Southern Illinois University Carbondale

OpenSIUC

Articles and Preprints Department of Mathematics

2001

Discrete-time Approximations of Stochastic
Differential Systems with Memory

Yaozhong Hu
University of Kansas Main Campus

Salah-Eldin A. Mohammed
Southern Illinois University Carbondale, salah@sfde.math.siu.edu

Feng Yan
Williams Energy

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles

b Part of the Mathematics Commons
preprint

Recommended Citation

Hu, Yaozhong, Mohammed, Salah-Eldin A. and Yan, Feng. "Discrete-time Approximations of Stochastic Differential Systems with
Memory." (Jan 2001).

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles

and Preprints by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.


http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F54&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

DISCRETE-TIME APPROXIMATIONS OF STOCHASTIC
DIFFERENTIAL SYSTEMS WITH MEMORY"

YAOzZHONG HU*, SALAH-ELDIN A. MOHAMMED? AND FENG YAN

ABSTRACT. In this paper, we develop two discrete-time strong approximation schemes for
solving stochastic differential systems with memory: strong Euler-Maruyama schemes for
stochastic delay differential equations (SDDE’s) and stochastic functional differential equa-
tions (SFDE’s) with continuous memory, and a strong Milstein scheme for SDDE’s. The
convergence orders of the Euler-Maruyama and Milstein schemes are 0.5 and 1 respectively.
In order to establish the Milstein scheme, we prove an infinite-dimensional It6 formula for
“tame” functions acting on the segment process of the solution of an SDDE. It is interesting to
note that the presence of the memory in the SDDE requires the use of the Malliavin calculus
and the anticipating stochastic analysis of Nualart and Pardoux. Given the non-anticipating
nature of the sfde’s, the use of anticipating calculus methods appears to be novel.

1. Introduction

Discrete-time strong approximation schemes for stochastic ordinary differential equa-
tions (SODE’s) are well developed. For an extensive study of these numerical schemes,
one may refer to ([16]), ([17]), and ([19], Chapters 5 and 6). Some basic ideas of strong
and weak orders of convergence are illustrated in ([11]).

If the rate of change of a physical system depends only on its present state and some
noisy input, then the system can often be described by a stochastic ordinary differential
equation (SODE). However, in many physical situations the rate of change of the state

depends not only on the present but also on the past states of the system. In such
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cases, stochastic delay differential equations (SDDE’s) or stochastic functional differential
equations (SFDE’s) provide an important tool to describe and analyze these systems. For
various aspects of the qualitiative theory of SFDE’s the reader may refer to ([20], [21]) and
the references therein.

SDDE’s and SFDE’s arising in many applications cannot be solved explicitly, and
hence the need for developing effective numerical techniques for such systems. Depending
on the particular physical model, it may be necessary to design strong LP (or almost sure)
numerical schemes for pathwise solutions of the underlying SFDE. Strong approximation
schemes for SFDE’s may be used to simulate directly the a.s. stochastic dynamics of their
trajectories or their random attractors. SFDE’s are used to model population growth with
incubation/gestation period ([21]). In such models, one is often interested in estimating the
actual population rather than its distribution, and hence the need for strong approximation

schemes.

In this article, we will not consider the order of convergence of weak numerical
schemes, although such schemes are useful for some applications of SODE’s (see [11], [16]
and the references therein). In this connection, it is important to note that stochastic
systems with memory do not correspond to deterministic PDE’s (in finitely many space
variables) ([20], [21]). Typically, a stochastic system with memory corresponds to an
infinite-dimensional Feller diffusion whose principal coefficient degenerates on a hypersur-
face with finite-codimension ([20], Chapter IV, Theorem 3.2, [21], Theorem II.3 ). This
aspect of SFDE’s is in sharp contrast with the theory of SODE’s where the latter theory
has traditional ties to diffusions in Euclidean space. In a sense, the numerics of stochastic
systems with memory resemble those of SPDE’s in one space dimension.

A strong Cauchy-Maruyama scheme for a class of SFDE’s with continuous memory,
in the context of the Delfour-Mitter state space R™ x L?([—r,0], R™), was developed by

T.A. Ahmed, S.A. Elsanousi and S.-E. A. Mohammed ([1]). See also [20], p. 227, and [13].
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In sections 3 and 4 of this paper, we develop strong Euler-Maruyama schemes for
SDDE’s with several discrete delays and for stochastic functional differential equations
(SEFDE’s) (with mixed discrete and continuous memory dependence). Our estimates are
formulated using the supremum norm in the state space C([—r, 0], R™) (cf. [1]).

In sections 5-8, we establish the strong Milstein scheme for SDDE’s with several
delays. Although the solution of the SDDE is non-anticipating, methods from anticipating
stochastic analysis and the Malliavin calculus are necessary in order to derive an It6 formula
for the segment of the solution process. The Ito6 formula is essential for the development
of the Milstein scheme.

In order to describe our set-up, we need the following notation.

Let R™ be m-dimensional Euclidean space with the Euclidean norm

lz| == /22 + -+ 22, v = (21, ,2m) € R™. Denote T := [0,d], J := [-,0], C =

C(J;R™), where m is a positive integer, r > 0 and a > 0. Furnish C with the supremum

norm:
Inllc :== sup_|n(s)|
—r<s<0
for alln e C.
Define the projection IT : C' — R™* associated with sy, - ,s; € [~r,0] by
(1.1) I(n) == (n(s1),- - ,n(sk)) € R™
for alln € C.

Definition 1.1.
A function ® € C(T x C(J;R™); R) is tame if there exist ¢ € C(T x R™* R) and

a projection II such that

(1.2) O(t,m) = ¢(t,11(n)).

forallt €T and n € C.
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For any continuous m-dimensional process {X (t)}:c[—r,q], define the segment pro-

cess Xy, t € [0,al, by
(13) Xu(u)= X(t+u), te[0a, uel-n0]

Observe that {X;} may be considered as a C-valued or L?(J; R™)-valued process.

It is important that one should distinguish between the finite-dimensional current
state X (t) and the infinite-dimensional segment Xy, t € [0, a).

Assume that g : T x R™1 — LR R™) and b : T x R™*2 — R™ satisfy the

following Lipschitz condition for all t € T, x,y € R™* and z,w € R™*2:
where L > 0 is a constant, together with the boundedness condition:

(1.5) Oilzga“g(t,O)\ + |h(t,0)]] < oc.

Let II; and and Il be two projections associated with two sets of points s1,1,- -+, 81,4, €
[—7,0] and s2.1,- -+ ,82%, € [—7,0], respectively. Suppose {W (t) := (Wl(t),--- , W(t)) :
t > 0} is a d-dimensional standard Brownian motion defined on a probability space
(Q,F,P). Let n: Q@ — C([-r,0];R™) be a random initial path independent of {W () :
t>0}.

We will first consider the following class of 1t6 SDDE’s:

77(0)+/0 g(s,Hl(Xs))dW(s)—l—/O h(s,(Xs))ds, t>0
n(t), —-r<t<O0.

(1.6) X(t) =

Under conditions (1.4) and (1.5) the SDDE (1.6) has a unique strong solution (c.f.
[20], Theorem I1.2.1, p. 36; and Theorem V.4.3, pp. 151-152). To see this, let G(t,n) :=
g(t,111(n)) and H(t,n) := h(t,a(n)) for t € [0,al,n € C. It is easy to check that G and

H satisfy the Lipschitz and local boundedness conditions (with respect to the supremum
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norm on C') of Theorems I1.2.1 and V.4.3 of [20]. Therefore, for each m > 1, there exists

a constant C' = C(m, L,a) > 0 such that
(1.7) E||X|[g" < C(L+ Bllnllg™)

for all n € C,t € [0, a.

First, we propose an Fuler-Maruyama scheme for (1.6) as follows. Let m : 0 =
to < t1 <ty < --+ < t, be a partition of [0,a] to be specified later. Denote by || :=
0<rlrl<a7z<_1(ti+1 —t;), the mesh of 7. Define the Euler-Maruyama approximation X™ for the
S(;hztion X of (1.6) by
(1.8)

X7 (1) = { X7 (t:) + g(ts, I (X)) (W (E) = W (t:)) + h(ts, o (X7))(E — t), £ € (i tig]

77(t)7 -r S t S 07
where X[ (s) = X™(t +s), s € [-r,0],t > 0. It will be shown that under some regularity
conditions on the coefficients, one has the error estimate

(1.9) E sup || X7 — Xi||% < Clg)|nl?
0<t<a

for any ¢ > 1. As in the SODE case, the above estimate shows that the Euler-Maruyama
scheme has 0.5 as a strong order of convergence. These results are presented in section
3.1.

There are many ways to partition an interval into subintervals. For example, when
we graph a function h : [0,a] — R, we should evaluate it very frequently in those intervals
where h changes dramatically. If a fixed number of evaluations are permitted, then there
is a problem deciding exactly which points one should use for the above Euler-Maruyama
scheme. See ([6]) and ([12]) for a discussion of this issue. In section 4, we shall consider this
question for SDDE’s. A non-negative function h with finitely many zeros is used to express
a “way” of partitioning an interval into sub-intervals. An optimal way to achieve such a

partition is also given in section 4 (Theorem 4.1). This result yields an ezact convergence
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rate for the Euler-Maruyama scheme when applied to a one-dimensional linear SDDE with
a single delay.
The second class of SFDE’s that we will consider are those with mixed discrete and
continuous memory:
(1.10) . .
i |10+ [ ol ). aw ) + [ b, Qu(x) ds. 12 0.
n(t), —r<t<0,
where II; and Il are two projections of “discrete type”, (1 and ()2 are two projections of

“continuous type” defined by

Q( Qzl szl( )) L =1,2,
Q’L] / d)’L] azy )ds,jzl,---,mi,

where mq, mg > 1 are integers, a;; € C%(J, R)and ¢;; :R" = R,i=1,2, j=1,---,m,,
are functions satisfying Lipschitz and linear growth conditions.

For the SFDE (1.10), we can define the Euler-Maruyama approximations by

(1.11) XT(t) = X" (t:) + g(ti, I (X)), QT (X7)) (W (t) — W(t:))
+ h(ti, a(X]), Q3 (X))t —ti), t€ (ti,tita],

XT(t)=n"(@),  —r<t<O,

where QT (n),i = 1,2, are approximations of @;(n) to be specified in section 3. We prove
in section 3.2 that the Euler-Maruyama scheme for (1.10) has strong order of convergence
0.5.

We then introduce the following Milstein scheme for the SDDE (1.6):

(1.12)
XO(t) = X0 () + b (b, Mo (X7)) (¢ — i) + g (1, LU (X)) (W (8) — W (2x))
3gil

8Ii1j1

+ (b, T (X7 ) U0 (g, + 51,50 Dy (b + S1,505 6+ 51,505 51,51,
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for t), <t <tpy1, where
giljl (tv]-_-[l(XtTr»y t Z 07
0, —-1<t<0,

(1.13) Wi () = {

and

t1+s; ,J
(1.14) I (to + Si gt + 8i 53 8i5) = / OdWl (t2) o dWll(tl)
to

to+s; ,J

In (1.12), X*, h* and ¢* denote coordinate representations of X, h and g with respect to
standard bases in the underlying Euclidean spaces, and the Einstein summation convention
is used for repeated indices.

In order to establish strong convergence of the above Milstein scheme for the SDDE
(1.6), it turns out -surprisingly-that one requires the use of anticipating calculus techniques
developed by Nualart and Pardoux ([22]). In particular, one needs to develop an infinite-
dimensional It6 formula for “tame” functions acting on the segment X; of the solution X
of (1.6). Such an It6 formula is given in Section 3, Theorem 3.3. The formula is proved
via anticipating calculus methods ([22]). To understand the need for anticipating calculus
in such an intrinsically adapted setting, it is instructive to look at the following simple

one-dimensional SDDE:
dX(t) =g(X({t—1),X(t)dW(t), t>0
X(t)=W(t), —-1<t<D0.
where g : R? — R is a smooth function and W (t),t > —1, is one-dimensional Brownian
motion. For a second-order scheme, we formally seek a stochastic differential of the coeffi-

cient g(X (¢t —1), X (¢)) on the right hand side of the above SDDE. For ¢ € (0, 1], this gives

formally:

Ho(X(t 1), X (1))
= dfg(W(t ~ 1), X(1))}
= SLW (= 1), X)W (= 1)+ GLV(E - 1. X)X (- 1), X(0) W

+ second-order terms.
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Note that although the coefficient g(X (¢t — 1), X(¢)) is Fi-measurable, the first term
9g

£(W(t —1),X(t))dW(t — 1) in the right hand side of the last equality is an antici-
pating differential. Furthermore, it appears that the (F;)o<:<1-adapted process [0,1]
t — (X(t—1),X(t)) € R? is not a semimartingale with respect to any natural filtration.
In addition to this difficulty, the components X (¢t—1) and X (¢) are not independent, so the
existing anticipating versions of Itd’s formula do not apply (cf. [2], [3] and [22]); hence the
need for a new It6 formula for tame functions in order to justify the above computation.
In section 5 (Theorem 5.3), we establish such a formula.

Using the It6 formula of section 5 and appropriate estimates on the weak Cameron-
Martin derivatives of X, it is shown in section 8 that, under suitable regularity conditions
on the coefficients of (1.6), one gets the following global error estimate for the Milstein
approximations
(1.15) E sup ||XT — X[t < C(g)|x|?

0<t<a

for any ¢ > 1. This says that the Milstein scheme has strong order of convergence 1.
2. Preliminary Results

Let n : [-r,0] — R™ be a given continuous initial path, and let W be a d-
dimensional Brownian motion on a filtered probability space (2, F, (F%)e>0, P).

We shall use the notations introduced in section 1.

Assume that the functions g : T x R™* — L(RYR™) and h: T x R™k2 — R™
satisfy (1.4) and (1.5). Let II; and II; be two projections associated with two sets of points

511, ,81,k and sg1, -+, 82 k,, respectively. Consider the SDDE

n(0) —I—/O 9(s, 111 (Xs)) dW (s) —|—/0 h(s,13(Xs))ds,t >0
n(t)7 —r<t< 07

(21) X(t) =

where n € C([—r,0]; R™) almost surely and is independent of the Brownian motion { W (¢) :
t > 0}.
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Recall that the SDDE (2.1) has a unique strong solution X, and for each integer

k > 1, there exists a constant C' = C(k, L,a) > 0 such that
(2.2) Bl X < C(1+ Elnl[2)],

for all n € C and t € [0, a] ([20]).
Next we define convergence, consistency and stability.
Suppose that X = {X(¢) : ¢ € T} is the solution of some SDDE, and Y7 is a

discrete-time approximation of X based on a partition 7 := {¢; : i =1,--- ,n} of T.

Definition 2.1.
We say that a discrete-time approximation Y™ converges strongly with order v > 0
at time t to X if there exists a positive constant C, independent of 7, and a dy > 0 such

that
(2.3) ElY™(t) — X(t)| < C|rn|”
whenever || € (0, dp).

Definition 2.2.
We say that a discrete-time approximation Y™ is strongly consistent if there exists

a nonnegative function ¢ = ¢(J) with

(2.4) im (8) =0
such that
(2.5) E‘E(Y”(tmik— Y7 () ftk) (o TH(Y) 2 )
and
(2.6)

E( Aik |:Y7r(tk:+1) —Y"(t) — E(Y™ (txs1) — Yﬂ(tkﬂ]‘—tk)]

2

= gt IL (Y)W (k1) = W(te))| ) < e(|m])

for all fixed values Y;" = n and where Ay = tg1 — tg.
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Definition 2.3.

Suppose that a numerical scheme for an SDDE gives rise to discrete-time approx-
imations Y™, Y™ starting at time ¢y at Y;" O,Yt”7 respectively. We say that the numerical
scheme is (stochastically) numerically stable if for any finite interval [ty,a] there exists a
positive constant dg such that for each € > 0 one has

(2.7) hm sup P{[|Y] - Y Nle =€t =0,
1Yy =Y lle—0 to<t<a

whenever || € (0,dp), and where n; := max{i : t; <t < t;11}.
To obtain the order of convergence, one needs to study the dependence of the
solution of the SDDE (2.1) on the delays. Define the distance d(I1;,II3) between two

projections II; and Il associated with two sets of points s11 < -+ < 81, and s21 <

- < 82 k,, by the formula

400 if ky # ko
d(Ily, ) = max |[s1; — s2;| if ki = ka.
1<j<k1
Let us consider two SDDE’s
(28) X(t)= { 0(0) + fy (s, M (X )+ fy h(s, ha(X,)) ds, t € T,
n(t), —r<t< o,
and
(2.9) Y(t) = { n(0) + Jo 905, o1 (Ya)) dW (s) + [ (s, Taa(Y:)) ds, t €T,
' n(t), —r<t<O.

We shall estimate the difference between X (¢) and Y'(t). When k; = ko = 1, Bell and
Mohammed ([5]) showed that if s;; — 0 and s31 — 0, then the solution X (¢) of (2.1)
converges in L?(£2, R™) to the solution of the corresponding SODE.

The following lemma extends the result in [5] to the case of several delays. This

extension will be useful in studying the order of convergence of the numerical schemes for

SDDE’s.
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Lemma 2.4.

Suppose that g, h satisfy (1.4) and (1.5). Let 0 <~y <1, n € CY([-r,0],R™), and
suppose that X andY are solutions of (2.8) and (2.9), respectively. Then for each q > 2,
there exists a constant C(q) > 0 such that

(210) E sup ||Y;g — Xt”% S C’(q) {d(Hll, Hgl) —+ d(ng, H22)}CI’Y .

0<t<a

Proof.

Note first that there exists a constant M > 0 such that

(2.11) sup E|lY(z1) =Y (22)|? < M|to — t1|7.
—r<t1<z1<22<t2<a

Let IIy1 , 112, o1 , oo be associated with {s11 < s12 < -+ <14}, {82,1 <s22 <--- <
Soksts {11 < T12 < - < Tk ), and {ro1 < roo < .-+ < rog,}, respectively, with
i, Si; € [-7,0]. Suppose 0 < ¢ < a. Then by the Burkholder-Davis-Gundy inequality
and (1.7), we have
E sup [Y(u) — X(u)|?
0<u<t

< Cl / |h S H22 ) h(S,ng(XS))|qu

+Ca(g / 1905, T (Y2)) — (s, Ty (X)) ds

< Cs(q /EZ{Ws+r21>—Y(s+sz,i)|q+|Y(s+32,i)—X(s+sz,i)|q}ds

t
+ Cs(q / E Z{|Y s+rii)—Y(s+s1)T+|Y(s+ 1) — X(s+ 1)} ds
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for all t € T. Thus from the above inequality, (2.11) and the definition of d(Il;,IIs), it

follows that

t
E sup |Y(u)—X(u)|q§C7(q){M(5q7+/ E sup HYu—XquCds}, teT,
0

0<u<t 0<u<s

where § := d(HH, Hgl) + d(ng, H22). Hence

t
(2.12) Estanmgg%@MWH{M@/EswHH—XN%&
0<u<t 0 0<u<s

for all t € T'. By Gronwall’s lemma, this implies that

(2.14) E sw ||V, — X,||% < C()57, ¢ [0,d].
0<s<t

The proof of the lemma is complete. [J

Note that the constant C(g) in Lemma 2.4 also depends on the process Y. Since
the rationals Q are dense in R, by Lemma 2.4, we need only deal with rational delays,
i.e., we can assume that the delays s; ; in (2.1) are in Q. This makes computer simulation

possible, since one can then control the system error when the delays are irrational.
3. The strong Euler-Maruyama scheme

In this section, we shall develop Euler-Maruyama schemes for SFDE’s with discrete
and/or continuous memory. For simplicity, we assume that a is a positive integer, T :=
[0,a] and J := [—1,0]. We also assume rational delays:

{Sj,i = _Iﬁ j = ]-727 1 S { S kjup],z Z Ovpj,’i € Z?Qj,’i S N}
7y

We will adopt the following notation throughout this section.

Let Ny be the least common multiple of ¢;;,7 = 1,2, 1 <7 < k;. Let p € N and set
n := apNp,l := pNy. Then [ and n are positive integers. We define the rational partition
points

—14 = (i+pNg), —1<i<0
(3.1) ti :{ - P

_t
pNop’
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Note that for all 1 <i < k; and j = 1,2, t; + s, belongs to the partition 7, := {t; : =1 <
i <n} of [-1,a]. Set 0, :=|mp| = 1/(pNo) and ny :=max{n e N :¢, <t}. If -1 <s <t

define
t;, ift; <s< tit1
Ls] == .
tn,, ift, <s<t.

for —1 < ¢ < n — 1. For each positive integer p, the superscript p will denote numerical

quantities pertaining to the partition m,, e.g. X? := X",
3.1. The Euler-Maruyama scheme for SDDE’s
Recall the SDDE

77(0)—1—/0 g(s,Hl(Xs))dW(s)-l-/O h(s,TI5(Xs))ds, t>0

(2.1) X(t) =

with r = 1.
The Euler-Maruyama scheme for (2.1) is given by

(3.2)

XP(t) = { XP(t;) + g, IL(XE)) (W () = W(t:)) + h(ti, Ta(XE))(t = 1), T € (ti, tisa]

Pt),  —1<t<0
where the starting path n? € C'(J, R™) is prescribed (e.g. a piece-wise linear approximation
of n using the partition points {t_;,--- ,tp}). Define the error function Z? by

(3.3) {Z”(t) = XP(t) - X(t), 0<t<a,

70 = XP — X,.
Theorem 3.1.
Assume that the coefficients g and h in (2.1) satisfy (1.4), (1.5) and the following

condition

(3.4) { l9(s,z) — g(t,2)] < L1(1 + |z|)|s — t|7, for allz e R™1 st €T

|h(s,x) — h(t,x)| < Li(1 + |z|)|s — t|7, for allz € R™*2 st €T
for some positive constant Ly. Fix any integer g > 2. Suppose thatn : [—1,0] — L1(Q, R™)

is Holder continuous with exponent v € (0,1], i.e., there is a positive constant K such that

Eln(s) —=n(®)|* < Kls — [
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for all s,t € [—1,0]. Suppose also that there is a positive constant C' := C'(q) such that
E|ln” —nll& < 631
Then there exists a constant C" := C"(q,a) > 0, depending on a and q, such that

E sup ||Z2]|E, < C"5)¢
0<s<

where 7 := v A (1/2).
Proof.

Since the SDDE (2.1) is a special case of the SFDE (3.12), the reader may consult

the proof of Theorem 3.4 in the next section. [

The requirement
Elln? —nll¢ < C'63¢
in the statement of Theorem 3.1 is fulfilled if one takes nP to be the piecewise-linear

approximation

nP(s) == [(tig1 — s)n(t:) + (s — ti)n(tiv1)] (tigr — )", s € [t tisa]

for —{ <4 <0.

3.2. The Euler-Maruyama scheme for SFDE’s with mixed discrete and contin-

uous memory.

Let my,mg > 1, a;; € C%(J), and let ¢;; : R™ — R, i=1,2, 5 =1,---,m;, satisfy
Lipschitz and linear growth conditions. Consider the following SFDE with mixed discrete
and continuous memories:

(3.12) t t
X(t) =n(0) +/O 9(s, 1 (Xs), Q1(X5)) AW (s) +/O h(s, II2(Xs), Q2(Xs)) ds, t € [0,al,
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where II; and II; are two projections of discrete type, ()1 and (2 are two projections of

continuous type defined by

Q( Qzl ) "7sz2( )) i:1727
Qij(n /(bw )aij(s)ds, j=1,---,m,.

We assume that ¢ : T x RF1™*+™ _ R and h : T x RF2™+™2 _ R satisfy the uniform

Lipschitz condition:

{ lg(t,z) — g(t,y)| < Lz —y|, z,y e Rham+m
’h(th) - h(t,w)| S L|Z — w|, Z, W c Rk2m+m2 : te [070/]’

and local boundedness condition:

sup [lg(t,0)] + |h(t,0)[] < oo,
0<t<a

where L is a positive constant independent of ¢ € [0, a].
Under the above conditions, the SEFDE (3.12) has a unique strong solution (c.f. [20],
Theorem I1.2.1 and Theorem V.4.3).

Define the approximations Q of Q;; by

(3.15) )= 3 usn(si))ass (1) (stsr — 58).

k=—1

Remark 3.2.
Ifn:[-1,0] — L9(2,R™) is Holder continuous with exponent 7, 0 < v < 1, and

q > 2, then it is easy to show that there is a constant C(q) > 0 such that
(3.16) E|Q7;(n) = Qij(n)] < C(g)d)4,

where 7 := v A (1/2).
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Lemma 3.3.
If n . [-1,0] — LYQ,R™), (q > 2), is Hélder continuous with exponent -y, then

there exists a constant C(q) > 0 such that

(3.17) sup  B[Q7;(X:) — Qij(Xo)|? < C(q)5)°

0<t<a

foralli=1,2 and j =1,--- ,m;, where ¥ =~y A (1/2).

Proof.
Fix 4,7, where i = 1,2,1 < 7 < m;, and let ¢t € [0,a]. Using the notation |s|, we
may write
(3.18)
0
(X)) — Qi (Xy) = /_1[¢ij(X(t + [s]))aij (Ls]) — i (X (t + s))a;(s)] ds
0
= /_ aij ([s])[0i (X (T + |s]) — @i (X (¢ + )] ds
/cbm (1 + 5)ais(Ls]) — ais ()] ds
)+ Io(t
where

(1) 32/ aij([s])oi (X (£ + [s])) — di(X(E + 5))] ds

-1

_ /_1¢ij(X(t+s))[aij(L5J) oy (s)] ds.

It follows from (3.12) and standard properties of the It6 integral that there exists a constant

C1(q) > 0 such that

(3:19) sup — B(|X(8) ~ X()|?) < Cu(q)lrz — [

—1<r;<a<fB<rz<a
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for all ¢ > 1. By (3.19) and the Lipschitz property of ¢;;, i =1,2, j =1,--- ,m;, it follows
that
0
sup E(|11(1)[) < Cl(Q)I\aijl\%/ sup E(|X(t+ [s]) — X(t 4 5)|7) ds
0<t<a —10<t<a

< Ca(q)llai; |03

< C3(Q)5Zq-

Using the Holder continuity of a;; and the linear growth property of ¢;;, I2 can be estimated

as follows:

0
sup E(|12(1)]7) SCl(Q)/ sup E(|¢i; (X (t+ ))|)]as;(s]) — ai;(s)[* ds

0<t<a —1 0<it<a
0

< Ci(g)s2/? / sup E(|6i;(X (¢ + 5))|7) ds

—1 0<t<a

0
< C’5(q)(5g/2/ sup E(1+|X(t+s)]7)ds

—10<t<a
0

< Cola6y [ B+ Ilnll) ds
—1

< Cr(q)8/.
So there exists a constant C'(g) > 0 such that

(3.20) sup  B|Q7;(X:) — Qij(Xo)|? < C(g)dy7. O

0<t<a J

We now introduce the Euler-Maruyama scheme for (3.12) as follows:

(3.21)
XP(t) = XP(t:) + h(ts, 2 (X)), Q5(XT)) (¢ — i)

+g(ts, T (XY), QV(XE)) (W (t) = W (t:)), t€ (ti,tira],

XP(t) =nP(t), —1<t<0,

where n? € C(J,R™) is prescribed subject to the conditions of Theorem 3.4 below.
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Theorem 3.4.

Fiz any q > 2. Assume that n : [—-1,0] — L1(Q,R™), is Hélder continuous with
exponent . Let ZP(t) := XP(t) — X (t) denote the error function of the Euler-Maruyama
scheme (3.21). Suppose that

Bl — & < O' ()5}

for some constant C'(q) > 0, where 5 := v A (1/2). Assume also that the coefficients g
and h satisfy the Lipschitz and boundedness conditions stated before Remark (3.2) together
with the reqularity condition

lg(s,m) — g(t,z)] < Li(1+|z|)|s — t|7, for all x € R™*+t™ s teT
\h(s,x) — h(t,x)| < Li(1 + |z|)|s — t|7, for all z € R™k2tm2 g+ T

for some positive constant L1. Then there exists a constant C(q) > 0 such that

sup_ B|Z7(s)1" < Clg)5y".

Proof.
f Let #; <t < t;41. Then the global error Z2(f) := XP(t) — X(t) may be written in
the form:
27(6) = Z0(0) + I0(0) + IB(6) — UP(6) — VI (0) — U (6) — VE(0)
where
1200 = [ 1) T (X, ) QBXT ) = h(Ls) (X1, QYN .
B0 = [ o151 100, QU.)) ~ a(15), T (X0, QHX D] W),
070 = [ (601X, Qa0 ~ M) (X)), @2l ) .
V0 = [ (005,06, QuOX)) ~ 5 T (X1, Q1 (X)) A (s,
vt - [ (1), T (X 1)), QX)) — B[], T (X)), @U(X()) s,
VI = [ (0151 T (K1), X10) = 0181 T (X1, QYK ) A (s
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By Holder’s inequality, we get

E sup |I{(s)*
0<s<t

S

swp B| | [h((r) (X)) QY(XT, ) — hllr) T(X(), Q4(X 1)) dr

< Ci(q) / sup (EJh(u. Ta(X]), QS(XT)) — h(u, I

Xu), Q3(Xu))|?) ds.

Therefore, by the Lipschitz property of h and ¢;;, it follows that

t
(3.22) E sup |I7(s)[? SC'Q(q)/ sup  E|XP(u) — X (w)|? ds
0<s<t 0

—1<u<s

for some constant C3(q) > 0. The Burkholder-Davis-Gundy inequality implies that

E sup |I3(s)]*

0<s<t

< (g / 91, I (X7, ), QR(XP, ) — g([s) T (X ), QR (X)) ds)’

< Cilg / 9(Ls), T(XP,)), QU(XT, ) — g([s), L (X)), QX 4)))| ds)

< Cu(g) / sup By T (X7), Q4 (XE) = g(u. T

Xu), Q1 (P Xw))[?) ds .
Using the Lipschitz property of g, we obtain

(3.23) E sup |I2(s)[? < Cs(g) /

sup E|XP(u) — X(u)|?ds
0<s<t

—1<u<s

for some constant C5(q) > 0. Similarly,

E sup |[VP(s)]4
0<s<t

B / 1905, T (X2), Q1 (X)) — g([5), T (X o)), Qu(X (o)) ds) #

(/ l9(s, T (Xs), @u(Xs)) — 9([s], (X 5)), @u(Xs)))|* ds)

19
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gt T (Xe, ), Q1(Xy, )| ds
+E/ 9(5, T3 (X4), Q1 (X)) — gltny T (Xe, ), Q1 (Xy, )| ds}

q){Z(/t ((5;*‘1 + sup E|X(s+u)— X(ti—1 +u)|?)ds

—1<u<0

¢
+E/ (5Zq+ sup E|X(s+u) — X(t,, +u)|?)ds}.
¢ —1<u<0

Hence
i t
(3.24) E sup |[VP(9)]? < Co(q) (0,1 +/ sup E|X(s+u)— X(|s] +u)|?ds)
0<s<t 0 —1<u<0
for some constant Cy(q) > 0. In a similar manner, UY can be estimated as
t
325 E swp [V < Cola)§'+ [ sup EIX(s+w) — X([s] + )" ds
0<s<t 0 —1<u<0
for some constant C19(q) > 0. Now use the inequality
(3.19) sup E(|X(s) — X(t)|7) < Crlry — r1|74.
—1<r;1<s<t<ra<a

Therefore,

Esu VP(s)]|?2 < C 5ya
(3.26) { pOSsStl T(s)|7 < Cii(q) A

Esupg<s<; [UT(5)]7 < C11(Q)53q-
By Lemma 3.3, there exists a constant Cj2(q) > 0 such that

{ SUPp<s<t E|V2p(3)|q < 012(Q)5Zq
suPg<s<; E|US (5)|7 < C12(q)d)9.

From (3.22), (3.23), (3.26) and (3.27), we get

(3.27)

¢
(3.28) sup E|ZP(s)]? < 013(Q)/ sup FE|ZP(u)|?ds + Clg(q)ézq.
0

0<s<t —1<u<s
Thus

sup  E|ZP(s)|? = C14(q)( sup E|ZP(s)|?) + sup E|Z"(s)|?)
—1<s5<t —1<s5<0 0<s<t

t
< CL(@) BN ZE||% + Cas(q) / sup  E|Z°(u)|" ds + Ch(q)50
0

—1<u<s

t
§015(q)/ sup E]Zp(u)\qu+016(Q)5zq-
0

0<u<s
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By Gronwall’s lemma, there exists a constant C'(¢) > 0 such that

sup E|Z7(s)|* < C(q)5]".

—1<s<t

This completes the proof of the theorem. [

Remarks 3.6.

(i)

(3.32)

(3.33)

The Cauchy Maruyama scheme can be extended to cover general SFDE’s of the

form

>
(3.29) X(t) = /GSX ) dW (s /HSX t>0,
n(t), —-r<t<O0.

Define the approximations to the solution X of (3.29) by
(3.30)

XP(1) = { XP(t) + G, Xp)(W(t) = W () + H(ti, X3,)(t — i), t € (t, 1]

nP(t), —r<t<0

where the starting path n? € C([—r,0], R™) is prescribed so as to satisfy the re-
quirements of Theorem 3.1 (e.g. a piece-wise linear approximation of 7 using the
partition points {¢;,--- ,tp}). Then the conclusion of Theorem 3.4 holds under the
following hypotheses on the functionals G : T x C([-7,0],R™) — L(R%;R™) and
H:TxC(-r0,R™) — R™
(3.31)

HG(tJI) - G(taé)“ + |H(t77l) - H(t7§)| < LHU - £||Ca le Ta 7775 € C([_Ta O]va)

sup [||G(t,0)|| + |H(t,0)|] < 0

0<t<a

{ |Gs,m) — Gt )| < Lu(L+ [nllc)ls — ¢, for all y € C(J,R™), 5, € T,
[H(s,m) = H(t,n)] < Li(1+ [nlle)ls — t]7, for all p € C(J,R™),s,t € T,

where L and L; are positive constants.
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(ii) The Euler-Maruyama schemes (3.2) and (3.21) are strongly consistent (Definition
1.3) with control functions C(§) = 0, and (stochastically) numerically stable (Def-
inition 1.4). The numerical stability follows by similar arguments to those used in
the above proof.

4. Exact convergence rate. An example.

In this section we consider regular partitions {7, (h)} of [0, a] that are generated by a
continuous positive (hence strictly positive) probability density function A : [0, a] — (0, 00).
More specifically, for each fixed sample size n and probability density function h the points
ti.n = ti of the partition 7, (h) in [0, a] are chosen such that

te41 1
to =0, / h(s)ds=—, k=0,1,--- ,n—1.
ti n
We thus subdivide the interval in such a way that the areas under h over each subinterval

are all equal to 1/n. It then follows that

(4.1) lim  n(tpe —t) = 1/h(2).

n—oo,tr —t

Consider the following linear one-dimensional SDDE:

(4.2) { dX(t) =b(t)X(t—1)dW(t), 0<t<a

X(t)=n(t), —-1<t<O0.
The Euler-Maruyama scheme gives

X () + b(t) X ™ (t, — 1) (W () — W(tg)), te <t < tpsir,
(4.3) X7 (1) = { (tk) + b(te) X ™ (t — 1)(W(2) (tk)): tr k1

n(t), ted,
for 0 < k <n—1. By Theorem 3.1, there is a positive constant C' (independent of n) such
that

WE sup |X(t) ~ X™ (1) < C,
t€[0,a]

for all n > 1. The constant C' is called a leading coefficient of the scheme and has various
applications (see [6]). We shall show that as n — oo, the left hand side of the above

inequality has a limit. We shall also determine the equation satisfied by this limit.
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Theorem 4.1.
Suppose n € CV(J,R™),1/2 < v < 1. Let a > 1.. Suppose b : [0,a] — R is a

bounded continuous function such that
b(t) — b(s)| < K|t — s|(1/2)+e

for all s,t € [0,a] and some K, > 0. Let X be the solution of the SDDE (4.2), and X™
be its FEuler approzimation (4.3). Then Z(t) := lim n E|X(t) — X™ (t)|* exists for each

t € [0,a]. Furthermore, Z(t) satisfies the following deterministic linear DDE

Z'(t) = () Z(t — 1) + b2 (1)b*(t — 1)EX?(t —2)/h(t), 1 <t < a,

(4.4) Zt)=0, —-1<t<I1,

where EX2(t) is given by the integral equation

n(0)? + fot b2 (s)EX?%(s—1)ds, t€]0,a],

(4.5) EX=(t) = { (02 te[-1.0)

Proof.

Rewrite (4.2) as
(4.6) X(t) = X (t) + b(tr) X (15, — W (1) = W(t)) + I,
where t; <t <141 and

(4.7) I = [ Bs)X (s = 1) = blea) X (1~ D] AW ().

Set Z™(t) := X (t) — X™(¢t), t € [-1,a]. Then
(4.8) Z7(t) = Z7 (t) + b(tr) 2™ (tx = YW (8) = W (tr)) + Iy 4o th <t <thyr.

Since E(Z7(t) — Z7(ty)|Z] ) = 0, for t > ty, it follows that

E[Z™(t) — Z™(tx)]* = E[(Z7)*(t)] — E[(Z7)*(tx)].
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Thus from (4.8), we obtain

(49)  E[(Z7)*)] = E[(Z7)*(te)] + b*(t) E[(Z7)* (tx = DIt — o) + I}, o + I, 4

where
(4.10) 2, = /t :E[b(s)X(s S 1) = b(te) X (1 — 1)]2 ds

and

(4.11) B, = 2/: Eb(t) 2™ (t — 1)[b() X (5 — 1) — b(ts) X (tx — 1)]ds

Since Z(ty — 1) is F, —1 measurable,

I, = 2/t b(t) (b(s) — b(t)) E[Z™ (1 — 1)X (1 — 1))ds

tr

t
(4.12) < Cn_l/z/ (S o tk)oH_%dS — C«n—l/Q(t _ tk)a—i-%’

tr

where we have used the fact that
Ty _ T 1\211/2 _ 1y211/2 —1/2
E|Z™(ty — )X (s = 1)| < {E|Z"(t, — 1)]*} " {E|X(s — 1|*} '~ < Cn~ /2.

For the rest of the computation, we denote by H;, ; a generic quantity satisfying the

following type of estimate:
(4.13) |Hyp o] < Cn7 (it —tp)t T

for some C, > 0 and all n > 1. With these notations, we may write IE’M = Hy, ¢+ Itis

easy to verify that

t
I}, = / b(s)’E[X (s —1) — X(tp — 1)]*ds + Hy, + -

Thus from (4.9) it follows that
E((Z7)*(t)] = EN(Z7)* (tx)] + b*(tx) B(Z7)* (tr — 1)](t — t1)

(4.14) + /t V2 (s)E[(X (s — 1) — X(t, — 1)]*ds + Hy, ;.

tk
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For each n > 1, define the process J"(t),0 <t < a, by

t
J(t) = J"(tx) +/ V(s)E[X(s—1) = X(ty, — 1))%ds, tp, <t <tpy1, k=1,2,---n— 1.
tr

When 0 <t <1, nJ"(t) — 0. One can easily check that

s—1

B(X(s—1)—X(tp —1))* = / b(v—1)EX?(v —2)dv.
Therefore
TPt = T (k) + /t b2(s) /5_1 b2(0 — 1V EX2(v — 2)dvds

1
= J"(t) + §b2(tk)b2(tk —~DEX%(ty — 2)(t — t1)* + Hy, 4,

for t > 1,k > n;. Recall that n; := max{n : ¢, < 1}. By recursively applying the above

computation, we obtain

1 e
J'() = S1n.a (1) > VP (te-1)b (thr — DEX?(tg_1 — 2)(t — tr1)
k=1

nt

1
5 101,a) (OB (En )6 (b, = DE?X (tn, = 2)(¢ = t)? + > Ho o+ Hey s
k=1

for all ¢ € [0,a]. This implies that

lim nJ"(t) = 1[1@](1&)/0 b2 (s)b*(s — 1)EX?(s — 2)/h(s)ds, tec][0,al.

n—oo

Thus

23

> V(1) E[(Z7) (b1 — D)t — tr—1)
k=1

+ b (tn, I B(Z7)? (tn, — DIt — tn,)* +nJ" (1),

3
=
N
3
e
=

I

for all ¢ € [0, a]. Letting n — oo in the above relation yields

Z(t) = /0 bz(s)Z(s —1)ds + I[La](t)/o bQ(S)bQ(s — 1)EX2(3 —2)/h(s)ds, te€]0,al.
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In particular, Z(t) =0 for all t € [—1,1].
From (4.2) it is easy to see that

EX2(t) = n(0)* + /Ot b (s)EX?(s —1)ds, t<]0,al.

Therefore Z satisfies the assertion of the theorem, and the proof is complete. [

Remark 4.1.
From Theorem 3.1, we know that under some reasonable conditions, the rate of
convergence of X™ (t) to X(¢) is 1/4/n over the interval [—1,a]. The fact that Z(¢t) =0

for 0 <t <1 indicates that on the interval [0, 1] the rate might be eventually higher.
5. Itd’s formula for “tame” functions.

In order to derive higher order numerical schemes for SDDE’s, we shall first prove
an It6 formula for “tame” functions on C'(J,R™) (Definition 1.1).

Suppose that (2, F, P) is a probability space and W (¢) := (W(t),--- , W4(t)), t >
0, is a d-dimensional standard Brownian motion on (€2, F, P). Denote by D = (D1, -+, D)
the Malliavin differentiation operator associated with {W(¢) : t > 0}. Assume

n(0) + [T u(s)dW (s) + [T v(s)ds, >0,
n(t), —r<t<0,

(5.1) X(t) = {
where 1 belongs to C' and is of bounded variation, u = (u',---,u™)7, u' € LZ:?OC, v =
(v, - ;o™ and v € Lll:cl. One can refer to ([23], pp. 61, 151, 161) for the definition
of ]Ls’p . Note that the processes u and v may not be adapted to the Brownian filtration
(Ft)t>0. For convenience, we define u(t) =0 for t <0 or t > a,

0, t>a

o ={
n'(t), —r<t<D0.
We also set W(t) =0if t <0 or ¢ > a, and denote

n(0) + fg v(s)ds, t>0
n(t), —r<t<O0.

(5.2)  U@t) = /Otu<s) W (s) and V(1) ;:{
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Ifue Lfo’f}’ for some p > 4, then the indefinite Skorohod integral fg u(s) dW (s) has

a continuous version. Hence we may assume that the process X (t) is continuous.

Let T'=1[0,a], J = [-7,0], C = C(J;,R™) be as before, and let II be the projection
associated with si,---,s;r € J. Although there is a multi-dimensional It6 formula for
o(t, X (t)) ([2], [3] and [22]), we can not apply it to ¢(¢,II(X;)) because II(U;) is of the

form

(5.3) (/()tu(s+sl)dW(s+ $1), ,/Ot u(s + sg) dW (s + sk)),

and the components of the dk-dimensional process (W (t + s1),---, W (t + sx)) are not
independent. However, the ideas in Nualart and Pardoux ([22], section 6, [23], p. 161) can
be used to derive an It6 formula for ¢(¢, I1(X})).

We denote by

(5.4) 6= {

the Kronecker delta.

Assume that ¢ c Cl’z(TXRmk), T = (fl, Tt ,fm>, fz = (.1171'1, tet 7xik') € Rk, Write

The next lemma follows from the independent increments property of Brownian
motion. It will be needed in the proof of the Itd formula for tame functions (Theorem 5.3

below).

Lemma 5.2.
Assume that {m, : 0 = tg < t1 < -+ < t,, = a} is a family of partitions of [0, al,
with lim, o |m,| = 0. Let —r < 51 < 89 < 0 and denote by AWt := Wi(t; + si) —

Wi(t;_1 +s1), 1 <i<d,1<I1<n,k=1,2, the increments of Brownian motion. Then

(5.6) lim ZAllwiAij _ { a+sy, ifi=jand sy = sy
=1

n—o0 0, otherwise ,
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in L2(, R).

Proof.
We only need to consider the case s; < so and ¢ = j. Now
n

n 2
{Z AllWiAZQWi] =) (AaW ) (AW +2 > A WA WAL WA
=1

=1 1<l

If n is sufficiently large, then |m,| < so — s1. Hence A;,2W? is independent of

A A WA WEA, W Taking expectations in the above equality gives

n 2 n
E[Z AllWiAZQWi:| < Z(tl — tl_1)2 < |7Tn|a.
=1 =1

for sufficiently large n. Note that a+s; is the correct limit in (5.6) because of the convention

that W (t) = 0 for ¢t < 0. This completes the proof of the lemma. [
We now state an It6’s formula for “tame” functions.

Theorem 5.3.
Assume that X is a continuous process defined by (5.1), where np: J — R™ is of
bounded variation, u = (u',--- ,u™)7T, v’ € LZ’?OC, v = (v, -, o™7T, and v* € ILIOC

Suppose ¢ € C12(T x R™* R). Then

(5.7)
o(t, I1(X+)) — ¢(0, I1(Xo))

_/O gf(s H(Xs))der/ %(S,H(Xs))d(H(Xs))

T

“ . i |
+ 5 Z Z / (93311163;]]1 SH(XS))U (3+SZ)DS+SiX (3+83)d8

ZJ lig,ja=1

a.s. forallt €T.
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Remark 5.1.

(i) The It6 formula (5.7) may also be expressed in the form

(5.8)
_ _[1o¢

o0, 110X0)) — 0.11050)) = [ sy ds+ [ 20 s amen,)

+ = Zl/ T?“|: gb (s, I1(X5)(©s(si,55))| ds

where
Os(a, B) = %{(UA)SXS(O{,ﬂ) + (uA)SXS(B,a)}, a, B € [-r0],

and the two-parameter process (uA)s X, : Q x J2 — L(R™; R™) is defined by

(UA)SXS (Oéa ﬁ) = I{OSSJrOt/\B}u(S + a)[uT(S + O‘)I{0§5+a§s+ﬁ}

s+3 s+
+/ Dgiqu(r) dW(r)+/ Dy ov(r)dr].
0 0

for all a, 8 € [—1,0].

(ii) Suppose d = m = 1. Let us define a trace operator 7. For 1 <i,j < k, define
(5.9) Vias, X(s) = 13%1@5*”)((8 +s8j+€)+Dyis, X(s+5;—€) ER

and VEX(s) = (Vi X(s), -, VL, X(s)) € RF. Then the It6 formula for “tame”
functions can be written as

(5.10)

S TI(X) — 0(0.T1(X0) = [ 22

0 88( ) ds +/ 83@ An(ws)
+ %; A <§ f<s T1(X.)) 73, X(5), 72, X () s,

a.s. for all t € T, where & := (z1, -+ ,zx) and (-, -)ga denotes the Euclidean inner product

on R%. Cf. [22], Remark 7.6.

For simplicity, we shall prove the It6 formula for the case d = m = 1. We thus

assume in what follows that d = m = 1.
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Proof of Theorem 5.3.

By Taylor’s Theorem, we may write

=D (6t 1(X4,)) = d(ti1, (X)) + [B(ti—1, TH(X4,)) — d(ti—1, T, )]

n n k
— Z %(th(th))Atl + Z{Z 6_¢ (ti—1, (X, ) A X

l:1 : ’1,:

VA

k

1 2

+5 Z ;x (i1, (X ) A XA XY, teT,
—, 0Ti0T;

where
Xy =Xy, +a( Xy, — X)), b=tia+6(ti—ti_1), ti=ti1+vt—t_1)

for some random variables 0 < oy, i, v < 1,1 =1,--- ,n. The It6 formula (5.10) will then

follow from Proposition 5.5 and Proposition 5.6 below. [J

The rest of this section is devoted to the proofs of Propositions 5.4-5.6.

Proposition 5.4.
Suppose that W (t) is a 1-dimensional Brownian motion. Let u € Lllo’i be such that
u(t) =0 ift >a ort <0. Assume that —r < $1,82 <0, and let 1, : 0 =1tg <t < -+ <

t, = a be a family of partitions of T = [0, a|, with |m,| — 0 as n — oo. Then

n ti+s1 2 a+s1
(5.11) lim {Z / u(s) dW(s)} = / u?(s) ds
oo =1 Yti—1+s1 0
in probability. If s; # s, then
n t1+s1 ti+s2
(5.12) lim / u(s) dW (s) / u(s) dW (s) = 0
nee =1 Yti—1+s1 ti—1+s2

in probability. Furthermore, if u € LY'2, then the above convergences are in L'(Q, R).
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Proof.

We prove the proposition for v € L2, The general case u € Lllcﬁ follows by a
standard localization argument ([23]).
If ug, uj, vi,v; € LY with u;(t) = vi(t) =0if t <0ort > a+s; and u;(t) = v;(t) =
0Oift<Oort>a+s;. Set
5.15) { i) = Jy wi(s) AW (5) { Vilt) = Jo wis) AW (s
Uj(t) := Jo uj(s)dW (s) Vi(t) := fy v(s) dW(s).
Then

E| Z ApUALU; Z AL VALV

=1 =1

= B ANu(Ui = Vi) AUy + ) AVidy (U = V)
=1 =1

< B  Au(Us = V) A U + B Y ApVidy (U; = V)

=1 =1
EZ|AZZ U — Vi)?) 3 ( EZ]AU 2)z
=1
HEY AR E Y 1Ay, - V)R
=1 =1
By an LP estimate of the Skorohod integral ([22], Proposition 3.5; [23], p.158), we have
n ) n ti+s; )
B AR =EY [ us)aws)
=1 =1 ti—1+s;

— By / T soortron (8 (3) AW (3)?
=1
< Z/(; I(tl71+3i7tl+3i](S)Eu‘?(s) ds
=1

+Z/ / Lty tsi 450 (8) E(Dyu(s))? ds dt

/Eu ds+// (Dyuj(s 2dsdt

= ||uj||1,2~
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Hence we obtain the following inequality

(5.14) E\ZAle Ai;U; ZAleAlJW < Jui = villi2llugll12 + [|vill1,2]|w;
=1 =1

Since L1'2 N L*(Q x [0,a]) is dense in L2, it suffices to prove (5.12) for the case u €
LY2 N LA(Q x [0,a]). Set

uw(t), 0<t<a+s;
(5.15) u;i(t) == { ®)
0, t<Oort>a+s;.
Define
n I(tl_ +5 tl+s~](t) /tl+8i
5.16 u (t) == L u(s)ds.
(5.16) (=3 Hg = [t

and uj similarly. Let

(5.17) { Ui(t) = Jy uils) AW (s) { U(t) = JEun(s) dw (s)

¢
Uj(t) := Jo us(s) dW(s)
Using (5.14) it is easy to check that

(5.18) lim E|Y  ApUMAGUN = AU AU;| = 0.
=1 =1

By the formula for the Skorohod integral of a process multiplied by a random variable
([22], Theorem 3.2), we get

t+si ™ T _ q(t tetsi
AuUP = / 3 (mtsitirs) () / wi(s) ds dW (¢)
t—1+si p—q th — tr—1 th—1+s;

1 ti+s;
= —/ u;(s)ds[W(t; + s;) — W(ti—1 + s1)]
tr—ti—1 Jy

1—1+8;
tl+sz tl+57,
Dyu;(s)dsdt
tz—tl LSty atsi Jti_a4si
= P W + Qi
where
1 ti+s; ti+s; ti+s;
P, = —/ ui(s)ds, Q= / Dyu;(s)ds dt.

ti—ti—1 Jiy_ +s tz—tz VSt ats S+
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Therefore,

n

S OAGUAGUR =Y (PudiW + Qui) (P AW + Qi)

=1 =1

Z Py Py) (AW A ;W )+Z(PZ¢QU)AMW

=1

(Plelz AZJW + Z QlZQlj

\M3 ||

By Holder’s inequality,
tl +5; tl +s;

(5.19) ZQM gz / Dyus(s)[2 ds dt .

ti—1+si Jti—1+s;

Thus lim EZ Q% = 0. Now

n—oo

=1

n n T2 titss 2
Z(PliAliW)2 - Z % (/t u; () ds)

=1 =1 1—1+S8:

AZ’L ti+s; n
=y [ et

1—1+8s

It is easy to check that E||(u})?||r2(0,a+s:]) < Elluf]|r2(j0,a+s:]) and

(5.20) Jim EY[(u!)® = ufllL2 (0,045 = 0

33

By an argument similar to the one used in the proof of Lemma A.1, we can show that

{3 (PiAW)2,n > 1} is uniformly integrable. Applying Lemma A.1, we have

n ats;
(5.21) lim E| Z(PMA”W)z —/ u?(s)ds| = 0.
n—oo -1 0

The Cauchy-Schwartz type inequality

n

> (PidiW)Qui| <

=1

n n

E (PidiW)?E> Q3

=1 =1

(5.22) E
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together with (5.19) and (5.21) implies that lim FE| Z(Plele>le| =0.
1=1
Now consider the case ¢ # j. The Cauchy-Schwartz inequality implies

(5.23) B> QuQul < | EY QLEY Q.
=1 =1 =1

We may write

n

n AleAlW ti+s; ti+s;
Z(PIZPZJ)(AMWAZJW) = Z m ( )dS/ Uj(8> ds
=1 =1 - ti_1+s; ti—1+s;
AWAGW o [hts .
5.24 = —_——7 u(s)u’(s)ds,
(5.24) Z el AR OLAT
where
Lty tsititsi) () [0
(5.25) a7 (s) = dat B / ui(s' +s; — s;)ds’ .
! lz:; 2 ti—1+s; ’ ’

Similar to the case ¢ = j, we have
(5.26) lim E| Y (PiPy) (AW AW)| = 0.

=1

This completes the proof of the proposition. [

Suppose that

Xy =Xy, tou(Xy, — Xy ), ti=tia+ Bt — ti—1)

for some random variables 0 < oy, 3;, < 1,1 =1,--- ,n. Denote
(5.27) A(IL(Xy,)) = (IM(AXy, ) = II(Xy, ) — (X, ),
(5.28) I(Xe,) = T(Xy, ) + g ATI(X,),

(5.29) ApX =Xt +8;) — X1+ 8;), for1<i<kand 1 <1 <n.
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Proposition 5.5.
Suppose that ¢ € CY2(T x RF,R), and let 1 < i,j < k. Under the hypotheses of

Proposition 5.4, we have

n 2 B t+s; 82¢ (X 2 d S

(5.30) PO R NAXALX | Jo o ( HX))u(s)ds, i =
0x;0x,; ! J .
I=1 ’ J 07 7 ?é J

as n — o0, in probability.

Proof.

For 0 <1,7 <n,

(5.31) ApXAGX = (AU + ARV)(ALU + A V)

= AliUAljU + AliUAle + AliVAljU + AliVAlj‘/a

where U,V are defined by (5.2). Since U,V are continuous and V' is of bounded variation,

it follows that

limn_wo Z?:l AliUAle =0
(5.32) limy, oo Dy AVALU =0

1iIIln_>OO 27:1 AliVAle =0
in probability, for all 0 < 7,5 < n. To handle the term Z?Zl A UAU, we adapt an
approach by Nualart and Pardoux (c.f. [22] Theorem 5.4 or [23] Theorem 3.2.1).

Set Y(s) := %?(S,H(XS))I[QQ(S) and
(5.33) Y"(s) = Y(0) o (s) + ) %(h—h (X0 ) (1) (5)-
=1

Then Y™ (s) — Y (s) as n — oo, uniformly in s € [0,¢]. Applying Proposition 5.4 and

Lemma A.2, we get

n 32 B t+s; 32
¢ (t1—1, TI(X4,)) A XA X — 655 —¢(3,H(Xs))u2(s) ds

O 2
— O0x;0x; 0 Ox;

(5.34)

in probability as n — oco. [
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Proposition 5.6.
Suppose that ¢ € CY2(T x R¥) and let X(t) be a continuous stochastic process

defined by (5.1), where uw € L}, v € L22, and n € C([—r,0],R™) is of bounded variation.

loc’ loc’

Assume that 7, : —1r = so < -+ < s, = 0 are partitions of [—r,0] such that |m,] — 0 as

n — 00. Then, for each 1 < i <k and eacht € T, we have

(5.35)

=0
nh—{lgoz 65: (tl—17H(Xt171))Al’LX

2
a¢( (X)) dX (s + 5;) + Z/ ¢ (X )u?(s + s;) ds

0 O iS5t 8:016’%
k t 62¢ s+s; sts;
H Xs DS S Ds s, ;
i ;[) Ox;0x; (5, T(X5)) [/0 +s,u(r) dW(r) +/0 +s;0(r) dr|u(s + s;) ds

i probability.

Proof.
By a localization argument, we may assume that ¢ € 02’2(T x RF R). Let |m,| <

ming <;<gy |8i — si-1]- Fix 1 <i <k,1 <1 <n, and set

0
(5.36) Fy = G.Z (t1—1, (X3, )

Using an integration by parts formula ([22], Theorem 3.2), it follows that
ti+s; t1+s4
(5.37) FEAU :/ u(s)Fy dW (s) +/ D, (Fy)u(r)dr,
ti—1+sq ti—1+s8;
where U is defined by (5.2). The chain rule yields
Eo2
8:1:1-8%-
=1

(538) DT(Fl) = (tl—l,H(th,l))DrX(tl—l + Sj).

Now, taking the Malliavin derivative D, in (5.1) gives

(5.39) D, X (t) = u(r) <4 +/ D,u(s)dW (s / D,v(
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Consequently
th,l))AliU =c1 +co + 3+ Cq,

> o
where

ti+sq
(c1:=200 1ftll 1181 (-1, IH( X,y ))u(s) AW (s)
ti+s; k; o
€2 = Zl 1 ftll 1+si J 1 ngcj(tl—h

(
(5.40) X))

' cs =Yy [ S 1%@1 LX) >f0“ 5 vuls) dW (s)u(r) dr
nx, ) J:

ti+s; 62¢
\ €4 -= Zl 1 ﬁfl 1+s4 J 1 9z;0x; (tl*h

We will study the limits of the above expressions as n — oco.

Step 1. First we show that the limit of ¢, is given by

k t+s; 82¢> )
(5.41) ¢ ﬁjg;l /0 D0, (r—si, (X, _,))u*(r)dr, as.

If j <i,thent; 14+ >t_1+ Sj. So when t;_1 4+ s; <r <t;+s;, ]{rgtl—i—sj} = 0.

We have

ti+s; a2¢ )
/ (1, TUX ) gt po,y0(r) dr
t

Jj= Z+1l 1 1—1+Si 8$@8I]
]f t+81 62¢ .
=2 [ G - s I ) ar
Jj=i+1 10T

a.s. as 1 — OQ.

Step 2. Next we study the limit of c3 as n — oco. We claim that

k

t+s; 82 r—S8;+s;
(542) = /0 o g;j (r— s, TI(X,_4,) /0 Dyu(s) dW (s)u(r) dr
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as k — oo in probability. In fact,

n t;+s; 62 ti—1+s;
= /t 220 4 T(X, ) /0 Dyu(s) AW (s)

=1 Jti—1+s; ax%ax]

t+s; 82¢ r—sits,
_ /0 (‘)xzaxj (7" — Sy, H(ersi)) /() Dru(s) dW(S)]u(T) dr|

n ti+s; 82¢ r+s;—s;
< ’Z/ 9.0 ‘(tl—bH(th_l))/ Dyu(s) dW (s))u(r) dr|
ti_1+s LiOTj

=1 ti—1+s;
n t;+s; 82¢ 62¢
! | l—zl /tz_l-l-si [angff] (tl_l, H(th_l)) a 3@8% (7’ — 5 H(X”’_Sz))]

r—S8;+s;
« /O Dyuls) dW (s)u(r) dr|

62¢ ti+si r+s;—8;
e Z ) D,u(s) dW (s))]u(r)] dr

t— 1+Sz ti—1+s;

2 2
0°¢ 0°¢
(tl—17H<thfl)) - axzaxj

+ sup sup \
1<I<n 1€ty 1485 ti+5:] OTiOT;

« /O e / Y Du(s) AW (s)u(r)| dr

= Tjnl + T]n27

(r—s;, (X —s,))]

where T7 and T7; denote the first and second term on the right hand side of the last
inequality. Using the Cauchy-Schwartz inequality and the LP inequality for Skorohod

integral ([22] Proposition 3.5, [23] p.158), we have

e [ )

ti+s; T+8;—84
X {E / |D,u(s)|* ds dr
ti—

1+84 t— 1+sj
t1+s; r+S;—38;

P9
8:(;1-5’33]-

N[

o<

/O " | Do(Dru(s))? d ds dr} s

ty_1+s; Jt— 1+53

2
as n — oo. The uniform continuity of % implies 775 — 0 a.s. So asn — oo, T]' — 0
1O

in probability.
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Step 3. Now we will show that

k

0% (X T D u(s) dsu(r) d
A4 — 99y r—S8;4 T ) e
(5.43) cy — Z/o 90 (r — s, I( ))/0 v(s)dsu(r)dr, a.s

Jj=1

As in Step 2, we have

n ti+s; 82¢ t_1+s;
|Z/; [axzax] (tl—la]-_-[(th_l))/O DTU(S) dS

1—=1 Y ti—1+s;s
82¢ r—S8;+s;
- &vi@xj (r —s;, (X, —s, ))/ D,v(s) ds} u(r) dr|
2 ti+s; r+s;— 57.

g‘ ¢ o(s) dsl[u(r)] dr

aziax] 00 l 1 Y- 1+S7, ti—1+s;
b su su (o TX ) — =22 (s (X))

L2150 refi s tontite] 3%3% U T 0w, v

|u(r)| dr

ti+sq r—8;+s;
X / / D,v(s)ds
0 0

—0 asas n— 0.

Step 4. Finally we study the limit of ¢; as n — oo. We shall show that

t-i—s-; 8
(5.44) ¢ — /O (9.2

(s — s, I(Xs—s,))u(s) dW (s)

in L?(Q,R) as n — oo. To see this, define

n — 0
(5.45) () =us) Y 5 2 T ) e 5):
It suffices to show that
n ¢
(5.46) W) = £ (s — s T, ()10 (9

in L1'2 as n — oo. It is clear that the sequence {u™(s)} converges to

aafi (5 — 50, I(Xs—s,))u(s) (0,445, () in L?(Q2 x T, R). It remains to show that the sequence
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{D,u"(s)}52,,r,s € T? converges in L?(QxT? R) to D, g—¢(s—si,H(XS_Si))u(s)I(O’HSi](s) :

Xy
Now
D,u"(s)
= DTU(S) O (tl—lv H(th—l))I(t171+5iatl+5i] (8)
=1 v
n Z 82¢ ti—1+s; , ,
+u(s) Y (TG ) [ D) W (9

k a2¢ ti—1+s;
+ u(s) Z[Z (-1, (X, ) /0 Dyv(s") ds'[ (1, 45,145 (5)

k
l - Zax axj tl 1, (th_1))u(r)l[0,tzfl+sj](T)]I(t171+si7tl+si](s)

j=
=d; +dy+ds+ds.
where dy, ds, ds, d, stand for the first, second, third and fourth term, respectively, on the

right hand side of the above equality. It is easy to see that

99

d1 — DTu( )6:1;

( (S - Si"XS_Si))I(O,t“FSi](S)

in L2(Q,R). Since for all 1 < j < k, u(s) f;* *7% D,v(#) df belongs to L2(Q x T?,R),

then by Lebesgue’s dominated convergence theorem, we have

kK n 82¢ s+s;—5;
dg :=u( ZZ O tl 17H(Xt11)>/0 D,v(6) de]I(tl—1+Si,tl+5i](8)
j=11=1

62¢
893283: j

—

$+8;—8i
Csll(Xe) [ DO a8l o
0

Mw

u

—

j:

in L?(Q2 x T?,R). Moreover,

ti+s4 a ) 82¢ 2 s+s;—8; )
/O u (S){axiaxj (tu,H(XtH))} [/t D,v(0) df)? dr ds

ti—1+s; 1—1+s;
82¢ 2 a ) a pa )
n D'I"
< |my| 920 oo/o u”(s) ds/o /0 (D,v(0))= dr df

— 0
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as n — oo in L1(, R), because v € LY* and u € L*(Q x T, R). Hence,

82¢ s+s;—8;
dy = Y ule)l g (s = s TXo) | D@ o)

in L?(QxT?,R). To find the limit of do, we need to check that for all j, the two parameter
process (u(s) fOSJrsj_si D,u(0) dW (6),0 < s,r < a) belongs to L*(Q2x T? R). This follows

from the following estimates:

E /0 ’ / 25 / T D u(0) aW ()2 ds dr
< {E/O dsE/ {/ [/Hsg_sz W) dr}? ds}2

<C{E/ u()ds[E/ / |D,u(0)|? db dr)?

///D (D, u(0)) df dr da)?]}2.

Here we have used a slight modification of the LP estimate of the Skorohod integral for

=

=4 (c.f. [23], Exercise 3.2.7). Using similar L? estimates to the above, we obtain

(5.47)
n ti+s; a ) 82¢ 2 s+s;—s; )
;/t /0 u”(s) L%Uiaxj (ti—1, H(th_l))] [/t D,u(0) dW(0)] dr ds

1—1+8; 1—1+s;

g

Note that the right hand side of the above inequality tends to zero as n — oo. Thus

0?%¢
Oxié?xj

=1

62¢ $+8;—8;
(5.48) s — Z N (6= s [ D) WO (5)
i J

in L2(Q x T?,R) as n — oo.

It is easy to check that

826
= D) g (6 = 5T U ey ) )

N[

2 a 3 n ti+s; a s5+s;—s; 2
(/ Eu’(s) ds) X ZE/ [/ (/ D,v(0) df)? dr} ds» .
00 0 l ti—1+s; 0 ti_1+s;
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as n — oo in L?(Q, R). Therefore,

0?9
Oa:iaxj
in L?(Q2 x T?,R). Finally it is easy to see that

(5.49) D,u"(s) — D, [u(s)

(S — Sis H(XS_Si))I(O,t+Si](S)]

t+s; (9
¢ — /O 8Z (s — 84, II(Xs—g,))u(s) dW (s)

in L?(Q,R) as n — oo.

Step 5. The convergence

(5.50) ﬁiéth (X DA-V—»/WHia¢(s—s-HC¥ 1) dV(s) as
. - 83)1 -1, ti—1 li ., 8£UZ i s—S; .S.

as n — 00, is easy to verify. [

We complete the section by giving a Stratonovich version of the Ité formula (5.7).
Suppose that £ > 1 and p > 2. The set LS% (c.f. [22] Definition 7.2, [23] p.167)
is the class of processes u € Ls’p such that the mappings s < Dgpiu(s V t) and s —
Dgyiu(s At) are continuous in LP(€2), uniformly in ¢, and sup, ;e E(|Dsu(t)[P) < oo.
1,2

The space Liﬁc 1o 18 the class of processes that are locally in Lé’QC. For any u € L),

the following limits

D u(t) = lim, 4 Diyi(t +
(5.52) { t (t) 10 Zz_l t ( €)

Dy u(t) = limeyo 30, Diu'(t — €)
exist in L2(Q) uniformly in ¢, we set 7 = D* 4+ D, i.e., (yu)(t) = D} u(t) + Dy u(t).
Consider the process

(5.53) X(t) = { n(0) + [y u(s) odW(s)+ [y v(s)ds, t>0

n(t), —r <t <0,
where 7 belongs to C' and is of bounded variation, v = (u',---,u™)T, u’ € LZ%JOC,
(Vu) € Lll(ﬁ, v=(, -, o™T, v € Lll(;i, and the stochastic integral is a Stratonovich

one. Assume also that the process X is continuous.
Using the relationship between the Skorohod and Stratonovich integrals ([22], Theo-
rem 7.3; [23], Theorem 3.11) and Theorem 3.3, we can easily obtain the following Stratonovich

version of It6’s formula for the segment process Xj;.
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Corollary 5.8.
Suppose that the process X (t) is defined by (5.53), and let ¢ € CH2(T x R™* R).

Then
(5.54)
o(t, 11(X¢)) — ¢(0, I1(Xo))
t k .
= i g—f(s,H(Xs))ds—i—;/o %(S,H(XS))u(s+si)o AW (s + ;)
k t
+Z/O %(s,ﬂ(&))v(sﬂgds.

forallt €T a.s..

6. Weak differentiability of solutions of SDDE’s.

In this section, we will study the weak differentiability of the solution of the Ito
SDDE (1.6). Bell and Mohammed ([4]) have applied the Malliavin calculus to study
regularity of solutions of SDDE’s with a single delay in the noise term. Their analysis
relies on weak differentiability of the solution of the SDDE. In Section 8 of this article,
the weak differentiability of the solution to the SDDE (1.6) together with the It6 formula
(5.10) are used to develop higher order numerical schemes for solving the SDDE. The next
three results (Proposition 6.1, Lemma 6.2, and Proposition 6.3) are analogous to those in
Nualart ([23] Theorem 2.2.1, Lemma 2.2.2, and Theorem 2.2.2). Denote D> := M,>,D"P,
for k € N. Recall that D', 1 <[ < d, stand for weak differentiation with respect to the

[-th component of W.

Proposition 6.1. (c.f. [23], Proposition 1.2.3).
In the It6 SDDE (1.6), assume that g € C’g’l(T x RF™: L(RY,R™) and h €
O T x RF2™; R™). Let X be the solution of (1.6). Then X (t) € DL for allt € T, and

(6.1) sup E( sup |D,X(s)|P) < oo
0<r<a r<s<a
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for all p > 2. Furthermore, the “partial” weak derivatives DL X7 (t) with respect to the l-th

coordinate of W satisfy the following linear SDDE’s a.s.:

P () + [ 5, 007 (5 T (X))DLX (5 + 51.) AWV (s)

Sk O

6.2) DLXI(t)= ,
( ) ' () fO =1 6—' 8 Hz(XS))DfﬂXJ(S—i_SZ,i) d87 tZ’r‘,

=0, t<r,

forl=1,---.d,j=1,--- ,m. In (6.2), ¢ is the (j,1) entry of the m x d matriz g, and

h? is the j-th coordinate of h.

Proof.
For simplicity, we will only consider the one-dimensional case d = m = 1.
0), t>0
Xo(t) — { 77( ) -

n(t), —-1<t<0,

t t
©3) X000+ [ gD AW+ [ b () ds

0 0

It is easy to see that

(6.4 D[ gt ) W 5)

—oe )+ [ DGt m ) v
and
65 D[ s a(x ds) = [ Dbl (X2 s

—82,ko

Since g and h have bounded space derivatives, it is easy to see that there is a positive

constant K such that

(6.6) { Dr(g(s, IL(X3))) < K sup, <o, |D X7 (w)]

Dy (h(s, M2(XY))) < Ksup,<,<s [Dr X" ()],
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almost surely. From the Burkholder-Davis-Gundy inequality and (6.3)-(6.6), it follows that

X" (t) € DY for all t € [0, a, and there are positive constants Cy, Cy such that

t
(6.7) E( sup |DTX”+1(U)|p) < 01(1+E||X;‘||%) +C’2/ E< sup |DTX"(u)\p) ds.

r<u<t r<u<s
By induction on n, the above inequality implies that E(sup,.<,<, |D-X"(s)|?) are uniformly
bounded in n for all p > 2. By [23], proposition 1.5.5, it follows that X (t) € DY for
all ¢. Applying the operator D to (1.6) (and using [23] Proposition 1.2.3), we obtain the
linear SDDE (6.2) for the weak derivative of X (¢). The estimate (6.1) follows from (6.2),

Burkholder-Davis-Gundy’s inequality and Gronwall’s lemma. [J

The following lemma may be proved using similar ideas. Its proof is left to the

reader.

Lemma 6.2.

Suppose that the real-valued process o = {a(r,t) : t € [r,al} is adapted and
continuous. Assume that the processes a(t) = (ai(t), -+ ,ax, (t)) € R¥ and b(t) =
(by(t), -+ ,br,(t)) € R¥2 are adapted, continuous and uniformly bounded. Furthermore,

suppose that the random wvariables a(r,t), a(t) and b(t) belong to DV and satisfy the

conditions
( sup E( sup |a(r,t)|’)+ sup E( sup |Dsa(r,t)P) < oo
0<r<a r<t<a 0<r,s<a s<t<a
(6.11) sup {B(sup la(O) + ECsup [Daa(0)])} < oc
0<s<a s<t<a s<t<a
sup {ECsup o)) + B(sup (D01} < o0

0<s<a s<t<a s<t<a

forallp>2. Let Y ={Y(t) : t € [0,a]} be the solution of the linear SDDE

a(r,t) + [“a(s), T (Ys))ge dW(s) + [1(b(s), Io(Yy))res ds, >,
0, 0<t<r.

(6.12) Y(t) = {

Then Y (t) belongs to DV°°, and for all integers p > 2, we have
sup E( sup |DsY(t)]P) < o0
0<s<a s<t<a

sup E( sup |Y(¢)P) < oc.
0<s<a s<t<a

(6.13)
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Furthermore, the weak derivative DY (t) of Y (t) satisfies the linear SDDE

(6.14)
DY (t) = Dsa(r,t) + (a(s), L1 (Ys)) mm Lyr<s<t}

+/ [(Dsa(v), 1 (Yy)) s + (a(v), T (DsYy))rea ] dW (v)

+ / (Deb(0), T (V) is + (b(0), Ta(DaYo)) sl dvs s < 1.

The next proposition follows from Proposition 6.1 and Lemma 6.2.

Proposition 6.3.

Let X = {X(t) : t € T = [0,a]} be the solution of the SDDE (1.6), where g €
02’2(T x RFM™ LRI, R™)), h € CI?’Q(T x RF2™ R™) have bounded first and second
partial derivatives in the space variables. Then X (t) € D3> for allt € T, and

(6.15) sup  E( sup |DXD2X(s)]P) < oo

0<ry,r2<a riVre<s<a

forli,lo=1,---,d, and all p > 2.

7. Strong approximation of multiple Stratonovich integrals.

The following iterated Stratonovich integrals are used in the Milstein scheme for
the SDDE (1.6):
t1+b
(71) ng to,tl, OdWZ( ) 9 dWJ( )
to+b Jio
where 0 < tg < t1,b > 0.
We will adopt the discretization scheme in [16] (section 5.8) in order to handle
the above double stochastic integral. For alternative discretization approaches to iterated

stochastic integrals, see [10] and [26].

Set

(7.2) J(to, t1;=b) :== Ji1(to, t1; b)),
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t:=1t, —tg and r := 2w /t. We choose a complete orthonormal basis of L?[0,t] as

1 2 2
(7.3) {%} U {\/;sinnrs, \/;cosnrs n=1,2,---,0<s <t}
Set Wi(s) := Wi(s +tg) — Wi(ty) and BI(s) := WI(s+b) — Wi(b), s > 0,1 <i,j < d.

Using the Kahunen-Loeve expansion technique, we have

oo

= = (to)
(7.4) W'(s) — ;W'L( ao 0) + Z (to) cosnrs + bl (to) sin nrs]
and
b 00
(7.5) Bl (s)— ~B(t) = %o 2(t ) + Z[aj’ to) cosnrs + b)° (to) sinnrs]
n=1
where
(7.6) at,(to) = %fg(W (s) — SW(t)) cosnrsds
' b, (to) = 2 [y (Wi(s) — SW(t)) sinnrs ds
and
(7.7) alb(ty) = 2 fo (BI(s) — £BI(t)) cosnrs ds
. bi:b(tg) = %fo (BI(s) — £BI(t)) sinnrsds .

for n > 1. The convergences in (7.4) and (7.5) are in L*(Q2 x [0,¢]). It is easy to see that
if n > 1, al(to), bi,(to), al®(to) and bh°(ty) are normally distributed with mean 0 and
variance t/2m%n? ([16], p.198). Furthermore, {a’ (to),b% (to)} and {af’(to),b):%(to)} are
pairwise independent ([16], p. 198). One can use well-known random number generators
to simulate these random coefficients (c.f. [9], section 3.1.2, [16], section 1.3, and [17],

section 1.2).

Lemma 7.1.

Let tg,t > 0. Then
(7.8)

Ji,j(to to + 15 =b) = 1(VT/Z'(t)Bj(t)) - 1(VVZ'() *(to) — B’ (t)af(to))
+7rz L(to)bhb(to) — B (to)al?b(to)], 1<i,j<d,

where the infinite series converges in L*(, R).
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Proof.

It suffices to show (7.8) for ty = 0. Fix ¢ > 0. For simplicity of notation, we write

(7.9) af, = a}(0), b, = b}(0), af’ = ai*(0), b3 = b(0)
and
s at N
(7.10) Wi(s) = gwl(t) + 70 + Z(afl cosnrs + b, sinnrs),
n=1

It is easy to check that

t+b s—b ‘ ) t+b s—b ‘ '
(7.11) Q/ /ﬁ ch%&QodW”@)—i/ ‘/ od W' (v) 0 AW (s)
b Jo b Jo
in L?(Q2) as N — co. Then we may write

t+b ) )
T8 = [ Wis = b 0dwi(s)
b

t+b ) ) i
:/ SfWWNMW@+%Mm
b

o  st4b _ b .
+ Z[a; / cosnr(s —b)dW’(s) +b;, / sinnr(s — b) dW/(s)].
n=1 b b

For any n > 1, we have

t4b ' t o
/ cosnr(s —b)dW/(s) = / cosnrsdB’(s)
b 0

:/0 cosnrsd(B?(s) — ;Bj(t))—l—/o cosnrsd(?éj(t))

= cosnrs(BI(s) — ;Bj(t))ﬁ) + m“/o (B?(s) — ;Bj(t)) sinnrsds

Bi(t) [t
+ *) / cosnrsds
tJo

t .
= inrb;zl’b.

Similarly, we have

t+b ' e
(7.12) / sinnr(s —b) dW/(s) = —§m°a3’b.
b

n
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So

w'(t)

(713)  Jij(0,t-b) =
On the other hand,

/OtsdBj(s):tBj(t)—/OtBj(s)ds

= 530~ [ (B - S0 as
- 5B —at’)
Therefore,
(7.14) Ji;(0, 65 —b) = %Wl( VBI(t) — %(Wi(t)a%’b— ' +%tin (ai b — bi g
n=1
]

The expansion of J; ;(0,¢; —b) is a generalization of the expansion of

(7.15) I, ) / / o dWi(v) o dWi(s)
= SOV W () — LW (0)af” — W (1)a)
+%tn§n(a bl — biad)
(see [10], [16], and [17]). Set
(116) Iyt —0) o= SOVHOB(0) = S (7 (0)af" (1) — B (1)a t0))
3 ol )2 0) = ) )

49

Then Jp (to,tl, —b) can be used to approximate J; ;(to,t1; —b) in the mean square. The

rate of convergence is given in Lemma 7.2 below.
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Lemma 7.2.

For any integer p > 1 and t > 0, we have

t2
2m2p’

(7.17) BIJP; (0, —b) — Ji,;(0, £ =b)|* <

Proof.

Let p > 1 be any integer. Then

<1 Sl | 1
i1 n p U p

Since {Wi(t)} and {B’(t)} are independent, E(a’b’) = 0 and E(a’,’b}*) = 0, we have

E|J?;(0,t;=b) = Ji j(0,t;=b)[* = x° Y n’E(a}b}’ — bl,al’)?
n=p+1
=% Y n’[B(alb)’)’ + E(@,a}")]
n=p+1
2 = 1 t2
= —<— . O
212 n;ﬂ n? — 2w2p

8. The strong Milstein scheme.

In this section we construct a strong Milstein scheme of order 1 for the SDDE (1.6).
Our construction relies heavily on the It6 formula for “tame” functions (Theorem 5.3).

Throughout this section, we assume that in (1.6) the coefficients g € CY2(T x
RF™ L(RY,R™)) and h € CY2(T x RF2™ R™). For convenience, set W (s) = W(0) = 0,
for all s < 0. We also define

Wt 1y (X,)), 0<t<a,

(8.1) n(t), t<O0.

{g(t7H1(Xt)); OStSCL,
u(t) =
0, t <0,

and v(t) == {

We first derive the Milstein scheme for the case d = m = 1.
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8.1. Ito-Taylor expansion.

Assume that 0 < tg < t, and ¥ = (xq,--- ,71,) € R¥. Applying the It6 formula
(5.10), we have

(8.2)
g9(t, 111 (X¢)) — g(to, 111 (X4, )

k1 tdsq s
89 i Qg
= | el ds + > :/

1 Jto+s1,i Oz

(s = 51,0, I (X5, ) Ju(s) AW (s)

ki )
9g 1, 0%g B
+ ; /to [a—xi(s, Iy (X))v(s + s1,6) + 5(8—%2(3, (X)) Vi, X(s), V5, , X (s))] ds,
where Vsilin (s) are defined by (5.9). Applying the It6 formula (5.10) again and using

similar notations for h, we obtain

(8.3)
h(t, 2 (X¢)) — h(to, Ha(X4,))

t Oh Fa o [ttsai g,
- % (s, HQ(XS))ds+Z/

i—1 Jtots2 O

(5 — 52,4, H2(Xs—s, ;) u(s) AW (s)

Z Z/t 92, (s, Ha(X5))v(s + s2,4) + %<%(S,H2(XS)) v;;i X(s), Vs, X(s)] ds.

Substituting (8.2) and (8.3) into (1.6), we get the following approximate (It6-Taylor) ex-

pansion of (1.6):

(8.5)
X(t) = X(to) + g(to, 11 (X, ) [W(t) — W (to)] + h(to, Ha(Xe, ) (£ — to)
t1+81,i
+Za to,Hl Xto tO‘f’Slz / / t2 dW(tl)—l-R(t(), ),
to+s1,4
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where

(8.6)
t1+81,4
ey =3[ [0 [

ulto + slﬂ-)} AW (t5) dW (t1)} + /tt /ttl Z { 99 (45 T (X0,))0(ts + s1.4)

1,0%
<82

t1+s2,i 8h
+Z / / — 59,4, Mo (X1, s, ,))u(ta) dW (t2) dty
t

0+s2,4

/ /0 { (t2, Ha(Xt,))v(t2 + 82,4)

1 82

0 oh
+ / / 99 (13, U4 (X0,)) + (12, T(Xo, ) | s i
to Jto at? 62

99
8901-

— 81,0, I (Xiy—s, ;) Jultz) — 5= (to, 11 (Xy,)

+ L, (x,,) v X, v;,ixm] dt W (1))

(12, 1o (X,,)) 775, oo vsz,ixtg} dt dt,

In the above expression, the stochastic integrals

t1+s1,4 ag
/ (t2 — 51,6, 11 ( Xty s, ;) )u(ta) dW (t2)
to+s1,i 3$1

and

t1+s2,; oh
/ (t2 — 52,4, H2(Xt2_52,i))u(t2> dW(tQ)
to+s2,; &'L‘z

are Skorohod integrals. Define
t1+s; ,J
I(to +Si,j>t+3i,j;3i,j) = / t2 dW(tl)
to to+s; ,J
fori=1,2and j =1, -, k;. Recall the definition of J(to +s; j,t+ s; ;;5;,;) in (7.1). Note
that if s; ; < 0, then
t1+si,;
(87) I(to +8i7j,t+si7j;8i’j) = / / OdW(tz) OdW(tl);
t

o+si,j
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if s, ; = 0, then

(88) I(to + 85,5, t + Sij; 81'7]') = /t [W(tl) — W(to)] dW(tl) = 5 — 5

8.2. The one-dimensional Milstein scheme (d =m = 1).
Assume d = m = 1. Recall the partition 7, == -1 =t < --- <tp=0<--- <

t, =t constructed in Section 3. We introduce the Milstein scheme for the SDDE (1.6) as

follows:

4¥p@)=é¥p@k)+—h@kéﬂzﬁxi)ﬂt—-nﬂ%-gﬁkfﬂlﬂxi)XVVﬁﬁ—-”V@kﬂ

(89) + Z az tk, Hl ka))up(tk + S1 Z)I(tk + Slyi,t + 81’1'; 8171),

for t, <t <tpy1, where

U,p(t)_ g(tal_[l(Xf))a tZO;
Lo, —1<t<0,

and

t1+s1,:
](tk+811,t+81 zaslz / / odW tg) OdW(tl).
t

k+51 2

Recall the notation
LJ tr, iftk§8<tk+1
s| =
tn,, iftn, <s <t

and introduce the following notation:

5] = oy, tp <8 <tgi1,
t, tn, <s <t

In view of (8.7) and Lemma 7.2, we will use JP(t;,t; s1,;) to approximate I(t;,;s1 ;).



54 Y. HU, S.-E. A. MOHAMMED AND F. YAN

Lemma 8.1.
In the SDDE (1.6), suppose that g € CZ(R¥'|R), h € CZ(R*,R), have bounded
first and second derivatives. Then for each integer m > 1, there exists a constant K(m) > 0

such that

IA

(5.10) {E“%(S’Hl(*’fs))%,iXs»v;,iXsW) K (m)
B((3 (. 1a(X.) V1, , X, 75, X0)™) < K(m)

IA

for allt € [0, a].
Proof.
By the definition of v;';iX(s) (see (5.9)), we have
(8.11) Varos, X(8) = 2u(s + s10) (s, <5, ;3 +uls +51,0)035

s+s1,; s+s1,5
v [ D awe w2 [ Do o)
0 0

and

(8.12) V;thl’jX(S) = U(S + slvi)éij .

Therefore,

(8.13)
(G0 (s, (X)) T, X(5), 75, X(3)

k1
= 2 ’Lzzl{axlagwj (87 Hl (XS))U(S + Slai)[u(s + Sl’i)I{Sl,i<31,j} —|— 571/(8 —|— Sl,’i)éij

s+s1,; sts1,5
s [ Dy awe + [ D o)
0 0

If » > 0, then

(8.14) Dyu(r) = Dsg(I1 (X)) = Z 8—%(73 I, (X)) Ds X (r + 51.4),
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and
k1 629
(8.15) Dy Dgu(r) = (r, I (X5)) D X (r + 51,:) Dt X (7 + 51,5)
i 8:{;1(‘9:1;] ’ ’
kq dg
+ Zl 5, (P TX)) DD X (7 + 514)-

By Proposition 6.1 and Proposition 6.3, there exists a constant C'; > 0 such that

{ SUPp<s<a E(SUPsgrga ’DSX(T)P) <Ch
SUPp<s t<a E(SUPsvtgrga |DtDSX(T)‘2) < (.

Since g has bounded first and second derivatives, then there is a positive constant Cs such
that

sup E( sup ]Dsu(r)\z) < Coky sup E( sup \DSX(T)\Q) < C105ky,
0<s<a s<r<a 0<s<a s<r<a

and

sup E( sup |DiDsu(r)]?) < CiC3ky + C1Coky.

0<s,t<a sVt<r<a

If r < s+ 51,4, then

{ DS+81,iu(T) =0
DS+51,iv(r) =0
Therefore,
t+s1,;
B([ 7 Draey ) aw (n))?
t+s1,4
t+s1,; t+s1,; t+s1,5
< E(DyDyis, ,u(r))*drds + / E(Dyys, u(r))*dr
t+s1,4 t+s1,4 , t+s1,; 7

S CQk%C% + 2Cgk1C1 = Kl.
Similarly, there exists a constant K5 > 0 such that

t+s1,;

E(/ -Dt+81 iU(T) d?")Z § KQ.
t+si; ’

So the first inequality of (8.10) follows from the above two inequalities and the Lipschitz

and bounded conditions on h, g ((1.4),(1.5)). The second estimate of (8.10) is proved by a

similar argument. [J
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Theorem 8.2.
Consider the Milstein scheme (8.9) for the SDDE (1.6) (r = 1).Let 0 < v < 1.

ol

5, l.e. there is

Suppose that n : [—1,0] — L2(Q,R™) is Hélder continuous with exponent

a positive constant K such that
Eln(s) —n(t)|* < K|s —t|”

for all s,t € J. Suppose that g € C*2(T xR* R), h € C12(T xR¥2, R) and have bounded

first and second spatial derivatives. Assume that

sup  B(|27(s)[?) < C'62
—1<s<0

for some positive constant C', where 6, := |mp|. Then there exists a constant C > 0

(depending on a and independent of ) such that

sup  E|ZP(s)|* < €62
—1<s<a

for any p > 1.

Proof.

As in the proof of Theorem 3.4, we express the global error in the form
ZP(t) = ZP(0) + IP(t) — RP(2),

where

ne

IP(t) = Z[h(ti—la o (XP(ti-1))) — h(ti—1, M2 (X (ti-1)))] (8 — ti-1)
+ 2 Lot T (XP(ti-1))) — g(tioy, T (X (8o ))DHW () — W(tiz1))

+ [htn,, o (X7 (t0,))) = h(tn,, a2 (X (,)))](¢ = tn,)
_|_

gt T (XP(n,))) = g(tn,, T (X (0, )W () — W (En,))

ny k1

+) Z{I(ti—la ti;s1,5) [%(ti_l, I (X*(ti-1)))

i=1 j=1
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X uf(ti—1 + s1,5) — aai( i1, I (X (t 1)) )u(tio1 + Sl,j)} } + i{ftnwt;sl,j
2
99, (X7, »nf@m—%ad>—fﬁmawnﬂxam»ﬁwmg+aJﬂ},
al‘j 695]
and
RP(t) = iR(ti_l,ti) + Rt ).
=1

We shall decompose RP(t) into five parts:

RP(t) = RY(t) + R(t) + R5(t) + RY(t) + RE(t),

where
Nt S+81,;5
Z {/ / |: Sl’j,Hl(XT’—Sl,j))u(T)
i=1 j=1 1+81,5
89 S5+S1,;
833]( 1— 17H1(X ))u(tl_l +Sl’j) dW +Z tny+51,5

39 dg

55@m;nxxggﬁum,+agﬂdw«mdw«$}

J
k1 s+81,5

— 51,5, I (Xp—g, j))u(?ﬂ)
Z{/ /sz—ksl j |:8$1 ’ ’

—gﬁ«Pwﬁl(pr)(ty+aJﬂdw«mdww$},

Z/ /LSJ {8% r I (Xr))o(r + 51,5)

(r, (X)) Vi, , X vsl,jX,»} dr dW (s),

= (r —s1,5, 1 (X5, J))u(r) -

l—|

0?

Q

_|_

{

DN | —
Q
*E\%

Z//W“% — 52 To(X, ) ulr) VY (r) ds,

Ls]+s2,

Z/ /SJ [axj (r (X ))o(r + 52,5)

1 ,0%h

+5(gm!

T, HQ(XT)) V;Z] Xra vs_ngr> dr dS,
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/ /sz{ (r, TT2(X ))+?(T IL (X, ))}drds.

By the It6 isometry and the formula for covariance between two Skorohod integrals ([23],

and

Section 1.3.1), we have

s+81,5
sup E|RY(s)]* <k E/{/ l I (r—s DI (X, g, )u(r
ogsgt | ) ' Z Ls]+s1,5 5’x]( L 1) V)

;j (LSJ7H1(XLSJ))U(\_SJ +31,j)] dW(T)} ds

J
s+81,5
<klZ / [ B = e )

[s]+s1,5

- %(LSJaﬂl(XLsJ))U(LSJ +oy)| dras

J
k1 t s+81,;5 s+81,;5 a
g
+ ky / / / { [—(r — 51,5, 1 (Xp—s, ))u(r)
jzzzl 0 [s]+s1,5 7 |s]+s1,5 833]‘ ’ N

- aa_g;qj(L(SLHl (Xpsp)ulls] + 81,]')} } drq dro ds

= k1 Ry1 (t) + k1R, (t).

By assumption, the function G,(s,z,2) = 881? (s,2)9(s,2), (x € R* and z € RM), is

Lipschitz, i.e., there exists a constant L; > 0 such that
|Gj(5,2) — Gj(s,w)| < Li]z —w|, Vz,w € R* and 1 <j < k.

Using

0, r <0,
and

sup E|X(8) = X(a)]* < Calra — 1|7,
—1<r <a<pB<rz:<a
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it follows that

s+81,;
Rlljl < Z/ / — 81 ]7H1(XT751,j)7H1(X7"))

SJJFSIJ
— G (|s], I (X ) T (X sy, D2 |5 451 >0} A ds
k1 t S+81,j
< 2k L3 Z/ / sup  E|X(ry) — X(r1)|*drds
j=1

3J+51 j —1<r1<re<a
|T2 7’1|<(§

< 2(a+ 1)k} LIC,6,7.

Now for all r > 0 and 1 < j < kq,

Jg
—(r — I (X,
Ds(axj(r 51,5111 ( L)u(r))
k
1 82
=0T ) 3 o b= sup I (X DDAX (1 =+ 50
B Mg
+ 2 (= 51 5, T (X)) (1, T (X)) Do X (1 + 51.4).

8:17]' 8

=1

By Proposition 6.1, there exists a constant C3 > 0 such that

sup E( sup |D,X(s)|?) < Cs.
0<r<a 0<s<a

59

By (1.8), (1.10), and boundedness of the spatial derivatives of g , there exists a constant

C4 > 0 such that

dg
sup sup FE(|Ds (8 (r = 51,5, T (X, )u(r))[P) < 2C4k7.
0<r<a 0<s<a Zj

Therefore

k1 t s+81,;5 s+81,5
Ry, (t) < ki) / / / E{D, [AC4k?) dry dry ds
j=1"0 :

[s]+s1,; s]+s1,5
< 4(a+ 1)Cukib2.

Hence there is a constant C5 > 0 such that

(8.16) sup E|Ry(s)|* < C5627.

0<s<t
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Applying Fubini’s theorem, we can rewrite R%(t) as

sz / / o o (X, ))u(r) AW (r) ds

i=1 j=1 —1+82,5 8.’13]
s+82,;
+ Z/ / s 81‘] — 59,5, a(Xp g, ,))u(r) dW (r) ds.

So we have

iZ/ﬁszj /r axj — 59,5, Mo (Xy—s, ;) u(r) ds dW (r)

11]1 1+S2,;5

t+s2,;
/ / — 89,5, Ha (X, p )u(r)ds dW (r)
tn r—sg 8% :

+32 7

- Z Z/ | <ti + 82,5 — 7’)%(7’ — 59,5, 1o (Xr—s, ;) )u(r) dW (r)

i=1 j=1Yti-1ts2,;

b2 ptsas oh
+ Z/t (t+ s, — r)%j(r — 52,5, HQ(XT_SZ,J.))'U/(T> dW (r)

j=1"1tnets2,;
k2 rttso; oh
_ Z/ (I = 5241 + 524 = 1) (r = 52,5, T (X, )Ju(r) AW ()
1 J

j=1
Applying the formula for covariance between two Skorohod integrals ([23], Section 1.3.1)
and Proposition 6.1, we can show that there exists a constant Cg > 0 such that

(8.17) sup E|Rs(s)|* < Ce2.

0<s<t
Similarly, by Lemma 8.1, we can easily show that there exist C'; > 0 such that
SUPg<s<t E|Ry(s)]? < 07512,,
(818) Supogsgt E|R4(S)’2 S 07(512)
SUPp<s<t E|Rs(s)]* < 075129
By similar arguments to the ones used in the proof of Theorem 7.1, we obtain the following
inequality

(8.19) sup E|IP(u)|? §C’1/O sup  E(|ZP(u)?) ds

0<u<t —1<u<s
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for some constant C; > 0. From (8.16)—(8.19), there exist Cs > 0 and Cy > 0 such that

¢
(8.20) sup E|ZP(u)|*> < E|ZP(0)]> + Cs6." + C’g/ sup E|ZP(u)|* ds.
0<u<t 0 —1<u<s
So
t
(8.21) sup  E|ZP(u)|? < (20" + )62 +09/ sup  E|Z7(u)|? ds.
—1<u<t 0 —1<u<s

By Gronwall’s lemma, there exists a constant C' > 0 such that

E sup ]Zp(s)|2§06]2)7. O

—1<s<¢t

Let us consider a particular case when g and h are of the (linear) form

=1 ai(s S1,i
(8.22) { 9(s, 111 (X)) = 3252 ails, Xs(s1,))

k
h(s,Ha(Xs)) = 3252, bj(s, Xs(s2,5)),
where a;,b; € 02’2(T X R) for 1 <i < k; and 1 < j < ko. In this case we can obtain a

stronger estimate than the one given in Theorem 8.2.

Theorem 8.3.
Consider the Milstein scheme (8.9) for the SDDE (1.6) in the special case (8.22).

Suppose that 0 < v < 1 and n is Hélder continuous (in L9(2, R)) with exponent 3, i.e.,
(8.23) Eln(s) = n(t)|* < K|s — %

for some constant K > 0. Suppose that g and h have bounded first and second space
derivatives. Assume that

1+4
B||Z2)|% < ¢ (g)88 )

for some constant C'(q). Then there exists a constant C(q) > 0 (depending on a) such
that

E sup [|Z7]|% < C(g)sy 2"
0<s<a
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for any p > 1.

Proof.

The proof is analogous to that of Theorem 8.2. Instead of using the formula for
covariance of two Skorohod integrals (23], Section 1.3.1), we use the Burkholder-Davis-
Gundy inequality to estimate the errors. One may also apply the non-anticipating Ito

formula to
{ ai(t +s1,1, X(t+s11)) — ai(to + s1,1, X (to + 81,1))
a;i(t+s11, X({t+s11)) —ai(to+ si,1, X(to + 51,1))

in order to obtain the expressions (8.2) and (8.3). O
Remark 8.4.

It is easy to check that the Milstein scheme (8.9) is (stochastically) numerically
stable (Definition 2.3). The criteria for strong consistence (Definition 2.2) may not suit
the case of higher order (v > 1 ) approximation of SDDE because anticipating stochastic
integrals are involved.

We can rewrite the SDDE (1.6) in Stratonovich form, namely, if ¢ > 0,

(3.24) X(t) = n(0) + / g(s, T (X.)) o dVW(s)
[ o Ta(X0)) = 5 T (X T (X)) s

if sg, = 0. If s, < 0, then the SDDE is of the same form as (1.6) except the It6 integral

is replaced by Stratonovich integral, i.e.,

X(t) =n(0) +/O g(s, 111 (Xs)) o dW (s) —|—/0 h(s,2(Xs)) ds,

Bell and Mohammed ([5]) derived a similar result in the case of a single delay. From
Corollary 5.8, we can obtain the following Stratonovich-Taylor expansion of X ()
(8.25)

X(t) = X(to) + g(to, Iy (X)) [W () — W (to)] + h(to, T2 (X¢,)) (t — to)

t1+81,4

—|— Z to,Hl Xto)) to + S1 i / OdW t2> O dW(tl) —|— R(to,t),
to

t0+51 2
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where
t1+81,4 ag
(826)  Rto.t) Z{ / / — 510, T (X1 oy )Jults)
0+51 %
0
aj (to, T4 (X, ) )u(to + s1.5)] © dW (ts) o dW (t1)}
tl kl
/ / tQ, Hl(XtQ))'l_](tQ + 81’1') dty o dW(tl)
to Jto ;—1
t1+s82,4 5’h
+Z / / = S0 Ty (Xtyay)ultz) o dW (t2) dty
to+s2,q
/ / tQ,HQ(Xt2))/Ij(t2 + 8271') dtg dtl.
to
and
_ 1 B h(t,2(X;)), 0<t<a
8.27 h=h—- = d v(t) =
(827 ong,and o) = { 10 .

One can also derive the Milstein scheme for (8.24) using the Stratonovich-Taylor

expansion (8.25) of X (¢) as follows: Let t;, <t < tp41. Then

(8.28)
XP(t) = XP(tg) + h(ty, Ta(X2))(t — tr) + g(tr, T (XE)) (W () — W ()
k1
+ Z {fgf (tk,Hl(ka))up(tk + Sl,i)J(tk —+ Sl,i’t + $1.4; 8171),
where

?,l,p(t)_ g(tal_[l(Xf))a tZO;
o, —1<t<0.

8.3. The multi-dimensional Milstein scheme.
Write h(s,z) = (h'(s,z),--- ,h™(s,2))T, ¥ € R™k1,

L1l 3 Tk,

8y
I

Tmls sy Tmky

Denote by ¢’!(s,Z) the (j,) element of the m x d matrix g(s,#). To simplify notation,

we use below the summation convention on repeated indices. Recall the notations for the
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partition -1 =t_, < --- <ty =0 < --- <t, =t introduced in Section 2. We formulate
the Milstein scheme for the SDDE (1.6) as follows: if ¢, < t < tx11, the ith coordinate

Xi(t) of X(t) = (X(t),---,X™(t))7T is approximated by

8.29
| )X“’@ = XP(tx) + b (1, o (XP)) (¢ = 1) + g™ (1 TLXE ) (W' () = W (1))
+ 8?3?11; (b, TL (XT ) U7V P (b + s1,50) Dy (b + 81,50t + S1,503 51,51 ),s
where N
wIP(f) = { ﬁjljl(t»ﬂl(Xf)), t_f i,t »
Remark 8.5.

One may check that Lemma 8.1, Theorems 8.2 and 8.3 also hold in the multi-
dimensional case. In fact, it is easy to extend these results to the multi-dimensional case,
thanks to the weak differentiability results (Proposition 6.1, Lemma 6.2 and Proposition
6.3) and the results concerning strong approximation of double Stratonovich integrals

(Lemma 7.1 and Lemma 7.2).

In comparison with SODE’s, it seems very difficult to derive higher order strong
approximation schemes for the SDDE (1.6). One may try to avoid involving the differential
operator D and the trace operator 57 in the numerical scheme by attempting to employ
multiple Stratonovich integrals instead of multiple Skorohod integrals. The idea is to use
Stratonovich-Taylor expansions of the coefficients in the SDDE (1.6) (c.f. (8.4) and (8.5))
instead of Ito-Taylor expansions. However, this is difficult, because it is hard to estimate
the order of the error via the remainder term. This is because a multiple (anticipating)
Stratonovich integral can not be expressed in terms of multiple (non-anticipating) It6
integrals. The Hu-Meyer Formula gives the relationship between multiple Stratonovich
and Skorohod integrals ([7], Theorem 3.1 (with non-deterministic kernels); [30], Theorem
3.1 and [28], Theorem 3.4 (with deterministic kernels)) (c.f. [25], [30] and [28]). However,
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the formula still involves the differential operator D and the trace operator v/, and hence
it is hard to estimate the remainder term.
One may refer to Jolis and Sanz ([15]), Delgado and Sanz ([7]), Solé and Utzet

([28]), and Zakai ([30]) for multiple Skorohod and multiple Stratonovich integrals.

Appendix A.
The following lemma extends a result by Nualart and Pardoux ([22], Lemma C1).

Lemma A.1.
Suppose that x = {x(t) : t € [0,a]} is a measurable real-valued process, x(t) = 0 if
t>aort<0,and xz € LP([0,a],R) a.s., p > 1.. Assume that {m, : 0 =1ty <t; <--- <

t, = a} is a family of partitions of [0,al], with lim |m,| =0, and —r < s1,s2 < 0. Then
n—oo

n A A ti+s1 a+s1 d _
(A.1) lim ZM (s) ds :{ o x(s)ds, s1 =59
e =1 tr—t1 ti—1+s1 07 S1 7§ S9
in probability. Moreover, if x € LP(Q2 x [0,a],R), then the above convergences hold in
LY, R).

Proof.
It clearly suffices to show that (A.1) holds in L'(2,R) whenever z € LP(Q x
[0,a],R). Fix m > 1, define

m

It . t1+s1

o Z (ti—14s1,t1451] / 2(s) ds.
=1 tr—ti—1 ti—1+s1

For n > 1, define

an(gj) = i M e $(S) ds.
=1 2 tj—1+s1

Define o, (X,,) similarly. It follows from Hoélder’s inequality that if 1/p + 1/q = 1, then

Q
3
—~
Koy
+
vl
=
—~
VA
~—
IS
VA
~—
3
3

N 1
|AZ1WAZ2W|q ti_1+s1 x
(A-2) Elom (@ { Z (tr —t—q)77t EZ 5 ’
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i.e.
lan ()| < Cpllzl[Lr@x(0,a+s1)) < Cpll®l|Lr@x(0,a))5

Therefore,
(A.3)

a+s1 a+s1
E]an(x)—/o 2(s) ds| §E]an(x—xm)]+E\an(a:m)—/0 2(s) ds|

a+s1
< Elan(z™) - / 2(5) ds| + Cyllz — 2™ || orx p.akos])

since

an(z™) = i /ti+Sl nochatten) O dtAp W ApW
n . b ids =111
=1 | (]S (ti,ts] 7T
1<i<n
1 ti+s1
X —/ x(s)ds
ti—ti-1 Jo, 45,

ti+s1

1
Z AMWAIQW W/ LE(S) ds.
1] (=1, tl] S(ti—1,t4] B

1<i<n

[
NE

1

Let k,, be the index such that ¢t 1+ 51 <0 <ty +s1. If s; = s2, then by Lemma 5.2,

the following limit exists in probability

il 1 ti+s1
lim a, (2™) :Z[(tﬁsl)/\O—(ti_1+51)\/o]—/ 2(s) ds
e i=1 ti —tic1 Jo,_ 4
ik tits Ui, 51
t m
- Z / x(s)ds + S T 51 / x(s) ds
i=ky,+1 Y ti—1ts1 km—tk,,—1 JO
atsi tk,, +51
t m
= / o(s)ds + P 0L / x(s) ds.
0 km—tky,—1 JO
Equivalently,

a+s1 ¢ tk,, T51
ap (™) — /0 x(s)ds — M—M/O z(s)ds — 0

tk:m 7tk7n -1

as n — oo in probability.
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A slight modification in the proof of (A.2) yields the estimate

||O‘n(xm)||LP’(Q) < C(pap/”|xm||LP(Q><[O,a+81])7

for all p’ € (1,p). Therefore, the family {a,(z™) : n > 1} is uniformly integrable. From
(A.3) we have

a+s1
lim E|ay,(z) —/ x(s) ds|
n—oo 0
tg,, + S1 bem F51 m
< B [T () dsl+ Cylle - ™ lxioara)
km_tkmfl 0

th,, 51
< E/O 2(s)|ds + Cyllz — 2™ || 1o Doator])

Clearly, ™ — x in LP(Q x [0,a + s1]) and EfgkarSl |z(s)|ds — 0 as m — oo. So

a+s1
lim FE|a,(z™) —/ z(s)ds| = 0.
0

n—oo

Now consider the case s; # so. Since

Elan ()] < Elan(z™)] + Elon(z — 2™)]

< Elan (™) + Cpllz — meLP(QX[O,a-i-sl])-

A similar argument gives lim,,_, F|a,(z)| =0. O

The following useful result is due to Follmer ([8]), and Nualart and Pardoux ([22],
Lemma C.2):

Lemma A.2.

Let {x*(t) : 0 <t < a}?_, be two continuous processes, and {m, : 0 =ty <t < -+ <
t, = a} a family of partitions of [0, a], with HILH;O || = 0. For eachn andl =1,--- ,n,
let x, ,, denote x'(1;). Assume that

n

(A4) S (@ — 2, )@ — T ) / a3 (s) ds

=1
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in probability as n — oo, where {a*(t) : 0 < t < a;i,j = 1,2} are measurable processes

such that a.s.

(A5) / % (s)| ds < 00, i,j=1,2.
0

Let {Y(t) : 0 <t < a} be a continuous process, and {Y"(t) : 0 <t < a}>>, be measurable
processes which converge a.s. to {Y(t)} as n — oo, uniformly with respect to t € [0, al.

Then

n

(A'6) Z Yn(tl—l)(aj;l,n - xil_l,n)(le,n - xgl_l,n) - / a/l-] (S)Y(S) dS
=1 0

i probability as n — oo, fori=1,2.



DISCRETE-TIME APPROXIMATIONS OF STOCHASTIC SYSTEMS WITH MEMORY 69

1

2]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

Ahmed, T. A. Stochastic Functional Differential Equations with Discontinuous Ini-
tial Data, M.Sc. Thesis, University of Khartoum, Sudan (1983).

Alos E. and Nualart, D., An extension of Ité’s formula for anticipating processes,
Journal of Theoretical Probability 2 (1998), 493-514.

Asch, J. and Potthoft, J., It6’s lemma without non-anticipatory conditions, Prob-
ability and Related Fields 88 (1991), 17-46.

Bell, D. and Mohammed, S.-E. A., The Malliavin calculus and stochastic delay
equations, Journal of Functional Analysis 99 No. 1 (1991), 75-99.

Bell, D. and Mohammed, S.-E. A., On the solution of stochastic ordinary differential
equations via small delays, Stochastics and Stochastics Reports 28 No. 4 (1989),

293-299.
Cambanis, S. and Hu, Y., The exact convergence rate of Euler-Maruyama scheme

and application to sample design, Stochastics and Stochastics Report, 59 (1996),

211-240.
Delgado, R. and Sanz, M., The Hu-Meyer Formula for non-deterministic kernels,

Stochastics and Stochastics Reports 38 (1992), 149-158.

Follmer, H., Calcul d’Ito sans probabilités, Séminaire de Probabilit és XV Lect.
Notes Maths. 850, 143-150, Berlin Heidelberg New York, 1981.

Gentle, J., Random number generation and Monte Carlo methods, Statistics and
Computing, Springer-Verlag, 1998.

Gaines, J. G. and Lyons, T. J., Random generation of stochastic area integrals.
STAM J. Appl. Math. 54 (1994), 1132-1146.

Hu, Y., Strong and weak order of time discretization schemes of stochastic differ-
ential equations, In Séminaire de Probabilités XXX, ed. by J. Azema, P.A. Meyer
and M. Yor, Lecture Notes in Mathematics 1626, Springer-Verlag, 1996, 218-227.
Hu, Y., Optimal times to observe in the Kalman-Bucy model, Stochastics and Sto-
chastic Reports 69 (2000), 123-140.

Hu, Y. and Mohammed, S.-E. A., Numerical simulation of stochastic delay equa-
tions, (preprint) (January, 1997), pp. 11.

Hu, Y. and Nualart, D., Continuity of some anticipating integral processes, Statis-
tics and Probability Letters 37 (1998), 203-211.

Jolis, M. and Sanz, M., On generalized multiple stochastic integrals and multipa-
rameter anticipative calculus, Stochastic Analysis and Related Topics II, Lecture
Notes in Mathematics 1444, 141-182, Springer-Verlag, 1988.



70

[16]

[17]

[18]

[19]
[20]

[21]

22]

23]
[24]

[25]

[26]

[27]

28]

[29]

[30]

Y. HU, S.-E. A. MOHAMMED AND F. YAN

Kloeden P. and Platen, R., Numerical Solution of Stochastic Differential Equations,
Springer-Verlag, 1992.

Kloeden P., Platen, R., and Schurz, H., Numerical Solution of SDE Through Com-
puter Experiments, Springer-Verlag, 1994.

Karatzas, I. and Shreve, S., Brownian Motion and Stochastic Analysis, Springer-
Verlag, 1991.

McShane, E.J., Stochastic Calculus and Stochastic Models, Academic Press, 1974.
Mohammed, S.-E. A., Stochastic Functional Differential Fquations, Pitman Ad-
vanced Publishing Program, 1984.

Mohammed, S.-E. A.; Stochastic Differential Systems with Memory: Theory, Exam-
ples and Application, Geilo Workshop 1996, Pitman Advanced Publishing Program,

1984.
Nualart, D. and Pardoux, E., Stochastic calculus with anticipating integrands, Prob-

ability Theory and Related fields 78 (1988), 535-581.

Nualart, D., The Malliavin Calculus and Related Topics, Springer-Verlag, 1995.
Rosinski,J., On stochastic integration by series of Wiener integrals, Applied Math-
ematics and Optimization 19 (1989), 137-155.

Russo, F. and Vallois P., Forward, backward and symmetric stochastic integration,
Probability Theory and Related fields 97 (1993), 403—421.

Ryden, T. and Wiktorsson, M., On the simulation of iterated Ito integrals, Sto-
chastic Process and Appl. 91 (2001), 151-168.

Scheutzow, M., Qualitative behavior of stochastic delay equations with a bounded
memory, Stochastics 12 no. 1 (1984), 41-80.

Solé, J. and Utzet, F., Stratonovich integral and trace, Stochastics and Stochastics
Reports 29 (1990), 203-220.

Yan, F., Topics on Stochastic Delay Equations, Ph.D. Dissertation, Southern Illinois
University at Carbondale, August, 1999.

Zakai, M., Stochastic integration, trace and the skeleton of Wiener functionals,
Stochastics and Stochastics Reports 32 (1990), 93-108.



DISCRETE-TIME APPROXIMATIONS OF STOCHASTIC SYSTEMS WITH MEMORY

Yaozhong Hu,
Department of Mathematics,
University of Kansas, Lawrence,

Kansas 66045-2142, USA.

Email: hu@math.ukans.edu

Salah-Eldin A. Mohammed

Department of Mathematics,

Southern Illinois University at Carbondale.

Carbondale, 1L 62901, USA.

Email: salah@sfde.math.siu.edu

Feng Yan

Williams Energy Marketing and Trading
One Williams Center, WRC2-4,

Tulsa, OK 74119, USA.

Email: fyan1@yahoo.com

71



	Southern Illinois University Carbondale
	OpenSIUC
	2001

	Discrete-time Approximations of Stochastic Differential Systems with Memory
	Yaozhong Hu
	Salah-Eldin A. Mohammed
	Feng Yan
	Recommended Citation



