Southern Illinois University Carbondale

OpenSIUC

Articles and Preprints Department of Mathematics

2004

Discrete-time Approximations of Stochastic Delay
Equations: The Milstein Scheme

Yaozhong Hu
University of Kansas Main Campus

Salah-Eldin A. Mohammed
Southern Illinois University Carbondale, salah@sfde.math.siu.edu

Feng Yan
Williams Energy

Follow this and additional works at: http://opensiuc.lib.siu.edu/math_articles

b Part of the Dynamical Systems Commons, Ordinary Differential Equations and Applied

Dynamics Commons, and the Probability Commons
Published in Annals of Probability, 32(1A), 265-314.

Recommended Citation

Hu, Yaozhong, Mohammed, Salah-Eldin A. and Yan, Feng. "Discrete-time Approximations of Stochastic Delay Equations: The
Milstein Scheme." (Jan 2004).

This Article is brought to you for free and open access by the Department of Mathematics at OpenSIUC. It has been accepted for inclusion in Articles

and Preprints by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.


http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/math_articles?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/179?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/212?utm_source=opensiuc.lib.siu.edu%2Fmath_articles%2F55&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/doi:10.1214/aop/1078415836
mailto:opensiuc@lib.siu.edu

The Annals of Probability
2004, Vol. 32, No. 1A, 265-314
© Institute of Mathematical Statistics, 2004

DISCRETE-TIME APPROXIMATIONS OF STOCHASTIC DELAY
EQUATIONS: THE MILSTEIN SCHEME

BY YAOZHONG HU,! SALAH-ELDIN A. MOHAMMED? AND FENG YAN

University of Kansas, Southern Illinois University and Williams Energy

In this paper, we develop a strong Milstein approximation scheme for
solving stochastic delay differential equations (SDDEs). The scheme has
convergence order 1. In order to establish the scheme, we prove an infinite-
dimensional Itd formula for “tame” functions acting on the segment process
of the solution of an SDDE. It is interesting to note that the presence
of the memory in the SDDE requires the use of the Malliavin calculus
and the anticipating stochastic analysis of Nualart and Pardoux. Given the
nonanticipating nature of the SDDE, the use of anticipating calculus methods
in the context of strong approximation schemes appears to be novel.

1. Introduction. Discrete-time strong approximation schemes for stochastic
ordinary differential equations (SODEs) are well developed. For an extensive
study of these numerical schemes, one may refer to [17], [18] and [19], Chapters
5 and 6. Some basic ideas of strong and weak orders of convergence are illustrated
in [13].

If the rate of change of a physical system depends only on its present state and
some noisy input, then the system can often be described by a stochastic ordinary
differential equation (SODE). However, in many physical situations the rate of
change of the state depends not only on the present but also on the past states
of the system. In such cases, stochastic delay differential equations (SDDEs) or
stochastic functional differential equations (SFDEs) provide important tools to
describe and analyze these systems. For various aspects of the qualitative theory
of SFDEs the reader may refer to [20, 21] and the references therein.

SDDEs and SFDEs arising in many applications cannot be solved explicitly.
Hence, one needs to develop effective numerical techniques for such systems.
Depending on the particular physical model, it may be necessary to design
strong L” (or almost sure) numerical schemes for pathwise solutions of the
underlying SFDE. Strong approximation schemes for SFDEs may be used to
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266 Y. HU, S.-E. A. MOHAMMED AND F. YAN

simulate directly the a.s. stochastic dynamics of their trajectories or their random
attractors. SFDEs are used to model population growth with incubation/gestation
period [21]. In such models, one is often interested in estimating the actual
population rather than its distribution and hence the need for strong approximation
schemes.

In this article, we will not consider the order of convergence of weak numerical
schemes, although such schemes are useful for some applications of SODEs
(see [13, 17] and the references therein). In this connection, it is important to
note that stochastic systems with memory do not correspond to deterministic
PDEs (in finitely many space variables) [20, 21]. Typically, a stochastic system
with memory corresponds to an infinite-dimensional Feller diffusion whose
principal coefficient degenerates on a hypersurface with finite-codimension ([20],
Chapter IV, Theorem 3.2 and [21], Theorem I1.3). This aspect of SFDEs is in sharp
contrast with the theory of SODEs where the latter theory has traditional ties to
diffusions in Euclidean space. In a sense, the numerics of stochastic systems with
memory resemble those of SPDEs in one space dimension.

A strong Cauchy—Maruyama scheme for a class of SFDEs with continuous
memory, in the context of the Delfour—Mitter state space R x Lz([—r, 0], R™),
was developed by Ahmed, Elsanousi and Mohammed [1]. See also [20], page 227,
[15] and [4]. As in the case of SODEs, the Cauchy—Maruyama scheme for SFDEs
has order of convergence % ([20], page 227, [15, 4, 8, 14]).

In Sections 2-5, we establish the strong Milstein scheme for SDDEs with
several delays. This scheme has a higher strong order of convergence 1 when
compared with the Euler scheme which, as indicated above, has the strong order of
convergence 0.5. Furthermore, when simulating the whole solution path {X (¢), ¢ €
[0, a]}, the Milstein schemes for SDDEs and SODEs have the same complexity,
even when one accounts for the simulation of the iterated stochastic integrals in
the scheme. (See Appendix B and the remarks therein.) Although the solution of
the SDDE is adapted to the (lagged) filtration of the driving noise, methods from
anticipating stochastic analysis and the Malliavin calculus are necessary in order
to derive an It6 formula for the segment of the solution process. The 1t6 formula is
essential for the development of the Milstein scheme.

In order to put our analysis in proper perspective, we highlight its essential
features: (a) The dynamics and the coefficients of the SDDEs are adapted, in fact,
driven by Itd integrals; (b) the formulation and implementation of the Milstein
scheme do not require anticipating calculus ideas; (c) the proof of convergence
of the Milstein scheme as well as the Itd6 formula employ anticipating calculus
techniques; (d) anticipating calculus methods are used in the context of strong
approximation schemes rather than weak ones (where the Feynman—Kac formula
lends itself naturally to the use of Malliavin calculus methods); (e) the application



DISCRETE-TIME APPROXIMATIONS OF SDDEs 267

of anticipating calculus methods seems unavoidable as soon as one seeks higher-
order approximation results.

In an essentially nonadapted setting, anticipating calculus methods have
been used by Pardoux and Protter to study stochastic Volterra equations with
anticipating coefficients. See [24] and the references therein. See also [7].

In order to describe our set-up, we need the following notation.

Let R™ be m-dimensional Euclidean space with the Euclidean norm |x| :=
V4.4 x2, x = (x1,...,%n) € R™. Denote T := [0,al, J := [-1,0],
C :=C(J; R™), where m is a positive integer, T > 0 is a fixed delay [as in (1.6)]
and a > 0. Furnish C with the supremum norm ||n{|¢ := sup_, ;¢ [n(s)| for all
necC.

Define the projection IT: C — R™¥ associated with s1, ..., sp € [—7, 0] by
(1.1 () := (n(s1), ..., n(sx)) € R™
forall n € C.

DEFINITION 1.1. A function ® € C(T x C(J; R™); R) is tame if there exist
¢ € C(T x R™ R) and a projection IT: C — R”¥ such that

(1.2) (1, ) = ¢(r, TI(n))
forallt € T andn € C.

Let (2, ¥, P) be a probability space. For any continuous m-dimensional
process X :[—1, a] x 2 — R™, define the segment process X;, t € [0, a], by

1.3) Xi(m) =Xt +u), tel0,al, uel[-r7,0]

Observe that {X;} may be considered as a C-valued or L2(J; R™)-valued process.
It is important that one should distinguish between the finite-dimensional
current state X (t) and the infinite-dimensional segment X;, t € [0, a].
Assume that g: T X R™1 — L(RY:R™) and h:T x R™2 — R™ satisfy the
following Lipschitz condition:

lg(t,x) —g(t,y)| < L|x —yl,
|h(t,z) —h(t,w)| < L|z — w|

1.4

forallt e T, x,y € R and z, w € R™*2 where L > 0 is a constant, together
with the boundedness condition

(1.5) sup [lg(t,0)| + |h(z,0)|] < oo.

0<t<a

Let I1; and II, be two projections associated with two sets of points
S1,1, -+, 814, € [=7,0] and s21,...,524 € [—7,0], respectively. Suppose
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(W) :=Wo),..., wa@)):t > 0} is a d-dimensional standard Brownian mo-
tion defined on a filtered probability space (2, F, (F;)r>0, P) satisfying the usual
conditions. Let n: Q2 — C([—7t, 0]; R™) be an Fp-measurable initial process.

We will first consider the following class of Itd SDDE:s:

t t
(1.6) X(t) = [77(0) +/0 g(57 HI(XY))dW(S) +/O h(sa HZ(XS)) ds, t>0,
n(t), —7<t<0.

Under conditions (1.4) and (1.5), the SDDE (1.6) has a unique strong solution
(cf. [20], Theorem I1.2.1, page 36, and Theorem V.4.3, pages 151 and 152). To see
this, let G(¢,n) := g(t, [11(n)) and H(t,n) := h(t, 1x(n)) for t € [0,a], n € C.
It is easy to check that G and H satisfy the Lipschitz and local boundedness
conditions (with respect to the supremum norm on C) of Theorems I1.2.1 and V.4.3
of [20]. Therefore, for each p > 1, there exists a constant C = C(p, L, a) > 0 such
that

2 2
(1.7) EIX I <c(+End)

forallne C,t €10, a].

For any integers n,[ > 1, letm:ft_ <ty <---<0=fg<ti<h <-- <1y
be a partition of [—7, a]. Denote by |7 | := max_;<j<,—1 (t;+1 — i), the mesh of 7.
We now introduce the following Milstein scheme for the SDDE (1.6):

XU () = XU (1) + B (e, T (X)) (0 — 1)
+ 8" (k. TL (XT)) (W (1) — W (1))

(1.8) -
tj

+ (tx, L (XT))u" 0T (1 + 51, 7,)

9xi, jy
x 1j i (k451,505 0+ 51,505 51,)y)
for ty <t <ty41, and

X*(@):=1n" (), te[-r,0],

where
(1.9) ui]jl,n(t) — {ginjl (t, 1, (X)), >0,
0, -1 <t<0,
t pti+s . .
I j(to+s,1+s;5):= / odW' (1) o dW/'' (1),
(1.10) o

t>1>0, se[—t,0],

and the starting path n™ € C(J,R™) is prescribed (e.g., a piecewise linear
approximation of n using the partition points {r_, ..., fo}). In (1.8), X', h* and g"
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denote coordinate representations of X, & and g with respect to standard bases in
the underlying Euclidean spaces, and the Einstein summation convention is used
for repeated indices.

In order to establish strong convergence of the above Milstein scheme for the
SDDE (1.6), it turns out, surprisingly, that one requires the use of anticipating
calculus techniques developed by Nualart and Pardoux [23]. In particular, one
needs to develop an infinite-dimensional Itd formula for “tame” functions acting on
the segment X, of the solution X of (1.6). Such an It6 formula is given in Section 2,
Theorem 2.3. The formula is proved via anticipating calculus methods [23]. To
understand the need for anticipating calculus in such an intrinsically adapted
setting, it is instructive to look at the following simple one-dimensional SDDE:

dX(t)=g(X@—1),X(@)dW(r), t>0,
X)) =W(@), —1<t<0,

where g:R2 — R is a smooth function and W(t),t > —1, is a one-dimensional
Brownian motion. For a second-order scheme, we formally seek a stochastic
differential of the coefficient g(X (f — 1), X (¢)) on the right-hand side of the above
SDDE. For ¢ € (0, 1], this gives formally

di{g(X@—1), X))}
—d{g(W( — 1), X(0))}

_ a_i(wg 1), X)) dW (i — 1)

5
+ %(W(r 1, X(0)g(X(— 1), X)) dW (1)

+ second-order terms.

Note that although the coefficient g(X (+ — 1), X(¢)) is F;-measurable, the first
term dg S(W@ — 1), X(1))dW( — 1) in the right-hand side of the last equality
is an ant1c1pat1ng differential. Furthermore, it appears that the (#;)o<;<1-adapted
process [0, 1] >t — (X(t —1), X(?)) € R? is not a semimartingale with respect to
any natural filtration. In addition to this difficulty, the components X (+ — 1) and
X (t) are not independent, so the existing anticipating versions of Itd’s formula
do not apply (cf. [2, 3] and [23]); hence the need for a new It6 formula for tame
functions in order to justify the above computation. In Theorem 2.1 in the next
section we establish such a formula.

Using the above-mentioned [t6 formula and appropriate estimates on the weak
Cameron—Martin derivatives of X, it is shown in Section 5 (Theorem 5.2) that,
under suitable regularity conditions on the coefficients of (1.6), one gets the
following global error estimate for the Milstein approximations:

(1.11) E sup |X] — X;[I&- < C(gq)|m|?

0<t<a
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for any g > 1. This says that the Milstein scheme has strong order of conver-
gence 1.

2. Ito’s formula for ‘“tame” functions. In order to derive higher-order
numerical schemes for SDDEs, we shall first prove an Itd formula for “tame”
functions on C(J, R™) (Definition 1.1).

Suppose that W(¢) := W), ..., We(t)), t > 0, is d-dimensional standard
Brownian motion on a filtered probability space (2, F, (¥7)>0, P). Denote
by D = (Dy,...,Dg) the Malliavin differentiation operator associated with
{W(t):t = 0}. Assume

(0) +/tu(s)dW(s) +/tv(s)ds t>0
2.1) X(r>={” 0 0 ’ ’

n(), -1 <1=<0,
where 1 belongs to C and is of bounded variation, u = @', ..., umT ul e Lj’j’oc,
v=0Y ..., v and v € ILIIC;?. One can refer to ([22], pages 61, 151 and 161),

for the definition of ]Lfl’p . Note that the processes # and v may not be adapted
to the Brownian filtration (¥;);>0. For convenience, we define u(¢r) = 0 for
t<Qort>a,

_ 0, t>a,
VO=\yw, —t<r<o.

We also set W(t) =0if r <0 or ¢ > a, and denote

t
U@) :=/(; u(s)dwi(s),

t
V) ::{n(0)+/0 v(s)ds, t>0,
n(), —1<t<0.

2.2)

Ifue ]le(;f for some p > 4, then the indefinite Skorohod integral fé u(s)dwi(s)
has a continuous version. Hence, we may assume that the process X (¢),t > —rt, is
sample continuous.

Let T =[0,a], J =[—1,0], C = C(J,R™) be as before, and let IT be the
projection associated with s, ..., sy € J. Although there is a multidimensional
Itd formula for ¢ (¢, X (r)) ([2, 3] and [22]), we cannot apply it to ¢ (¢, I[1(X;))
because IT(U;) is of the form

t t
(2.3) (/ u(s+s1)dW(s+s1),...,/ u(s+sk)dW(s+sk)), t>0
0 0

and the components of the dk-dimensional process (W (¢ +s1), ..., W(t +si)) are
not independent. However, the ideas in [23], Section 6, and in [22], page 161, can
be used to derive an Itd formula for ¢ (¢, IT1(X;)). See [28] for further details.
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We denote by

I,  i=j,
2.4) 5,,-:{0 i#j.

the Kronecker delta.
For any process X (¢), t € [—1, a], denote its (delayed) increments by
(2.5) ApX:=X+s)— X1 +5), I1<l<n,i=1,2,...,k.
Assume that ¢ € C12(T x R™ R), and write
(2.6) G, X):=p(t,X1,..., Xn)

where X := (X1, ..., Xm), Xi := (xi1, ..., xix) R, 1 <i <m.
We now state an Itd formula for “tame” functions.

THEOREM 2.1. Assume that X is a continuous process defined by (2.1),
where n:J — R™ is of bounded variation, u = (u',...,u™7T, u' € Li’foc,

v=w' ..., v and V! E]Ll . Suppose ¢ € C2(T xR’”k ,R). Then
o(t, H(Xz))—¢(0 (X))
_/ (s, IT(Xy) ds+/ (s, TT(Xy)) d(T1(X5))

2.7
t 32¢ i
+ - Z Z /W(s,n(xs))u (s +5i)
,] liy, j1= 0 0Xjji 0Xjyj
X DSHI.XJ1 (s +s;)ds.
REMARKS.

1. The Itd formula (2.7) may also be expressed in the form

¢ (t. TI(X1)) — ¢(0, TI(X0))
_/ (s, TI(Xy)) ds—l—/ (s, TI(X,)) d(TT(Xy))

+ = Z/Tr[

(2.8)

(s, T1(Xy)) (O (sl,sj))}

9x; 0

where

Os(at, B) 1= 5{(UA) Xs(t, B) + WA)s X5 (B, @)}, a, pe[-1,0]
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and the two-parameter process (uA)sX;: Q2 x J 2 5 L(R™;R™) is defined
by

WA)sXs(a, B)

= ljo<s+anpiu(s +a)

X |:”T(S + @) [{0<s+a<s+p)

s+8 s+8
+ [ Dosantrawe) + [ Ds+av(’”)dr]
0 0

forall a, B € [—7,0].
2. Suppose d = m = 1. Let us define a trace operator . For 1 <i,j <k,
define

29) vy X)) = lifg(DHsiX(s +5j+&) £ Dy X(s+5;—¢)) eR
&

and VEX(s) == (Vi X(5), ..., Vi, X(5)) € RE. Then the Ito formula for
“tame” functions can be written as

¢ (1, TI(X1) — ¢(0, TI(Xo))

B ‘9¢
(2.10) _fo I (s,l'I(Xs))ds—i—/(; 5= (5. THX ) dTT (W)

1 & 110%¢
+§§/ <8x (s, TI(Xy)) Vi X(9), v, X(s)> ds

a.s. for all t € T, where X := (x1,...,x¢) and (-, -)ga denotes the Euclidean
inner product on R?. See [23], Remark 7.6.

3. The It6 formula (2.7) still holds if the initial path is an Fp-measurable process
n:Q — C with a.a. sample paths of bounded variation. A similar remark also
holds for Theorem 5.2 of Section 5.

For simplicity, we shall prove the Itd formula for the case d = m = 1. We thus
assume in what follows thatd =m = 1.

PROOF OF THEOREM 2.1. For any integern > 1,let {m,:0 =<t <--- <
t, = a} be a partition of [0, a]. Then by Taylor’s theorem, we may write

¢ (r, TI(X,)) — #(0, TI(Xo))
_Z o0, TH(Xy)) — ¢ (11, T1(Xy))]

+ o1, (X)) — @ (-1, TH(Xy, )]
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n k 9
+Z _¢(tl—lv H(th,l))AliX

i=1 iy 9%
1 & 92 )
' 2 i,]‘Zz:l 0x; 0x; (t1-1. H(Xt’))A”XAUX}’ teT,
where
At =1t — 111, )_(,, =X, +a(Xy— Xy ,), h=t_1 +nAg
for some random variables 0 < oy, < 1,1 =1, ..., n. The It6 formula (2.10) will

then follow from Propositions 2.3 and 2.4. [
The rest of this section is devoted to the proofs of Propositions 2.2-2.4.

PROPOSITION 2.2. Suppose that W (t) is a one-dimensional Brownian mo-
tion. Let u € ]Lll(;cz be such that u(t) =01ift > a or t <0. Assume that —t < 51,
s> <0andletm,:0=1ty <t; <--- <t, =a beafamily of partitions of T = [0, a],
with |m,| > 0 as n — oo. Then

n f+sq 2 a—+sq
_ 2
m |: E '/tl u(s)dW(s):| _'/0 u“(s)ds

li
n=>00| =Sy i+

(2.11)
in probability. If s| # s2, then

2.12) ngngozftl+sl w)dWs) [ u(s)dWis) =0
=1

f1—1+51 f—1+82

in probability. Furthermore, if u € LY2, then the above convergences are
in L'(€2,R).

1,2

PROOF. We prove the proposition for u € IL!'?. The general case u € L,

follows by a standard localization argument [22].
If u;,uj,vi,v; € L2 with u;(t) = v;(t) =0 if t <0 or t > a +5; and
uj(t)y=vj(t)=0ifr <Oorr>a+s;. Set

t t
Ui(t) = / () dW(s), Vi) = / v () W (s),
(2.13) 0 0

U;(t) :=/0 uj(s)dwi(s), Vi) :=/0 vj(s)dW(s).
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Then

n n
Y AUAGU; =Y N ViA,V;
=1 I=1

E

=F

n n
Y AU = VAU + Y A Vi (U — V)
=1 =1

n
<E +E ZAliViAlj(Uj_Vj)

=1

n
Y AU = Vi) AU,
=1

n 1/2 n 1/2
< (EZmz,-(U,- — v,->|2) (EZMU(UJ-)F)

=1 =1

n 1/2 n 1/2
+ (EZ |Az,-<vl-)|2) (EZ |A (U} — V,«>|2)
=1 =1

By an L? estimate of the Skorohod integral ([23], Proposition 3.5, and [22],
page 158), we have

n
EY 1A;U;
=1
n

Z+Sj
Z/l uj(s)dWw(s)

=1 f—1+s;

n
:EZ
I=1

2
=FE

2

a

/0 Ly syt ()15 5) AW (s)
n a

< Z/O I(tlfl—&-Sj,t/—&-Sj](S)Eui(s)ds
=1

n a a
2
+Z/(; ./0 T ytsj+s) ) E(Druj(5))" ds dt
I=1

B a > a ra ' )
_'/0 Euj(s)ds+/0 '/0 E(Dsuj(s)) dsdt

2
= [lujl 1,2
Hence we obtain the following inequality:

n n
ZAliUiAljUj — ZAliViAlej
=1 =1

E

(2.14)
<l —villi2llwjlinz + lvill2lle; —vjlh2.
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Since L2 N L*(Q x [0, a]) is dense in 12, it suffices to prove (2.12) for the case
uelb2NLY(Q x [0, a)). Set

1), 0<r< B
(2.15) i () ::{”() St=6+s
0, t<Qort>a+s;.
Define
L ) (1 1+s;
(2.16) W) = Y Lt @) u(s)ds
=1 I — -1 -1 +si

and u;? similarly. Let
t t
U; (1) :=/0 u; (s)dw(s), Uin(t)::/o ui (s)dw(s),
2.17)
t t
Uj(t) :=/0 uj(s)dwi(s), V;’(I) :=/0 u;f(s)dW(s).

Using (2.14) it is easy to check that

n n
ZAHU{!AUU? — ZAliUiAljUj =0.

=1 =1

(2.18) lim E

By the formula for the Skorohod integral of a process multiplied by a random
variable ([23], Theorem 3.2), we get

ntsi o] ‘ (t) [t
AliUl'rl:\/. T rtsititsi) (1) u;(s)ds dW (1)
7}

—1%8i 1 Ik — Tk—1 Tk—1+Si

1 t+si

- / wi () dsTW (1 + s1) — Wty + 51)]
n—1- tj—1+si

1 11+s; t1+s;

+ Diu;(s)dsdt

I — -1 Jy_y+s;i Jy_1+s
=P AW + Qi

where

1 t1+si
P = / u;(s)ds,
n—n- t1—1+s;

1 t+si t+si

Qji = Diu;(s)dsdt.

I —f—1 Jy_1+s; Ju_1+s
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Therefore,

n n
Do ARUIA UL =Y (PidiW + Qi) (Pij AW + Q1))
=1 =1

n n
=Y (PiPy) (A WAW) + > (P Qij) Ay W
=1 =1

n n
+ Y (PO AW + ) 01 Qi
=1 =1

By Holder’s inequality,
n t+si t+si
(2.19) Y 05 < Z/ / |Dyui ()| ds dt.
=1 f—1+si Jt_1+s;

Thus lim,— « E Y/, Q7 = 0. Now

n n A iW 2 1+ 2
YW = 3 S ([ sy as)

I=1 iz 1S
Ay W)2 s
Z( iW) / (u?(s))zds.
I —10-1 Jy_1+s

It is easy to check that E||(u)? 20,0457 < E|u? l22(f0,a+57) and
: 2
(2.20) Iim E[[@))? = il 12 0.q457) = 0-

By an argument similar to the one used in the proof of Lemma A.2, we can show
that {37, (P Asi W)2, n > 1} is uniformly integrable. Applying Lemma A.2, we
have

n a-+s;

P Wy = [ k(s ds| =

(2.21) lim E =
n—oo =

The Cauchy—Schwarz-type inequality

n n
< J EY (PiAiW)2E) " OF:
=1 =1

together with (2.19) and (2.21) implies that lim, o E| Y_j_ (Pi A W) Qyi1 = 0.
Now consider the case i # j. The Cauchy—Schwarz inequality implies

n n
sJEZQ%jEZQﬁ.
=1 =1

E|Y (PiAiW) Qi

=1

(2.22)

(2.23)

E|Y Qi Qii
I=1
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We may write

n
> (PP (A WA W)
=1

All WAI] /tl"‘si fl+Sj
= u‘(s)ds/ u;(s)ds
(2.24) Z (tl — 1 1)2 f i+ l P J
A WALGW plitsi
=Zu/ u; (s)u (s)ds,
= =1 Juats
where
Ky t1+s;
225  @ls)= Z“’l“l—”*“() (s’ +sj—s;)ds’.
n—1n- f_1+si

Similar to the case i = j, we have

(2.26) lim E
n—oo

n
> (P Py (A WA W)’ =0.
=1
This completes the proof of the proposition. [J

Suppose that
Xy =Xy, +oau(X, — X, ,)
for some random variables 0 <oy <1,/ =1, ..., n. Denote
(227) A(T1(X,)) = (MT(AX,)) = I(X,) — T(X,,_,),
(2.28) M(X,) =(X,_,) +aAT(X,),
(2.29) A X=Xt +si)— X(t—1 +55), forl <i<kandl<I[<n.

PROPOSITION 2.3.  Suppose that ¢ € C2(T x R, R), and let 1 <i, j <k.
Under the hypotheses of Proposition 2.2, we have

=1 axi 3Xj

(t—1, TH(X,,)) A X Ay X

(2.30)

H—vl 2
N /0 P (é)(s T1(X,))u’(s)ds, i=],

0, i#j

as n — 00, in probability.
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PROOF. Forl <i, j <k,
AN XAX = (AU + A VY(ALU 4+ AV)
(2.31) = AUA;U+ AiUAGV
+ A VAU + A VALY,
where U, V are defined by (2.2). Since U, V are continuous and V[0, a] is of

bounded variation, it follows that
n
nli)ngo; AUAV =0,
n
(2.32) Jim_ ; A VAU =0,
n
nli)rréog A VALV =0,
in probability, for all 0 < i, j < n. To handle the term Y ;' A;U AU, we

adapt an approach by Nualart and Pardoux (cf. [23], Theorem 3.4, or [22],
Theorem 3.2.1).

Set
82
Y(s):= —f(s, (X)) 0.1 ()

0x;

and

n $ 82¢ v
(2.33) Y"(s) =Y (0)Ij0y(s) + Z ﬁ(”—l’ H(Xfl))l(f[—l,fl](s)‘
I=1 %%

Then Y"(s) — Y (s) as n — oo, uniformly in s € [0, t]. Applying Proposition 2.2
and Lemma A.3, we get

n 82

o1, THX NAL XA X
= 0x; axj(l ! ( t[)) li l
(2.34)

t+s; 32¢
— 8 — (5. TL(X,))u?(s) ds
0 0x;

]

in probability as n — oco. [

PROPOSITION 2.4. Suppose that ¢ € CY2(T x RY and let X(t) be a
continuous stochastic process defined by (2.1), where u € ]leo’?, vE ]Lllo’? and n €
C([—7, 0], R™) is of bounded variation. Assume that 7t,, : —T =59 < -+ <85, =0



DISCRETE-TIME APPROXIMATIONS OF SDDEs 279

are partitions of [—t, 0] such that |r,| — 0 as n — o0. Then, for each 1 <i <k
and eacht € T, we have

n

d¢
nll)ngoz o (-1, TH(Xy,_,)) Al X

1

- / (s, TI(X)) dX (s +57)
8¢
/ ( TI(X,))u?(s + 5;) ds
= 0x; 0x
(2.35)
t 32¢)
+,§ /0 oy, 0 TTO0)
x [ i Y Dy dW ()
0
S+
+ /0 Dy v(r) dr]u(s +5;)ds
in probability.

PROOF. By a localization argument, we may assume that ¢ € Cg’Z(T X
R¥, R). Let |77, | < mingi<j<xylsi —si—1]. Fix 1 <i <k,1 <[ <n, and set

¢

(2.36) Fri=—(n-1, T(X,_,)).
0x;
By property of the Skorohod integral ([23], Theorem 3.2), it follows that
t+s; 1+si
(2.37) FiALU = u(s)F dw(s) + D, (F)u(r)dr,
t—1+si f1—1+s;

where U is defined by (2.2). The chain rule (for weak derivatives) yields

k 82¢
(2.38) D, (F) = gl T 9%, (t1—1, (X1, ) Dr X (-1 +5).

Now, taking the Malliavin derivative D, in (2.1) gives
t t
(2.39) D X(t) =u(r) i< —i—/(; D,u(s)dW(s) —i—/(; D,v(s)ds.

Consequently,

Z— t1 1, I1 th,l))AliU =c1+c2+c3+cy4,
=1 ox;
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where
n+si 9
/n s OX; (-1, (X, ))uls) dW(s),
12 l
t+si 2
'/; 1+si ax ax (tl—lv H(XZI*I))I{IASZI,I—FSJ}M (r)dr,
i -: i j
1+Si
i1, I(X
'/1+sl iz ax, ](1 LX)
(2.40)

x/ll T D,u(s)dW(s)u(r)dr,
0

noents; K 32¢
= t—1, [T(X
“ ;/tl_ﬁ-si ]2=:1 0X; axj ( =1 ( ll_l))

f—1+s;
X / D,v(s)dsu(r)dr.
0
We will study the limits of the above expressions as n — 00.

Step 1. First we show that the limit of ¢ is given by

241 - Z/

j=i+l1

t+s;

e s

If j <i, then 4.1 +s; > ;1 + 5. So when 1,1 +s; <r <1 + s,
Lir<t_1+s)) = 0. We have

t+si
e (11, Xy N <y 51> () dr
j= z+11 1/tl 1+si ax, ax] ( EURE s )

1+si 32¢
0x; ax,

%2/

j=i+1

-5, H(Xr_si))uz(r) dr
a.s.as n — 00.

Step 2. Next we study the limit of ¢3 as n — oo. We claim that

@%2/

t+s;

LT X .
ax,ax] — i, TI(X, s,))

(2.42) ——
x/ Dyu(s)dW(s)u(r)dr
0
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as k — oo in probability. In fact,

n

t+si 3%¢p f—1+sj
> / [ (-1, TH(Xy,_,)) fo Dru(s)dW(s)

" =
=1 —1+s; ax, ax]

J

t+s; 2
_/0+ i (F—S,‘,H(Xr_si))

3)6,' axj

r—Si+s;
x/ Dru(s)dW(s)}u(r) dr
0

n

IA

1+s; 82¢ r4s;j—s;
/ (-1, I'I(XtH))/ D,u(s)dW (s)u(r)dr
f_1+s; 0X; 0X; f_1+s;

=1

n

B[22 -

=1 _1+s; axia)Cj

+

r—s;+s;
X / Dyu(s)dW(s)u(r)dr
0

n

Z/IH-S[
00 1 JH-1+Si

+ sup sup

I1<I<nreltj—1+si.t+sil

9%¢

axi 3Xj

lu(r)ldr

r4sj—si
/ D,u(s)dW(s)
t—1+s;

5 ‘

%0 (0 n(x,)

3)6,' 3Xj

3%¢

0x; 0x;
t+si
X /
0
T}’l T}’l
11,

where TJ-"1 and TJ-"2 denote the first and second term on the right-hand side of the
last inequality. Using the Cauchy—Schwarz inequality and the L? inequality for
the Skorohod integral ([23], Proposition 3.5, and [22], page 158), we have

2 a+s; 1/2
¢ (E/ ! u2(r)dr)
00 0

0x; 0x;
t1+s; r+s;—s;

n
x {E / |D u(s)lzdsdr
{ l:ZI t—1+s; J—1+s; "

(r —si, H(Xr_sl-))‘

dr

/ Y D () dW ()u(r)
0

n

. 12
/ \D@(Dru(s))fzdedsdr -0
0

t1+s; r+s;j—s;

n
—I—EZ/
=171

—1+si Jh—1+s;
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. . . C 2 . .
as n — oo. The uniform continuity of % implies TJ."2 — O a.s.Soasn — oo,
i J

T j" — 0 in probability.

Step 3. Now we will show that

k

tsi 92¢
—s5;, II( X —s;
C4_>jz:‘:./() axiaxj(r i TH(Xr—))

(2.43) rrsj—s,
x/ D,v(s)dsu(r)dr a.s.
0

As in Step 2, we have

n

i 32(]5 4-1+s;
Z/{; |: (tl—lv H(thfl))\/o Drv(s)ds

=1 _1+si axiaxj

82(1) r—s;+s;
_ 9% 9%, (r —si, H(Xr_si))/o D,v(s) ds]u(r) dr
92 moorents r4si—s;
< ’ s Zf / " Dyo(s)dslu(r)|dr
0x; 0Xj lloo 17 Ju—1+si 111 +s;
3¢
+ sup sup f—1, IT( Xy
1<i<n reft_1+siy+si]| 0Xi axj( (Xi-1))
3¢
- — s, I X, _s.
dx; 0x; (r =i, (X S'))‘
n+s; r—si+s;
X/ / Dyv(s)ds||lu(r)|dr
0 0
—0 a.s. as n — 0o.

Step 4. Finally, we study the limit of ¢ as n — oco. We shall show that

t+s; a¢
(2.44) ] — / a—(s — i, TI(X5—,;))u(s) dW (s)
0 Xi
in L%(22, R) as n — oo. To see this, define
n —~ 0¢
(2.45) u'(s) :=u(s)y E(U—l, (X Dy si04+5i1(5)-
I=1"°"

It suffices to show that

0
(2.46) u(s) — a—¢(s — s, H(X,S_Sl_ Nu(s)10,1451(5)

Xi
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in L2 as n — oo. It is clear that the sequence {u"(s)} converges to g—z(s — S,
IM(Xs—s;)Du(s)0,+57(s) in L*(€ x T,R). It remains to show that the se-
quence {D,u"(s)}>>,r,s € T, converges in L?(2 x T?,R) to D, [a¢ (s —

(X s—5,))u(s)1(0,r+51(s)]. Now

Drun(s) D M(S)Z tl 1, H Xl] 1))I(tl_1+si,ll+si](s)

n k 82¢ f—1+s;
+u<s>121[§1 T o) ~(f1—1, TH(X 1))/0 Dyu(s") dW (s )}

X Ly 4si,1+5i1(8)
(tl—lv H(Xz,,l))/o

n ol k 82

—I—u(s)z Z
1

= 0x; 0x;

t—1+s;

D,v(s) ds/:|
X I(l1_1+si,ll+si](s)
n [ k 82

+u)Y [
1

-1 axi 3Xj

(-1, H(Xm))M(r)llo,n_wsj](r)}

X I(l1_1+si,ll+si](s)
=d|+dy+ds+dy,

where di, d», d3 and dj stand for the first, second, third and fourth terms on the
right-hand side of the above equality, respectively. It is easy to see that

0
di — Dru(S)a—¢(H(s — 8, X5—5;))10,1451(5)

Xi

S+S;—S8i

in L2(22, R). Since forall 1 < Jj <k, u(s) f D,v(6) d6 belongs to L2(Q x
T2,R), then by Lebesgue’s dominated convergence theorem, the L?(2 x T2, R)
limit of the function g3 (s, r) defined by

2

a S+Sj—8i
% _”(S)Zz[a s (-1, (X)) /0 Drvw)de}la,1+si,,,+si]<s>

=1/=1

18
k 2

Zu(s)[

j=1

S48 —Si
0x; 0x; (s =i H(XS—Si))/O Do () de]l(o,t—s—sl'](s)-

Since v € L'* and u € L*(Q x T, R), the following argument shows that the
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difference between dz and g3 converges to 0 as n — 0o in LY(Q,R):

1+s; a 2 32¢ 2 S48 —si 9\ do 2d J
u-(s t—1, IT(X;, / D,v ] rds
/l‘.[ 1+S,‘-/0 ( )|:axi axj(l ! ( 1 1))] |: f—1+s; rv(6)

32¢ 2 ra a ra 5
/ u?(s) ds / / (D,v(9))" drdo
9x; 90X lloo JO 0o Jo

Hence, the LZ($2 x T2, R) limit of d3 is the same as that of g3, namely,

< |my]

— 0.

k 2 —s;

a d) . s—i—sj
Z M(S)[axi o (s — si, H(Xs—sl-))/o

j=1

D,v(0) dQ}I(o,mi](S)

in L2(Q x T2, R). To find the limit of d», we need to check that for all Js
the two-parameter process (u(s) fwrv’ “D,u@)dW©®),0 <s,r <a) belongs
to L?(2 x T2, R). This follows from the following estimates:

e[ [eo [T b dW(e)Tds dr
S i P
cle ["wwas|e([" [ |Dru<<9>|%ledr)2

+E</ [ [ Patorute d9drda> “1/2.

Here we have used a slight modification of the L” estimate of the Skorohod
integral for p =4 (cf. [23], Exercise 3.2.7). Using similar L? estimates to the
above, we obtain

/z1l11++/ ()[axl (- I’H(Xzz_l))r

S+si—S; 2
x[/ ! Dru(e)dW(G)] drds
t—1+s;
82

12
0x; 0x; (/ Eu (s)ds)

n t+s; a S+5;—8; 2 2
X ZE [/ (/ Dﬂ)(@)d@) dr} ds
=1 t—1+s; LJO f1+s;

(2.47)

< ‘

1/2
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Note that the right-hand side of the above inequality tends to zero as n — oo.
Thus

82

k
dr — Zu(s)[

J=l1

(2.48)

S+8j—Si
< [ D@ aw o) |1o.4)
in L2(Q x T%,R) as n — oo.
It is easy to check that

2

0x; 0x;

k
dy — Z u(s)

j=1

(S — i, H(Xs—si))”(r)I[O,s—&-Sj—si](r)1(0,1+si](s)

as n — oo in L2(€2, R). Therefore,

2

(249)  Duu"(s)— D, [u<s> (s — 1, n(xs_s,.))1<o,l+s,.]<s>}

3)6,' Xj

in L?(Q x T2, R). Finally it is easy to see that
t+s; 8¢
c —>/0 a—)Ci(s—si,l'I(Xs_si))u(s)dW(s)
in L2($2, R) as n — oo.

Step 5. The convergence

"0
> 1 (X)) 8V
(2.50) =

t+si 3¢
—>/ — (s — 53, TI(X5—y,)) dV (s) a.s.
Si axl
as n — 00, is easy to verify. [

We complete the section by giving a Stratonovich version of the Itd for-
mula (2.7).

Suppose that k > 1 and p > 2. The set ILS:’& (cf. [23], Definition 7.2, and
[22], page 167) is the class of processes u € LS”’ such that the mappings s —

Dgpu(s vit) and s — Dgysu(s At) are continuous in L?(€2), uniformly inz € T,
and sup; ;7 E(|Dsu(t)|?) < oo.
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The space ]L;’ZC loc 18 the class of processes that are locally in L}i’%. For any
u e ]L;’ZC, the following limits,

d
Dfu@) =1 Diul(t ,
Su(t) 81&)1; 't +e)

(2.51) J
D u(t) = 18%; Diu'(t —e),
existin L2(RQ) uniformly in ¢, we set v = D + D™, that is, (Vu)(t) = D,J“u(t) +

D/ u(t).
Consider the process

! t
(2.52) X(t):[n(0)+/() u<s)odW<s)+/0 v(s)ds, t>0,

n(), —7<t<0,
where 7 belongs to C and is of bounded variation, u = (u!,...,u™)7, u' €
LEJ:A‘C,loc’ (vu) € Lll(;j, v= !, ..., v, v e ]Lllc;?, and the stochastic integral

is a Stratonovich one. Assume also that the process X is continuous.

Using the relationship between the Skorohod and Stratonovich integrals ([23],
Theorem 7.3, and [22], Theorem 3.11) and Theorem 2.3, we can easily obtain
the following Stratonovich version of Itd’s formula for the segment process X;
(cf. [28]).

COROLLARY 2.5. Suppose that the process X (t) is defined by (2.52), and let
¢ € C2(T x Rk R). Then

b(t, H(Xz))—¢>(0 I1(Xo))
_/ s I1(Xy))ds

(2.53) ' 9 | |
+§1/0 O OG5 +51) 0 AW s + 59

+ 30 [ 256 M) + 50 ds
io1Jo 9x
forallteT a.s.

3. Weak differentiability of solutions of SDDEs. In this section, we will
study the weak differentiability of the solution of the Itd6 SDDE (1.6). Bell and
Mohammed [6] have applied the Malliavin calculus to study regularity of solutions
of SDDEs with a single delay in the noise term. Their analysis relies on weak
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differentiability of the solution of the SDDE. In Section 5 of this article, the
weak differentiability of the solution to the SDDE (1.6) together with the It
formula (2.10) are used to develop higher-order numerical schemes for solving the
SDDE. The next three results (Proposition 3.1, Lemma 3.2 and Proposition 3.3)
are analogous to those in [22], Theorem 2.2.1, Lemma 2.2.2 and Theorem 2.2.2.
Denote Dﬁf’o = ﬂpzz ]D)ﬁ;p, for k € N. Recall that Df, 1 <1 <d, stand for weak
differentiation with respect to the /th component of W.

PROPOSITION 3.1 (cf. [22], Proposition 1.2.3).  In the It0 SDDE (1.6), assume
that g € Cp'' (T x RY™  L(RY,R™)) and h € ;"' (T x R2™ R™). Let X be the
solution of (1.6). Then X (t) € ]D);;O"for allt € T, and

(3.1 sup E( sup |DrX(s)|p) <00

0<r<a r<s<a

for all p > 2. Furthermore, the “partial” weak derivatives DﬁX I(t) with respect
to the lth coordinate of W satisfy the following linear SDDEs a.s.:

g/'(r, Hl(Xj))
Jl
+f g O)DLXI (s + 51,0 dW'(s)
(32) DX/ = )
/Z )D Xf(s+sz,)ds t>r,
0, t<r,

forl = 1,....d,j=1,...,m.In(3.2), gjl is the (j, 1) entry of the m x d matrix g,
and h’ is the jth coordinate of h.

PROOF. For simplicity, we will only consider the one-dimensional case d =
m=1

X (t)_{n(t), -1 <1t<0,

t t
(3.3)  X"(1) =n(0) +/ g(s, I (XY))dW (s) +/ h(s, TIa(X7)) ds
0 0
It is easy to see that

Dr(/(;tg(s, Hl(X;’))dW(s))

t

= g(r, Hl(X;l)) + Dr(g(s, Hl(Xg))) dW (s)

r=S1k

3.4)
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and

t t
(3.5) D, (/ h(s, M2 (X7)) ds) =/ D, (h(s, TI2(XY))) ds.
0 r—=52.ky
Since g and s have bounded space derivatives, it is easy to see that there is a
positive constant K such that

|D(g(s, T (X)) | <K sup |DX"(u)l,

r<u<s

| Dy (h(s, Ta(XY)))| < K sup |D,X"(u)],

r<u<s

(3.6)

almost surely. From the Burkholder—Davis—Gundy inequality and (3.3)—(3.6), it
follows that X" (¢) D' forall ¢ € [0, a], and there are positive constants C, Co
such that

E( sup |D,X”+1(u)|p>
r<u<t

(3.7) .
<Ci(1+EIXP) +C2/ E( sup |D,X"(u)|f’> ds.
r r<u<s

By induction on n, the above inequality implies that E(sup,,<, |D,X"(s)|?)
are uniformly bounded in n for all p > 2. By [22], Proposition 1.5.5, it follows
that X (r) € D1 for all r. Applying the operator D to (1.6) (and using [22],
Proposition 1.2.3), we obtain the linear SDDE (3.2) for the weak derivative
of X(t). The estimate (3.1) follows from (3.2), Burkholder—Davis—Gundy’s
inequality and Gronwall’s lemma. [J

The following lemma may be proved using similar ideas. Its proof is left to the
reader.

LEMMA 3.2. Suppose that the real-valued process a« = {a(r,t):t € [r,al} is
adapted and continuous. Assume that the processes a(t) = (ai(t), ..., ax, (1)) €
R and b(t) = (b1 (1), ..., bi, (1)) € Rk gre adapted, continuous and uniformly
bounded. Furthermore, suppose that the random variables a(r,t), a(t) and b(t)
belong to DV and satisfy the conditions

sup E( sup |a(r, t)|”>+ sup E( sup |Dsa(r, t)l”) < 00,

0<r=a r<t=a 0<r,s<a s<t<a
(3.8) sup {E( sup |a(t)|p> + E( sup IDSa(t)lp>} < 00,
0<s<a s<t=<a s<t<a

sup {E( sup |b(t)|”)+E( sup |Dsb(f)|p>} <00

0<s<a s<t=a S=<t=a
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forall p>2.Let Y ={Y(t):t €0, al} be the solution of the linear SDDE

t t
a(r.1) + f (a(s), T (Ye)) gt AW (s) + / (b(s), T2 (Ye)) g d.

r=r,

39 Y@=
0, 0<t<r.

Then Y (t) belongs to DV*°, and for all integers p > 2, we have

sup E( sup |DSY(t)|p) < 00,

0<s<a s<t=<a

sup E( sup |Y(t)|p) < 00.

0<s<a s<t=<a

(3.10)

Furthermore, the weak derivative DY (t) of Y (t) satisfies the linear SDDE

DY (t) = Dsa(r, 1) + (a(s), 1 (Yo)) gy Tir<s<i)

3.1 +/ [(Dsa(v), 1 (Yy)) gk + (@), TT1(DsYy))gey | dW (v)
+/ [(Dsb(v), TTa(Yy)) ey + (b(v), TT2(DsYy)) g | dv, s <t.

The next proposition follows from Proposition 3.1 and Lemma 3.2.

PROPOSITION 3.3. Let X = {X(t):t € T =[0,al} be the solution of the
SDDE (1.6), where g € Cy’*(T x R L(RY,R™)), h € Cp*(T x R2™ R™)
have bounded first and second partial derivatives in the space variables. Then
X() e Dgl’oofor allt e T, and

(3.12) sup E( sup |D£;D£2X<s)|f’><oo

2
0<ri,m=<a rivVr=s=<a

forly,lhb=1,...,d,andall p>2.

4. Strong approximation of multiple Stratonovich integrals. The follow-
ing iterated Stratonovich integrals are used in the Milstein scheme for the
SDDE (1.6):

t1+b s—b . .
@.1) Ji.j (t0.11; —b) ::/ / odWi(v) 0 dW(s),
ttdh Ji
where 0 <1y <t1,b > 0.
We will adopt the discretization scheme in [17], Section 5.8, in order to handle
the above double stochastic integral. For alternative discretization approaches to
iterated stochastic integrals, see [11] and [26].
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Set
4.2) J(to, t1; —b) := Jy,1(to, t1; —b),

t:=1t —tgand r :=2m/t. We choose a complete orthonormal basis of L2[0, 1] as

1 2 2
4.3) {\—/;,\/;sinnrs,\/;cosnrs:nz1,2,...,0§s§t .

Set Wi(s) :== Wi (s + 1) — W' (1) and B/ (s) := W/(s + b) — W/ (b), s =0,
1 <i, j <d. Using the Kahunen—Lo¢ve expansion technique, we have

ap(r)

(4.4) Wiis) — Wl(t)_ 5

+ Z a (t)cosnrs + b’ (t) sinnrs]

n=1

and

(4.5) B/(s)— S g (t) = @ + i[aj’b(t) cosnrs + bl (1) sinnrs]

where "~
y al (1) = %/OZ(W"@) - ;wi(z)) cosnrs ds,
o b () = %/OZ(W"@) — ;wi(z)) sinnrsds
and

alt(r) = % /O Z(Bf(s) . ;BJ'(z)) cosnrsds,
4.7)

bit() =2 / I(Bf'(s> - féfa)) sinnrs ds
0

for n > 1. The convergences in (4. 4) and 4.5) are in L2(Q x [0, ¢]). It is easy
to see that if n > 1, a,,(¢), b’ (t) al (t) and b}’ (t) are normally distributed
with mean O and variance t/27'r 2 ([171, page 198). Furthermore, {an(t), n(t)}

and {a,{’h(t), b,{’h(t)} are pairwise independent ([17], page 198). One can use well-
known random number generators to simulate these random coefficients (cf. [12],
Section 3.1.2, [17], Section 1.3, and [18], Section 1.2).

LEMMA 4.1. Letty,t > 0. Then
Ji,j(to, to + t; —b)

wg " IWOBO) - (n)ay” (10) = B (1)aj(10))

o0
+7 Y nlal ()b (t) — bl (t)al " (t9)].  1<i,j<d,

n=1

where the infinite series converges in L>($2, R).
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PROOF. It suffices to show (4.8) for o = 0. Fix ¢ > 0. For simplicity of
notation, we write

al :=al(0), bl := bl (0),
(4.9) e A
ai’:=alt©0), bl :=bl"(0)
and
. Ky . ai N . .
(4.10) Wi (s) := ;W’ ®) + 70 + Z(a,’l cosnrs + b, sinnrs).
n=1

It is easy to check that

t+b ps—b . . t+b ps—b . .
@.11) / / odW}v(v)odWJ(s)—>/ / o dWi(v) o dW(s)
b 0 b 0
in L2(2) as N — oo. Then we may write

t+b . .
Ji,j (0, 1; —b):/ W'(s —b) odW/(s)
b

t+b _ . . i _ .
:/+ =D Wity o awits)+ B
b t 2

[e'e} ) b .
B [ e -bowic

n=1
. pt+b .
+b§,/ sinnr(s —b)de(s)].
b
For any n > 1, we have
t+b .
/ cosnr(s —b)dW/(s)
b
t _ .
=/ cosnrsdB’ (s)
0
t _ . S — . t S - .
:/ cosnrsd(B](s)— ;Bf(t)> +/ cosnrsd(;BKt))
0 0

t

=cosnrs (Ej(s) — iéj (t))
t 0

ty_ . . Bi(t) [t
—I—nr/ (Bf (s) — ;BJ (t)) sinnrsds + t( ) / cosnrsds
0 0

t .
= Enrb,{’b.
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Similarly, we have

t+b . t b
4.12) / sinnr(s —b)dW/’(s) = —Enraé’ )
b
So
Wi@) [+ .
J,‘,j(o,l‘;—b)z ()/ SdB](S)
(4.13) P .
+ “—;Bm) +7 > n(@lbi? — bial ).
n=1
Now,
. . t_ .
/ sdB’(s) =tB’(t) —/ B/ (s)ds
0 0
r - Ly _. S - .
—-Bi( —/ (Bf(s) - —BJ(t)) ds
2 0 t
[ ;
— E(Bj(t) — a(])’b).
Therefore,
i) Ji j 0,1, =b) = YW @) B (1) — (Wi (0)al” — B (t)d))

o0
+7 ) n(albi® —bial?).
n=1

The expansion of J; ;(0,; —b) is a generalization of the expansion of
t ps . .
/ / odWi(v) o dW (s)
0J0
(4.15) = Wiw/ @) = LW 0)af” — W (t)aj]

oo
+7 Z n(alb) — bl al)

n=1
(see [11, 17] and [18]). Set
‘Ii],)j (to, to +t; —b)
(4.16) =W 0B (1)) - LW ()al” (1) — BY (1)ay(t0)]

p
4+ Z n[a,’; (to)b,f;’b(to) — bfl (to)a,{’b(to)]-

n=1

Then Jf j (to, to+1; —b) can be used to approximate J; ; (f, o +1; —b) in the mean
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square. The rate of convergence is given in Lemma 4.2.

LEMMA 4.2. For any integer p > 1 and t > 0, we have

p . _ AN
“4.17) E|Ji’j(0,t,—b)—J,,J(0,t, b)| §2n2p'

PROOF. Let p > 1 be any integer. Then

| 1
(4.18) > ;5/ —du=—
n=p+1 P p

Since @’ and b are independent, E (a’b!) =0 and E(a}’’bi") =0, we have
2
E[J7:(0, 15 =b) = J; j 0, 1; —b)|

o
=n* Y n’*E(alb]’ —bjal")?
n=p+1

o0
=72 Z nz[E(aflb,{’b)z—i—E(bfla,{’b)z]

n=p+1
2 o0
t 1
) Z 2
2 n:p+1n
< tz
~2n2p’ =

5. The strong Milstein scheme. In this section we construct a strong Milstein
scheme of order 1 for the SDDE (1.6). Our construction relies heavily on the 1t6
formula for “tame” functions (Theorem 2.1).

Throughout this section, we assume that in (1.6) the coefficients g € C L2 x
Rb™ (R4, R™)) and h € C2(T x R*™ R™). For convenience, set W (s) =
W (0) =0, for all s <0. We also define

u(t) ::{g(t,l'll(x,)), 0<r<a,
0, t <0,
(5.1
v(t) == {h(t’ M (X,), 0<t<a,

We first derive the Milstein scheme for the case d =m = 1.
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5.1. Ito-Taylor expansion. Assume that 0 < fy < ¢, and X = (x1, ..., Xk,) €
R¥1. Applying the It formula (2.10), we have

g(l‘, HI(XI)) - g(l‘o, Hl(Xfo))

1o
= [ 285, mi(Xy)) ds
fo
kl t+s] a
N4 g
52 / 98 (¢ — 10 (X, Yuls)dW
o +,Z£ 10+51,i 3xl(s 51 1(X, 1,,))’4(5) (s)
k1 g
8
— (s, I (X ,
+§/10|:3x,'(s 1€ S))v(s+sl,t)

1/0?
+2<a ‘S;(s (X)) Vi, X (). Vs, x<s)>]

where vf”X (s) are defined by (2.9). Applying the It6 formula (2.10) again and
using similar notations for /4, we obtain

h(l‘, Hz(Xz)) — h(to, HZ(XZ()))

T 9h
= — (s, IT2(Xs))d
/lo as(s 2(Xy))ds

k2 it g
(53) FY [ = s2 a(Xm, ) () W)
to+s2; 0%
i=1
k
1.&, (11 0h
+§Z/,O[ax (s, TIa (X)) v(s + 52.0)

i=1

1/0?
+2<a ‘S;(s Ma(Xy)) Vi, X(9). Vs, X(s)>]

Substituting (5.2) and (5.3) into (1.6), we get the following approximate (Ito6—
Taylor) expansion of (1.6):

X() = X(to) + g(to, TT1(X4,))[W () — W (o)1 + h(to, TTa(X4,)) ( — t0)

(5.4) + Z ro, Ty (Xyy))u(to + 51.4)

1+51,i
// AW (t2) dW (1)) + R (to. 1),
toJ10+51,i
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where

1+s1,i
R, 1) = {// [ (2 — 515 T (Xpps, )i (12)
o1 0x;

)+51,i

0
— %(to, Iy (X)) u(to + Sl,i)] dW(tz)dW(tl)}

k
51 1
+// [ (12, TI1 (Xy,) ) v(t2 + 51,0)
o/t ;4 Xi

1/8%g _
+ 2<8x (2, T (X1,)) V5, , Xon, Vsl,inz>] dty dW (1)
(5.5) !
n+s2i gh
f/ —(t2 — 52,1, a(Xpy—s, ;) Ju(12) dW (1) dty
toJto+s2,i OXi

kz

1
+ / /
to /1o

[ (2, T2 (Xy,) ) v(t2 + 52,0)
i=1
1/3%h n _
+ 5<ﬁ(t2’ HZ(th)) Vo X4y, VS2_inz>] dtrydt
i

oh
+ // [ t2, 1'11 th)) + —(l‘z, HZ(XZZ))] dt dt;.
toJ 1o ot

In the above expression, the stochastic integrals
t+sii 9
J o 2 T (X ))ul2) AW (@)
fo+s1,i i
and
n+s2,i 9h
/I-H 0x; (12 =524, T (Xpy sy ) Ju(22) dW (1)
0T82,i i

are Skorohod integrals. Define

t+si j
(5.6) I(to+ 511 + 5155 51.) = / /+ AW (1) dW (1),
fo+si, j
fori =1,2 and j =1,...,k;. Recall the definition of J(t9 + s; j.t + s j: 5; ;)
in (4.1). Note that if 5; ; < 0, then
11+Sl’,j

G7) IGo+sijt+siisi)= / o dW(12) 0 dW (1));
toJto+s;, j
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if 5; ; =0, then

t
T(to +si.j 1 + 0.7 i) =/t [W(t1) — W(to) | dW (1)
0

(5.8)
_ W) —Ww)* -1

2 2

5.2. The one-dimensional Milstein scheme (d =m =1). Assumed =m = 1.
Letm:—t=¢t7<---<ty=0<--- <t, =a be a partition of [—7,a]. We
introduce the Milstein scheme for the SDDE (1.6) as follows:

59 X7 (1) = X" (1) + h(te, (X))t — 1) + g (1, T (X)) (W (1) — W (1))

+ Z tk, Ty (XT))u™ (1 + 51,01 (tx + 51,0, ¢ + 51,05 51,0)

for ty <t < ty41, where

W (1) = {g(t, M(X7),  t=0,
0, —T1<t<0,
and

11481,

I(t + 51,6t + 51,05 51,0) =/ / odW(t) odW(ty).
I+S1,

Recall the notation
Ik, Ik <8 <Itg+1,
In, Iy, =<8 =t,

ls]:= {

and introduce the following notation:

Is] Tk+1 I <8 = Itg+1,
s =
t, th, <s <t.

In view of (5.7) and Lemma 4.2, we will use J?(t;,¢;s1,;) to approximate
[(t;, 85 51,i)-
Denote by

27 =X"1) - X (), te[—1,al

the global truncation error for the Milstein scheme, with X the unique solution of
the SDDE (1.6).

LEMMA 5.1. In the SDDE (1.6) (with d = m = 1), suppose that g €
Cg (RM R), h e C,% (R*2, R), have bounded first and second derivatives. Then for
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each integer p > 1, there exists a constant K (p) > 0 such that

p

3%g + _
E @(Svnl(xs)’vsl.i XS’VSIJXS fK(p)a

(5.10) »

3%h n _
E ﬁ(s’ HZ(XS)) sz,i X, st’iXS < K(p).

forallt €0, al.

PROOF. By the definition of vsﬁg X (5) [see (2.9)], we have
v X(s) =2u(s +s1,i) (s ;<51 ;) T (s +51,i)6ij

511y
( : ) S+Sl,j S+Sl,j
12 /0 Dyyyyu(r)dW(r) +2/O Dysyy () dr
and
(5.12) VS_l,i,Sl,jX(s) =u(s +S1’i)5,‘j.
Therefore,
3g n _
oo (5 (X)) Vi, X(9). 75, X ()
—22{ (s, TT1 (Xg))u(s + s1.0)
0x; 0x;
1
(5.13) X [M(S + 51, (s <5y )+ §M<S +51,i)dij

S+S|’j
+/(; Ds+s1,i”(r)dW(r)

s+, j
+/ D‘V-i-S]l'U(r)dri“'
0 )

Dsu(r) = Dsg(nl(Xr))

If » > 0, then

(5.14)
_Z (r, T1 (X)) Ds X (r + 51,4
and
ky 2
0
DiDsu(r) = 3 === (r (X)) DyX(r +51,0Dy X (r +51,))
4 O 0
(5.15)

+Z (r, TI{ (X)) Dy Ds X (r + 51.;).



298 Y. HU, S.-E. A. MOHAMMED AND F. YAN

By Proposition 3.1 and Proposition 3.3, there exists a constant C > 0 such that

sup E( sup |DSX<r)|2) <c,

0<s<a s<r=<a
sup E( sup ID,DSX(r)|2)§C1.
0<s,t<a sVt<r=a

Since g has bounded first and second derivatives, then there is a positive constant
C, such that

sup E( sup IDSu(r)|2>

0<s<a s<r=<a

< Caky sup E( sup |DSX<r>|2) <010k

0<s<a s<r=<a

and

sup E( sup |DtDSu(r)|2>§C%C%k1+C1C2k1.

0<s,t<a sVt<r=a

If r <s 451, then

Ds—i—sl_iu(") =0,
DS-}-SI,,‘U(’”) =0.
Therefore,
l‘+S|’j 2
E </ Dy, u(r) dW(r))
t+s1,i
t+s1,; pitsij 2 14515 2
< E(DgDy s, ,u(r)) drds + E(Dtﬂ”u(r)) dr
t+s1,i 1451 t+s1,i
< Czk%Clz +2Ck1Cy
= Kl.

Similarly, there exists a constant K5 > 0 such that

l‘+S|’j 2
E</ Dy, v(r) dr) < K>.
1+s1,i ’

So the first inequality of (5.10) follows from the above two inequalities and the
Lipschitz and bounded conditions on /4, g [(1.4) and (1.5)]. The second estimate
of (5.10) is proved by a similar argument. []

THEOREM 5.2. Consider the Milstein scheme (5.9) for the SDDE (1.6). Recall
that Z" := X™ — X is the global truncation error for any partition w of [—t, al.
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Let 0 < y < 1. Suppose that n:[—t,0] — R is of bounded variation and is
(%)-Holder continuous. Let g € C'*(T x RM,R), h € C1*(T x R*2,R) have
bounded first and second spatial derivatives. Assume that

sup |Z"(s)| = C'|m |

—7<5<0

for some positive constant C'. Then there exists a constant C > 0 (depending on a
and independent of ) such that

sup E|Z7(s)|* < C|n|*.

—T1<s=<a

PROOF. We express the global error in the form
Z7 ) =Z"0)+1"(t) — R™ (1),

where
ny

(1) = Z[h(fi—l, Mo (X7 ) = h(ti-1, Mo (X, )] (@ = tio1)
+Z (ti—1, T (X7 _))) — &(timr, T (X, ) | (Wy — Wi_y)

+ I:h(l‘n,, HZ(X;;)) - h(tﬂ[’ HZ(Xln,))] (t - tﬂt)

+ [t TH(XT ) = 8ty T (X, ) | (W) = W (12,))

+ZZ{I(E 1, tlaslj)l: ~(tim, TH(XE)u™ (ti—1 +51,7)

i=1j=1

0
—f(n 1L (X)) udti— 1+51J)”
J
k1 ag
+ Z{I(l‘n,, t; Sl,j) |:—8x : (tn,, Hl(XZt))Mﬂ (tn, + Sl,j)
j=1 J

_ dg (tﬂt’ Hl(tht))M(tn; +s1,j)i|}

0x;
and
ny
R™(t) =) R(ti—1, 1) + R(ty,. 1).
i=1
We shall decompose R” (¢) into five parts:
R™ (1) = RT (t) + R} (t) + Ry () + R} () + R3 (1),
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where
ne ki ti ps+sy
R’f(t)::ZZ{/ | [ (r = 51,5, TH (X, —,,)ue(r)
i=1 =1 -1
ag
~—(ti—1, T (Xy,_,))
ax, - !

xu(ti_1 + Sl,j)i| dW(r)dW(s)}

S+51, 5
{/ / |: I" — S, Hl(Xr—slj))u(r)
In; tnt+VlJ a'xj '

g
—
Xj

S+S11
r—s1j, Mi(Xr—, ;))u(r
{/‘/LVJ+V1J|:8X] LJ 1( r vl,J)) ( )

98 (L) T (X ))u(ls] + 51 ,)}dW(r)dW(s)}

tne> T (X, ))u(tn, + Sl,j)] dW(r) dW(s)}

ax]

. ki t ps ag
RI (1) = ; [ /L sJ[WJ-(“ M (X))o + 51,)

1/9

2
g —
N 5<aTz(r, M) V3, X 95, X )| dr dwes)

S+s2,
RE (1) _Z//L r—szj,nz( rosy,))u(r)dW(r)ds,

5J+52 j ax]

RY (1) _Z//m[ (r, T2 (X,))v(r + 52,;)
2
+ 1<M(r, M (X)) Vs, , Xr, v;z_jxrﬂ drds

2\0x2

and

5
R (1) —// { (r, T (X,)) + af(r,nl(xr))}drds.
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By the It6 isometry and the formula for the covariance between two Skorohod
integrals ([22], Section 1.3.1), we have

sup E|R7f(s)|2

0<s<t

S+s1, 5
< k1 E/ {/L [axJ (r —s1.j, Hl(Xr_sl,j))u(r)

s]ts1,j

9 2
— - (LsJ. T (X )Ju(Ls) +s1,j)]dw<r>} ds

J

o (X, )
r—sy i, I Xpr—s  ))u(r
v/v/LSJJrsu [ax] K T

g 2
—(LSJ’HI(XLSJ))M(LSJ+s1,j)] drds
Xj

ky t ps+syj s+s1,; P
8
A
2170 sl Lsts 0x;
Hl(Xr—sl_j))”(r)

9
—ggj(tsJ,Hl(XLsJ))

2
X u(|s] +s1,j)]} dridryds
= ki RT,(t) + k1 R, ().

By assumption, the function

0

Gj(s,x,z):a—g(s,x)g(s + 51,7, 2)s xeRM and zeRM
Xj

is Lipschitz; that is, there exists a constant L > 0 such that

1G(5,2) = Gj(s,w)| < Lilz—w| V(z,w)eR* and 1<j<k.

Using
u(r):{g(ranl(xr))v rZOa
0, r <0,
and
sup EIX(B) — X(@)* < Calry — 1",

—T<ri<a<f<r=<a
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it follows that

s+,
(t) = Z//L 1 7‘ — 81,5, Hl(Xr—slyj)a Hl(Xr))

s]+s1,j

2
=G (ls), T (Xys1), T (X pspsy,)) |

X A{s)4s1 =0y dr ds

S+581,j
<2k1LZZ// ! sup E|X(r2)—X(r1)|2drds

Lsl+s1,j —1<ri<m=a,|r—ri|<|7|
<2(a+ DkILIC ||,

Now forallr >0and 1 < j <kj,

0
Ds(%(r — 1,7 i (X, ))“(r))

ki 2
0
=g(r, 11 (X,)) Z g (r—s1.j, T (Xr—s, ;) Ds X (r — 51,5 +51.1)
= 3Xj axi
g o ag
+ —(I’ — 81,5 Hl(Xr_s]’j)) Z —(7”, Hl(Xr))DsX(r +Sl,i)'
3Xj =1 axi

By Proposition 3.1, there exists a constant C3 > 0 such that

sup E( sup |D,X(s)|2> <Cs.

0<r<a 0<s<a

By (1.8), (1.10) and boundedness of the spatial derivatives of g, there exists a
constant C4 > 0 such that

2
) <2C4k3.

a
sup sup E(‘Ds(%(r—h,j,nﬂ)(r s1, ))u(r})
j

0<r<a0<s<a
Therefore

ki t ps+sy s+s1,;

RL(1) <k Y / / ! f " 4C k3 drydryds
~— Jo |
j=1

Ls]+s1,; JLs]+s1,)
< 4(a + 1)Cykt|m|?.
Hence there is a constant Cs > O such that

(5.16) sup E|RT(s)|* < Cs|m|?.

0<s<t
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Applying Fubini’s theorem, we can rewrite R (¢) as

R3(t)_22/ /

i=1j=1 —1+82,j ax]

S+582,

r—szj,Hz(Xr 5,))u(r)dW(r)ds

ky H—vzj ah
* // (r—s2,,11 Nu(r)dW (r)ds.
Z Ing Vlng +52,1 ax] 2 2( r= 32»1)) (r) (r)

So we have

R3(t)_§:2/

i=1j=1 —1+92,

ti+s2, j

/ r—szj,Hz(Xr 5))u(r)dsdW(r)
r—s,j a.xJ

1452, oh
/t / —(r —s2,j, (X, — 52 Nu(r)dsdW(r)
r— Szj ]

ny +52, J

nt

tl+S2} ah
/t (t; +s2,j — r)a—(r — 52,7, 2 (Xy s, ;) Ju(r) dW(r)

1:1]:1 1152, 'xj
k2 l+52,j ah

+Z/ (t+s2,j —r)—(r —s2,j, o (X,— 52, Nu(r)dW(r)
Sty s 0x;
]_1 t 2,j J

k2 sy 9h

= Z/ (Tr—s2,j1+s2,j —r)—(r —s2,;, l'Iz(Xr_Szyj))u(r)dW(r).
j=1752j 9x;

Applying the formula for covariance between two Skorohod integrals ([22],
Section 1.3.1) and Proposition 3.1, we can show that there exists a constant Cg > 0
such that

(5.17) sup E|R] (s)|* < Cg|7|>.
O<s<t

Similarly, by Lemma 5.1, we can easily show that there exist C7 > 0 such that
sup E|RS () < Crlm 2,

0<s<t

(5.18) sup E|RF (s)> < Cq|r|?,

0<s<t

EIRZ(s)|* < Cqm|?
sup 5| = Colm|”.
0<s<t

By arguments similar to the ones used in the proof of Theorem 3.4 in [15], we
obtain the following inequality:

(5.19) sup E|I”(u)|2§C1/t sup E(1Z" w)|?)ds
0

O<u<t —T=U=S



304 Y. HU, S.-E. A. MOHAMMED AND F. YAN

for some constant C; > 0. From (5.16)—(5.19), there exist Cg > 0 and Cy > 0 such
that

t
(5.20)  sup E|Z”(u)|2§E|Z”(O)|2+Cg|n|2”+C9/ sup E|Z7(u)|*ds.
O<u<t —T<u<s
So
t
(5.21)  sup E|Z7w)|> < 2C' + Cy)|7|*” +C9/ sup E|Z7 (u)|*ds.
—T<u<t 0 —t<u<s

By Gronwall’s lemma, there exists a constant C > 0 such that

E sup |Z7()|? <C|n)*.

—T<s<t O

REMARKS.

1. Let us consider a particular case when g and 4 are of the form

ki

g(s, T (X)) =D _ai(s, Xy(s1,0)),
i=1
ko

h(s, TIa(Xy)) = > bj(s, Xs(s2,))),

j=1

(5.22)

where a;,b; € Cé’Z(T X R) for 1 <i <kj and 1 < j < k. In this case, one
may also apply the nonanticipating 1t6 formula to

ai(t +s1,1, X (¢ +s1,1)) — ai(to + 51,1, X (to + 51,1)),
ai(t +s1,1, X (¢ +s1,1)) — ai(to + 51,1, X (to + 51,1))

to prove Theorem 5.2 (cf. [28]).

2. One can allow the initial process n to be a sample continuous semimartin-
gale in the following way. Replace W by an extended Brownian motion W (t),
t > —t, with the associated Brownian filtration (¥;)_r</<4. Assume that
n(t) e ID;;OO forallt € [—7, 0], and n is an (¥;) - <;<o-continuous semimartin-
gale satisfying

sup  En(B) —n(@)* < G2l —al”,
—T1<a<B=<0

sup E(|Z7(s)]?) < C'|m|?

—7<5<0

(5.23)

for some positive constants C, and C’. The arguments in Section 2 and the
proof of Theorem 5.2 may be adapted to include this generalization.
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We can rewrite the SDDE (1.6) in Stratonovich form, namely, if > 0,

X (1) = 1(0) +/ g(5. 1 (X)) 0dW(s)
(5.24) 0

' 19
+f0 [h(s’HZ(XS))_Eaxg (s,l'Il(Xs))g(s,l'Il(Xs))]ds

ki
if s, = 0. If s, <O, then the SDDE is of the same form as (1.6) except the Itd
integral is replaced by a Stratonovich integral, that is,

t t
X(t):n(0)+'/0 g(s, T (Xy)) odW(s)—f—/(; h(s, Ma(Xy)) ds

Bell and Mohammed ([5, 6]) derived a similar result in the case of a single delay.
From Corollary 2.5, we can obtain the following Stratonovich—Taylor expansion
of X (1) (cf. [28]):

X(t) = X(10) + g(t0, TT1 (X)) [W () — W (10)]
+ }_l(t(), Hz(X;O))(t — 1)

(5.25) +Z zo, Iy (Xy,))u(to + 51.0)

1+s K —
x/ /' Y o dW(ty) 0 dW(t) + R(to. 1),
1

0+S1,i
where
R(to, 1)
ki 1+s1i
=Z{// [ (t2 = 51,0, T (Xp,—s, ) Ju(22)
i—1 Wi Jto+s1,i 0x;
g
_ g(l‘o, HI(XZO))M(I() + 51 ,)i| odW(tp) odW(l‘l)}
fl
(5.26) +/[ /t tz,l_Il(X;z))v(tz—i-sll)dtz odW(t1)
0 Yo Xi
482, ah
o (X s, t dW () dt
+th0 v/z+s21 ax, — 52,1, T2 (X1y—s, ;) ) u(t2) 0 dW(12)d1y
f "2 ah
+/z/; t2,Hz(X;z))v(tz-i-SQl)dtzdtl
0 i=1
and

_ _ h(t, TIa(X,)), 0<t<a,
27 hi=h-1 =
(5.27) 28k 8> v(®) {77(1)’ t <O.



306 Y. HU, S.-E. A. MOHAMMED AND F. YAN

One can also derive the Milstein scheme for (5.24) using the Stratonovich—
Taylor expansion (5.25) of X (¢) as follows. Let #; < ¢ < fx41. Then

X7 (1) = X™ (&) + h(n, Ta(X])) (¢ — 1)
+ g(tk, Hl(Xn))(W(t) — W(tk))

(5.28)
+Z tk,l_ll N (4 51,0 T (510,14 51,3 51,0),
where
0, —7<t<0.

5.3. The multidimensional Milstein scheme. Write h(s,x) = (h'(s, x), ...,
h™ (s, x)7T, ¥ e R™1,

X115 wees X1k

=1l
Il

-xmla cee xmkl

Denote by gjl (s,X) the (j, 1) element of the m x d matrix g(s, x). To simplify
notation, we use below the summation convention on repeated indices. Recall the
notations for the partition —t =7y, <--- <=0 < --- <1, =t introduced
in Section 2. We formulate the Milstein scheme for the SDDE (1.6) as follows:
if 7y <t < ty1, the ith coordinate X'(¢r) of X(r) = X'@, ..., x"e)H7T is
approximated by

X”T(t) —X”T(l‘k)—i-h (l‘k, 1_[2( ))(l‘ )
+ 8" (e, TH(XT)) (W (1) — W ()

(5.29) 3
agu T i1j1,m
+ (1, T (XT))u" 07 (11 + 51, ,)
Xiyji
x 1jjy (te + 51,505 1+ 51,1551, 51)s
where
ity = | &), =0,

0, —1<t<0O.

As in the SODE case [17, 18] and in view of Lemma 4.2, it is possible to further
discretize the double stochastic integral I; j, (tx + s1,j;,t + s1,j;3 51,j,) in (5.29)
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to obtain a modified Milstein scheme for the SDDE (1.6) with strong order of
convergence 1. More details are given in Appendix B.

REMARK. One may check that Lemma 5.1 and Theorems 5.2 also hold
in the multidimensional case. In fact, it is easy to extend these results to the
multidimensional case, thanks to the weak differentiability results (Proposition 3.1,
Lemma 3.2 and Proposition 3.3) and the results concerning strong approximation
of double Stratonovich integrals (Lemmas 4.1 and 4.2).

Unlike the SODE case, it seems very difficult to develop higher-order strong
approximation schemes for the SDDE (1.6). One may try to avoid involving the
differential operator D and the trace operator 7 in the numerical scheme by
attempting to employ multiple Stratonovich integrals instead of multiple Skorohod
integrals. The idea is to use Stratonovich—Taylor expansions of the coefficients in
the SDDE (1.6) [cf. (5.3) and (5.4)] instead of It6—Taylor expansions. However,
this is difficult, because it is hard to estimate the order of the error via the
remainder term. This is because a multiple (anticipating) Stratonovich integral
can not be expressed in terms of multiple (nonanticipating) It6 integrals. The Hu—
Meyer formula gives the relationship between multiple Stratonovich and Skorohod
integrals ([9], Theorem 3.1 (with nondeterministic kernels), [29], Theorem 3.1, and
[27], Theorem 3.4 (with deterministic kernels)) (cf. [25, 29] and [27]). However,
the formula still involves the differential operator D and the trace operator v/, and
hence it is hard to estimate the remainder term.

One may refer to Jolis and Sanz [16], Delgado and Sanz [9], Solé and Utzet [27]
and Zakai [29] for multiple Skorohod and multiple Stratonovich integrals.

APPENDIX A

The lemma below follows from the independent increments property of
Brownian motion. It is needed in the proof of the Itd formula for tame functions
(Theorem 2.1).

LEMMA A.l1. Assume that {m,:0 =1ty <t <--- <t, =a} is a family of
partitions of [0, a], with lim,_,  |7,| = 0. Let —1 < 51 < 52 <0 and denote
by ApWi = Wity +s1) — Wity +s), 1 <i<d,1<l<n, k=1,2, the
increments of Brownian motion. Then

a+ sy, ifi = jands| =s,

n
Al lim Y A WA WJ':{
(A.D) neoo; n 12 0, otherwise,

in L*(Q,R).
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PROOF. We only need to consider the cases s; < s, and i = j. Now

n 2
|:Z A”Wi A12Wi1|

=1

n
= (AW ApWH2+2 ) AW A W AL W AW
=1 l]<12
If n is sufficiently large, then |m,| < s2 — s1. Hence A122Wi is independent of
Apt wi Allei Ap1 Wi, Taking expectations in the above equality gives

n 2 n
E{ZAHWZ'AIZW’} <> (=11 <|mla
=1 I=1

for sufficiently large n. Note that a + s is the correct limit in (2.6) because of the
convention that W (¢) = 0 for ¢ < 0. This completes the proof of the lemma. [

The following lemma extends a result by Nualart and Pardoux ([23],
Lemma CI1).

LEMMA A.2. Suppose that x = {x(t):t € [0, al} is a measurable real-valued
process, x(t) =0 ift >a ort <0, and x € LP([0,a],R) a.s., p > 1. Assume
that {m,:0 =1ty < t; < --- <t, = a} is a family of partitions of [0, a], with
lim, oo |7y =0, and —1 < 51,52 <0. Then

n a—+sq
(A2) nll{%oz Aztﬂ’i’tAzzW /”“1 2 (s)ds = [/0 x(s)ds, S1 =82,
=1 1 -1 t—1+s1 0, S1 7& $2,
in probability. Moreover, if x € LP(Q x [0, a], R), then the above convergences
hold in L'(2, R).

PROOF. It clearly suffices to show that (A.2) holds in L'($2, R) whenever
x € LP(Q2 x[0,a],R). Fix m > 1, define

1451

|
xM .= Z “itsiita] / x(s)ds.
1

= - —1+s

For n > 1, define

o, (x) = Z

=1
Define o, (X ;) similarly. It follows from Holder’s inequality thatif 1/p+1/q =1,
then

" ANWARW putsi
/]

=1 —1+s1

n 1/q n 11451 p1/p
|AnWAR WY (s, x9N ds)
(A3) Elapy(x)|<{EY —————— EY" PR ,

— g—1
= (w—1-1) =1
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that is
lan (1) < CpllxllLr@xio.a+s1) < CpllxllLr@x(o.a))-

Therefore,

Elo,(x) — '/Oaﬂl x(s)ds

a-+sq
(A.4) < Eloy,(x — x"™)| + E|o, (x™) — '/0 x(s)ds

<E + Cpllx —x" Il Lr@x[0,a+s1])>

o (x") — /Oam x(s)ds

since

m ti+st [, . t
o, (x™) = Z{ > / fartsitsn® dt AZIWAIZW}
I

i=1 Uy, 1S4, 1<l<n =151 n—1-

1 ti+s1
X 7/ x(s)ds
I

i —1i—1 Jy_+sy

ti+s1
/ x(s)ds.
4

i—1+S1

“ 1
= { > Azlwmzw}—t
i=1

1,111,141, 1<I<n fi = li-1

Let k, be the index such that #;, 1 + 51 < 0 < £, + s1. If 51 = s, then by
Lemma A.1, the following limit exists in probability:

m 1 ti+51
lim o,(x™) = +s)ANO— (i1 +s \/07/ x(s)ds
Jlim o, () ;[<, D (it +s) VO — | x(s)
m ti+s1 . +s ey 51
= Y [ swas+ 22 [T as
i:kln+1 ti—1+s1 tkm_lkm—l 0
a+sy th +s |
:/ x(s)ds-i—M/ x(s)ds.
0 kin—tiy —1 70
Equivalently,
a+si th +s Tk 151
ozn(xm)—/ x(s)ds—M/ x(s)ds — 0
0 Uk —tgy -1 /0

as n — oo in probability.
A slight modification in the proof of (A.3) yields the estimate

lletn (™)1 () < C (P POIX™ Lr@x10,a+511)
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for all p’ € (1, p). Therefore, the family {«, (x™):n > 1} is uniformly integrable.
From (A.4) we have

oy (x) — /:HI x(s)ds

tr, + 81 [0
< E‘mi/ x(s)ds
0
1

tkm _[km —

lim E
n—>oo

+ Cplix — x" I Lr@x[0,a4s11)

ey 51 m
<E /0 ()] ds + Cpllx — X" | Ly @x[0.ass1)-

ey 51

Clearly, x" — x in LP(Q2 x [0,a + 51],R) and E [, |x(s)|ds — 0 as
m — 00. So

o, (x™) — '/Oaﬂl x(s)ds| =0.

Jim
Now consider the case s1 # s7. Since
Elay(x)| < Elan(x™)| + Eloty (x — x™)]
< Elo,(x™)| 4+ Cpllx — x" | Lr(@x[0,a+s11)>

a similar argument gives lim,_, oc E|o,(x)| =0. O

The following useful result is due to Follmer [10], and Nualart and Pardoux
([23], Lemma C.2).

LEMMA A.3. Let xi(t), 0<t<a,i=1,2, be two-continuous processes,
and {r,:0 =1ty <t <--- <t, =a} a family of partitions of [0,al, with
limy 00 |77, | = 0. For eachn andl =1, ..., n, let x; , denote x'(1;). Assume that

n

(A.5) S = =i )~ fo a' (s) ds

=1
in probability as n — oo, where {aij (t):0<t<a;i,j=1,2} are measurable
processes such that a.s.

(A.6) / la’ ()| ds < oo, i,j=1,2.
0

Let {Y(t):0 <t < a} be a continuous process, and {Y"(t):0 <t < a};°, be
measurable processes which converge a.s. to {Y (t)} as n — 0o, uniformly with
respectto t €0, al. Then

n . . . . a ..
AT D Y D (xg, — X )X, — X )~ /0 a’ (s)Y (s)ds
=1

in probability as n — oo, fori =1, 2.
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APPENDIX B

Simulating a double stochastic integral. The following scheme is adapted
from Kloeden and Platen ([17], page 202, and [18], page 82).
In view of Lemma 4.2, we can use the truncated sums

- J0.1,-b) = L (W ) B () — LW (af” — B (t)a})

P
+n2n(aﬁlb,{’b—bga,{’h), t>0,p>1
to simulate the double Stratonovich integral

t+b ps—b . .
(B.2) Ji,j(O,t;—b)zf}} /0 odWi(v) 0 dW/(s).

Consider the Milstein scheme (5.9). Given an error bound § = O(|7|?), we
choose an integer p > 1 such that

1
— <35 Amin{|sy;|:1 <i <k}
4

We define for all such integers p,
Jj?(tk + 51, F+ 5105 81,0), 51,0 <0,
B.3) 17 +s1,i,t 5105510 =) (W(t) — W) t—1o
2 2
By Lemma 4.2, the following modification of the Milstein scheme:

XT(t) = X" (tx) + h(te, Ma(X7)) (¢ — ) + gt T (X7)) (W (@) — W (k)

51, =0.

(B.4) +Z tk,l'h ™ (e +s1.0 1Pt + 51,05+ 51,05 51.0),

Iy <t < ltg+1,

has strong order of convergence 1 (cf. Theorem 5.2).
Suppose that we use the family of partitions: 7: —1=7; <--- <fgp=0<
- <t, =a, meshm = ||, to calculate the solution of the SDDE (1.6) (with
T = 1) by applying the Milstein scheme. There are some issues we need to consider
concerning simulating the family

={J(tk_1,tk;sl,i):k=1,...,n,i=1,...,k1}.

If ky # ky or iy # iy, by the It6 isometry, J (tx, —1, tx;; S1,i,) and J (tk,—1, tkys S1,i)
are independent. But the family S may not be independent. The reason is that they
come from the same Brownian motion. We can make § independent by choosing
appropriate mesh points so that # 4+ s1; € w, forallk > 0,1 <i < ky; that is,
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tr + s1,; 1s also a mesh point. In order to see this, set

(B.5) Vi = {(@n(ti_1), ba(ix_1)):n=0,1,...},

where a,(tx—1) and b, (tx—1) are defined by (4.6). Then for all 1 <i < ki,
1 <k <n, the set

(B.6) VieGs1.) = {(an " (tk—1), by " (tx-1)):n=0,1,...}

belongs to the family {Vi:k = 1,...,n}, where a, " (tx—1) and by " (tr_1)
are defined by (4.7). Indeed, similar to the approximation scheme of multiple
Stratonovich integrals ([17], (5.8.10) and (5.8.12), [18], (2.3.30) and (2.3.32)),
we have the following approximation scheme of {J? (tx—1, tx;s1,;):k=1,...,n,
i=1,...,k},p>1.

For each k =1,...,n, and h =1,..., p, with p > 1, we define p, and
independent N (0, 1) random variables & (s), wu,(s), $n(s), np(s), s € {to, ..., ty—1},
by

1
E() = —(W(rm|+5) — W(s),

7|
[ 2 [2
Cn(s) = | —hmap(s), nn(s) = [ —hmby(s),
|7 | |7
(B.7)
P : : i : Hp(s) : i an(s)
—— 55 > = 1(s),
1 )4
ao(s) = ——+/2 g En(s) = 2|/ 1| pp it p(s).

If tx—1 +51,; = 0, then

JP(te—1 + 51,05 te + 51,03 51,1)

1
= —|m|&(tk—1 + 51,)E(tk—1)

(B.8) 2
~3 7| [£(tk—1 + s1,0)a0(tk—1) — E(tx—1)ao(tr—1 +51,i) ]
) &
2— Z [&n(t—1 + 51,000 t—1) = Sn(te—Dnn k-1 + 51,0 ]-
i
REMARKS.

1. The space complexity of the Milstein scheme for an SDDE is O (ma/|m|) if we
only want to simulate the end point X (a) (or the end segment X,). The space
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complexity of the Milstein scheme for an m-dimensional SODE is O(ma) if
we only want to simulate the end point X (a). If we want to simulate the whole
path {X(¢):t € [0, a]}, then both schemes have the same space complexity
O(ma/|x]).

2. Roughly speaking, the time complexity of the Milstein scheme for a multidi-
mensional SDDE (m > 1) is K times the time complexity of the correspond-
ing scheme for an SODE, where K := k| + k» is the total number of delays.
If m = 1, we can directly simulate the double stochastic integral in the Milstein
scheme using (B.3).

. In view of (B.7) and (B.8), we do not need to simulate the joint law of
multivariate normal variables for multidimensional SDDEs and SODEs. If m
is not very large, simulating the joint law is not a prohibitive task by using
Cholesky’s decomposition.
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