1.3) with control functions C(δ) ≡ 0, and (stochastically) numerically stable (Def-

inition 1.4). The numerical stability follows by similar arguments to those used in

the above proof.

4. Exact convergence rate. An example.

In this section we consider regular partitions {πn(h)} of [0, a] that are generated by a

continuous positive (hence strictly positive) probability density function h : [0, a] → (0,∞).

More specifically, for each fixed sample size n and probability density function h the points

tk,n ≡ tk of the partition πn(h) in [0, a] are chosen such that

t0 = 0,

∫ tk+1

tk

h(s) ds =
1
n

, k = 0, 1, · · · , n− 1.

We thus subdivide the interval in such a way that the areas under h over each subinterval

are all equal to 1/n. It then follows that

(4.1) lim
n→∞,tk→t

n(tk+1 − tk) = 1/h(t).

Consider the following linear one-dimensional SDDE:

(4.2)
{

dX(t) = b(t)X(t− 1)dW (t) , 0 ≤ t ≤ a

X(t) = η(t) , −1 ≤ t ≤ 0.

The Euler-Maruyama scheme gives

(4.3) Xπn(t) =
{

Xπn(tk) + b(tk)Xπn(tk − 1)(W (t)−W (tk)), tk ≤ t < tk+1,

η(t), t ∈ J,

for 0 ≤ k ≤ n− 1. By Theorem 3.1, there is a positive constant C (independent of n) such

that

nE sup
t∈[0,a]

|X(t)−Xπn(t)|2 ≤ C,

for all n ≥ 1. The constant C is called a leading coefficient of the scheme and has various

applications (see [6]). We shall show that as n → ∞, the left hand side of the above

inequality has a limit. We shall also determine the equation satisfied by this limit.
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Theorem 4.1.

Suppose η ∈ Cγ(J,Rm), 1/2 < γ ≤ 1. Let a ≥ 1.. Suppose b : [0, a] → R is a

bounded continuous function such that

|b(t)− b(s)| ≤ K|t− s|(1/2)+α

for all s, t ∈ [0, a] and some K, α > 0. Let X be the solution of the SDDE (4.2), and Xπn

be its Euler approximation (4.3). Then Z(t) := lim
n→∞

n E|X(t)−Xπn(t)|2 exists for each

t ∈ [0, a]. Furthermore, Z(t) satisfies the following deterministic linear DDE

Z ′(t) = b2(t)Z(t− 1) + b2(t)b2(t− 1)EX2(t− 2)/h(t), 1 < t < a,

Z(t) = 0, −1 ≤ t ≤ 1,(4.4)

where EX2(t) is given by the integral equation

(4.5) EX2(t) =

{
η(0)2 +

∫ t

0
b2(s)EX2(s− 1) ds, t ∈ [0, a],

η(t)2, t ∈ [−1, 0).

Proof.

Rewrite (4.2) as

(4.6) X(t) = X(tk) + b(tk)X(tk − 1)(W (t)−W (tk)) + I1
tk,t ,

where tk ≤ t < tk+1 and

(4.7) I1
tk,t =

∫ t

tk

[b(s)X(s− 1)− b(tk)X(tk − 1)] dW (s) .

Set Zπ(t) := X(t)−Xπ(t), t ∈ [−1, a]. Then

(4.8) Zπ(t) = Zπ(tk) + b(tk)Zπ(tk − 1)(W (t)−W (tk)) + I1
tk,t, tk ≤ t < tk+1.

Since E(Zπ(t)− Zπ(tk)|Zπ
tk

) = 0, for t > tk, it follows that

E[Zπ(t)− Zπ(tk)]2 = E[(Zπ)2(t)]− E[(Zπ)2(tk)].
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Thus from (4.8), we obtain

(4.9) E[(Zπ)2(t)] = E[(Zπ)2(tk)] + b2(tk)E[(Zπ)2(tk − 1)](t− tk) + I2
tk,t + I3

tk,t .

where

(4.10) I2
tk,t =

∫ t

tk

E[b(s)X(s− 1)− b(tk)X(tk − 1)]2 ds

and

(4.11) I3
tk,t = 2

∫ t

tk

Eb(tk)Zπ(tk − 1)[b(s)X(s− 1)− b(tk)X(tk − 1)]ds

Since Z(tk − 1) is Ftk−1 measurable,

I3
tk,t = 2

∫ t

tk

b(tk)
(
b(s)− b(tk)

)
E[Zπ(tk − 1)X(tk − 1)]ds

≤ Cn−1/2

∫ t

tk

(s− tk)α+ 1
2 ds = Cn−1/2(t− tk)α+ 3

2 ,(4.12)

where we have used the fact that

E|Zπ(tk − 1)X(s− 1)| ≤ {
E|Zπ(tk − 1)|2}1/2{

E|X(s− 1)|2}1/2 ≤ Cn−1/2 .

For the rest of the computation, we denote by Htk,t a generic quantity satisfying the

following type of estimate:

(4.13) |Htk,t| ≤ Cn−1(t− tk)1+α

for some C,α > 0 and all n ≥ 1. With these notations, we may write I3
tk,t = Htk,t. It is

easy to verify that

I2
tk,t =

∫ t

tk

b(s)2E[X(s− 1)−X(tk − 1)]2 ds + Htk,t .

Thus from (4.9) it follows that

E[(Zπ)2(t)] = E[(Zπ)2(tk)] + b2(tk)E[(Zπ)2(tk − 1)](t− tk)

+
∫ t

tk

b2(s)E[(X(s− 1)−X(tk − 1)]2 ds + Htk,t.(4.14)
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For each n ≥ 1, define the process Jn(t), 0 ≤ t ≤ a, by

Jn(t) = Jn(tk) +
∫ t

tk

b2(s)E[X(s− 1)−X(tk − 1)]2ds, tk ≤ t < tk+1, k = 1, 2, · · ·n− 1.

When 0 ≤ t ≤ 1, nJn(t) → 0. One can easily check that

E(X(s− 1)−X(tk − 1))2 =
∫ s−1

tk−1

b(v − 1)EX2(v − 2)dv .

Therefore

Jn(t) = Jn(tk) +
∫ t

tk

b2(s)
∫ s−1

tk−1

b2(v − 1)EX2(v − 2)dvds

= Jn(tk) +
1
2
b2(tk)b2(tk − 1)EX2(tk − 2)(t− tk)2 + Htk,t,

for t > 1, k ≥ n1. Recall that n1 := max{n : tn ≤ 1}. By recursively applying the above

computation, we obtain

Jn(t) =
1
2
1[1,a](t)

nt∑

k=1

b2(tk−1)b2(tk−1 − 1)EX2(tk−1 − 2)(tk − tk−1)2

+
1
2
1[1,a](t)b2(tnt)b

2(tnt − 1)E2X(tnt − 2)(t− tnt)
2 +

nt∑

k=1

Htk−1,tk
+ Htnt ,t,

for all t ∈ [0, a]. This implies that

lim
n→∞

nJn(t) = 1[1,a](t)
∫ t

0

b2(s)b2(s− 1)EX2(s− 2)/h(s) ds, t ∈ [0, a].

Thus

nE[(Zπ)2(t)] =
nt∑

k=1

b2(tk−1)nE[(Zπ)2(tk−1 − 1)](tk − tk−1)

+ b2(tnt)nE[(Zπ)2(tnt − 1)](t− tnt)
2 + nJn(t),

for all t ∈ [0, a]. Letting n →∞ in the above relation yields

Z(t) =
∫ t

0

b2(s)Z(s− 1) ds + 1[1,a](t)
∫ t

0

b2(s)b2(s− 1)EX2(s− 2)/h(s) ds, t ∈ [0, a].
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In particular, Z(t) = 0 for all t ∈ [−1, 1].

From (4.2) it is easy to see that

EX2(t) = η(0)2 +
∫ t

0

b2(s)EX2(s− 1)ds, t ∈ [0, a].

Therefore Z satisfies the assertion of the theorem, and the proof is complete. ¤

Remark 4.1.

From Theorem 3.1, we know that under some reasonable conditions, the rate of

convergence of Xπn(t) to X(t) is 1/
√

n over the interval [−1, a]. The fact that Z(t) ≡ 0

for 0 ≤ t ≤ 1 indicates that on the interval [0, 1] the rate might be eventually higher.

5. Itô’s formula for “tame” functions.

In order to derive higher order numerical schemes for SDDE’s, we shall first prove

an Itô formula for “tame” functions on C(J,Rm) (Definition 1.1).

Suppose that (Ω,F , P ) is a probability space and W (t) := (W 1(t), · · · ,W d(t)), t ≥
0, is a d-dimensional standard Brownian motion on (Ω,F , P ). Denote by D = (D1, · · · , Dd)

the Malliavin differentiation operator associated with {W (t) : t ≥ 0}. Assume

(5.1) X(t) =
{

η(0) +
∫ t

0
u(s) dW (s) +

∫ t

0
v(s) ds, t > 0,

η(t), −r ≤ t ≤ 0,

where η belongs to C and is of bounded variation, u = (u1, · · · , um)T , ui ∈ L2,4
d,loc, v =

(v1, · · · , vm)T , and vi ∈ L1,4
loc. One can refer to ([23], pp. 61, 151, 161) for the definition

of Lk,p
d . Note that the processes u and v may not be adapted to the Brownian filtration

(Ft)t≥0. For convenience, we define u(t) = 0 for t < 0 or t > a,

v(t) =
{

0, t > a

η′(t), −r ≤ t ≤ 0.

We also set W (t) = 0 if t < 0 or t > a, and denote

(5.2) U(t) :=
∫ t

0

u(s) dW (s) and V (t) :=
{

η(0) +
∫ t

0
v(s) ds, t > 0

η(t), −r ≤ t ≤ 0.
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If u ∈ L2,p
loc for some p > 4, then the indefinite Skorohod integral

∫ t

0
u(s) dW (s) has

a continuous version. Hence we may assume that the process X(t) is continuous.

Let T = [0, a], J = [−r, 0], C = C(J ; ,Rm) be as before, and let Π be the projection

associated with s1, · · · , sk ∈ J . Although there is a multi-dimensional Itô formula for

φ(t,X(t)) ([2], [3] and [22]), we can not apply it to φ(t,Π(Xt)) because Π(Ut) is of the

form

(5.3)
(∫ t

0

u(s + s1) dW (s + s1), · · · ,

∫ t

0

u(s + sk) dW (s + sk)
)

,

and the components of the dk-dimensional process (W (t + s1), · · · ,W (t + sk)) are not

independent. However, the ideas in Nualart and Pardoux ([22], section 6, [23], p. 161) can

be used to derive an Itô formula for φ(t,Π(Xt)).

We denote by

(5.4) δij =
{

1, i = j,

0, i 6= j,

the Kronecker delta.

Assume that φ ∈ C1,2(T×Rmk), ~x = (~x1, · · · , ~xm), ~xi = (xi1, · · · , xik) ∈ Rk, Write

(5.5) φ(t, ~x) = φ(t, ~x1, · · · , ~xm).

The next lemma follows from the independent increments property of Brownian

motion. It will be needed in the proof of the Itô formula for tame functions (Theorem 5.3

below).

Lemma 5.2.

Assume that {πn : 0 = t0 < t1 < · · · < tn = a} is a family of partitions of [0, a],

with limn→∞ |πn| = 0. Let −r ≤ s1 ≤ s2 ≤ 0 and denote by ∆lkW i := W i(tl + sk) −
W i(tl−1 + sk), 1 ≤ i ≤ d, 1 ≤ l ≤ n, k = 1, 2, the increments of Brownian motion. Then

(5.6) lim
n→∞

n∑

l=1

∆l1W
i∆l2W

j =
{

a + s1, if i = j and s1 = s2

0, otherwise ,
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in L2(Ω,R).

Proof.

We only need to consider the case s1 < s2 and i = j. Now

[ n∑

l=1

∆l1W
i∆l2W

i

]2

=
n∑

l=1

(∆l1W
i)2(∆l2W

i)2 + 2
∑

l1<l2

∆l11W
i∆l12W

i∆l21W
i∆l22W

i.

If n is sufficiently large, then |πn| < s2 − s1. Hence ∆l22W
i is independent of

∆l11W
i∆l12W

i∆l21W
i. Taking expectations in the above equality gives

E

[ n∑

l=1

∆l1W
i∆l2W

i

]2

≤
n∑

l=1

(tl − tl−1)2 ≤ |πn|a.

for sufficiently large n. Note that a+s1 is the correct limit in (5.6) because of the convention

that W (t) = 0 for t < 0. This completes the proof of the lemma. ¤

We now state an Itô’s formula for “tame” functions.

Theorem 5.3.

Assume that X is a continuous process defined by (5.1), where η : J → Rm is of

bounded variation, u = (u1, · · · , um)T , ui ∈ L2,4
d,loc, v = (v1, · · · , vm)T , and vi ∈ L1,4

loc.

Suppose φ ∈ C1,2(T ×Rmk,R). Then

φ(t,Π(Xt))− φ(0, Π(X0))
(5.7)

=
∫ t

0

∂φ

∂s
(s, Π(Xs)) ds +

∫ t

0

∂φ

∂~x
(s,Π(Xs)) d(Π(Xs))

+
1
2

k∑

i,j=1

m∑

i1,j1=1

∫ t

0

∂2φ

∂xi,i1∂xj,j1

(s,Π(Xs))ui1(s + si)Ds+siX
j1(s + sj) ds

a.s. for all t ∈ T .
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Remark 5.1.

(i) The Itô formula (5.7) may also be expressed in the form

φ(t,Π(Xt))− φ(0,Π(X0)) =
∫ t

0

∂φ

∂s
(s,Π(Xs)) ds +

∫ t

0

∂φ

∂~x
(s, Π(Xs)) d(Π(Xs))

(5.8)

+
1
2

k∑

i,j=1

∫ t

0

Tr

[
∂2φ

∂~xi∂~xj
(s, Π(Xs)(Θs(si, sj))

]
ds

where

Θs(α, β) :=
1
2

{
(uΛ)sXs(α, β) + (uΛ)sXs(β, α)

}
, α, β ∈ [−r, 0],

and the two-parameter process (uΛ)sXs : Ω× J2 → L(Rm;Rm) is defined by

(uΛ)sXs(α, β) := I{0≤s+α∧β}u(s + α)[uT (s + α)I{0≤s+α≤s+β}

+
∫ s+β

0

Ds+αu(r) dW (r) +
∫ s+β

0

Ds+αv(r) dr].

for all α, β ∈ [−r, 0].

(ii) Suppose d = m = 1. Let us define a trace operator 5. For 1 ≤ i, j ≤ k, define

(5.9) 5±
si,sj

X(s) := lim
ε↓0

(Ds+siX(s + sj + ε)±Ds+siX(s + sj − ε)) ∈ R

and 5±
si

X(s) := (5±
si,s1

X(s), · · · ,5±
si,sk

X(s)) ∈ Rk. Then the Itô formula for “tame”

functions can be written as

φ(t,Π(Xt))− φ(0, Π(X0)) =
∫ t

0

∂φ

∂s
(s, Π(Xs)) ds +

∫ t

0

∂φ

∂~x
(s,Π(Xs)) dΠ(Ws)

(5.10)

+
1
2

k∑

i=1

∫ t

0

〈∂
2φ

∂x2
i

(s, Π(Xs))5+
si

X(s),5−
si

X(s)〉Rd ds,

a.s. for all t ∈ T , where ~x := (x1, · · · , xk) and 〈·, ·〉Rd denotes the Euclidean inner product

on Rd. Cf. [22], Remark 7.6.

For simplicity, we shall prove the Itô formula for the case d = m = 1. We thus

assume in what follows that d = m = 1.
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Proof of Theorem 5.3.

By Taylor’s Theorem, we may write

φ(t,Π(Xt))− φ(t, Π(X0))

=
n∑

l=1

[φ(tl,Π(Xtl
))− φ(tl−1, Π(Xtl

))] + [φ(tl−1,Π(Xtl
))− φ(tl−1, Π(Xtl−1))]

=
n∑

l=1

∂φ

∂s
(t̂l, Π(Xtl

))∆tl +
n∑

l=1

{
k∑

i=1

∂φ

∂xi
(tl−1,Π(Xtl−1))∆liX

+
1
2

k∑

i,j=1

∂2φ

∂xi∂xj
(tl−1, Π(X̄tl

))∆liX∆ljX}, t ∈ T,

where

X̄tl
= Xtl−1 + αl(Xtl

−Xtl−1), t̄l = tl−1 + βl(tl − tl−1), t̂l = tl−1 + γl(tl − tl−1)

for some random variables 0 ≤ αl, βl, γl ≤ 1, l = 1, · · · , n. The Itô formula (5.10) will then

follow from Proposition 5.5 and Proposition 5.6 below. ¤

The rest of this section is devoted to the proofs of Propositions 5.4-5.6.

Proposition 5.4.

Suppose that W (t) is a 1-dimensional Brownian motion. Let u ∈ L1,2
loc be such that

u(t) = 0 if t > a or t < 0. Assume that −r ≤ s1, s2 ≤ 0, and let πn : 0 = t0 < t1 < · · · <
tn = a be a family of partitions of T = [0, a], with |πn| → 0 as n →∞. Then

(5.11) lim
n→∞

[ n∑

l=1

∫ tl+s1

tl−1+s1

u(s) dW (s)
]2

=
∫ a+s1

0

u2(s) ds

in probability. If s1 6= s2, then

(5.12) lim
n→∞

n∑

l=1

∫ tl+s1

tl−1+s1

u(s) dW (s)
∫ tl+s2

tl−1+s2

u(s) dW (s) = 0

in probability. Furthermore, if u ∈ L1,2, then the above convergences are in L1(Ω,R).
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Proof.

We prove the proposition for u ∈ L1,2. The general case u ∈ L1,2
loc follows by a

standard localization argument ([23]).

If ui, uj , vi, vj ∈ L1,2 with ui(t) = vi(t) = 0 if t < 0 or t > a+si and uj(t) = vj(t) =

0 if t < 0 or t > a + sj . Set

(5.13)

{
Ui(t) :=

∫ t

0
ui(s) dW (s)

Uj(t) :=
∫ t

0
uj(s) dW (s)

{
Vi(t) :=

∫ t

0
vi(s) dW (s)

Vj(t) :=
∫ t

0
vj(s) dW (s).

Then

E|
n∑

l=1

∆liUi∆ljUj −
n∑

l=1

∆liVi∆ljVj |

= E|
n∑

l=1

∆li(Ui − Vi)∆ljUj +
n∑

l=1

∆liVi∆lj(Uj − Vj)|

≤ E|
n∑

l=1

∆li(Ui − Vi)∆ljUj |+ E|
n∑

l=1

∆liVi∆lj(Uj − Vj)|

≤ (E
n∑

l=1

|∆li(Ui − Vi)|2) 1
2 (E

n∑

l=1

|∆lj(Uj)|2) 1
2

+ (E
n∑

l=1

|∆li(Vi)|2) 1
2 (E

n∑

l=1

|∆lj(Uj − Vj)|2) 1
2 .

By an Lp estimate of the Skorohod integral ([22], Proposition 3.5; [23], p.158), we have

E

n∑

l=1

|∆ljUj |2 = E

n∑

l=1

|
∫ tl+si

tl−1+si

uj(s) dW (s)|2

= E

n∑

l=1

|
∫ a

0

I(tl−1+si,tl+si](s)uj(s) dW (s)|2

≤
n∑

l=1

∫ a

0

I(tl−1+si,tl+si](s)Eu2
j (s) ds

+
n∑

l=1

∫ a

0

∫ a

0

I(tl−1+si,tl+si](s)E(Dtuj(s))2 ds dt

=
∫ a

0

Eu2
j (s) ds +

∫ a

0

∫ a

0

E(Dtuj(s))2 ds dt

= ||uj ||21,2.



32 Y. HU, S.-E. A. MOHAMMED AND F. YAN

Hence we obtain the following inequality

(5.14) E|
n∑

l=1

∆liUi∆ljUj −
n∑

l=1

∆liVi∆ljVj | ≤ ||ui − vi||1,2||uj ||1,2 + ||vi||1,2||uj − vj ||1,2.

Since L1,2 ∩ L4(Ω × [0, a]) is dense in L1,2, it suffices to prove (5.12) for the case u ∈
L1,2 ∩ L4(Ω× [0, a]). Set

(5.15) ui(t) :=
{

u(t), 0 ≤ t ≤ a + si

0, t < 0 or t > a + si.

Define

(5.16) un
i (t) :=

n∑

l=1

I(tl−1+si,tl+si](t)
tl − tl−1

∫ tl+si

tl−1+si

u(s) ds.

and un
j similarly. Let

(5.17)

{
Ui(t) :=

∫ t

0
ui(s) dW (s)

Uj(t) :=
∫ t

0
uj(s) dW (s)

{
Un

i (t) :=
∫ t

0
un

i (s) dW (s)

V n
j (t) :=

∫ t

0
un

j (s) dW (s).

Using (5.14) it is easy to check that

(5.18) lim
n→∞

E|
n∑

l=1

∆liU
n
i ∆ljU

n
j −

n∑

l=1

∆liUi∆ljUj | = 0.

By the formula for the Skorohod integral of a process multiplied by a random variable

([22], Theorem 3.2), we get

∆liU
n
i =

∫ tl+si

tl−1+si

n∑

k=1

I(tk−1+si,tk+si](t)
tk − tk−1

∫ tk+si

tk−1+si

ui(s) ds dW (t)

=
1

tl − tl−1

∫ tl+si

tl−1+si

ui(s) ds[W (tl + si)−W (tl−1 + s1)]

+
1

tl − tl−1

∫ tl+si

tl−1+si

∫ tl+si

tl−1+si

Dtui(s) ds dt

= Pli∆liW + Qli.

where

Pli :=
1

tl − tl−1

∫ tl+si

tl−1+si

ui(s) ds, Qli :=
1

tl − tl−1

∫ tl+si

tl−1+si

∫ tl+si

tl−1+si

Dtui(s) ds dt.
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Therefore,

n∑

l=1

∆liU
n
i ∆ljU

n
j =

n∑

l=1

(Pli∆liW + Qli)(Plj∆ljW + Qlj)

=
n∑

l=1

(PliPlj)(∆liW∆ljW ) +
n∑

l=1

(PliQlj)∆liW

+
n∑

l=1

(PljQli)∆ljW +
n∑

l=1

QliQlj .

By Hölder’s inequality,

(5.19)
n∑

l=1

Q2
li ≤

n∑

l=1

∫ tl+si

tl−1+si

∫ tl+si

tl−1+si

|Dtui(s)|2 ds dt .

Thus lim
n→∞

E

n∑

l=1

Q2
li = 0. Now

n∑

l=1

(Pli∆liW )2 =
n∑

l=1

(∆liW )2

(tl − tl−1)2

(∫ tl+si

tl−1+si

ui(s) ds

)2

=
n∑

l=1

(∆liW )2

tl − tl−1

∫ tl+si

tl−1+si

(un
i (s))2 ds .

It is easy to check that E||(un
i )2||L2([0,a+si]) ≤ E||u2

i ||L2([0,a+si]) and

(5.20) lim
n→∞

E||(un
i )2 − u2

i ||L2([0,a+si]) = 0 .

By an argument similar to the one used in the proof of Lemma A.1, we can show that

{∑n
l=1(Pli∆liW )2, n ≥ 1} is uniformly integrable. Applying Lemma A.1, we have

(5.21) lim
n→∞

E|
n∑

l=1

(Pli∆liW )2 −
∫ a+si

0

u2
i (s) ds| = 0.

The Cauchy-Schwartz type inequality

(5.22) E

∣∣∣∣
n∑

l=1

(Pli∆liW )Qli

∣∣∣∣ ≤
√√√√E

n∑

l=1

(Pli∆liW )2E
n∑

l=1

Q2
li
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together with (5.19) and (5.21) implies that lim
n→∞

E|
n∑

l=1

(Pli∆liW )Qli| = 0.

Now consider the case i 6= j. The Cauchy-Schwartz inequality implies

(5.23) E|
n∑

l=1

QljQli| ≤
√√√√E

n∑

l=1

Q2
ljE

n∑

l=1

Q2
li .

We may write

n∑

l=1

(PliPlj)(∆liW∆ljW ) =
n∑

l=1

∆liW∆ljW

(tl − tl−1)2

∫ tl+si

tl−1+si

ui(s) ds

∫ tl+sj

tl−1+sj

uj(s) ds

=
n∑

l=1

∆liW∆ljW

tl − tl−1

∫ tl+si

tl−1+si

un
i (s)ûn

j (s) ds ,(5.24)

where

(5.25) ûn
j (s) =

m∑

l=1

I(tl−1+si,tl+si](s)
tl − tl−1

∫ tl+si

tl−1+si

uj(s′ + sj − si) ds′ .

Similar to the case i = j, we have

(5.26) lim
n→∞

E|
n∑

l=1

(PliPlj)(∆liW∆ljW )| = 0.

This completes the proof of the proposition. ¤

Suppose that

X̄tl
= Xtl−1 + αl(Xtl

−Xtl−1), t̄l = tl−1 + βl(tl − tl−1)

for some random variables 0 ≤ αl, βl,≤ 1, l = 1, · · · , n. Denote

(5.27) ∆(Π(Xtl
)) = (Π(∆Xtl

)) = Π(Xtl
)−Π(Xtl−1),

(5.28) Π(X̄tl
) = Π(Xtl−1) + αl∆Π(Xtl

),

(5.29) ∆liX = X(tl + si)−X(tl−1 + si), for 1 ≤ i ≤ k and 1 ≤ l ≤ n.
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Proposition 5.5.

Suppose that φ ∈ C1,2(T ×Rk,R), and let 1 ≤ i, j ≤ k. Under the hypotheses of

Proposition 5.4, we have

(5.30)
n∑

l=1

∂2φ

∂xi∂xj
(tl−1,Π(X̄tl

))∆liX∆ljX →
{ ∫ t+si

0
∂2φ
∂x2

i
(s, Π(Xs))u2(s) ds, i = j

0, i 6= j

as n →∞, in probability.

Proof.

For 0 ≤ i, j ≤ n,

∆liX∆ljX = (∆liU + ∆liV )(∆ljU + ∆ljV )(5.31)

= ∆liU∆ljU + ∆liU∆ljV + ∆liV ∆ljU + ∆liV ∆ljV,

where U, V are defined by (5.2). Since U, V are continuous and V is of bounded variation,

it follows that

(5.32)





limn→∞
∑n

l=1 ∆liU∆ljV = 0
limn→∞

∑n
l=1 ∆liV ∆ljU = 0

limn→∞
∑n

l=1 ∆liV ∆ljV = 0

in probability, for all 0 ≤ i, j ≤ n. To handle the term
∑n

l=1 ∆liU∆ljU , we adapt an

approach by Nualart and Pardoux (c.f. [22] Theorem 5.4 or [23] Theorem 3.2.1).

Set Y (s) := ∂2φ
∂x2

i
(s, Π(Xs))I[0,t](s) and

(5.33) Y n(s) := Y (0)I{0}(s) +
n∑

l=1

∂2φ

∂x2
i

(tl−1,Π(X̄tl
))I(tl−1,tl](s).

Then Y n(s) → Y (s) as n → ∞, uniformly in s ∈ [0, t]. Applying Proposition 5.4 and

Lemma A.2, we get

(5.34)
n∑

l=1

∂2φ

∂xi∂xj
(tl−1,Π(X̄tl

))∆liX∆ljX → δij

∫ t+si

0

∂2φ

∂x2
i

(s, Π(Xs))u2(s) ds

in probability as n →∞. ¤
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Proposition 5.6.

Suppose that φ ∈ C1,2(T × Rk) and let X(t) be a continuous stochastic process

defined by (5.1), where u ∈ L2,4
loc, v ∈ L1,4

loc, and η ∈ C([−r, 0],Rm) is of bounded variation.

Assume that πn : −r = s0 < · · · < sn = 0 are partitions of [−r, 0] such that |πn| → 0 as

n →∞. Then, for each 1 ≤ i ≤ k and each t ∈ T , we have

lim
n→∞

n∑

l=1

∂φ

∂xi
(tl−1, Π(Xtl−1))∆liX

(5.35)

=
∫ t

0

∂φ

∂xi
(s, Π(Xs)) dX(s + si) +

k∑

j=i+1

∫ t

0

∂2φ

∂xi∂xj
(s, Π(Xs))u2(s + si) ds

+
k∑

j=1

∫ t

0

∂2φ

∂xi∂xj
(s, Π(Xs))

[∫ s+sj

0

Ds+siu(r) dW (r) +
∫ s+sj

0

Ds+siv(r) dr

]
u(s + si) ds

in probability.

Proof.

By a localization argument, we may assume that φ ∈ C1,2
b (T ×Rk,R). Let |πn| <

min{1≤i≤k} |si − si−1|. Fix 1 ≤ i ≤ k, 1 ≤ l ≤ n, and set

(5.36) Fl :=
∂φ

∂xi
(tl−1, Π(Xtl−1)).

Using an integration by parts formula ([22], Theorem 3.2), it follows that

(5.37) Fl∆liU =
∫ tl+si

tl−1+si

u(s)Fl dW (s) +
∫ tl+si

tl−1+si

Dr(Fl)u(r) dr,

where U is defined by (5.2). The chain rule yields

(5.38) Dr(Fl) =
k∑

j=1

∂2φ

∂xi∂xj
(tl−1,Π(Xtl−1))DrX(tl−1 + sj).

Now, taking the Malliavin derivative Dr in (5.1) gives

(5.39) DrX(t) = u(r)I{r≤t} +
∫ t

0

Dru(s) dW (s) +
∫ t

0

Drv(s) ds,
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Consequently
n∑

l=1

∂φ

∂xi
(tl−1,Π(Xtl−1))∆liU = c1 + c2 + c3 + c4,

where

(5.40)





c1 :=
∑n

l=1

∫ tl+si

tl−1+si

∂φ
∂xi

(tl−1, Π(Xtl−1))u(s) dW (s)

c2 :=
∑n

l=1

∫ tl+si

tl−1+si

∑k
j=1

∂2φ
∂xi∂xj

(tl−1,Π(Xtl−1))I{r≤tl−1+sj}u
2(r) dr

c3 :=
∑n

l=1

∫ tl+si

tl−1+si

∑k
j=1

∂2φ
∂xi∂xj

(tl−1,Π(Xtl−1))
∫ tl−1+sj

0
Dru(s) dW (s)u(r) dr

c4 :=
∑n

l=1

∫ tl+si

tl−1+si

∑k
j=1

∂2φ
∂xi∂xj

(tl−1,Π(Xtl−1))
∫ tl−1+sj

0
Drv(s) dsu(r) dr.

We will study the limits of the above expressions as n →∞.

Step 1. First we show that the limit of c2 is given by

(5.41) c2 →
k∑

j=i+1

∫ t+si

0

∂2φ

∂xi∂xj
(r − si, Π(Xr−si))u

2(r) dr, a.s.

If j ≤ i, then tl−1 + si ≥ tl−1 + sj . So when tl−1 + si < r < tl + si, I{r≤tl+sj} = 0.

We have

c2 =
k∑

j=i+1

n∑

l=1

∫ tl+si

tl−1+si

∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))I{r≤tl−1+sj}u

2(r) dr

→
k∑

j=i+1

∫ t+si

0

∂2φ

∂xi∂xj
(r − si, Π(Xr−si))u

2(r) dr

a.s. as n →∞.

Step 2. Next we study the limit of c3 as n →∞. We claim that

(5.42) c3 →
k∑

j=1

∫ t+si

0

∂2φ

∂xi∂xj
(r − si,Π(Xr−si))

∫ r−si+sj

0

Dru(s) dW (s)u(r) dr
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as k →∞ in probability. In fact,

Tn
j := |

n∑

l=1

∫ tl+si

tl−1+si

[
∂2φ

∂xi∂xj
(tl−1,Π(Xtl−1))

∫ tl−1+sj

0

Dru(s) dW (s)

−
∫ t+si

0

∂2φ

∂xi∂xj
(r − si, Π(Xr−si))

∫ r−si+sj

0

Dru(s) dW (s)]u(r) dr|

≤ |
n∑

l=1

∫ tl+si

tl−1+si

∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))

∫ r+sj−si

tl−1+sj

Dru(s) dW (s))u(r) dr|

+ |
n∑

l=1

∫ tl+si

tl−1+si

[
∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))−

∂2φ

∂xi∂xj
(r − si,Π(Xr−si

))]

×
∫ r−si+sj

0

Dru(s) dW (s)u(r) dr|

≤ ‖ ∂2φ

∂xi∂xj
‖∞

n∑

l=1

∫ tl+si

tl−1+si

|
∫ r+sj−si

tl−1+sj

Dru(s) dW (s))||u(r)| dr

+ sup
1≤l≤n

sup
r∈[tl−1+si,tl+si]

| ∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))−

∂2φ

∂xi∂xj
(r − si,Π(Xr−si))|

×
∫ tl+si

0

|
∫ r−si+sj

0

Dru(s) dW (s)u(r)| dr

= Tn
j1 + Tn

j2,

where Tn
j1 and Tn

j2 denote the first and second term on the right hand side of the last

inequality. Using the Cauchy-Schwartz inequality and the Lp inequality for Skorohod

integral ([22] Proposition 3.5, [23] p.158), we have

ETn
j1 ≤

∥∥∥∥
∂2φ

∂xi∂xj

∥∥∥∥
∞

(E
∫ a+si

0

u2(r) dr)
1
2

× {E
n∑

l=1

∫ tl+si

tl−1+si

∫ r+sj−si

tl−1+sj

|Dru(s)|2 ds dr

+ E

n∑

l=1

∫ tl+si

tl−1+si

∫ r+sj−si

tl−1+sj

∫ a

0

|Dθ(Dru(s))|2 dθ ds dr} 1
2

→ 0

as n → ∞. The uniform continuity of ∂2φ
∂xi∂xj

implies Tn
j2 → 0 a.s. So as n → ∞, Tn

j → 0

in probability.
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Step 3. Now we will show that

(5.43) c4 →
k∑

j=1

∫ t+si

0

∂2φ

∂xi∂xj
(r − si, Π(Xr−si

))
∫ r+sj−si

0

Drv(s) dsu(r) dr, a.s.

As in Step 2, we have

|
n∑

l=1

∫ tl+si

tl−1+si

[
∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))

∫ tl−1+sj

0

Drv(s) ds

− ∂2φ

∂xi∂xj
(r − si, Π(Xr−si))

∫ r−si+sj

0

Drv(s) ds

]
u(r) dr|

≤
∥∥∥∥

∂2φ

∂xi∂xj

∥∥∥∥
∞

n∑

l=1

∫ tl+si

tl−1+si

|
∫ r+sj−si

tl−1+sj

Drv(s) ds||u(r)| dr

+ sup
1≤l≤n

sup
r∈[tl−1+si,tl+si]

∣∣∣∣
∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))−

∂2φ

∂xi∂xj
(r − si, Π(Xr−si))

∣∣∣∣

×
∫ tl+si

0

∣∣∣∣
∫ r−si+sj

0

Drv(s) ds

∣∣∣∣|u(r)| dr

→ 0 a.s as n →∞ .

Step 4. Finally we study the limit of c1 as n →∞. We shall show that

(5.44) c1 →
∫ t+si

0

∂φ

∂xi
(s− si, Π(Xs−si))u(s) dW (s)

in L2(Ω,R) as n →∞. To see this, define

(5.45) un(s) = u(s)
n∑

l=1

∂φ

∂xi
(tl−1,Π(Xtl−1))I(tl−1+si,tl+si](s).

It suffices to show that

(5.46) un(s) → ∂φ

∂xi
(s− si,Π(Xts−si

))u(s)I(0,t+si](s)

in L1,2 as n →∞. It is clear that the sequence {un(s)} converges to

∂φ
∂xi

(s−si, Π(Xs−si))u(s)I(0,t+si](s) in L2(Ω×T,R). It remains to show that the sequence
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{Dru
n(s)}∞n=1, r, s ∈ T 2, converges in L2(Ω×T 2,R) to Dr

[
∂φ

∂xi
(s−si, Π(Xs−si

))u(s)I(0,t+si](s)
]
.

Now

Dru
n(s)

= Dru(s)
n∑

l=1

∂φ

∂xi
(tl−1, Π(Xtl−1))I(tl−1+si,tl+si](s)

+ u(s)
n∑

l=1

[
k∑

j=1

∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))

∫ tl−1+sj

0

Dru(s′) dW (s′)]I(tl−1+si,tl+si](s)

+ u(s)
n∑

l=1

[
k∑

j=1

∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))

∫ tl−1+sj

0

Drv(s′) ds′]I(tl−1+si,tl+si](s)

+ u(s)
n∑

l=1

[
k∑

j=1

∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))u(r)I[0,tl−1+sj ](r)]I(tl−1+si,tl+si](s)

= d1 + d2 + d3 + d4.

where d1, d2, d3, d4 stand for the first, second, third and fourth term, respectively, on the

right hand side of the above equality. It is easy to see that

d1 → Dru(s)
∂φ

∂xi
(Π(s− si, Xs−si))I(0,t+si](s)

in L2(Ω,R). Since for all 1 ≤ j ≤ k, u(s)
∫ s+sj−si

0
Drv(θ) dθ belongs to L2(Ω × T 2,R),

then by Lebesgue’s dominated convergence theorem, we have

d3 :=u(s)
k∑

j=1

n∑

l=1

[
∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))

∫ s+sj−si

0

Drv(θ) dθ]I(tl−1+si,tl+si](s)

→
k∑

j=1

u(s)[
∂2φ

∂xi∂xj
(s− si,Π(Xs−si))

∫ s+sj−si

0

Drv(θ) dθ]I(0,t+si](s)

in L2(Ω× T 2,R). Moreover,

n∑

l=1

∫ tl+si

tl−1+si

∫ a

0

u2(s)
[

∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))

]2

[
∫ s+sj−si

tl−1+sj

Drv(θ) dθ]2 dr ds

≤ |πn|
∥∥∥∥

∂2φ

∂xi∂xj

∥∥∥∥
2

∞

∫ a

0

u2(s) ds

∫ a

0

∫ a

0

(Drv(θ))2 dr dθ

→ 0
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as n →∞ in L1(Ω,R), because v ∈ L1,4 and u ∈ L4(Ω× T,R). Hence,

d3 →
k∑

j=1

u(s)[
∂2φ

∂xi∂xj
(s− si, Π(Xs−si

))
∫ s+sj−si

0

Drv(θ) dθ]I(0,t+si](s)

in L2(Ω×T 2,R). To find the limit of d2, we need to check that for all j, the two parameter

process
(
u(s)

∫ s+sj−si

0
Dru(θ) dW (θ) , 0 ≤ s, r ≤ a

)
belongs to L2(Ω×T 2,R). This follows

from the following estimates:

E

∫ a

0

∫ a

0

u2(s)[
∫ s+sj−si

0

Dru(θ) dW (θ)]2 ds dr

≤
{

E

∫ a

0

u4(s) dsE

∫ a

0

{
∫ a

0

[
∫ s+sj−si

0

Dru(θ) dW (θ)]2 dr}2 ds

} 1
2

≤ C{E
∫ a

0

u4(s) ds[E(
∫ a

0

∫ a

0

|Dru(θ)|2 dθ dr)2

+ E(
∫ a

0

∫ a

0

∫ a

0

Dα(Dru(θ)) dθ dr dα)2]} 1
2 .

Here we have used a slight modification of the Lp estimate of the Skorohod integral for

p = 4 (c.f. [23], Exercise 3.2.7). Using similar Lp estimates to the above, we obtain

n∑

l=1

∫ tl+si

tl−1+si

∫ a

0

u2(s)
[

∂2φ

∂xi∂xj
(tl−1, Π(Xtl−1))

]2

[
∫ s+sj−si

tl−1+sj

Dru(θ) dW (θ)]2 dr ds

(5.47)

≤
∥∥∥∥

∂2φ

∂xi∂xj

∥∥∥∥
2

∞

(∫ a

0

Eu4(s) ds

) 1
2

×
{

n∑

l=1

E

∫ tl+si

tl−1+si

[ ∫ a

0

(
∫ s+sj−si

tl−1+sj

Drv(θ) dθ)2 dr

]2

ds

} 1
2

.

Note that the right hand side of the above inequality tends to zero as n →∞. Thus

(5.48) d2 →
k∑

j=1

u(s)[
∂2φ

∂xi∂xj
(s− si, Π(Xs−si))

∫ s+sj−si

0

Dru(θ) dW (θ)]I(0,t+si](s)

in L2(Ω× T 2,R) as n →∞.

It is easy to check that

d4 →
k∑

j=1

u(s)
∂2φ

∂xi∂xj
(s− si, Π(Xs−si))u(r)I[0,s+sj−si](r)I(0,t+si](s)
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as n →∞ in L2(Ω,R). Therefore,

(5.49) Dru
n(s) → Dr[u(s)

∂2φ

∂xi∂xj
(s− si, Π(Xs−si

))I(0,t+si](s)]

in L2(Ω× T 2,R). Finally it is easy to see that

c1 →
∫ t+si

0

∂φ

∂xi
(s− si, Π(Xs−si

))u(s) dW (s)

in L2(Ω,R) as n →∞.

Step 5. The convergence

(5.50)
n∑

l=1

∂φ

∂xi
(tl−1, Π(Xtl−1))∆liV →

∫ t+si

si

∂φ

∂xi
(s− si,Π(Xs−si)) dV (s) a.s.

as n →∞, is easy to verify. ¤

We complete the section by giving a Stratonovich version of the Itô formula (5.7).

Suppose that k ≥ 1 and p ≥ 2. The set Lk,p
d,C (c.f. [22] Definition 7.2, [23] p.167)

is the class of processes u ∈ Lk,p
d such that the mappings s ↪→ Ds∧tu(s ∨ t) and s ↪→

Ds∨tu(s ∧ t) are continuous in Lp(Ω), uniformly in t, and sups,t∈T E(|Dsu(t)|p) < ∞.

The space L1,2
d,C,loc is the class of processes that are locally in L1,2

d,C . For any u ∈ L1,2
d,C ,

the following limits

(5.52)

{
D+

t u(t) = limε↓0
∑d

i=1 Di
tu

i(t + ε)

D−
t u(t) = limε↓0

∑d
i=1 Di

tu
i(t− ε)

exist in L2(Ω) uniformly in t, we set 5 = D+ + D−, i.e., (5u)(t) = D+
t u(t) + D−

t u(t).

Consider the process

(5.53) X(t) =
{

η(0) +
∫ t

0
u(s) ◦ dW (s) +

∫ t

0
v(s) ds, t > 0

η(t), −r ≤ t ≤ 0,

where η belongs to C and is of bounded variation, u = (u1, · · · , um)T , ui ∈ L2,4
d,C,loc,

(5u) ∈ L1,4
loc, v = (v1, · · · , vm)T , vi ∈ L1,4

loc, and the stochastic integral is a Stratonovich

one. Assume also that the process X is continuous.

Using the relationship between the Skorohod and Stratonovich integrals ([22], Theo-

rem 7.3; [23], Theorem 3.11) and Theorem 3.3, we can easily obtain the following Stratonovich

version of Itô’s formula for the segment process Xt.
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Corollary 5.8.

Suppose that the process X(t) is defined by (5.53), and let φ ∈ C1,2(T ×Rmk,R).

Then

φ(t,Π(Xt))− φ(0, Π(X0))
(5.54)

=
∫ t

0

∂φ

∂s
(s, Π(Xs)) ds +

k∑

i=1

∫ t

0

∂φ

∂~xi
(s,Π(Xs))u(s + si) ◦ dW (s + si)

+
k∑

i=1

∫ t

0

∂φ

∂~xi
(s, Π(Xs))v(s + si) ds .

for all t ∈ T a.s..

6. Weak differentiability of solutions of SDDE’s.

In this section, we will study the weak differentiability of the solution of the Itô

SDDE (1.6). Bell and Mohammed ([4]) have applied the Malliavin calculus to study

regularity of solutions of SDDE’s with a single delay in the noise term. Their analysis

relies on weak differentiability of the solution of the SDDE. In Section 8 of this article,

the weak differentiability of the solution to the SDDE (1.6) together with the Itô formula

(5.10) are used to develop higher order numerical schemes for solving the SDDE. The next

three results (Proposition 6.1, Lemma 6.2, and Proposition 6.3) are analogous to those in

Nualart ([23] Theorem 2.2.1, Lemma 2.2.2, and Theorem 2.2.2). Denote Dk,∞
m := ∩p≥2Dk,p

m ,

for k ∈ N. Recall that Dl
r, 1 ≤ l ≤ d, stand for weak differentiation with respect to the

l-th component of W .

Proposition 6.1. (c.f. [23], Proposition 1.2.3).

In the Itô SDDE (1.6), assume that g ∈ C0,1
b (T × Rk1m; L(Rd,Rm) and h ∈

C0,1
b (T ×Rk2m;Rm). Let X be the solution of (1.6). Then X(t) ∈ D1,∞

m for all t ∈ T , and

(6.1) sup
0≤r≤a

E( sup
r≤s≤a

|DrX(s)|p) < ∞
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for all p ≥ 2. Furthermore, the “partial” weak derivatives Dl
rX

j(t) with respect to the l-th

coordinate of W satisfy the following linear SDDE’s a.s.:

(6.2) Dl
rX

j(t) =





gjl(r,Π1(Xj
r )) +

∫ t

r

∑k1
i=1

∂gjl

∂~xi
(s,Π1(Xs))Dl

rX
j(s + s1,i) dW l(s)

+
∫ t

0

∑k2
i=1

∂hj

∂~xi
(s,Π2(Xs))Dl

rX
j(s + s2,i) ds, t ≥ r,

= 0, t < r,

for l = 1, · · · , d, j = 1, · · · ,m. In (6.2), gjl is the (j, l) entry of the m× d matrix g, and

hj is the j-th coordinate of h.

Proof.

For simplicity, we will only consider the one-dimensional case d = m = 1.

X0(t) =
{

η(0), t ≥ 0
η(t), −1 ≤ t < 0,

(6.3) Xn+1(t) = η(0) +
∫ t

0

g(s, Π1(Xn
s )) dW (s) +

∫ t

0

h(s, Π2(Xn
s )) ds.

It is easy to see that

Dr(
∫ t

0

g(s,Π1(Xn
s )) dW (s))(6.4)

= g(r,Π1(Xn
r )) +

∫ t

r−s1,k1

Dr(g(s, Π1(Xn
s ))) dW (s)

and

(6.5) Dr(
∫ t

0

h(s, Π2(Xn
s )) ds) =

∫ t

r−s2,k2

Dr(h(s,Π2(Xn
s ))) ds.

Since g and h have bounded space derivatives, it is easy to see that there is a positive

constant K such that

(6.6)
{

Dr(g(s,Π1(Xn
s ))) ≤ K supr≤u≤s |DrX

n(u)|
Dr(h(s,Π2(Xn

s ))) ≤ K supr≤u≤s |DrX
n(u)|,
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almost surely. From the Burkholder-Davis-Gundy inequality and (6.3)-(6.6), it follows that

Xn(t) ∈ D1,∞ for all t ∈ [0, a], and there are positive constants C1, C2 such that

(6.7) E( sup
r≤u≤t

|DrX
n+1(u)|p) ≤ C1(1 + E‖Xn

r ‖p
C) + C2

∫ t

r

E

(
sup

r≤u≤s
|DrX

n(u)|p
)

ds.

By induction on n, the above inequality implies that E(supr≤s≤a |DrX
n(s)|p) are uniformly

bounded in n for all p ≥ 2. By [23], proposition 1.5.5, it follows that X(t) ∈ D1,∞ for

all t. Applying the operator D to (1.6) (and using [23] Proposition 1.2.3), we obtain the

linear SDDE (6.2) for the weak derivative of X(t). The estimate (6.1) follows from (6.2),

Burkholder-Davis-Gundy’s inequality and Gronwall’s lemma. ¤

The following lemma may be proved using similar ideas. Its proof is left to the

reader.

Lemma 6.2.

Suppose that the real-valued process α = {α(r, t) : t ∈ [r, a]} is adapted and

continuous. Assume that the processes a(t) = (a1(t), · · · , ak1(t)) ∈ Rk1 and b(t) =

(b1(t), · · · , bk2(t)) ∈ Rk2 are adapted, continuous and uniformly bounded. Furthermore,

suppose that the random variables α(r, t), a(t) and b(t) belong to D1,∞ and satisfy the

conditions

(6.11)





sup
0≤r≤a

E( sup
r≤t≤a

|α(r, t)|p) + sup
0≤r,s≤a

E( sup
s≤t≤a

|Dsα(r, t)|p) < ∞

sup
0≤s≤a

{
E( sup

s≤t≤a
|a(t)|p) + E( sup

s≤t≤a
|Dsa(t)|p)

}
< ∞

sup
0≤s≤a

{
E( sup

s≤t≤a
|b(t)|p) + E( sup

s≤t≤a
|Dsb(t)|p)

}
< ∞

for all p ≥ 2. Let Y = {Y (t) : t ∈ [0, a]} be the solution of the linear SDDE

(6.12) Y (t) =
{

α(r, t) +
∫ t

r
〈a(s), Π1(Ys)〉Rk1 dW (s) +

∫ t

r
〈b(s), Π2(Ys)〉Rk2 ds, t ≥ r,

0, 0 ≤ t ≤ r.

Then Y (t) belongs to D1,∞, and for all integers p ≥ 2, we have

(6.13)





sup
0≤s≤a

E( sup
s≤t≤a

|DsY (t)|p) < ∞

sup
0≤s≤a

E( sup
s≤t≤a

|Y (t)|p) < ∞.
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Furthermore, the weak derivative DsY (t) of Y (t) satisfies the linear SDDE

DsY (t) = Dsα(r, t) + 〈a(s), Π1(Ys)〉Rk1 I{r≤s≤t}
(6.14)

+
∫ t

r

[〈Dsa(v),Π1(Yv)〉Rk1 + 〈a(v), Π1(DsYv)〉Rk1 ] dW (v)

+
∫ t

r

[〈Dsb(v),Π2(Yv)〉Rk2 + 〈b(v),Π2(DsYv)〉Rk2 ] dv, s < t.

The next proposition follows from Proposition 6.1 and Lemma 6.2.

Proposition 6.3.

Let X = {X(t) : t ∈ T = [0, a]} be the solution of the SDDE (1.6), where g ∈
C0,2

b (T × Rk1m, L(Rd,Rm)), h ∈ C0,2
b (T × Rk2m,Rm) have bounded first and second

partial derivatives in the space variables. Then X(t) ∈ D2,∞
m for all t ∈ T , and

(6.15) sup
0≤r1,r2≤a

E( sup
r1∨r2≤s≤a

|Dl1
r1

Dl2
r2

X(s)|p) < ∞

for l1, l2 = 1, · · · , d, and all p ≥ 2.

7. Strong approximation of multiple Stratonovich integrals.

The following iterated Stratonovich integrals are used in the Milstein scheme for

the SDDE (1.6):

(7.1) Ji,j(t0, t1;−b) :=
∫ t1+b

t0+b

∫ s−b

t0

◦dW i(v) ◦ dW j(s),

where 0 < t0 < t1, b ≥ 0.

We will adopt the discretization scheme in [16] (section 5.8) in order to handle

the above double stochastic integral. For alternative discretization approaches to iterated

stochastic integrals, see [10] and [26].

Set

(7.2) J(t0, t1;−b) := J1,1(t0, t1;−b),
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t := t1 − t0 and r := 2π/t. We choose a complete orthonormal basis of L2[0, t] as

(7.3) { 1√
t
} ∪ {

√
2
t

sinnrs,

√
2
t

cosnrs : n = 1, 2, · · · , 0 ≤ s ≤ t}.

Set W̄ i(s) := W i(s + t0) −W i(t0) and B̄j(s) := W̄ j(s + b) − W̄ j(b), s ≥ 0, 1 ≤ i, j ≤ d.

Using the Kahunen-Loève expansion technique, we have

(7.4) W̄ i(s)− s

t
W̄ i(t) =

ai
0(t0)
2

+
∞∑

n=1

[ai
n(t0) cos nrs + bi

n(t0) sin nrs]

and

(7.5) B̄j(s)− s

t
B̄j(t) =

aj,b
0 (t0)

2
+

∞∑
n=1

[aj,b
n (t0) cos nrs + bj,b

n (t0) sin nrs]

where

(7.6)

{
ai

n(t0) = 2
t

∫ t

0
(W̄ i(s)− s

t W̄
i(t)) cos nrs ds

bi
n(t0) = 2

t

∫ t

0
(W̄ i(s)− s

t W̄
i(t)) sin nrs ds

and

(7.7)

{
aj,b

n (t0) = 2
t

∫ t

0
(B̄j(s)− s

t B̄
j(t)) cos nrs ds

bj,b
n (t0) = 2

t

∫ t

0
(B̄j(s)− s

t B̄
j(t)) sin nrs ds

.

for n ≥ 1. The convergences in (7.4) and (7.5) are in L2(Ω× [0, t]). It is easy to see that

if n ≥ 1, ai
n(t0), bi

n(t0), aj,b
n (t0) and bj,b

n (t0) are normally distributed with mean 0 and

variance t/2π2n2 ([16], p.198). Furthermore, {ai
n(t0), bi

n(t0)} and {aj,b
n (t0), bj,b

n (t0)} are

pairwise independent ([16], p. 198). One can use well-known random number generators

to simulate these random coefficients (c.f. [9], section 3.1.2, [16], section 1.3, and [17],

section 1.2).

Lemma 7.1.

Let t0, t ≥ 0. Then

Ji,j(t0, t0 + t;−b) =
1
2
(W̄ i(t)B̄j(t))− 1

2
(W̄ i(t)aj,b

0 (t0)− B̄j(t)ai
0(t0))

(7.8)

+ π

∞∑
n=1

n[ai
n(t0)bj,b

n (t0)− bi
n(t0)aj,b

n (t0)], 1 ≤ i, j ≤ d,

where the infinite series converges in L2(Ω,R).
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Proof.

It suffices to show (7.8) for t0 = 0. Fix t > 0. For simplicity of notation, we write

(7.9) aj
n = aj

n(0), bj
n = bj

n(0), aj,b
n = aj,b

n (0), bj,b
n = bj,b

n (0)

and

(7.10) W i
N (s) =

s

t
W i(t) +

ai
0

2
+

N∑
n=1

(ai
n cos nrs + bi

n sin nrs),

It is easy to check that

(7.11)
∫ t+b

b

∫ s−b

0

◦dW i
N (v) ◦ dW j(s) →

∫ t+b

b

∫ s−b

0

◦dW i(v) ◦ dW j(s)

in L2(Ω) as N →∞. Then we may write

Ji,j(0, t;−b) =
∫ t+b

b

W i(s− b) ◦ dW j(s)

=
∫ t+b

b

s− b

t
W i(t) ◦ dW j(s) +

ai
0

2
B̄j(t)

+
∞∑

n=1

[ai
n

∫ t+b

b

cos nr(s− b) dW j(s) + bi
n

∫ t+b

b

sin nr(s− b) dW j(s)].

For any n ≥ 1, we have

∫ t+b

b

cos nr(s− b) dW j(s) =
∫ t

0

cos nrs dB̄j(s)

=
∫ t

0

cos nrs d(B̄j(s)− s

t
B̄j(t)) +

∫ t

0

cosnrs d(
s

t
B̄j(t))

= cos nrs(B̄j(s)− s

t
B̄j(t))|t0 + nr

∫ t

0

(B̄j(s)− s

t
B̄j(t)) sin nrs ds

+
B̄j(t)

t

∫ t

0

cosnrs ds

=
t

2
nrbj,b

n .

Similarly, we have

(7.12)
∫ t+b

b

sin nr(s− b) dW j(s) = − t

2
nraj,b

n .
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So

(7.13) Ji,j(0, t;−b) =
W i(t)

t

∫ t

0

s dB̄j(s) +
ai
0

2
B̄j(t) +

rt

2

∞∑
n=1

n(ai
nbj,b

n − bi
naj,b

n ).

On the other hand,

∫ t

0

s dB̄j(s) = tB̄j(t)−
∫ t

0

B̄j(s) ds

=
t

2
B̄j(t)−

∫ t

0

(B̄j(s)− s

t
B̄j(t)) ds

=
t

2
(B̄j(t)− aj,b

0 ) .

Therefore,

(7.14) Ji,j(0, t;−b) =
1
2
W i(t)B̄j(t)− 1

2
(W i(t)aj,b

0 − B̄j(t)ai
0) +

rt

2

∞∑
n=1

n(ai
nbj,b

n − bi
naj,b

n ).

¤

The expansion of Ji,j(0, t;−b) is a generalization of the expansion of

J(i, j) :=
∫ t

0

∫ s

0

◦ dW i(v) ◦ dW j(s)(7.15)

=
1
2
(W i(t)W j(s))− 1

2
(W i(t)aj,b

0 −W j(t)ai
0)

+
rt

2

∞∑
n=1

n(ai
nbj

n − bi
naj

n)

(see [10], [16], and [17]). Set

Jp
i,j(t0, t1;−b) :=

1
2
(W̄ i(t)B̄j(t))− 1

2
(W̄ i(t)aj,b

0 (t0)− B̄j(t)ai
0(t0))(7.16)

+ π

p∑
n=1

n[ai
n(t0)bj,b

n (t0)− bi
n(t0)aj,b

n (t0)].

Then Jp
i,j(t0, t1;−b) can be used to approximate Ji,j(t0, t1;−b) in the mean square. The

rate of convergence is given in Lemma 7.2 below.
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Lemma 7.2.

For any integer p ≥ 1 and t > 0, we have

(7.17) E|Jp
i,j(0, t;−b)− Ji,j(0, t;−b)|2 ≤ t2

2π2p
.

Proof.

Let p ≥ 1 be any integer. Then

(7.20)
∞∑

n=p+1

1
n2

≤
∫ ∞

p

1
u2

du =
1
p
.

Since {W i(t)} and {Bj(t)} are independent, E(ai
nbi

n) = 0 and E(aj,b
n bj,b

n ) = 0, we have

E|Jp
i,j(0, t;−b)− Ji,j(0, t;−b)|2 = π2

∞∑
n=p+1

n2E(ai
nbj,b

n − bi
naj,b

n )2

= π2
∞∑

n=p+1

n2[E(ai
nbj,b

n )2 + E(bi
naj,b

n )2]

=
t2

2π2

∞∑
n=p+1

1
n2

≤ t2

2π2p
. ¤

8. The strong Milstein scheme.

In this section we construct a strong Milstein scheme of order 1 for the SDDE (1.6).

Our construction relies heavily on the Itô formula for “tame” functions (Theorem 5.3).

Throughout this section, we assume that in (1.6) the coefficients g ∈ C1,2(T ×
Rk1m, L(Rd,Rm)) and h ∈ C1,2(T ×Rk2m,Rm). For convenience, set W (s) = W (0) = 0,

for all s ≤ 0. We also define

(8.1) u(t) :=
{

g(t, Π1(Xt)), 0 ≤ t ≤ a,

0, t < 0,
and v(t) :=

{
h(t, Π2(Xt)), 0 ≤ t ≤ a,

η(t), t < 0.

We first derive the Milstein scheme for the case d = m = 1.
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8.1. Itô-Taylor expansion.

Assume that 0 < t0 < t, and ~x = (x1, · · · , xk1) ∈ Rk1 . Applying the Itô formula

(5.10), we have

g(t, Π1(Xt))− g(t0, Π1(Xt0))
(8.2)

=
∫ t

t0

∂g

∂s
(s, Π1(Xs)) ds +

k1∑

i=1

∫ t+s1,i

t0+s1,i

∂g

∂xi
(s− s1,i,Π1(Xs−s1,i

))u(s) dW (s)

+
k1∑

i=1

∫ t

t0

[
∂g

∂xi
(s,Π1(Xs))v(s + s1,i) +

1
2
〈∂

2g

∂x2
i

(s, Π1(Xs))5+
s1,i

X(s),5−
s1,i

X(s)〉] ds,

where 5±
s1,i

X(s) are defined by (5.9). Applying the Itô formula (5.10) again and using

similar notations for h, we obtain

h(t,Π2(Xt))− h(t0,Π2(Xt0))
(8.3)

=
∫ t

t0

∂h

∂s
(s,Π2(Xs)) ds +

k2∑

i=1

∫ t+s2,i

t0+s2,i

∂h

∂xi
(s− s2,i, Π2(Xs−s2,i)) u(s) dW (s)

+
1
2

k2∑

i=1

∫ t

t0

[
∂h

∂xi
(s, Π2(Xs))v(s + s2,i) +

1
2
〈∂

2g

∂x2
i

(s, Π2(Xs))5+
s2,i

X(s),5−
s2,i

X(s)〉] ds.

Substituting (8.2) and (8.3) into (1.6), we get the following approximate (Itô-Taylor) ex-

pansion of (1.6):

X(t) = X(t0) + g(t0,Π1(Xt0))[W (t)−W (t0)] + h(t0,Π2(Xt0)(t− t0)
(8.5)

+
k1∑

i=1

∂g

∂xi
(t0, Π1(Xt0))u(t0 + s1,i)

∫ t

t0

∫ t1+s1,i

t0+s1,i

dW (t2) dW (t1) + R(t0, t),
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where

R(t0, t) :=
k1∑

i=1

{
∫ t

t0

∫ t1+s1,i

t0+s1,i

[
∂g

∂xi
(t2 − s1,i, Π1(Xt2−s1,i

))u(t2)− ∂g

∂xi
(t0,Π1(Xt0))

(8.6)

× u(t0 + s1,i)
]

dW (t2) dW (t1)}+
∫ t

t0

∫ t1

t0

k1∑

i=1

[
∂g

∂xi
(t2, Π1(Xt2))v(t2 + s1,i)

+
1
2
〈∂

2g

∂x2
i

(t2, Π1(Xt2))5+
s1,i

Xt2 ,5−
s1,i

Xt2〉
]

dt2 dW (t1)

+
k2∑

i=1

∫ t

t0

∫ t1+s2,i

t0+s2,i

∂h

∂xi
(t2 − s2,i, Π2(Xt2−s2,i))u(t2) dW (t2) dt1

+
∫ t

t0

∫ t1

t0

k2∑

i=1

[
∂h

∂xi
(t2,Π2(Xt2))v(t2 + s2,i)

+
1
2
〈∂

2h

∂x2
i

(t2,Π2(Xt2))5+
s2,i

Xt2 ,5−
s2,i

Xt2〉
]

dt2 dt1

+
∫ t

t0

∫ t1

t0

[
∂g

∂t2
(t2,Π1(Xt2)) +

∂h

∂t2
(t2, Π2(Xt2))

]
dt2 dt1.

In the above expression, the stochastic integrals

∫ t1+s1,i

t0+s1,i

∂g

∂xi
(t2 − s1,i, Π1(Xt2−s1,i))u(t2) dW (t2)

and ∫ t1+s2,i

t0+s2,i

∂h

∂xi
(t2 − s2,i, Π2(Xt2−s2,i))u(t2) dW (t2)

are Skorohod integrals. Define

I(t0 + si,j , t + si,j ; si,j) :=
∫ t

t0

∫ t1+si,j

t0+si,j

dW (t2) dW (t1),

for i = 1, 2 and j = 1, · · · , ki. Recall the definition of J(t0 +si,j , t+si,j ; si,j) in (7.1). Note

that if si,j < 0, then

(8.7) I(t0 + si,j , t + si,j ; si,j) =
∫ t

t0

∫ t1+si,j

t0+si,j

◦dW (t2) ◦ dW (t1);
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if si,j = 0, then

(8.8) I(t0 + si,j , t + si,j ; si,j) =
∫ t

t0

[W (t1)−W (t0)] dW (t1) =
(W (t)−W (t0))2

2
− t− t0

2
.

8.2. The one-dimensional Milstein scheme (d = m = 1).

Assume d = m = 1. Recall the partition πp := −1 = t−l < · · · < t0 = 0 < · · · <

tn = t constructed in Section 3. We introduce the Milstein scheme for the SDDE (1.6) as

follows:

Xp(t) =Xp(tk) + h(tk, Π2(X
p
tk

))(t− tk) + g(tk, Π1(X
p
tk

))(W (t)−W (tk))

+
k1∑

i=1

∂g

∂xi
(tk,Π1(X

p
tk

))up(tk + s1,i)I(tk + s1,i, t + s1,i; s1,i),(8.9)

for tk < t ≤ tk+1, where

up(t) =
{

g(t,Π1(X
p
t )), t ≥ 0,

0, −1 ≤ t < 0,

and

I(tk + s1,i, t + s1,i; s1,i) =
∫ t

tk

∫ t1+s1,i

tk+s1,i

◦dW (t2) ◦ dW (t1).

Recall the notation

bsc :=
{

tk, if tk ≤ s < tk+1

tnt , if tnt ≤ s ≤ t.

and introduce the following notation:

dse =
{

tk+1, tk < s ≤ tk+1,

t, tnt < s ≤ t.

In view of (8.7) and Lemma 7.2, we will use Jp(ti, t; s1,i) to approximate I(ti, t; s1,i).
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Lemma 8.1.

In the SDDE (1.6), suppose that g ∈ C2
b (Rk1 ,R), h ∈ C2

b (Rk2 ,R), have bounded

first and second derivatives. Then for each integer m ≥ 1, there exists a constant K(m) > 0

such that

(8.10)

{
E(〈 ∂2g

∂~x2 (s,Π1(Xs))5+
s1,i

Xs,5−
s1,i

Xs〉m) ≤ K(m)

E(〈∂2h
∂~x2 (s, Π2(Xs))5+

s2,i
Xs,5−

s2,i
Xs〉m) ≤ K(m)

for all t ∈ [0, a].

Proof.

By the definition of 5±
s2,i

X(s) (see (5.9)), we have

5+
s1,i,s1,j

X(s) = 2u(s + s1,i)I{s1,i<s1,j} + u(s + s1,i)δij(8.11)

+ 2
∫ s+s1,j

0

Ds+s1,iu(r) dW (r) + 2
∫ s+s1,j

0

Ds+s1,iv(r) dr,

and

(8.12) 5−
s1,i,s1,j

X(s) = u(s + s1,i)δij .

Therefore,

〈∂
2g

∂~x2
(s,Π1(Xs))5+

s1,i
X(s),5−

s1,i
X(s)〉

(8.13)

= 2
k1∑

i=1

{ ∂2g

∂xi∂xj
(s,Π1(Xs))u(s + s1,i)[u(s + s1,i)I{s1,i<s1,j} +

1
2
u(s + s1,i)δij

+
∫ s+s1,j

0

Ds+s1,iu(r) dW (r) +
∫ s+s1,j

0

Ds+s1,iv(r) dr]}.

If r > 0, then

(8.14) Dsu(r) = Dsg(Π1(Xr)) =
k1∑

i=1

∂g

∂xi
(r,Π1(Xr))DsX(r + s1,i),
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and

DtDsu(r) =
k1∑

i,j=1

∂2g

∂xi∂xj
(r,Π1(Xr))DsX(r + s1,i)DtX(r + s1,j)(8.15)

+
k1∑

i=1

∂g

∂xi
(r,Π1(Xr))DtDsX(r + s1,i).

By Proposition 6.1 and Proposition 6.3, there exists a constant C1 > 0 such that

{ sup0≤s≤a E(sups≤r≤a |DsX(r)|2) ≤ C1

sup0≤s,t≤a E(sups∨t≤r≤a |DtDsX(r)|2) ≤ C1.

Since g has bounded first and second derivatives, then there is a positive constant C2 such

that

sup
0≤s≤a

E( sup
s≤r≤a

|Dsu(r)|2) ≤ C2k1 sup
0≤s≤a

E( sup
s≤r≤a

|DsX(r)|2) ≤ C1C2k1,

and

sup
0≤s,t≤a

E( sup
s∨t≤r≤a

|DtDsu(r)|2) ≤ C2
1C2

2k1 + C1C2k1.

If r < s + s1,i, then {
Ds+s1,iu(r) = 0
Ds+s1,iv(r) = 0.

Therefore,

E(
∫ t+s1,j

t+s1,i

Dt+s1,iu(r) dW (r))2

≤
∫ t+s1,j

t+s1,i

∫ t+s1,j

t+s1,i

E(DsDt+s1,iu(r))2 dr ds +
∫ t+s1,j

t+s1,i

E(Dt+s1,iu(r))2 dr

≤ C2k
2
1C

2
1 + 2C2k1C1 =: K1.

Similarly, there exists a constant K2 > 0 such that

E(
∫ t+s1,j

t+s1,i

Dt+s1,iv(r) dr)2 ≤ K2.

So the first inequality of (8.10) follows from the above two inequalities and the Lipschitz

and bounded conditions on h, g ((1.4),(1.5)). The second estimate of (8.10) is proved by a

similar argument. ¤
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Theorem 8.2.

Consider the Milstein scheme (8.9) for the SDDE (1.6) (r = 1).Let 0 < γ ≤ 1.

Suppose that η : [−1, 0] → L2(Ω,Rm) is Hölder continuous with exponent γ
2 , i.e. there is

a positive constant K such that

E|η(s)− η(t)|2 ≤ K|s− t|γ

for all s, t ∈ J . Suppose that g ∈ C1,2(T×Rk1 ,R), h ∈ C1,2(T×Rk2 ,R) and have bounded

first and second spatial derivatives. Assume that

sup
−1≤s≤0

E(|Zp(s)|2) ≤ C ′δ2γ
p

for some positive constant C ′, where δp := |πp|. Then there exists a constant C > 0

(depending on a and independent of π) such that

sup
−1≤s≤a

E|Zp(s)|2 ≤ Cδ2γ
p

for any p ≥ 1.

Proof.

As in the proof of Theorem 3.4, we express the global error in the form

Zp(t) = Zp(0) + Ip(t)−Rp(t),

where

Ip(t) =
nt∑

i=1

[h(ti−1, Π2(Xp(ti−1)))− h(ti−1,Π2(X(ti−1)))](ti − ti−1)

+
nt∑

i=1

[g(ti−1, Π1(Xp(ti−1)))− g(ti−1, Π1(X(ti−1)))](W (ti)−W (ti−1))

+ [h(tnt , Π2(Xp(tnt)))− h(tnt , Π2(X(tnt)))](t− tnt)

+ [g(tnt , Π1(Xp(tnt)))− g(tnt , Π1(X(tnt)))](W (t)−W (tnt))

+
nt∑

i=1

k1∑

j=1

{
I(ti−1, ti; s1,j)

[
∂g

∂xj
(ti−1, Π1(Xp(ti−1)))
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× up(ti−1 + s1,j)− ∂g

∂xj
(ti−1, Π1(X(ti−1)))u(ti−1 + s1,j)

]}
+

k1∑

j=1

{
Itnt ,t;s1,j

×
[

∂g

∂xj
(tnt

, Π1(Xp(tnt
)))up(tnt

+ s1,j)− ∂g

∂xj
(tnt

, Π1(X(tnt
)))u(tnt

+ s1,j)
]}

,

and

Rp(t) =
nt∑

i=1

R(ti−1, ti) + R(tnt
, t).

We shall decompose Rp(t) into five parts:

Rp(t) = Rp
1(t) + Rp

2(t) + Rp
3(t) + Rp

4(t) + Rp
5(t),

where

Rp
1(t) :=

nt∑

i=1

k1∑

j=1

{∫ ti

ti−1

∫ s+s1,j

ti−1+s1,j

[
∂g

∂xj
(r − s1,j ,Π1(Xr−s1,j ))u(r)

− ∂g

∂xj
(ti−1,Π1(Xti−1))u(ti−1 + s1,j)

]
dW (r) dW (s)

}
+

k1∑

j=1

{∫ t

tnt

∫ s+s1,j

tnt+s1,j[
∂g

∂xj
(r − s1,j ,Π1(Xr−s1,j ))u(r)− ∂g

∂xj
(tnt ,Π1(Xtnt

))u(tnt + s1,j)
]

dW (r) dW (s)
}

=
k1∑

j=1

{∫ t

0

∫ s+s1,j

bsc+s1,j

[
∂g

∂xj
(r − s1,j , Π1(Xr−s1,j ))u(r)

− ∂g

∂xj
(Pbsc,s1

k1 (Xbsc))u(bsc+ s1,j)
]

dW (r) dW (s)
}

,

Rp
2(t) :=

k1∑

j=1

∫ t

0

∫ s

bsc

[
∂g

∂xj
(r,Π1(Xr))v(r + s1,j)

+
1
2
〈∂

2g

∂~x2
(r,Π1(Xr))5+

s1,j
Xr,5−

s1,j
Xr〉

]
dr dW (s),

Rp
3(t) :=

k2∑

j=1

∫ t

0

∫ s+s2,j

bsc+s2,j

∂h

∂xj
(r − s2,j , Π2(Xr−s2,j ))u(r) dW (r) ds,

Rp
4(t) :=

k2∑

j=1

∫ t

0

∫ s

bsc

[
∂h

∂xj
(r,Π2(Xr))v(r + s2,j)

+
1
2
〈∂

2h

∂~x2
(r,Π2(Xr))5+

s2,j
Xr,5−

s2,j
Xr〉

]
dr ds,
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and

Rp
5(t) :=

∫ t

0

∫ s

bsc

{
∂h

∂r
(r,Π2(Xr)) +

∂g

∂r
(r,Π1(Xr))

}
dr ds.

By the Itô isometry and the formula for covariance between two Skorohod integrals ([23],

Section 1.3.1), we have

sup
0≤s≤t

E|Rp
1(s)|2 ≤ k1

k1∑

j=1

E

∫ t

0

{∫ s+s1,j

bsc+s1,j

[
∂g

∂xj
(r − s1,j , Π1(Xr−s1,j

))u(r)

− ∂g

∂xj
(bsc, Π1(Xbsc))u(bsc+ s1,j)

]
dW (r)

}2

ds

≤ k1

k1∑

j=1

∫ t

0

∫ s+s1,j

bsc+s1,j

E

[
∂g

∂xj
(r − s1,j , Π1(Xr−s1,j ))u(r)

− ∂g

∂xj
(bsc, Π1(Xbsc))u(bsc+ s1,j)

]2

dr ds

+ k1

k1∑

j=1

∫ t

0

∫ s+s1,j

bsc+s1,j

∫ s+s1,j

bsc+s1,j

E

{
Dr1

[
∂g

∂xj
(r − s1,j , Π1(Xr−s1,j ))u(r)

− ∂g

∂xj
(bsc, Π1(Xbsc))u(bsc+ s1,j)

]}2

dr1 dr2 ds

= k1R
p
11(t) + k1R

p
12(t).

By assumption, the function Gj(s, x, z) = ∂g
∂xj

(s, x)g(s, z), (x ∈ Rk1 and z ∈ Rk1), is

Lipschitz, i.e., there exists a constant L1 > 0 such that

|Gj(s, z)−Gj(s, w)| ≤ L1|z − w|, ∀z, w ∈ R2k1 and 1 ≤ j ≤ k1.

Using

u(r) =
{

g(r,Π1(Xr)), r ≥ 0
0, r < 0,

and

sup
−1≤r1≤α<β≤r2≤a

E|X(β)−X(α)|2 ≤ C2|r2 − r1|γ ,



DISCRETE-TIME APPROXIMATIONS OF STOCHASTIC SYSTEMS WITH MEMORY 59

it follows that

Rp
11(t) ≤

k1∑

j=1

∫ t

0

∫ s+s1,j

bsc+s1,j

E[Gj(r − s1,j ,Π1(Xr−s1,j
),Π1(Xr))

−Gj(bsc, Π1(Xbsc),Π1(Xbsc+s1,j
))]2I{bsc+s1,j≥0} dr ds

≤ 2k1L
2
1

k1∑

j=1

∫ t

0

∫ s+s1,j

bsc+s1,j

sup
−1≤r1<r2≤a
|r2−r1|≤δp

E|X(r2)−X(r1)|2 dr ds

≤ 2(a + 1)k2
1L

2
1C2δ

2γ
p .

Now for all r ≥ 0 and 1 ≤ j ≤ k1,

Ds(
∂g

∂xj
(r − s1,j ,Π1(Xr−s1,j ))u(r))

= g(r,Π1(Xr))
k1∑

i=1

∂2g

∂xj∂xi
(r − s1,j , Π1(Xr−s1,j ))DsX(r − s1,j + s1,i)

+
∂g

∂xj
(r − s1,j ,Π1(Xr−s1,j ))

k1∑

i=1

∂g

∂xi
(r,Π1(Xr))DsX(r + s1,i).

By Proposition 6.1, there exists a constant C3 > 0 such that

sup
0≤r≤a

E( sup
0≤s≤a

|DrX(s)|2) ≤ C3.

By (1.8), (1.10), and boundedness of the spatial derivatives of g , there exists a constant

C4 > 0 such that

sup
0≤r≤a

sup
0≤s≤a

E(|Ds(
∂g

∂xj
(r − s1,j , Π1(Xr−s1,j ))u(r))|2) ≤ 2C4k

2
1.

Therefore

Rp
12(t) ≤ k1

k1∑

j=1

∫ t

0

∫ s+s1,j

bsc+s1,j

∫ s+s1,j

bsc+s1,j

E{Dr1 [4C4k
2
1] dr1 dr2 ds

≤ 4(a + 1)C4k
4
1δ

2
p.

Hence there is a constant C5 > 0 such that

(8.16) sup
0≤s≤t

E|R1(s)|2 ≤ C5δ
2γ
p .
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Applying Fubini’s theorem, we can rewrite Rp
3(t) as

Rp
3(t) =

nt∑

i=1

k2∑

j=1

∫ ti

ti−1

∫ s+s2,j

ti−1+s2,j

∂h

∂xj
(r − s2,j , Π2(Xr−s2,j

))u(r) dW (r) ds

+
k2∑

j=1

∫ t

tnt

∫ s+s2,j

tnt+s2,1

∂h

∂xj
(r − s2,j ,Π2(Xr−s2,j

))u(r) dW (r) ds.

So we have

Rp
3(t) =

nt∑

i=1

k2∑

j=1

∫ ti+s2,j

ti−1+s2,j

∫ ti

r−s2,j

∂h

∂xj
(r − s2,j ,Π2(Xr−s2,j

))u(r) ds dW (r)

+
k2∑

j=1

∫ t+s2,j

tnt+s2,j

∫ t

r−s2,j

∂h

∂xj
(r − s2,j , Π2(Xr−s2,j ))u(r) ds dW (r)

=
nt∑

i=1

k2∑

j=1

∫ ti+s2,j

ti−1+s2,j

(ti + s2,j − r)
∂h

∂xj
(r − s2,j , Π2(Xr−s2,j ))u(r) dW (r)

+
k2∑

j=1

∫ t+s2,j

tnt+s2,j

(t + s2,j − r)
∂h

∂xj
(r − s2,j , Π2(Xr−s2,j ))u(r) dW (r)

=
k2∑

j=1

∫ t+s2,j

s2,j

(dr − s2,je+ s2,j − r)
∂h

∂xj
(r − s2,j , Π2(Xr−s2,j ))u(r) dW (r).

Applying the formula for covariance between two Skorohod integrals ([23], Section 1.3.1)

and Proposition 6.1, we can show that there exists a constant C6 > 0 such that

(8.17) sup
0≤s≤t

E|R3(s)|2 ≤ C6δ
2
p.

Similarly, by Lemma 8.1, we can easily show that there exist C7 > 0 such that

(8.18)





sup0≤s≤t E|R2(s)|2 ≤ C7δ
2
p,

sup0≤s≤t E|R4(s)|2 ≤ C7δ
2
p

sup0≤s≤t E|R5(s)|2 ≤ C7δ
2
p

By similar arguments to the ones used in the proof of Theorem 7.1, we obtain the following

inequality

(8.19) sup
0≤u≤t

E|Ip(u)|2 ≤ C1

∫ t

0

sup
−1≤u≤s

E(|Zp(u)|2) ds
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for some constant C1 > 0. From (8.16)–(8.19), there exist C8 > 0 and C9 > 0 such that

(8.20) sup
0≤u≤t

E|Zp(u)|2 ≤ E|Zp(0)|2 + C8δ
2γ
p + C9

∫ t

0

sup
−1≤u≤s

E|Zp(u)|2 ds.

So

(8.21) sup
−1≤u≤t

E|Zp(u)|2 ≤ (2C ′ + C8)δ2γ
p + C9

∫ t

0

sup
−1≤u≤s

E|Zp(u)|2 ds.

By Gronwall’s lemma, there exists a constant C > 0 such that

E sup
−1≤s≤t

|Zp(s)|2 ≤ Cδ2γ
p . ¤

Let us consider a particular case when g and h are of the (linear) form

(8.22)

{
g(s,Π1(Xs)) =

∑k1
i=1 ai(s,Xs(s1,i))

h(s,Π2(Xs)) =
∑k2

j=1 bj(s,Xs(s2,j)),

where ai, bj ∈ C1,2
b (T × R) for 1 ≤ i ≤ k1 and 1 ≤ j ≤ k2. In this case we can obtain a

stronger estimate than the one given in Theorem 8.2.

Theorem 8.3.

Consider the Milstein scheme (8.9) for the SDDE (1.6) in the special case (8.22).

Suppose that 0 < γ ≤ 1 and η is Hölder continuous (in Lq(Ω,R)) with exponent γ
2 , i.e.,

(8.23) E|η(s)− η(t)|q ≤ K|s− t| γq
2

for some constant K > 0. Suppose that g and h have bounded first and second space

derivatives. Assume that

E||Zp
0 ||qC ≤ C ′(q)δ(1+ q

2 )γ
p

for some constant C ′(q). Then there exists a constant C(q) > 0 (depending on a) such

that

E sup
0≤s≤a

||Zp
s ||qC ≤ C(q)δ(1+ q

2 )γ
p
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for any p ≥ 1.

Proof.

The proof is analogous to that of Theorem 8.2. Instead of using the formula for

covariance of two Skorohod integrals ([23], Section 1.3.1), we use the Burkholder-Davis-

Gundy inequality to estimate the errors. One may also apply the non-anticipating Itô

formula to {
ai(t + s1,1, X(t + s1,1))− ai(t0 + s1,1, X(t0 + s1,1))
ai(t + s1,1, X(t + s1,1))− ai(t0 + s1,1, X(t0 + s1,1))

in order to obtain the expressions (8.2) and (8.3). ¤

Remark 8.4.

It is easy to check that the Milstein scheme (8.9) is (stochastically) numerically

stable (Definition 2.3). The criteria for strong consistence (Definition 2.2) may not suit

the case of higher order (γ ≥ 1 ) approximation of SDDE because anticipating stochastic

integrals are involved.

We can rewrite the SDDE (1.6) in Stratonovich form, namely, if t ≥ 0,

X(t) = η(0) +
∫ t

0

g(s,Π1(Xs)) ◦ dW (s)(8.24)

+
∫ t

0

[h(s,Π2(Xs))− 1
2

∂g

∂xk1

(s,Π1(Xs))g(s, Π1(Xs))] ds,

if sk1 = 0. If sk1 < 0, then the SDDE is of the same form as (1.6) except the Itô integral

is replaced by Stratonovich integral, i.e.,

X(t) = η(0) +
∫ t

0

g(s, Π1(Xs)) ◦ dW (s) +
∫ t

0

h(s, Π2(Xs)) ds,

Bell and Mohammed ([5]) derived a similar result in the case of a single delay. From

Corollary 5.8, we can obtain the following Stratonovich-Taylor expansion of X(t)

X(t) = X(t0) + g(t0, Π1(Xt0))[W (t)−W (t0)] + h̄(t0,Π2(Xt0))(t− t0)
(8.25)

+
k1∑

i=1

∂g

∂xi
(t0, Π1(Xt0))u(t0 + s1,i)

∫ t

t0

∫ t1+s1,i

t0+s1,i

◦dW (t2) ◦ dW (t1) + R̄(t0, t),
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where

R̄(t0, t) =
k1∑

i=1

{
∫ t

t0

∫ t1+s1,i

t0+s1,i

[
∂g

∂xi
(t2 − s1,i, Π1(Xt2−s1,i

))u(t2)(8.26)

− ∂g

∂xi
(t0, Π1(Xt0))u(t0 + s1,i)] ◦ dW (t2) ◦ dW (t1)}

+
∫ t

t0

∫ t1

t0

k1∑

i=1

∂g

∂xi
(t2, Π1(Xt2))v̄(t2 + s1,i) dt2 ◦ dW (t1)

+
k2∑

i=1

∫ t

t0

∫ t1+s2,i

t0+s2,i

∂h̄

∂~xi
(t2 − s2,i, Π2(Xt2−s2,i

))u(t2) ◦ dW (t2) dt1

+
∫ t

t0

∫ t1

t0

k2∑

i=1

∂h̄

∂~xi
(t2, Π2(Xt2))v̄(t2 + s2,i) dt2 dt1.

and

(8.27) h̄ = h− 1
2
gk1g, and v̄(t) =

{
h̄(t, Π2(Xt)), 0 ≤ t ≤ a

η(t), t < 0.

One can also derive the Milstein scheme for (8.24) using the Stratonovich-Taylor

expansion (8.25) of X(t) as follows: Let tk < t ≤ tk+1. Then

Xp(t) = Xp(tk) + h̄(tk, Π2(X
p
tk

))(t− tk) + g(tk,Π1(X
p
tk

))(W (t)−W (tk))
(8.28)

+
k1∑

i=1

∂g

∂xi
(tk, Π1(X

p
tk

))up(tk + s1,i)J(tk + s1,i, t + s1,i; s1,i),

where

up(t) =
{

g(t,Π1(X
p
t )), t ≥ 0,

0, −1 ≤ t < 0.

8.3. The multi-dimensional Milstein scheme.

Write h(s, x) = (h1(s, x), · · · , hm(s, x))T , ~x ∈ Rmk1 ,

~x =




x11, · · · , x1k1

· · ·
xm1, · · · , xmk1


 .

Denote by gjl(s, ~x) the (j, l) element of the m × d matrix g(s, ~x). To simplify notation,

we use below the summation convention on repeated indices. Recall the notations for the
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partition −1 = t−y < · · · < t0 = 0 < · · · < tn = t introduced in Section 2. We formulate

the Milstein scheme for the SDDE (1.6) as follows: if tk < t ≤ tk+1, the ith coordinate

Xi(t) of X(t) = (X1(t), · · · , Xm(t))T is approximated by

Xi,p(t) = Xi,p(tk) + hi(tk, Π2(X
p
tk

))(t− tk) + gil(tk,Π1(X
p
tk

))(W l(t)−W l(tk))
(8.29)

+
∂gil

∂xi1j1

(tk, Π1(X
p
tk

))ui1j1,p(tk + s1,j1)Il,l1(tk + s1,j1 , t + s1,j1 ; s1,j1),

where

ui1j1,p(t) =
{

gi1j1(t,Π1(X
p
t )), t ≥ 0,

0, −1 ≤ t < 0.

Remark 8.5.

One may check that Lemma 8.1, Theorems 8.2 and 8.3 also hold in the multi-

dimensional case. In fact, it is easy to extend these results to the multi-dimensional case,

thanks to the weak differentiability results (Proposition 6.1, Lemma 6.2 and Proposition

6.3) and the results concerning strong approximation of double Stratonovich integrals

(Lemma 7.1 and Lemma 7.2).

In comparison with SODE’s, it seems very difficult to derive higher order strong

approximation schemes for the SDDE (1.6). One may try to avoid involving the differential

operator D and the trace operator 5 in the numerical scheme by attempting to employ

multiple Stratonovich integrals instead of multiple Skorohod integrals. The idea is to use

Stratonovich-Taylor expansions of the coefficients in the SDDE (1.6) (c.f. (8.4) and (8.5))

instead of Itô-Taylor expansions. However, this is difficult, because it is hard to estimate

the order of the error via the remainder term. This is because a multiple (anticipating)

Stratonovich integral can not be expressed in terms of multiple (non-anticipating) Itô

integrals. The Hu-Meyer Formula gives the relationship between multiple Stratonovich

and Skorohod integrals ([7], Theorem 3.1 (with non-deterministic kernels); [30], Theorem

3.1 and [28], Theorem 3.4 (with deterministic kernels)) (c.f. [25], [30] and [28]). However,
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the formula still involves the differential operator D and the trace operator 5, and hence

it is hard to estimate the remainder term.

One may refer to Jolis and Sanz ([15]), Delgado and Sanz ([7]), Solé and Utzet

([28]), and Zakai ([30]) for multiple Skorohod and multiple Stratonovich integrals.

Appendix A.

The following lemma extends a result by Nualart and Pardoux ([22], Lemma C1).

Lemma A.1.

Suppose that x = {x(t) : t ∈ [0, a]} is a measurable real-valued process, x(t) = 0 if

t > a or t < 0, and x ∈ Lp([0, a],R) a.s., p > 1.. Assume that {πn : 0 = t0 < t1 < · · · <

tn = a} is a family of partitions of [0, a], with lim
n→∞

|πn| = 0, and −r ≤ s1, s2 ≤ 0. Then

(A.1) lim
n→∞

n∑

l=1

∆l1W∆l2W

tl − tl−1

∫ tl+s1

tl−1+s1

x(s) ds =
{ ∫ a+s1

0
x(s) ds, s1 = s2

0, s1 6= s2

in probability. Moreover, if x ∈ Lp(Ω × [0, a],R), then the above convergences hold in

L1(Ω,R).

Proof.

It clearly suffices to show that (A.1) holds in L1(Ω,R) whenever x ∈ Lp(Ω ×
[0, a],R). Fix m ≥ 1, define

xm =
m∑

l=1

I(tl−1+s1,tl+s1]

tl − tl−1

∫ tl+s1

tl−1+s1

x(s) ds.

For n ≥ 1, define

αn(x) =
n∑

l=1

∆l1W∆l2W

tl − tl−1

∫ tl+s1

tl−1+s1

x(s) ds.

Define αn(Xm) similarly. It follows from Hölder’s inequality that if 1/p + 1/q = 1, then

(A.2) E|αn(x)| ≤
{

E

n∑

l=1

|∆l1W∆l2W |q
(tl − tl−1)q−1

} 1
q



E

n∑

l=1

(
∫ tl+s1

tl−1+s1
|x(s)| ds)p

(tl − tl−1)
p
q





1
p

,
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i.e.

||αn(x)||L1(Ω) ≤ Cp||x||Lp(Ω×[0,a+s1]) ≤ Cp||x||Lp(Ω×[0,a]),

Therefore,

E|αn(x)−
∫ a+s1

0

x(s) ds| ≤ E|αn(x− xm)|+ E|αn(xm)−
∫ a+s1

0

x(s) ds|
(A.3)

≤ E|αn(xm)−
∫ a+s1

0

x(s) ds|+ Cp||x− xm||Lp(Ω×[0,a+s1]),

since

αn(xm) =
m∑

i=1





∑

(tl−1,tl]⊆(ti−1,ti]
1≤l≤n

∫ ti+s1

ti−1+s1

I(ti−1+s1,ti+s1](t)
tl − tl−1

dt∆l1W∆l2W





× 1
ti − ti−1

∫ ti+s1

ti−1+s1

x(s) ds

=
m∑

i=1





∑

(tl−1,tl]⊆(ti−1,ti]
1≤l≤n

∆l1W∆l2W





1
ti − ti−1

∫ ti+s1

ti−1+s1

x(s) ds.

Let km be the index such that tkm−1 + s1 < 0 ≤ tkm + s1. If s1 = s2, then by Lemma 5.2,

the following limit exists in probability

lim
n→∞

αn(xm) =
m∑

i=1

[(ti + s1) ∧ 0− (ti−1 + s1) ∨ 0]
1

ti − ti−1

∫ ti+s1

ti−1+s1

x(s) ds

=
m∑

i=km+1

∫ ti+s1

ti−1+s1

x(s) ds +
tkm + s1

tkm−tkm−1

∫ tkm+s1

0

x(s) ds

=
∫ a+s1

0

x(s) ds +
tkm + s1

tkm−tkm−1

∫ tkm+s1

0

x(s) ds.

Equivalently,

αn(xm)−
∫ a+s1

0

x(s) ds− tkm + s1

tkm−tkm−1

∫ tkm+s1

0

x(s) ds → 0

as n →∞ in probability.
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A slight modification in the proof of (A.2) yields the estimate

||αn(xm)||Lp′ (Ω) ≤ C(p, p′)||xm||Lp(Ω×[0,a+s1]),

for all p′ ∈ (1, p). Therefore, the family {αn(xm) : n ≥ 1} is uniformly integrable. From

(A.3) we have

lim
n→∞

E|αn(x)−
∫ a+s1

0

x(s) ds|

≤ E| tkm + s1

tkm−tkm−1

∫ tkm+s1

0

x(s) ds|+ Cp||x− xm||Lp(Ω×[0,a+s1])

≤ E

∫ tkm+s1

0

|x(s)| ds + Cp||x− xm||Lp(Ω×[0,a+s1]).

Clearly, xm → x in Lp(Ω× [0, a + s1]) and E
∫ tkm+s1

0
|x(s)| ds → 0 as m →∞. So

lim
n→∞

E|αn(xm)−
∫ a+s1

0

x(s) ds| = 0.

Now consider the case s1 6= s2. Since

E|αn(x)| ≤ E|αn(xm)|+ E|αn(x− xm)|

≤ E|αn(xm)|+ Cp||x− xm||Lp(Ω×[0,a+s1]).

A similar argument gives limn→∞E|αn(x)| = 0. ¤

The following useful result is due to Föllmer ([8]), and Nualart and Pardoux ([22],

Lemma C.2):

Lemma A.2.

Let {xi(t) : 0 ≤ t ≤ a}2i=1 be two continuous processes, and {πn : 0 = t0 < t1 < · · · <
tn = a} a family of partitions of [0, a], with lim

n→∞
|πn| = 0. For each n and l = 1, · · · , n,

let xi
tl,n

denote xi(tl). Assume that

(A.4)
n∑

l=1

(xi
tl,n

− xi
tl−1,n)(xj

tl,n
− xj

tl−1,n) →
∫ a

0

aij(s) ds
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in probability as n → ∞, where {aij(t) : 0 ≤ t ≤ a; i, j = 1, 2} are measurable processes

such that a.s.

(A.5)
∫ a

0

|aij(s)| ds < ∞, i, j = 1, 2.

Let {Y (t) : 0 ≤ t ≤ a} be a continuous process, and {Y n(t) : 0 ≤ t ≤ a}∞n=1 be measurable

processes which converge a.s. to {Y (t)} as n → ∞, uniformly with respect to t ∈ [0, a].

Then

(A.6)
n∑

l=1

Y n(tl−1)(xi
tl,n

− xi
tl−1,n)(xj

tl,n
− xj

tl−1,n) →
∫ a

0

aij(s)Y (s) ds

in probability as n →∞, for i = 1, 2.
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Journal of Theoretical Probability 2 (1998), 493–514.
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