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A Stochastic Calculus for Systems with Memory

Feng Yan ∗ Salah Mohammed † ‡

January 23, 2005

Abstract

For a given stochastic process X, its segment Xt at time t represents the “slice” of
each path of X over a fixed time-interval [t−r, t], where r is the length of the “memory”
of the process. Segment processes are important in the study of stochastic systems with
memory (stochastic functional differential equations, SFDEs). The main objective
of this paper is to study non-linear transforms of segment processes. Towards this
end, we construct a stochastic integral with respect to the Brownian segment process.
The difficulty in this construction is the fact that the stochastic integrator is infinite
dimensional and is not a (semi)martingale. We overcome this difficulty by employing
Malliavin (anticipating) calculus techniques. The segment integral is interpreted as a
Skorohod integral via a stochastic Fubini theorem. We then prove Itô’s formula for
the segment of a continuous Skorohod-type process and embed the segment calculus in
the theory of anticipating calculus. Applications of the Itô formula include the weak
infinitesimal generator for the solution segment of a stochastic system with memory,
the associated Feynman-Kac formula and the Black-Scholes PDE for stock dynamics
with memory.

1 Introduction

The segment process of a continuous-time stochastic process is an important ingredient

in the study and formulation of stochastic differential systems with memory ([13]). Such

systems are described by stochastic functional differential equations (SFDEs) of the form

X(t) =

{
x+

∫ t
0 G(s,Xs, X(s)) dW (s) +

∫ t
0 H(s,Xs, X(s)) ds, t ≥ 0

η(t), −r ≤ t < 0,
(1.1)

where η is an initial path in V := L2([−r, 0], Rm), x an initial vector in Rm and r ≥ 0 is

the length of the system memory. The solution {X(t) : −r ≤ t ≤ a} of the above SFDE is

an m-dimensional stochastic process. Its segment process {Xt : 0 ≤ t ≤ a} is defined by

Xt(s) := X(t+ s), t ≥ 0, s ∈ [−r, 0]. (1.2)
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Note that the process {Xt} can be viewed as a V−valued process. In this context it is

important to distinguish between the finite-dimensional Rm-valued process {X(t)} and the

infinite-dimensional segment process {Xt}, both of which appear in the right-hand side of

the SFDE (1.1).

To complete the formulation of the SFDE (1.1), suppose (Ω,F,P) is a probability space,

T = [0, a], a > 0 and J := [−r, 0]. Denote by || · ||V and 〈·, ·〉V the L2-norm and inner

product (respectively) on the Hilbert space V = L2(J,Rm). The SFDE (1.1) is driven by

d-dimensional standard Brownian motion {W (t) = (W 1(t),W 2(t), · · · ,W d(t)) : t ≥ 0} on

(Ω,F,P). The drift and diffusion coefficients

{
H : T × V ×Rm → Rm

G : T × V ×Rm → L(Rd, Rm)
(1.3)

are Lipschitz on bounded sets and satisfy linear growth conditions. Under these conditions,

the SFDE (1.1) has a unique strong solution (c.f. [13], pp. 226 – 228; [14] ). Qualitative

properties of solutions of stochastic functional differential equations (SFDEs) and stochastic

delay differential equations (SDDEs) have been studied by one of the authors in ([13], [14]).

An important aspect of the stochastic calculus of (1.1) is the study of non-linear trans-

forms f(Xt), t ≥ 0, of the segment Xt where f : V → R belongs to a large class of twice

Fréchet differentiable functionals on V . If one (formally) takes stochastic differentials of

the real-valued process {f(Xt)} with respect to t, one quickly sees the need for an Itô-type

formula which will necessarily involve stochastic segment integrals of the form

∫ a

0

〈Yt, dXt〉V (1.4)

where Yt is an L2(J,Rd)−valued process. The goal of this paper is to develop the above

stochastic segment integral and its calculus. In particular, we will establish Itô’s formula

for the segment process {Xt} where X is a general Skorohod-type process of the form:

X(t) =

{
η(0) +

∫ t
0 u(s) dW (s) +

∫ t
0 v(s) ds, t > 0

η(t), −r ≤ t ≤ 0.
(1.5)

with coefficients u : T×Ω → L(Rd;Rm) and v : T×Ω → Rm that may not be adapted to the

Brownian filtration (Ft)t≥0. A major difficulty in the construction of the integral (1.4) is the

fact that the infinite-dimensional segment process {Xt} is in general not a semimartingale.

However, we will overcome this difficulty by appealing to Malliavin calculus techniques.

One possible application of the Itô formula is to study the convergence rates of (strong

and weak) numerical schemes of stochastic delay equations. Other potential applications
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include developing new models in mathematical finance based upon SFDEs, and evaluating

path dependent financial, energy and weather derivatives.

The paper is organized as follows. First, we define the stochastic integral with respect

to the Brownian segment using the Skorohod integral (Sections 2 – 4). Secondly, in Sections

5-7, we study the weak derivatives of V -valued random variables and the L2 approximation

of the segment integral. In Section 8, we prove an Itô formula for processes of the form

{f(t,Xt, X(t))} where f : T × V × Rm → R is a sufficiently regular non-linear functional.

Finally, in Section 9, we study the weak infinitesimal generator of a stochastic functional

differential equation, establish the Feynman-Kac formula and derive the Black-Scholes PDE

for the pricing of past-dependent financial assets.

We now introduce some notation which will be used throughout this article. Suppose

E and F are two Banach spaces. Denote by Cb(E;F ) the space of all bounded functions

from E to F , which are uniformly continuous on bounded sets, and by C1
b (E;F ) the set

of all functions f ∈ Cb(E;F ) which are Fréchet differentiable, with Fréchet derivative f ′ ∈

Cb(V ;L(E;F )). Set W (t) := 0 if t < 0.

2 Difficulty in defining the Brownian segment integral.

Although we can define the stochastic integral with respect to an infinite dimensional mar-

tingale, ([4, 6, 20]), we can not apply this definition to the Brownian segment process because

it is not a L2(J ;Rd)−valued (or C(J ;Rd)-valued) martingale. As we shall show in Section

5, it is more difficult to define the segment integral for the C(J ;Rd)-valued case than for

the L2(J ;Rd)-valued case. This difficulty may be attributed to the fact that the Banach

space C(J ;Rd) is not smooth.

One of the mild conditions (Condition A) for the existence of McShane’s integral ([12],

p. 102, [5], p. 23) is the following:

Condition A: There exist constants K > 0, and δ > 0 such that if 0 ≤ s < t ≤ a and

t− s < δ, then almost everywhere

||Es(Wt −Ws)||V ≤ K(t− s), (2.1)

where V = L2(J ;Rd), Es(Wt −Ws) := E(Wt −Ws|Fs), and {Ft} is the filtration of the

Brownian segment {Wt}.

A V -valued martingale always satisfies Condition A. If {X(t)} is a sample-continuous

d-dimensional stochastic process adapted to a filtration {Ft}, then the C(J ;Rd)−valued
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segment process {Xt} is also adapted to {Ft} (c.f. [13], p. 30). By continuity of the

embedding I : C(J ;Rd) → L2(J ;Rd), it follows that {Xt} is also {Ft}-adapted as an

L2(J ;Rd)−valued process.

Proposition 2.1 Let {W (t) : t ≥ −r} denote d-dimensional Brownian motion. As an

L2(J ;Rd)-valued process, the Brownian segment process {Wt} satisfies Condition A for the

existence of McShane’s integral if and only if r = 0. In particular, {Wt} is an an L2(J ;Rd)-

valued martingale if and only if r = 0. Similar assertions hold if Wt is viewed as a C(J ;Rd)-

valued process.

Proof Let V = L2(J ;Rd), where J := [−r, 0] and r ≥ 0. Assume that {Wt,Ft} satisfies

Condition A as a V -valued process. Then there exist constants K > 0 and δ > 0 such that

if 0 ≤ s < t ≤ min(δ, r), then ||Es(Wt−Ws)||V ≤ K(t− s), a.s.. Now for any h ∈ [−r, s− t],

we have

Es(Wt −Ws)(h) = E(Wt −Ws|Fs)(h)

= E(W (t+ h) −W (s+ h)|Fs) = W (t+ h) −W (s+ h) a.s.

This holds because Wt : Ω → C(J,Rd) is Bochner integrable, and the Bochner integral

commutes with evaluations.

Now view {Wt} as an L2(J,Rd)-valued process. Using the above identity, we obtain

|K(t− s)|2 ≥ ||Es(Wt −Ws)||2V =

∫ 0

−r

|Es(W (t) −W (s)(h)|2 dh

≥
∫ s−t

−r

|W (t+ h) −W (s+ h)|2 dh

a.s.. Taking expectations in the above inequality, it follows that

K2(t− s)2 ≥
∫ s−t

−r

E|W (t+ h) −W (s+ h)|2 dh = d(t− s)[(s− t) + r] (2.2)

Dividing both sides of the above inequality by (t − s) and letting s → t− gives r = 0.

Conversely, suppose r = 0. Then J = {0} and L2(J ;Rd), {Wt} may be identified with

Rd, {W (t)} respectively. Since {W (t)} is a martingale, then so is {Wt}.

The second assertion of the proposition follows easily from the second.

The last assertion for the C(J ;Rd)-valued segment {Wt} follows from the above argu-

ment because the embedding I : C(J ;Rd) → L2(J ;Rd) is continuous.

In view of Proposition 2.1, it is not possible to define the stochastic integral (1.4) in

the classical Itô sense when the delay r is positive. However, we may formally rewrite the
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segment integral (1.4) as follows:

∫ a

0

〈Yt, dWt〉V =

∫ 0

−r

∫ a

0

Yt(s) dW (t+ s) ds =

∫ 0

−r

∫ a+s

s

Yt−s(s) dW (t) ds (2.3)

Note that for any fixed s ∈ [−r, 0), the Rd-valued process {Yt−s(s), t ∈ [0, a+ s]} may not

be (Ft)-adapted (even if {Yt} is). This suggests that we can overcome the difficulty by

using the Skorohod integral. Indeed, in Section 4, we define the above segment integral as a

Skorohod integral. To do this, we will need to impose appropriate generalized “smoothness”

requirements on the integrand. In the following section, we will give a brief introduction to

the basic concepts of anticipating stochastic calculus.

3 A Brief outline of anticipating calculus.

Anticipating stochastic calculus is used in the study of stochastic differential equations with

non-adapted initial values ([17], Section 3.3, and [19]). Anticipating stochastic calculus has

also been applied by Bell and Mohammed to establish the existence of smooth densities of

solutions to stochastic delay differential equations (SDDE’s) ([2]). In this paper, we shall

use anticipating stochastic calculus to define the segment integral and prove Itô’s formula

for segments of solutions of stochastic functional differential equations (SFDE’s) .

The following outline of anticipating calculus is adopted from Nualart and Pardoux ([16])

and Nualart ([17]). Cf. also ([18]), Malliavin ([11]) and Kuo ([10]).

We denote by D the Malliavin differentiation operator (c.f. [16], Section 2). Let F be

a random variable which belongs to the domain of D. Its derivative DF is a stochastic

process {DtF, t ∈ T}. The derivative DF may be considered as a random variable taking

values in the Hilbert space H = L2(T,Rd). More generally, the N -th derivative of F ,

DNF := Dj1
s1
. . . DjN

sN
F is an H⊗̂2N -valued random variable (c.f. Appendix A). For any

integer N ≥ 1 and any real number p > 1 we denote by DN,p the Banach space of all the

random variables having all the i-th derivatives belonging to Lp(Ω, H⊗̂2i) (1 ≤ i ≤ N), with

the norm || · ||N,p defined by

||F ||N,p = ||F ||p + || ||DNF ||(2)||p, (3.1)

where || · ||(2) denotes the Hilbert-Schmidt norm in H ⊗̂2N , i.e.,

||DNF ||2(2) =

d∑

j1,...,jN=1

∫

TN

E[(DNF )j1,...,jNs1,...,sN
]2 ds1 . . . dsN . (3.2)

(Cf. [16], Section 2.)
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For N = 1 and p = 2, the space D1,2 is a Hilbert space with the scalar product

〈F,G〉1,2 = E(FG) +E(〈DF,DG〉H ). (3.3)

We have the chain rule for differentiation ([17], p.29): Let φ : Rm → R be a continuously

differentiable function with bounded partial derivatives, and fix p > 1. Suppose that F =

(F 1, . . . , Fm) is a random vector whose components belong to the space D1,p. Then φ(F ) ∈

D1,p, and

D(φ(F )) =
n∑

i=1

∂φ

∂xi
(F )DF i.

For a more detailed study of the differential operator D, the reader may refer to Nualart

and Zakai ([18]), Malliavin ([11]) and Kuo ([10]).

We denote by δ the divergence operator, Domδ the domain of δ, and δ(u) the Skorohod

stochastic integral of the d-dimensional process u ∈ Domδ, i.e.,

δ(u) =

∫

T

u(t) · dW (t) =

d∑

i=1

ui(t) dW i(t). (3.4)

The divergence operator transforms square integrable processes into random variables. Ac-

tually δ is the adjoint operator of D (c.f. [10], Section 9.4 and Section 13.4, [3] Section

5.5.8). In Section 4, we will define the segment integral (1.4) as an adjoint of a differential

operator. Since adjoint operators of densely defined operators are always closed, the opera-

tor δ is closed. The Itô integral is a particular case of the Skorohod stochastic integral ([17],

section 1.3.2). The set Domδ is not easy to handle and it is more convenient to deal with

processes belonging to some subset of Domδ.

We denote by L1,2 the class of all processes u ∈ L2(T × Ω) such that u(t) ∈ D1,2 for

almost all t, and there exists a measurable version of the two-parameter process Dsu(t)

satisfying E
∫
T

∫
T
(Dsu(t))

2dsdt < ∞ ([16], Definition 3.3, [17], p. 38). It can be shown

that L1,2 is a Hilbert space with the norm

||u||21,2 = ||u||2L2(T×Ω) + ||Du||2L2(T 2×Ω), u ∈ L1,2. (3.5)

Note that L1,2 is isomorphic to L2(T ; D1,2). For every p > 1 and any positive integer k

we denote by Lk,p the space L2(T ; Dk,p). The operator δ is bounded from Lk,p into Dk−1,p,

for all k ≥ 1, and p ≥ 1 ([17], Proposition 1.5.4).

We denote by Lk,pd the set of d-dimensional processes whose components are in Lk,p. We

also denote by Dk,pd,loc (Lk,pd,loc) the set of random variables that are “locally” in Dk,p
d (Lk,pd )
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(c.f. [17], p. 45). If u ∈ Lk,pd,loc, the Skorohod integral
∫
T
u(t) ·dW (t) is also defined by using

equation (3.4).

We say that a processes u ∈ L1,2
d is in the class L1,2

d,C if there exists a neighborhood A of

the diagonal in [0, a]2 such that

(1) there exists a version of Du, so that the mappings t ↪→ Dsu(t) is continuous from [0, a]

into L2(Ω;L(Rd;Rd)), uniformly with respect to s, on A ∩ {s ≤ t};

(2) there exists a version of Du, so that the mappings t ↪→ Dsu(t) is continuous from [0, a]

into L2(Ω;L(Rd;Rd)), uniformly with respect to s, on A ∩ {s ≥ t};

(3) sup(s,t)∈AE(|Dsu(t)|2) <∞. ([16], Definition 7.2.)

The space L1,2
d,C,loc is the class of all processes that are locally in L1,2

d,C . For any u ∈ L1,2
d,C ,

the following limits

D±
t u(t) = lim

ε↓0

d∑

i=1

Di
tu
i(t± ε) (3.6)

exist in L2(Ω) uniformly in t. We set 5 := D+ +D−, i.e., (5u)(t) := D+
t u(t) +D−

t u(t).

Suppose that u = {u(t), 0 ≤ t ≤ a} is a Skorohod integrable process. In general, a

process of the form uI(s,t] may not be Skorohod integrable ([17], Exercise 3.2.1). Let us

denote by Lsd the set of all processes u such that uI[0,t] is Skorohod integrable for each

t ∈ [0, a]. Notice that the space L1,2
d is a subspace of Lsd. When u belongs to Lsd, we define

its indefinite Skorohod integral by

∫ t

0

u(s) · dW (s) := δ(uI[0,t]). (3.7)

4 Definition of the stochastic segment integral.

Recall that J = [−r, 0] and T = [0, a]. Assume V = L2(J ;Rm) and H = L2(T ;Rm).

Let H ⊕ V be the direct sum of H and V , H ⊗2 V be the tensor product of H and V

(under the ε− topology, c.f. [21], Section 8), and H⊗̂2V the completion of H ⊗2 V . Then

H⊕V ∼= L2([−r, a];Rm) and H⊗̂2V ∼= L2(J ×T ;Rm). In Appendix A, we state some basic

results on tensor product spaces.

We now extend the definition of Dk,p and the operator D to an infinite-dimensional

setting (c.f. [17], p. 61). For a Banach space G, we denote by S(G) the class of of all

smooth G-valued random variables of the form

Ψ =

n∑

i=1

Fiηi, Fi ∈ S, ηi ∈ G, (4.1)
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where S is the class of all smooth random variables (c.f. [16], section 2). We define

DkΨ :=

n∑

i=1

(DkFi) ⊗ ηi, k ≥ 1. (4.2)

For k ∈ N , p ≥ 1, we define Dk,p(G) to be the completion of S(G) with respect to the norm

||Ψ||k,p,G = [E||Ψ||pG +

k∑

j=1

E(||DjΨ||p
L2(T j)⊗̂G

)]
1

p . (4.3)

Note that D1,2(H) ∼= L1,2
d . Suppose x ∈ D1,2(L2(J ;R)) ∼= L2(J ; D1,2), then for almost

all s ∈ J , x(s) ∈ D1,2 and there is a measurable version of the two-parameter process

Dx := {Dtx(s) : t ∈ T, s ∈ J} such that Dx ∈ L2(Ω × T × J).

Now let us define the segment operator Γ : H ⊕ V → H⊗̂2V by

Γφ(t, s) := φ(t+ s), s ∈ J, t ∈ T, φ ∈ H ⊕ V. (4.4)

Denote Γtφ := φt, for t ∈ T and φ ∈ H ⊕ V , where φt(s) := φ(t+ s) for s ∈ J . Clearly Γ is

bounded linear. One may check that D and Γ commute on processes, i.e., if φ ∈ L1,2
d , then

DsΓtφ = ΓtDsφ. (4.5)

We denote by Γ∗ : H⊗̂2V → H ⊕ V the adjoint of Γ, i.e., for η ∈ H⊗̂2V and φ ∈ H ⊕ V ,

〈Γ∗η, φ〉H⊕V = 〈η,Γφ〉H⊗̂2V
. (4.6)

From (4.6) we can find the expression for Γ∗η. Actually, simple algebra yields

〈Γ∗η, φ〉H⊕V =

∫ a

−r

φ(t) ·
∫ 0

−r

η(t− s, s)I[t−a,t](s) ds dt. (4.7)

Therefore Γ∗η can be written as:

Γ∗η(t) =

∫ 0

−r

η(t− s, s)I[t−a,t](s) ds =

∫ a

0

η(s, t− s)I[t,t+r](s) ds. (4.8)

Denote by PH and PV the projections

{
PH : H ⊕ V → H
PV : H ⊕ V → V.

(4.9)

and define Γ∗
H := PH ◦ Γ∗ and Γ∗

V := PV ◦ Γ∗. It is easy to show that Γ(H ⊕ V ) is a closed

subspace of H⊗̂2V .

The operator Γ∗
H is a bridge connecting SFDE to the Skorohod integral. It plays an

important role in our definition of the segment integral. Γ∗
H and equation (4.5) allow us to

study segment processes using anticipating stochastic calculus.
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Definition 4.1 Suppose W = {W (t)} is a m-dimensional standard Brownian motion. De-

note by δ the divergence operator and Domδ its domain, for a two parameter process

X ∈ (Γ∗
H)−1(Domδ), the Skorohod segment integral of X with respect to the Brownian

segment {Wt} is defined by

∫ a

0

〈Xt, dWt〉V := δ(Γ∗
HX). (4.10)

For a V -valued stochastic processX = {Xt}, if the Stratonovich integral (c.f. [17] Definition

3.1.1) δs(Γ∗
H(X)) of Γ∗

H(X) exists, then we define the Stratonovich segment integral of X

with respect to the Brownian segment {Wt} as

∫ a

0

〈Xt, ◦dWt〉V := δs(Γ∗
H(X)). (4.11)

It is easy to see that D1,2(H⊗̂2V ) ⊂ (Γ∗
H)−1(Domδ). The norm ||·||1,2,V on D1,2(H⊗̂2V )

is defined by (4.3), i.e.,

||X ||1,2,V = ||X ||L2(Ω;H⊗̂2V ) + ||DX ||L2(Ω;H⊗̂2H⊗̂2V ) (4.12)

If we use D∗ to denote δ (as the adjoint of D), then D∗Γ∗
H = D∗PHΓ∗ = (ΓP ∗

HD)∗, and

the operator Λ := ΓP ∗
HD is a continuous differential operator from Dk,p to Dk−1,p(H⊗̂2V ).

The next result ([17] Exercise 3.2.8) is a stochastic Fubini Theorem.

Lemma 4.2 Consider a random field {ut(x) : t ∈ [0, a], x ∈ G}, where G is an open set in

Rm, such that u ∈ L2(Ω × [0, a] × G). Suppose that for each x ∈ Rm, u(x) ∈ Domδ and

E
∫
G
|δ(u(x))|2 dx) < ∞. Then the process {

∫
G
ut(x) dx : t ∈ [0, a]} is Skorohod integrable

and

δ(

∫

G

u.(x) dx) =

∫

G

δ(u.(x)) dx. (4.13)

5 L
2 approximation.

Recall T = [0, a], J = [−r, 0], C = C(J ;Rm), and V = L2(J ;Rm). In this section we shall

derive some useful results for approximating elements of the Hilbert space V . As we shall

see later, these approximation results are crucial for the approximation of segment integrals

and the proof of Itô’s formula for segment processes.

We denote a vector by a vector header (i.e., ~x), a matrix by a bold style letter (i.e., X),

and L(Rm;Rk) (or Rkm) the vector space of all k by m matrices. We skip the vector header

if η is a vector-valued function. If A is a matrix, we denote by aij its entry at the i-th row
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and j-th column and by ~ai its i-th row. We also write X as (xij)k×m. If η is a matrix-valued

function, we denote by ηij its entry at the i-th row and j-th column and by ηi its i-th row.

Let us adopt the ideas of “tame” function and “quasitame” function ([13] Definition 4.4.2)

to define two series of linear approximations:

Suppose Πk : −r ≤ s1 < · · · < sk ≤ 0 is a partition of [−r, 0], and ||Πk || := max2≤i≤k(si−

si−1). Denote by sk the k-tuple (s1, . . . , sk). If η : [−r, 0] → R is defined everywhere in

[−r, 0], we denote by Psk the projection associated with Πk:

Psk(η) := (η(s1), . . . , η(sk)). (5.1)

With abusing the notation sk, we also define the L2 projection Qsk for η ∈ L2(J ;R) as

Qsk(η) := (
1

s1 − s0

∫ s1

s0

η(s) ds, . . . ,
1

sk − sk−1

∫ sk

sk−1

η(s) ds). (5.2)

If η = (η1, . . . , ηm)′ ∈ L2(J ;Rm), then we define

Qsk(η) := (Qsk (η1), . . . , Qsk (ηm))′. (5.3)

Suppose X is an m by k matrix with entries xij . We define the continuous linear

embedding Ik : Rmk → L2(J ;Rm) associated with Π as the step function

Ik(X)(s) := (

k∑

i=1

x1iI(si−1 ,si](s), . . . ,

k∑

i=1

xmiI(si−1,si](s))
′. (5.4)

Thus we can define a linear map L2(J ;Rm) → L2(J ;Rm) by

η ↪→ Ik ◦Qsk(η).

Denote Ji = I(si−1,si] and ∆i = si − si−1. Similarly, if η ∈ L2(J2;R), we can define a

linear map L2(J2;R) → L2(J2;R) by

η ↪→ Ik2Qsk2 (η) :=

k∑

i,j=1

Ji ⊗ Jj
∆i∆j

∫ si

si−1

∫ sj

sj−1

η(u, v) dv du.

If η = (ηij)m×m ∈ L2(J2;L(Rm;Rm)), then we define

Ik2 ◦Qsk2 (η) = (Ik2 ◦Qsk2 (ηij))m×m. (5.5)

For each k ≥ 1, the operator Ak := Ik ◦Qsk has the kernel

ak(s, t) =

k∑

i=1

1

si − si−1
I(si−1 ,si](s)I(si−1 ,si](t). (5.6)

It is a (symmetric) operator of trace class and satisfying A2
k = Ak. The following approxi-

mation result plays an important role in this paper.
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Lemma 5.1 (1)If η ∈ V = L2(J ;Rm), then ||(Ik ◦Qsk)(η)||V ≤ ||η||V , and

lim
k→∞

||(Ik ◦Qsk)(η) − η||V = 0. (5.7)

(2)If η ∈ L2(J2;L(Rm;Rm)), then

||(Ik2 ◦Qsk2 )(η)||L2(J2;L(Rm;Rm)) ≤ ||η||L2(J2;L(Rm;Rm)), and

lim
k→∞

||(Ik2 ◦Qsk2 )(F ) − F ||L2(J2;L(Rm;Rm)) = 0. (5.8)

Proof Fix ε > 0. There exist a continuous function g : [−r, 0] → Rm such that

||η − g||2V < ε. By uniform continuity of g, there exists δ > 0 such that

sup{|g(x) − g(y)| : x, y ∈ [−r, 0], |x− y| ≤ δ} ≤
√
ε.

Now choose k0 sufficiently large so that |si − si−1| < δ for all k ≥ k0. Then

||(Ik ◦Qsk )(g) − g||2V =

∫ 0

−r

|
k∑

i=1

I(si−1,si](s)

si − si−1

∫ si

si−1

g(v) dv −
k∑

i=1

I(si−1 ,si](s)g(s)|2 ds

=

∫ 0

−r

|
k∑

i=1

I(si−1,si](s)

si − si−1

∫ si

si−1

g(v) − g(s) dv|2 ds

≤ rε, for all k ≥ k0.

Also for η,

||(Ik ◦Qsk)(η)||2V =

∫ 0

−r

|
k∑

i=1

I(si−1,si](s)

si − si−1

∫ si

si−1

η(v) dv|2 ds

≤
∫ 0

−r

k∑

i=1

I(si−1 ,si](s)

si − si−1

∫ si

si−1

|η(v)|2 dv ds

=

k∑

i=1

∫ si

si−1

|η(v)|2 dv = ||η||2V , for all k ≥ 1.

Therefore

||(Ik ◦Qsk)(η) − η||V ≤ ||(Ik ◦Qsk )(η − g)||V + ||(Ik ◦Qsk )(g) − g||V + ||g − η||V

≤ (
√
r + 2)

√
ε, for all k ≥ k0.

Assertion (2) of the lemma follows by a similar argument.

6 Weak differential rule for functionals of an infinite

dimensional random variable.

Bell and Mohammed ([2]) derived weak differential rule for stochastic delay differential

equations (with single delay) by using Malliavin calculus. In this section we shall prove
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more general results concerning the differential rule of D for functions of infinite-dimensional

random variables by using Malliavin calculus too. We shall apply the differential rule in

the derivation of Itô’s formula for segment processes later. Recall J = [−r, 0], T = [0, a],

V = L2(J ;Rm), H = L2(T ;Rm) and W = {W (t)} is a d-dimensional standard Brownian

motion.

For a differentiable function f(x, y), denote by f1 and f2 the partial derivatives of f

with respect to the first and second variable, respectively. Let f ′ = (f1, f2) and f ′′ be the

Hessian of f . Denote by V × Rm the product space of V = L2([−r, 0];Rm) and Rm, with

usual the addition and scalar product rules, i.e., if k ∈ R, ~x, ~y ∈ Rm and η, ψ ∈ V , then

(η, ~x) + (ψ, ~y) = (η + ψ, ~x+ ~y) and k(η, ~x) = (kη, k~x). V ×Rm is a Hilbert space endowed

with the inner product

〈(η, ~x), (ψ, ~y)〉V×Rm = 〈η, ψ〉V + ~x · ~y. (6.1)

Lemma 6.1 Suppose p ≥ 0, F,G ∈ D1,p(V ). Then 〈F,G〉V belongs to D1,p and for almost

all t ∈ T , Dt〈F,G〉V = 〈DtF,G〉V + 〈F,DtG〉V .

Proof Let S(V ) be the family of smooth V -valued random variables (c.f. ([17] P61)). First

let us assume F,G ∈ S(V ), i.e.,

{
F =

∑n
i=1 Fiηi, Fi ∈ S, ηi ∈ V,

G =
∑m

j=1 Gjψj , Gj ∈ S, ψj ∈ V.

Since Dt(FiGj) = (DtFi)Gj + Fi(DtGj),

Dt〈F,G〉V =

n∑

i=1

m∑

j=1

Dt(FiGj)〈ηi, ψj〉V

=

n∑

i=1

m∑

j=1

((DtFi)Gj + Fi(DtGj))〈ηi, ψj〉V

= 〈DtF,G〉V + 〈F,DtG〉V .

Now for any F,G ∈ D1,p(V ), there exist {F n}, {Gn} ⊂ S(V ) such that

{
limn→∞ ||Fn − F ||1,p,V = 0,
limn→∞ ||Gn −G||1,p,V = 0,

where the norm || · ||1,p,V is defined by (4.3). It is immediate that 〈F n, Gn〉V → 〈F,G〉V in

Lp(Ω) as n→ ∞. Since

lim
n→∞

||(〈DFn, Gn〉V + 〈Fn, DGn〉V ) − (〈DF,G〉V + 〈F,DG〉V )||L2(×T ) = 0,

in Lp(Ω), the result follows.
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Proposition 6.2 Suppose p ≥ 2, h ≥ 1, n ≥ 2, ψ ∈ Dn,p(V ), ~F = (F1, . . . , Fh)
′, Fi ∈ Dn,p,

i = 1, . . . , h and f ∈ Cnb (V ×Rh). Then f(ψ, ~F ) ∈ Dn,p, and for almost all t ∈ T ,

Dj1
s f(ψ, ~F ) = 〈f ′(ψ, ~F ), (Dj1

s ψ,D
j1
s
~F )〉V ×Rh , j1 = 1, . . . , d, and (6.2)

Dj1
t D

j2
s f(ψ, ~F ) = 〈f ′′(ψ, ~F )(Dj1

t ψ,D
j1
t
~F ), (Dj2

s ψ,D
j2
s
~F )〉V×Rh

+ 〈f ′(ψ, ~F ), (Dj1
t D

j2
s ψ,D

j1
t D

j2
s
~F )〉V×Rh , 1 ≤ j1, j2 ≤ d.

Proof For simplicity, we assume h = 1 and we will prove result only for the case n = 2.

The case n > 2 is similar. Suppose Πk : −r = s0 < s1 < · · · < sk = 0 is a family of

partitions of [−r, 0], with ||Πk || → 0 as k → ∞, Ik is the linear embedding and Qsk is the

projection defined in Section 5. Denote Ji := I(si−1,si] and ∆i := si − si−1, for i = 1, . . . , k.

We can write ψ = (ψ1, . . . , ψm)′, where ψj ∈ Dn,p(L2(J ;R)), 1 ≤ j ≤ m. Set ψk =

Ik ◦Qsk(ψ), and define fk : Rmk ×R → R by

fk(X, xk+1) := f(Ik(X), xk+1),

where X is an m by k matrix with entries xji, and xk+1 ∈ R. Then fk ∈ C2
b (R

mk+1), and

f(ψk, F ) = fk(Qsk (ψ), F ). If s ∈ [0, a], then

Dj2
s f(ψk, F ) = Dj2

s f
k(Qsk(ψ), F )

=
∑

j,i

1

∆i

∂fk

∂xji
(Qsk (ψ), F )〈Dj2

s ψj , Ji〉V +
∂fk

∂xk+1
(Qsk (ψ), F )Dj2

s F

= 〈f1(ψk , F ), Ik ◦Qsk (Dj2
s ψ)〉V + f2(ψ

k, F )Dj2
s F.

By Lemma 5.1,

Dj2
s f(ψk, F ) − 〈f ′(ψ, F ), (Dj2

s ψ,D
j2
s F )〉V×R → 0 (6.3)

as k → ∞, a.s. P ⊗ µ. Let M = sup{||f ′(η, x)|| : η ∈ V, x ∈ R}. By Lemma 5.1,

|Dj2
s f(ψk, F )| ≤M(||Dj2

s ψ||V + |Dj2
s F |), and (6.4)

|〈f ′(ψ, F ), (Dj2
s ψ,D

j2
s F )| ≤M(||Dj2

s ψ||V + |Dj2
s F |). (6.5)

By applying the Dominated Convergence Theorem, and by the fact ψ ∈ D2,p(V ) and F ∈

D2,p, we have

lim
k→∞

E(

∫ a

0

|Dj2
s f(ψk, F ) − 〈f ′(ψ, F ), (Dj2

s ψ,D
j2
s F )〉V×R|2 ds)

p

2 = 0. (6.6)
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Now let us consider the second part, by the chain rule of the Malliavin differential operator

D,

Dj1
t D

j2
s f(ψk, F )

= Dj1
t [

∑

j,i

1

∆i

∂fk

∂xji
(Qsk(ψ), F )〈Dj2

s ψj , Ji〉V ] +Dj1
t [

∂fk

∂xk+1
(Qsk(ψ), F )Dj2

s F ]

= 〈f ′′(ψk, F )(Ik ◦Qsk (Dj1
t ψ), Dj1

t F ), (Ik ◦Qsk (Dj2
s ψ), Dj2

s F )〉V×R

+ 〈Ik ◦Qsk (Dj1
t D

j2
s ψ), f1(ψ

k , F )〉V + f2(ψ
k, F )Dj1

t D
j2
s F.

Analogous to the argument showing the convergence of (6.6), we can show that

lim
k→∞

E(

∫ a

0

∫ a

0

|Dj1
t D

j2
s f(ψ, F ) − (〈f ′′(ψ, F )(Dj1

t ψ,D
j1
t F ), (Dj2

s ψ,D
j2
s F )〉V×R

+ 〈f ′(ψ, F ), (Dj1
t D

j2
s ψ,D

j1
t D

j2
s F )〉V×R)|2 ds dt) p

2 = 0.

Since f(ψk, F ) → f(ψ, F ) in Lp(Ω), {f(ψk, F )}∞k=1 has a subsequence which is a Cauchy

sequence in D2,p (we write this subsequence as {f(ψk, F )}∞k=1 itself). By the closeness of

the operator D, f(ψ, F ) ∈ D2,p and f(ψk, F ) → f(ψ, F ) in D2,p. Thus the proposition

follows.

As an application of Proposition 6.2, we can easily rewrite the SFDE (1.1) in Stratonovich

integral form instead of the Itô integral form by the relationship between the Stratonovich

and Skorohod integrals (c.f. [17] Definition 3.1.1 and Theorem 3.1.1). We skip the detail

because it is not in the scope of this paper.

By Lemma 6.1 and Proposition 6.2, if p ≥ 2, a V-valued process X = {Xt : 0 ≤ t ≤ a}

belongs to the space D1, p(H⊗̂2V ), then there exists a measurable two-parameter process

DX = {DsXt : t ∈ [0, a]}, such that

(1) E(
∫ a
0
||DXt||2H⊗̂2V

dt)
p

2 <∞,

(2) for all η ∈ V , the process 〈X, η〉V belongs to L1,p, and

(3) Di
s(〈Xt, η〉V ) = 〈Di

sXt, η〉V , for all 1 ≤ i ≤ d, η ∈ V , and almost all s, t ∈ [0, a].

Note 6.3 If X = {X(t) : 0 ≤ t ≤ a} ∈ L1,p
m and X(t) = 0 if t > a, then {Xt} ∈

D1,p(H⊗̂2V ).

Suppose {Y (t)} ∈ L1,p
d , f ∈ C1

b (T × V ;V ), and Xt = f(t, Yt), we shall show that

{Xt} ∈ D1,p(H⊗̂2V ). Denote by f2(t, η) the derivative of f(t, η) with respect to the second

variable η.

Set zk(t) := 〈f(t, Ik(Qsk(Yt))), Ik(Qsk (η))〉V and z(t) := 〈f(t, Yt), η〉V , where 0 ≤ t ≤ a,

and η ∈ V .
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Lemma 6.4 For each η ∈ V , {zk : k ≥ 1} converges to z in L1,p and

Di
sz(t) = 〈f2(t, Yt)(Di

sYt), η〉V ,

for all 1 ≤ i ≤ d and almost all s, t ∈ [0, a]. Furthermore, {f(t, Yt)} belongs to D1,p(H⊗̂2V )

and Di
sf(t, Yt) = f2(t, Yt)(D

i
sYt) for all 1 ≤ i ≤ d.

Proof Suppose n > k. By Lemma 5.1,

|zk(t) − zn(t)| ≤ |〈f(t, Ik(Qsk(Yt))) − f(t, In(Qsn(Yt))), Ik(Qsk (η))〉V |

+ |〈f(t, In(Qsn(Yt))), Ik(Qsk (η)) − In(Qsn(η))〉V |

≤ ||f(t, Ik(Qsk(Yt))) − f(t, In(Qsn(Yt)))||V ||η||V

+ sup
η∈V

||f(η)||V ||Ik(Qsk(η)) − In(Qsn(η))||V

→ 0 as k → ∞.

By the Bounded Convergence Theorem, (limk→∞ E(
∫ a
0
|zk(t) − zn(t)|2 dt)

p

2 = 0. Similarly

we can show that

lim
k→∞

E(

∫ a

0

|zk(t) − z(t)|2 dt) p

2 = 0.

By applying the chain rule we have

Di
s(zk(t)) = 〈f2(t, Ik(Qsk (Yt)))(Ik(D

i
s(Qsk(Yt))), Ik(Qsk (η)))〉

= 〈f2(t, Ik(Qsk (Yt)))(Ik(Qsk (Di
sYt))), Ik(Qsk(η)))〉

Analogous to the above argument, by using the Dominated Convergence Theorem, we can

show that

lim
k→∞

E(

∫ a

0

∫ a

0

|Di
s(zk(t) − zn(t))|2 ds dt)

p

2 = 0

lim
k→∞

E(

∫ a

0

∫ a

0

|Di
szk(t) − 〈f2(t, Yt)(Di

sYt), η〉V |2 ds dt)
p

2 = 0.

Thus ||zk − zn||p1,p → 0 as k → ∞. By Lemma 5.1, we conclude that ||zk − z||p1,p → 0 and

Di
sz(t) = 〈f2(t, Yt)(Di

sYt), η〉V for almost all s, t ∈ [0, a].

7 L
p approximation of the segment integral.

Using finite dimensional-valued sequences of variables to approximate infinite dimensional-

valued variables is a powerful technique when we go into infinite dimensional spaces. Suppose
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p ≥ 2, in this section we shall give some Lp approximations of the segment integral. As

we shall see in the following section, the approximation techniques and results derived in

this section help us reach the Itô formula for segment processes. As before, we assume

J = [−r, 0], T = [0, a], V = L2(J ;Rm) and H = L2(T ;Rm).

Suppose W = {W (t)} is a m-dimensional standard Brownian motion, u ∈ L1,2
m , −r ≤

α < 0, we can define the integral

∫ t

0

u(s+ α) · dW (s+ α) :=

∫ t+α

α

u(s) · dW (s) (7.1)

by change of variable or by using approximation scheme (c.f. [17] Section 3.1). We define

W (t) = 0 if t < 0.

If X ∈ D1,p(H⊗̂2V ), and {Πk : −r = s0 < · · · < sk = 0}∞k=1 is a sequence of partitions

of [−r, 0], we can use the Skorohod integrals

JΠk
(a) :=

∫ a

0

〈Qsk(Xt), ·dQsk (Wt)〉 (7.2)

to approximate the segment integral
∫ a
0
〈Xt, dWt〉V .

If v ∈ R, we define a Heaviside-type function Hv ∈ L2[−r, 0] by

Hv(s) =

{
1, v ≤ s ≤ 0
0, −r ≤ s < v.

(7.3)

If ψ = (ψ1, . . . , ψm) ∈ V = L2(J ;Rm) and η ∈ L2(J ;R), then we define

〈ψ, η〉V := (〈ψ1, η〉L2(J;R), . . . , 〈ψm, η〉L2(J;R)). (7.4)

By Lemma 4.2, we have

JΠk
(a) =

∫ a

0

〈Qsk (X̂
(k)
t )), Qsk (Ht−a)〉 · dW (t)

=

∫ a

0

〈Ik(Qsk(X̂
(k)
t )), Ik(Qsk(Ht−a))〉V · dW (t),

where

X̂
(k)
t (s) :=

k∑

i=1

I(si−1,si](s)

si − si−1

∫ si

si−1

Xt−s(v) dv, s ∈ [−r, 0]. (7.5)

If we can show that the sequence

{〈Ik(Qsk(X̂
(k)
t )), Ik(Qsk(Ht−a))〉V }∞k=1 (7.6)

converge to (Γ∗
HX)(t) under the norm of L1,p

m , then by boundedness of the operator δ :

L1,2
m → L2(Ω), the Skorohod integral JΠk

(a) converge in the space L2(Ω) to
∫ a
0
〈Xt, dWt〉V .
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In the following we assume Xt = 0 if t < 0 or t > a. We also define a rotation X̂ of X

by

X̂t(s) := Xt−s(s). (7.7)

We may think that the process X̂t is simply an element of L2(Ω× J ×T ;Rm). We can also

write
∫ 0

−r
Xt−s(s)I{t≤a+s} ds as 〈X̂t, Ht−a〉V , which is just (Γ∗

HX)(t), or Γ∗
H(X.)(t).

Lemma 7.1 Suppose Xt ∈ D1,p(H⊗̂2V ), and {Πk} is a sequence of partitions of [−r, 0],

with limk→∞ ||Πk|| = 0. Then E(
∫ a
0
||X̂(k)

t ||2V dt)
p

2 ≤ E(
∫ a
0
||Xt||2V dt)

p

2 , and

lim
k→∞

E(

∫ a

0

∫ 0

−r

|X̂(k)
t (s) − X̂t(s)|2 ds dt)

p

2 = 0. (7.8)

Proof First we show that the inequalities hold almost surely. Fix ω ∈ Ω and ε = ε(ω) > 0.

There exists a continuous function g : [0, a+ r] × [−r, 0] → Rm such that

∫ a+r

0

∫ 0

−r

|Xt(s, ω) − g(t, s)|2 ds dt < ε. (7.9)

Define

Jk(t, s, ω) :=

k∑

i=1

I(si−1,si](s)

si − si−1

∫ si

si−1

[Xt−s(v, ω) −Xt−v(v, ω)] dv. (7.10)

We can write Jk(t, s) as Jk(t, s, ω) = Jk1(ω) + Jk2 + Jk3(ω), where

Jk1(ω) =

k∑

i=1

I(si−1 ,si](s)

si − si−1

∫ si

si−1

[Xt−s(v, ω) − g(t− s, v)] dv,

Jk2 =

k∑

i=1

I(si−1 ,si](s)

si − si−1

∫ si

si−1

[g(t− s, v) − g(t− v, v)] dv,

Jk3(ω) =

k∑

i=1

I(si−1 ,si](s)

si − si−1

∫ si

si−1

[g(t− v, v) −Xt−v(v, ω)] dv.

Since g is uniformly continuous on [0, a+ r] × [−r, 0], there exist δ > 0, such that if t1, t2 ∈

[0, a+ r], s1, s2 ∈ [−r, 0],max{|t1 − t2|, |s1 − s2|} < δ, then |g(t1, s1)− g(t2, s2)| <
√
ε/ar. If

||Πk|| < δ, then

|Jk2| ≤
k∑

i=1

I(si−1,si](s)

si − si−1

∫ si

si−1

|g(t− s, v) − g(t− v, v)| dv

≤
k∑

i=1

I(si−1,si](s)

si − si−1

∫ si

si−1

√
ε

ar
dv =

√
ε

ar
.
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We also have

∫ a

0

∫ 0

−r

|Jk1(ω)|2 dv dt ≤
∫ a

0

k∑

i=1

∫ si

si−1

|Xt−s(v, ω) − g(t− s, v)|2 dv dt

=

k∑

i=1

∫ si

si−1

∫ a

0

|Xt−s(v, ω) − g(t− s, v)|2 dt dv

≤
k∑

i=1

∫ si

si−1

∫ a+r

0

|Xt(v, ω) − g(t, v)|2 dt dv

=

∫ 0

−r

∫ a+r

0

|Xt(v, ω) − g(t, v)|2 dt dv < ε.

Analogous to the above argument we have

∫ a

0

∫ 0

−r

|
k∑

i=1

I(si−1 ,si](s)

si − si−1

∫ si

si−1

Xt−s(v) dv|2 ds dt ≤
∫ a

0

∫ 0

−r

|Xt(s)|2 ds dt, (7.11)

which is equivalent to the inequality

E(

∫ a

0

||X̂(k)
t ||2V dt ≤ E

∫ a

0

||Xt||2V dt)
p

2 . (7.12)

Similarly, we can show that
∫ a
0

∫ 0

−r
|Jk3(ω)|2 ds dt < ε. Thus we have

lim
k→∞

∫ a

0

∫ 0

−r

|Jk(t, s)|2 ds dt = 0 a.s. (7.13)

For each t ∈ [0, a],
∫ 0

−rX
2
t−s(s) ds <∞ a.s. By Lemma 5.1, we have

lim
k→∞

∫ 0

−r

{
k∑

i=1

∫ si

si−1

Xt−s(s) ds
I(si−1,si](s)

si − si−1
−Xt−s(s)}2 ds = 0 a.s. (7.14)

By the Dominated Convergence Theorem,

lim
k→∞

∫ a

0

∫ 0

−r

{
k∑

i=1

∫ si

si−1

Xt−s(s) ds
I(si−1 ,si](s)

si − si−1
−Xt−s(s)}2 ds dt = 0. (7.15)

From (7.10), (7.13) and (7.15), it follows that

lim
k→∞

∫ a

0

∫ 0

−r

|
k∑

i=1

I(si−1,si](s)

si − si−1

∫ si

si−1

Xt−s(v) dv − X̂t(s)|2 ds dt = 0 (7.16)

a.s. -P. By (7.11) and the Dominated Convergence Theorem, (7.8) follows.

Let D = (D1, . . . , Dd)′ be the Malliavin differential operator associated with a d-

dimensional standard Brownian motion. Analogous to (7.5), we define a d×m-matrix-valued

three parameter random process by

D̂uX
(k)

t (s) :=

k∑

i=1

I(si−1,si](s)

si − si−1

∫ si

si−1

DuXt−s(v) dv. s ∈ [−r, 0] (7.17)
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Denote by DuX
j,(k)
t the j−th row vector of the d×m matrix-valued process DuX

(k)
t . We

can prove the convergence result of the derivative process of {Xt} in a similar way, i.e., for

each 1 ≤ j ≤ d,

E(

∫ a

0

∫ a

0

||D̂uX
j,(k)

t ||2V du dt ≤ E

∫ a

0

∫ a

0

||Dj
uXt||2V ds dt)

p

2 , (7.18)

lim
k→∞

E(

∫ a

0

∫ a

0

∫ 0

−r

|D̂uX
j,(k)

t (s) −Dj
uXt−s(s)|2 ds du dt)

p
2 = 0. (7.19)

Next we show that X̂t belongs to D1,p(H⊗̂2V ) and
∫ 0

−r
X̂t(s) ds is the limit of the

sequence defined by (7.6).

Lemma 7.2 For each k ≥ 1, X̂(k) ∈ D1,2(H⊗̂2V ), and the derivative process DuX̂
(k)
t is

equal to D̂uX
(k)

t .

Proof If η ∈ V , then

〈X̂(k)
t , η〉V =

k∑

i=1

1

si − si−1

∫ si

si−1

∫ si

si−1

Xt−s(v) · η(v) dv ds. (7.20)

For each 1 ≤ i ≤ k and −r ≤ s ≤ 0,

∫ si

si−1

Xt−s(v) dv = 〈Xt−s, I(si−1 ,si]〉V ∈ L1,p
m .

Thus 〈X̂(k)
t , η〉V ∈ L1,p

m . Since for each 1 ≤ j ≤ d,

Dj
u〈X̂

(k)
t , η〉V =

k∑

i=1

1

si − si−1

∫ si

si−1

η(v)〈Dj
uXt−v , I(si−1,si]〉V dv

= 〈D̂uX
j,(k)

t , η〉V .

By Inequality (7.18) we have

E(

∫ a

0

∫ a

0

||D̂uX
j,(k)

t ||2V du dt)
p

2 ≤ E(

∫ a

0

∫ a

0

||Dj
uXt||2V ds dt)

p

2 <∞. (7.21)

So X̂(k) ∈ D1,p(H⊗̂2V ), and DuX̂
(k)
t is equal to D̂uX

(k)

t .

Now we obtain the main results of this section.

Theorem 7.3 Under the same hypotheses as Lemma 7.1, X̂ = {X̂t} belongs to the space

D1,p(H⊗̂2V ), and for all η ∈ V and s, t ∈ [0, a],

∫ 0

−r

DuX̂t(s)η(s) ds =

∫ 0

−r

DuXt−s(s)η(s) ds and (7.22)

〈Ik(Qsk (X̂
(k)
t )), Ik(Qsk (Ht−a))〉V → Γ∗

H(X.)(t) (7.23)

as k → ∞ in L1,p
m .
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Proof By Lemma 7.1 – 7.2, X̂ = {X̂t} belongs to D1,p(H⊗̂2V ), and for all η ∈ V and

almost all s, t ∈ [0, a],
∫ a
0
DuX̂t(s)η(s) ds =

∫ a
0
DuXt−s(s)η(s) ds. Since

lim
k→∞

||〈X̂(k), ζ〉V − 〈X̂, ζ〉V ||L1,p
m

= 0, (7.24)

for all ζ ∈ L2(J ;R), (7.23) follows.

Since δ is a bounded linear operator form L1,2 into D0,2 ∼= L2(Ω), we have

Theorem 7.4 For any sequence of partitions {Πk},

lim
k→∞

E{JΠk
(a) −

∫ a

0

∫ 0

−r

Xt−s(s)I{t≤a+s}(s) ds dW (t)}2 = 0, (7.25)

where JΠk
(a) is defined by (7.5).

Proof From the fact that
∫ 0

−r
Xt−s(s)I{t≤a+s}(s) ds belongs to L1,2

m , the Skorohod integral

∫ a

0

∫ 0

−r

Xt−s(s)I{t≤a+s} ds · dW (t)

belongs to L2(Ω).

By Definition 4.1 and Theorem 7.3, the Skorohod segment integral
∫ t
0
〈Xv , dWv〉V can

also be defined in the following way:

∫ t

0

〈Xv , dWv〉V :=

∫ a

0

〈I[0,t](v)Xv , dWv〉V (7.26)

We can rewrite the right hand side of (7.26) as

∫ a

0

〈I[0,t](v)Xv , dWv〉V =

∫ a

0

∫ 0

−r

Xv−s(s)I{v−s≤t}I{v≤a+s} ds · dW (v)

=

∫ t

0

∫ 0

−r

Xv−s(s)I{v≤t+s} ds · dW (v).

Suppose Xt is a V−valued stochastic process, and U(t) is a m-dimensional process

defined by

U(t) =

∫ t

0

u(s) dW (s), (7.27)

where u : Ω × T → L(Rd;Rm). We define

∫ t

0

〈Xs, dUs〉V =

∫ t

0

[

∫ 0

−r

Xα−s(s)I{α≤t+s} dsu(α)] dW (α) (7.28)

if the Skorohod integral of the right hand side of (7.28) exists. Since

||Ik(Qsk(Ht−a)) − Ik(Psk(Ht−a))||V ≤ ||Πk||,
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we can also use the Skorohod integrals

JΠk
(a) :=

∫ a

0

〈Qsk(Xt), dPsk (Wt)〉 (7.29)

to approximate the segment integral
∫ a
0 〈Xt, dWt〉V . In this case, we can use the sequence

{〈Ik(Qsk(Xt)), Ik(Psk(Ht−a))〉V }∞k=1 (7.30)

to approximate Γ∗
H(X.)(t), for t ∈ [0, a].

Theorem 7.5 Under the same hypotheses as Lemma 7.1, we have

lim
k→∞

〈Ik(Qsk (Xt)), Ik(Psk(Ht−a))〉V = Γ∗
H(X.)(t) (7.31)

in L1,p
m .

Remark 7.6 Suppose Xt is a C[−r, 0]−valued stochastic process. Analogous to (7.5), we

may want to use the sequence

JΠk
(a) =

∫ a

0

(Ik(Psk (Xt)))(Ik(Psk(Ht−a))) · dW (t)

to approximate the integral
∫ a
0 Xt dWt. Since almost surely, {Ik(Psk(Ht−a))} is not a

Cauchy sequence in C[−r, 0], and Ik(Psk (Xt)) converge to Xt in (C[−r, 0])∗), the sequence

{(Ik(Psk (Xt)))(Ik(Psk (Ht−a)))}

is not a Cauchy sequence (even in Probability). Thus it is difficult to show that JΠk
(a) has

a limit.

This is also the difficulty if we want to use the above approximation scheme to define

the integral
∫ a
0
Xt dWt for a (C[−r, 0])∗ -valued process Xt with respect to the Brownian

segment.

8 Itô’s formula for the segment process

Now we are ready to derive Itô’s Formula for the segment associated with the “semimartin-

gale” process defined by (1.5). Throughout this section, we assume

{Πk : −r = s0 < s1 < · · · < sk = 0}∞k=1

is a family of partitions of [−r, 0], with ||Πk|| → 0 as k → ∞, Ik is the linear embedding and

Qsk is the projection defined in Section 5. Denote J = [−r, 0], T = [0, a], V = L2(J ;Rm),

H = L2(T ;Rm), Ji := I(si−1,si] and ∆i := si − si−1, for i = 1, . . . , k.
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For an m× k matrix X, we denote by ~xi its i-th column vector and by xij its entry at

the i-th row and j-th column. Suppose f = f(t, η, ~xm+1) ∈ C2
b (T × V × Rm). For each

k ≥ 1 we define a C2(T ×Rmk ×Rm;R) function by

fk(t,X, ~xm+1) := f(t, Ik(X), ~xm+1) = f(t, Ik(~x
1), . . . , Ik(~x

m), ~xm+1), (8.1)

where ~xm+1 = (xm+1,1, . . . , xm+1,k) ∈ Rk. Suppose η = (η1, . . . , ηm), where ηj ∈ L2(J ;R),

1 ≤ j ≤ m. We write f(t, η, ~xm+1) as f(t, η1, . . . , ηm, ~x
m+1). In this case, denote by

fj(t, η1, . . . , ηm, ~x
m+1) the derivative of f(t, η1, . . . , ηm, ~x

m+1) with respect to the variable ηj

(or to the vector ~xm+1, if j = m+1) and ∂f
∂t

the derivative of f with respect to t. Similarly, we

denote by fj1j2 the derivative of fj1 with respect to the variable ηj2 (or ~xm+1, if j2 = m+1).

We will use similar notations for the derivatives of f k(t,X, ~xm+1) = fk(t, ~x1, . . . , ~xm, ~xm+1).

Suppose Y and Z are m× k matrices. If 1 ≤ j ≤ m, then

fkj (t,X, ~xm+1) · ~yj = 〈fj(t, Ik(X), ~xm+1), Ik(~y
j)〉L2(J;R). (8.2)

If 1 ≤ j1, j2 ≤ m, then

fkj1j2(t,X, ~x
m+1)(~zj2 ⊗ ~yj1) = fj1j2(t, Ik(X), ~xm+1)(Ik(~y

j1) ⊗ Ik(~z
j2)). (8.3)

Suppose H1 and H2 are two Hilbert spaces. Denote by H1⊗̂2H2 and H1⊗̂1H2 the com-

pletions of H1 ⊗H2 under the ε−topology ([21] Section 43) and the π−topology (projective

topology) ([21] Section 43) on H1 ⊗H2 respectively.

Suppose A ∈ L2(J ;Rm) ⊗1 L
2(J ;Rm) and Φ ∈ (L2(J ;Rm) ⊗1 L

2(J ;Rm))∗. We can

“decompose” A and Φ into m × m matrices (still denoted by A and Φ) with entries in

L2(J ;R) ⊗1 L
2(J ;R) and (L2(J ;R) ⊗1 L

2(J ;R))∗ respectively. We then formally write

Φ(A) as Tr(Φ ·A), where Tr is the trace of a square matrix.

For a twice differentiable function f = f(t, η, ~x) ∈ C2(T × V × Rm), the derivative

∂2f
∂η2 (t, η, ~x) is in general an element of (V ⊗̂1V )∗. Due to this, two alternative conditions

must be satisfied in order to prove the Itô formula:

Hypotheses 8.A The map (t, η, ~x) ↪→ ∂2f
∂η2 (t, η, ~x) is uniformly continuous from T×V ×Rm

into (V ⊗̂2V )∗ on bounded sets.

Hypotheses 8.B The map (t, η, ~x) ↪→ ∂2f
∂η2 (t, η, ~x) is uniformly continuous from T×V ×Rm

into (V ⊗̂1V )∗ on bounded sets, and the linear operator on H = L2([0, a];Rm) with kernel

u(s)DsX(s) is of trace class almost surely, where u is the coefficient process in (1.5).

If the m× d matrix-valued coefficient process u in the SDE (1.5) is deterministic, then
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u(s)DsX(t) is of trace class. One example of a function satisfying Hypotheses 8.A is f(t, η) =

h(t, 〈ζ, η〉V ), where ζ ∈ V and h ∈ C2(T ×R).

Note that V ⊗̂1V ( V ⊗̂2V . Although Hypotheses 8.B allows a larger class of functions

f ∈ C2
b (T × V ×Rm), it requires an additional condition on the solution process {X(t)}.

When we are saying “a function a(s, t) is of trace class”, we mean that the operator

associated with the kernel a(s, t) is of trace class.

Lemma 8.1 If u is an m × d matrix-valued process with row vectors u1, . . . , um, where

ui ∈ L2(T ;Rd), and v ∈ L1,2
m , then the kernel u(s)

∫ t
0 Dsv(r) dr (as an m×m matrix-valued

function) is of trace class. (We skip the words “almost surely”).

Proof We write v = (v1, . . . , vm)′. For all 1 ≤ i ≤ m and 1 ≤ j ≤ d, the functions

uij(s)Dj
sv
i(r) and I{0≤r≤t} belong to L2(T 2) (with the notation D = (D1, . . . , Dd)′), and

uij(s)

∫ t

0

Dj
svi(r) dr =

∫ a

0

uij(s)Dj
svi(r)I{0≤r≤t} dr, (8.4)

it follows that the operator with kernel uij(s)
∫ t
0
Dj
svi(r) dr is the composite of two Hilbert-

Schmidt operators with kernel uij(s)Dj
svi(r) and I{0≤r≤t}, and it must be of trace class.

One can refer to Elworthy ([5] Section V.1), Metivier and Pellaumail ([15] Chapter 2), Da

Prato and Zabczyk ([4] Section 9.45) for Itô’s formula for infinite-dimensional semimartin-

gales. Because the quadratic variation (operator-valued) process of a martingale process is

always of trace class, the Itô formula is valid for any twice differentiable function f ∈ C2(B)

satisfying the condition that f , f ′ and f ′′ are uniformly continuous on bounded sets of B,

where B is a Banach space with a “smooth” norm.

Lemma 8.2 Suppose F (s, t) is a function in L2(T 2;L(Rm;Rm)), which is the kernel of a

trace class operator F on H = L2(T ;Rm). Define F (s, t) = 0 if s < 0 or t < 0, and define

Fs(α, β) := F (s+ α, s+ β), where s ∈ T, α, β ∈ J = [−r, 0]. (8.5)

Then for each s ∈ T , fs is the kernel of a trace class operator on V = L2(J ;Rm).

Proof Since F can be written as BA, where A an B are two Hilbert-Schimidt operators on

H ([8] Problem 572). Assume (matrix-valued functions) A(s, t) and B(s, t) are the kernels

of A and B, then F can be written as

F (s, t) =

∫ a

0

A(s, u) · B(u, t) du.
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It follows that

Fs(α, β) =

∫ a

0

A(s+ α, u) ·B(u, s+ β) du.

For each s ∈ T , As(α, u) := A(s+ α, u) and Bs(u, β) := B(u, s+ β) are kernels of Hilbert-

Schmidt operators As : V → H and Bs : H → V , respectively. Let F s be the linear operator

on V with kernel Fs, then F s = BsAs, which is of trace class.

Now we are ready to prove Itô’s formula for f(t,Xt).

Theorem 8.3 Suppose X(t) is a continuous stochastic process defined by (1.5), where u has

row vectors u1, . . . , um, ui ∈ L2,4
d,loc, v ∈ L1,4

m,loc, and η : J → Rm is a function of bounded

variation, Assume f = f(t, η) ∈ C1
b (T × V ) has bounded continuous second order partial

derivative with respect to η (i.e., ∂2f
∂η2 ∈ Cb(T × V )) and Hypotheses 8.A, then we have

f(t,Xt) − f(0, X0) =

∫ t

0

∂f

∂s
(s,Xs) ds+

∫ t

0

〈∂f
∂η

(s,Xs), dXs〉V

+

∫ t

0

∂2f

∂η2
(s,Xs)(Θs) ds,

where Θs(α, β) = 1
2 ((uΛ)sXs(α, β) + (uΛ)sXs(β, α)), and (uΛ)sXs : Ω × J2 → L(Rm;Rm)

is the m×m matrix-valued process defined by

(uΛ)sXs(α, β) = I{0≤s+α∧β}u(s+ α)Ds+αX(s+ β). (8.6)

Note that the right hand side of (8.6) is equal to

I{0≤s+α∧β}u(s+ α)[u′(s+ α)I{0≤s+α≤s+β} +

∫ s+β

0

Ds+αu(r) dW (r) +

∫ s+β

0

Ds+αv(r) dr].

Proof For simplicity, we assume η is absolutely continuous and define v(s) := η′(s) and

u(s) = 0 for s ∈ J . We will identify a linear operator with its kernel (if it has a kernel) in

the proof. We also write the m× d matrix u as (uij)m×d.

By localization technique (c.f. [17] P 45), we can assume f , f ′ and f ′′ are uniformly

continuous on T×V , uj ∈ L2,4
d , and v ∈ L1,4

m . Suppose Πk : −r = s0 < s1 < · · · < sk = 0 is a

family of partitions of [−r, 0], with ||Πk|| → 0 as k → ∞, Ji := I(si−1,si] and ∆i := si−si−1,

for i = 1, . . . , k. Write X(t) = (X1(t), . . . , Xm(t))′.

If 1 ≤ j ≤ m, then 〈Xj
t , Ji〉 =

∫ si

si−1

Xj(t+ s) ds =
∫ t+si

t+si−1

Xj(s) ds. It follows that

d

dt
〈Xj

t , Ji〉 = Xj(t+ si) −Xj(t+ si−1)

d

dt
Ik ◦Qsk(Xj

t ) =

k∑

i=1

1

∆i

Ji(X
j(t+ si) −Xj(t+ si−1)).
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Denote by 〈·, ·〉 the inner product of the Hilbert space L2(J ;R), uj the j-th row vector of

u, and vj the j-th entry of the vector v. Let

Û j(t) =

∫ t

0

uj(s) · dW (s), and V̂ j(t) =

{
η(0) +

∫ t
0
vj(s) ds, t > 0

η(t), −r ≤ t ≤ 0,
(8.7)

Û = (Û1, . . . , Ûm)′ and V̂ = (V̂ 1, . . . , V̂ m)′. Applying the chain rule to the function f(t, Ik ◦

Qsk(Xt)), we have

f(t, Ik ◦Qsk(Xt)) − f(0, Ik ◦Qsk(η)) −
∫ t

0

∂f

∂s
(s, Ik ◦Qsk(Xs)) ds

=

k∑

i=1

m∑

j=1

∫ t

0

1

∆i

〈fj(s, Ik ◦Qsk (Xs)), Ji〉(Xj(s+ si) −Xj(s+ si−1)) ds

=
∑

i,j

∫ t

0

1

∆i

〈fj(s, Ik ◦Qsk(Xs)), Ji〉(Û j(s+ si) − Û j(s+ si−1)) ds

+
∑

i,j

∫ t

0

1

∆i

〈fj(s, Ik ◦Qsk(Xs)), Ji〉(V̂ j(s+ si) − V̂ j(s+ si−1)) ds

= ψ1 + ψ2.

By Lemma 5.1 and the continuity of f ′,

ψ2 =
∑

i,j

∫ t

0

1

∆i

〈fj(s, Ik ◦Qsk(Xs)), Ji〉
∫ si

si−1

vjs(r) dr ds

=

∫ t

0

〈∂f
∂η

(s, Ik ◦Qsk(Xs)), Ik ◦Qsk(vs))〉V ds

→
∫ t

0

〈∂f
∂η

(s,Xs), vs〉V ds =

∫ t

0

〈∂f
∂η

(s,Xs), dV̂s〉V .

By the formula for the Skorohod integral of a process multiplied by a random variable ([16]

Theorem 3.2),

ψ1 =
∑

i,j

∫ t

0

1

∆i

∫ s+si

s+si−1

〈fj(s, Ik ◦Qsk(Xs)), Ji〉uj(r) dW (r) ds

+
∑

i,j

∫ t

0

1

∆i

∫ s+si

s+si−1

uj(r) ·Dr〈fj(s, Ik ◦Qsk(Xs)), Ji〉 dr ds

= ψ11 + ψ12.

By the stochastic Fubini Theorem (Lemma 4.2),

ψ11 =
∑

i,j

∫ t

0

1

∆i

∫ t

0

〈fj(s, Ik ◦Qsk (Xs)), Ji〉I(si−1,si](α− s)uj(α) ds dW (α). (8.8)

Let g1(α) = (g1
1(α), . . . , gm1 (α)), α ∈ T = [0, a], where

gj1(α) :=

k∑

i=1

1

∆i

∫ t

0

〈fj(s, Ik ◦Qsk(Xs)), Ji〉I(si−1,si](α− s) ds. (8.9)
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We will show that

g1(α)u(α) → Γ∗
H(
∂f

∂η
(·, X.))(α)u(α) (8.10)

in L1,2
d as k → ∞, where Γ∗

H is defined by (4.6), and

Γ∗
H(
∂f

∂η
(·, X.))(t) =

∫ 0

−r

∂f

∂η
(t− β,Xt−β)(β)I[t−a,t](β) dβ, t ∈ [0, a]. (8.11)

Then by the continuity of δ, we have

ψ11 →
∫ t

0

Γ∗
H(
∂f

∂η
(·, X.))(α)u(α) dW (α) =

∫ t

0

〈∂f
∂η

(s,Xs), dUs〉V . (8.12)

Set g2(α) = (g1
2(α), . . . , gm2 (α)), α ∈ T = [0, a], where

gj2(α) :=
k∑

i=1

1

∆i

∫ t

0

〈fj(s,Xs), Ji〉I(si−1,si](α− s) ds. (8.13)

First we will show that g1(α)−g2(α) → 0 in L1,4
m as k → ∞. By Definition (5.4) and Lemma

5.1,

E(

∫ a

0

|gj1(α) − gj2(α)|2 dα)2

≤ t2E(

k∑

i=1

∫ a

0

∫ t

0

(
1

∆i

〈fj(s, Ik ◦Qsk (Xs)) − fj(s,Xs), Ji〉I(si−1 ,si](α− s))2 ds dα)2

= t2E(
k∑

i=1

∫ t

0

1

∆i

〈fj(s, Ik ◦Qsk(Xs)) − fj(s,Xs), Ji〉2 ds)2

= t2E(

∫ t

0

〈Ik ◦Qsk(fj(s, Ik ◦Qsk(Xs)) − fj(s,Xs)),

fj(s, Ik ◦Qsk (Xs)) − fj(s,Xs)〉 ds)2

≤ t2E(

∫ t

0

||fj(s, Ik ◦Qsk (Xs)) − fj(s,Xs)||2 ds)2 → 0 as k → ∞.

Similarly,

E(

∫ a

0

∫ a

0

|Di
u(g

j
1(α) − gj2(α))|2 dα du)2

≤ t2E(

∫ a

0

∫ t

0

||Di
u(fj(s, Ik ◦Qsk(Xs)) − fj(s,Xs))||2 ds du)2

= t2E(

m∑

j′=1

∫ a

0

∫ t

0

||fjj′ (s, Ik ◦Qsk(Xs))(Ik ◦Qsk (Di
uX

j′

s ))

− fjj′ (s,Xs)(D
i
uX

j′

s )||2 ds du)2 → 0 as k → ∞.

Thus g1 − g2 → 0 in L1,4
d as k → ∞. We can rewrite gj2 as

gj2(α) =

k∑

i=1

1

∆i

∫ 0

−r

〈fj(α− β,Xα−β), Ji〉I(si−1 ,si](β)Hα−t(β) dβ, (8.14)
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where Hv(s) is the Heaviside-type function defined by (7.3).

By Theorem 7.5,

g2 → Γ∗
H(
∂f

∂η
(·, X.)) in L1,4

m as k → ∞. (8.15)

Since for all 1 ≤ j ≤ m, uj ∈ L2,4
d , By Holder’s Inequality, it follows that

g2(t)u(t) → Γ∗
H(f2(·, X.))(t)u(t) in L1,2

d as k → ∞. (8.16)

Now let us consider ψ12. Set Θs(α, β) := 1
2 ((uΛ)sXs(α, β) + (uΛ)sXs(β, α)), where

(uΛ)sXs(α, β) is the m×m matrix-valued process defined by

(uΛ)sXs(α, β) := u(s+ α)Ds+αX(s+ β) = u(s+ α)[u′(s+ α)I{0≤s+α≤s+β}

+

∫ s+β

0

Ds+αu(r) dW (r) +

∫ s+β

0

Ds+αv(r) dr].

Write Θs = (Θij
s )m×m. Applying Lemma 6.1 and Proposition 6.2, we have

ψ12 =

d∑

j=1

k∑

i1,i2=1

m∑

j1,j2=1

[

∫ t

0

1

∆i1∆i2

fj1j2(s, Ik ◦Qsk (Xs))(Ji1 ⊗ Ji2)

×
∫ si1

si1−1

∫ si2

si2−1

Dj
s+αX

j2(s+ β)uj1j(s+ α) dα dβ , ds].

By the commutativity of the operators D and δ ([16] Proposition 3.4),

Dj
s+αX

j2(s+ β) = uj2j(s+ α)I{0≤s+α≤s+β}

+

∫ s+β

0

Dj
s+αu

j2(r) dW (r) +

∫ s+β

0

Dj
s+αv

j2(r) dr.

Denote by Tr(A) the trace of a square matrix and Eij the m×m matrix whose entries are

0 except the entry at position (i, j) is 1. Since ∂2f
∂η2 (s, η) is symmetric for all η ∈ V , applying

Lemma 5.1 (under Hypotheses 8.A), we have

ψ12 =
m∑

j1,j2=1

∫ t

0

fj1j2(s, Ik ◦Qsk(Xs))(Ik2 ◦Qsk2 (Θj1j2
s )) ds

=
m∑

j1,j2=1

∫ t

0

fj1j2(s, Ik ◦Qsk(Xs))(Ik2 ◦Qsk2 (Tr(ΘsEj2j1))) ds

=

∫ t

0

∂2f

∂η2
(s,Xs)(Ik2 ◦Qsk2 (Θs)) ds

+

∫ t

0

(
∂2f

∂η2
(s, Ik ◦Qsk(Xs)) −

∂2f

∂η2
(s,Xs))(Ik2 ◦Qsk2 (Θs)) ds

→
∫ t

0

∂2f

∂η2
(s,Xs)(Θs) ds a.s. as k → ∞.

Corollary 8.4 Theorem 8.3 still holds if Hypotheses 8.A is replaced by Hypotheses 8.B.
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Proof

We only need to re-compute the term ψ12 in the proof of Theorem 8.3. By Lemma

8.2, for each s, (uΛ)sXs belongs to V ⊗̂1V almost surely. We can easily finish the proof by

applying Lemma A.3 (in Appendix A) under Hypotheses 8.B.

Note 8.5 When X is brownian motion, the left hand side of equation (8.6) has a simple

form:

(uΛ)sXs(α, β) = I{0≤s+α}(α)I{0≤s+β}(β).

We can easily see that it is of trace class.

Next we shall extend Itô’s formula to functions of the form f(t,Xt, X(t)) and use it to

study the weak infinitesimal generator of SFDE’s and derive the Feynman-Kac formula in

the next section.

Theorem 8.6 Suppose f = f(t, η, ~x) ∈ C1
b (T × V × Rm) has bounded continuous second

order partial derivative with respect to (η, ~x) (i.e., ∂2f
∂(η,~x)2 ∈ Cb(T × V )), under the same

hypotheses as Theorem 8.3 (or Corollary 8.4), we have

f(t,Xt, X(t)) − f(0, X0, X(0))

=

∫ t

0

∂f

∂s
(s,Xs, X(s)) ds+

∫ t

0

〈∂f
∂η

(s,Xs, X(s)), dXs〉V

+

∫ t

0

∂f

∂~x
(s,Xs, X(s)) dX(s) +

∫ t

0

∂2f

∂η2
(s,Xs, X(s))(Θs) ds

+

∫ t

0

∂2f

∂η∂~x
(s,Xs, X(s))[(uΛ)sX(s)] ds+

∫ t

0

∂2f

∂~x∂η
(s,Xs, X(s))[u(s)DsXs] ds

+
1

2

d∑

i=1

∫ t

0

∂2f

∂~x2
(s,Xs, X(s))[5i

+X)(s) ⊗ u·i(s)] ds,

where Θs is defined in the statement of Theorem 8.3, u·i is the i−th column vector of the

m× d matrix u,

(5i
+X)(s) = lim

ε↓0
(Di

tX(t+ ε) +Di
tX(t− ε)), 1 ≤ i ≤ d, (in L2(Ω;Rm)), (8.17)

(uΛ)sX(s) : Ω × J → L(Rm;Rm) and u(s)DsXs : Ω × J → L(Rm;Rm) are m×m matrix-

valued processes defined by

{
(uΛ)sX(s)(α) := u(s+ α)Ds+αX(s)I{s+α≥0}

u(s)DsXs(α) := u(s)DsX(s+ α)I{s+α≥0}.
(8.18)

Proof We will use the same notations as in the proof of Theorem 8.3. For simplicity, we

assume m = d = 1, η is absolutely continuous and define v(s) := η′(s) and u(s) = 0 for

s ∈ J . We will identify a linear operator with its kernel (if it has a kernel) in the proof.
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By localization technique (c.f. [17] P 45), we can assume f , f ′ and f ′′ are uniformly

continuous on T × V , u ∈ L2,4 and v ∈ L1,4. Define Vi(s) := 1
∆i

〈X(t), Ji〉V . Since

d

dt
〈Xt, Ji〉V = X(t+ si) −X(t+ si−1), (8.19)

applying the multi-dimensional Itô formula due to Nualart and Pardoux ([16] Theorem 6.4)

to derive the chain rule for fk(t, Qsk (Xt), X(t)), we have

fk(t, Qsk(Xt), X(t)) − fk(0, Qsk (X0), X(0)) −
∫ t

0

∂fk

∂s
(s, Ik ◦Qsk (Xs), X(s)) ds

=

k∑

i=1

∫ t

0

∂fk

∂xi
(s,Qsk(Xs), X(s)) dVi(s) +

∫ t

0

∂fk

∂xk+1
(s,Qsk(Xs), X(s))u(s) dW (s)

+
1

2

∫ t

0

∂2fk

∂x2
i

(s,Qsk(Xs), X(s))(5+X)(s)u(s) ds

+

∫ t

0

k∑

i=1

∂2fk

∂xk+1∂xi
(s,Qsk(Xs), X(s))DsVi(s)u(s) ds

=

∫ t

0

k∑

i=1

1

∆i

〈f1(s, Ik ◦Qsk(Xs), X(s)), Ji〉V (X(s+ si) −X(s+ si−1)) ds

+

∫ t

0

f2(s, Ik ◦Qsk(Xs), X(s))u(s) dW (s)

+
1

2

∫ t

0

f22(s, Ik ◦Qsk (Xs), X(s))(5+X)(s)u(s) ds

+

∫ t

0

k∑

i=1

1

∆i

〈f21(s, Ik ◦Qsk(Xs), X(s)), Ji〉V 〈DsXs, Ji〉V ds

= I1(k) + I2(k) + I3(k) + I4(k)

It is easy to see that

lim
k→∞

I3(k) =
1

2

∫ t

0

f22(s,Xs, X(s))(5+X)(s)u(s) ds a.s. (8.20)

Similar argument as the proof of the convergence result (8.15) shows that

lim
k→∞

f2(s, Ik ◦Qsk(Xs), X(s)) = f2(s,Xs, X(s)) (8.21)

in L1,4. Thus

{
limk→∞ f2(s, Ik ◦Qsk(Xs), X(s))u(s) = f2(s,Xs, X(s))u(s) in L1,2,

limk→∞ I2(k) =
∫ t
0 f2(s,Xs, X(s))u(s) dW (s) in L2(Ω)

(8.22)

by continuity of the operator δ : L1,2 → L2(Ω). Since

I4(k) =

∫ t

0

〈Ik ◦Qsk (f21(s, Ik ◦Qsk(Xs), X(s))), DsXs〉V u(s) ds, (8.23)
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it follows that

lim
k→∞

I4(k) =

∫ t

0

〈f21(s,Xs, X(s)), DsXs〉V u(s) ds. (8.24)

Now let us consider I1(k), since

I1(k) =

∫ t

0

k∑

i=1

1

∆i

〈f1(s, Ik ◦Qsk (Xs), X(s)), Ji〉V
∫ s+si

s+si−1

u(r) dW (r) ds

+

∫ t

0

k∑

i=1

1

∆i

〈f1(s, Ik ◦Qsk (Xs), X(s)), Ji〉V
∫ s+si

s+si−1

v(r) dr ds

= I11(k) + I12(k).

it follows that

I12(k) =

∫ t

0

〈Ik ◦Qsk (f1(s, Ik ◦Qsk(Xs), X(s))), vs〉V ds

→
∫ t

0

〈f1(s,Xs, X(s)), vs〉V ds =

∫ t

0

〈f1(s,Xs, X(s)), dVs〉V a.s.

as k → ∞. By the formula for the Skorohod integral of a process multiplied by a random

variable ([16] Theorem 3.2),

I11(k) =

∫ t

0

k∑

i=1

1

∆i

∫ s+si

s+si−1

〈f1(s, Ik ◦Qsk(Xs), X(s)), Ji〉V u(r) dW (r) ds

+

∫ t

0

k∑

i=1

1

∆i

∫ s+si

s+si−1

Dr〈f1(s, Ik ◦Qsk (Xs), X(s)), Ji〉V u(r) dr ds

= I111(k) + I112(k).

Analogous to the argument showing (8.12), we can show that

lim
k→∞

I111(k) =

∫ t

0

∫ t

0

〈f1(s,Xs, X(s)), dUs〉V (8.25)

in L2(Ω). By Proposition 6.2, we have

I112(k) =

∫ t

0

k∑

i,j=1

1

∆i∆j

〈f11(s, Ik ◦Qsk (Xs), X(s))Ji, Jj〉V

×
∫ si

si−1

∫ sj

sj−1

Ds+βX(s+ α)u(s+ β) dα dβ ds

+

∫ t

0

k∑

i=1

1

∆i

〈f12(s, Ik ◦Qsk (Xs), X(s)), Ji〉V
∫ si

si−1

Ds+βX(s)u(s+ β) dβ ds

= I1121(k) + I1122(k).

Analogous to the argument deriving the term ψ12 in the proof of Theorem 8.3, we can show

that

lim
k→∞

I1121(k) =

∫ t

0

f11(s,Xs, X(s))(Θs) ds. (8.26)
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Finally, we have

I1122(k) =

∫ t

0

〈Ik ◦Qsk (f12(s, Ik ◦Qsk(Xs), X(s))), (uΛ)sX(s)〉V ds

→
∫ t

0

〈f12(s,Xs, X(s)), (uΛ)sX(s)〉V ds a.s.

as k → ∞. The Itô formula follows.

As an application of Corollary 8.4, let us look at a simple example.

Example 8.7 f(η) = ||η||2V , {W (t)} is the standard Brownian motion, by (5.6), we have

||Wt||2V = 2

∫ t

0

〈Ws, dWs〉V +

∫ t

0

f ′′(Ws)(Θs) ds.

Since f ′′(η)(ζ1, ζ2) = 2〈ζ1, ζ2〉V , and

Θs(α, β) = 1
2 (I{α+s≥0}I{α≤β} + I{β+s≥0}I{β≤α})

= 1
2I{α∧β≥−s} = 1

2I{α≥−s}I{β≥−s},

it follows that

||Wt||2V = 2
∫ t
0

∫ 0

−rW (v)I{v≤t+s} ds dW (v) +
∫ t
0

∫ 0

−r I{α≥−s} dα ds

= 2
∫ 0

−r

∫ t+s
0 W (v) dW (v) ds +

∫ t
0 s ∧ r ds.

Since

∫ t

0

s ∧ r ds =

{∫ t
0 s ds, t ≤ r∫ t
0
s ds+

∫ t
r
r ds, t > r,

(8.27)

One may check it agrees with the formula

2

∫ t

0

W (s) dW (s) = W 2(t) − t.

9 The weak infinitesimal generator, the Feynman-Kac

formula, and the Black-Scholes PDE for SFDEs

As an application of Itô’s formula for segment processes, we shall study the weak infinitesimal

generator of SFDE’s and derive the Feynman-Kac formula in this section. Suppose J =

[−r, 0], T = [0, a], V = L2(J ;Rm), H = L2(T ;Rm) and {W (t) : t ≥ 0} is a d-dimensional

standard Brownian motion, we denote by W i(t) the ith component of W (t). Denote by

ej = (0, . . . , 1j , . . . , 0), then {e1, . . . , ed} is a basis of Rd. For (η, ~x) ∈ V ×Rm, let

η̂x(t) :=

{
~x, t ∈ [0, a]

η(t), t ∈ [−r, 0).
(9.1)
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Then for each s ∈ J, t ∈ T ,

η̂xt (s) = η̂x(t+ s) =

{
~x, t+ s ≥ 0

η(t+ s), t+ s < 0.
(9.2)

Denote by {St : t ∈ [0, a]} the weakly continuous contraction semigroup of the shift

operators defined on Cb(V ×Rm) (c.f. [1] and [13] Chapter 4) by

St(φ)(η, ~x) := φ(η̂xt , ~x) for φ ∈ Cb(V ×Rm).

Denote by C0
b the set of all φ ∈ Cb(V × Rm) such that Stφ is strongly continuous, S the

weak infinitesimal generator of St, and D(S) ⊂ C0
b the domain of S.

If f ∈ C2(V ×Rm), denote by f1 the Fréchet derivative with respect to the first variable,

f2 the derivative with respect to the second variable, and f22 the derivative of f2 with

respect to the second variable. Assume

{
G : V ×Rm → L(Rd;Rm)

H : V ×Rm → Rm

satisfying Lipshitz and linear growth condition. Let us consider a class of autonomous

stochastic functional differential equations (SFDE’s) of type (c.f. [1], [13] P 226)

X(t) =

{
~x+

∫ t
0 G(Xs, X(s)) dW (s) +

∫ t
0 H(Xs, X(s)) ds, t ≥ 0

η(t), −r ≤ t < 0,
(9.3)

where η ∈ V and ~x ∈ Rm. We will write H = (H1, . . . , Hm) and G = (G1, . . . , Gm), where

Gi = (Gi1, . . . , Gid).

Under linear growth and Lipschitz condition the SFDE (9.3) has a strong unique solu-

tion(c.f. [13], pp. 226 – 228, [1] Chapter 2).

There is a weakly continuous contraction semigroup {Pt : Ptψ(η, ζ) := Eψ(Xt, X(t))}

associated with the solution ([1], section 3.3). The semigroup {Pt : t ≥ 0} is strongly

continuous if and only if the delay r is zero (cf. [13], for the case of the state space C(J,Rd).)

Denote by A the weak infinitesimal generator of {Pt} (c.f. [1] Chapter 4) and by D(A)

its domain. The class of quasitame function is dense in the domain of A. The action of A

on quasitame function is well studied (c.f. [13] Section 4.4, [1] Section 5.2).

Remarks 9.1 Let us consider the SFDE (9.3), suppose H ∈ C1
b (V × Rm;Rm) and Gi ∈

C2
b (V × Rm;Rd), then one may check that Gi(Xt, X(t)) belong to L2,4

d and H(Xt, X(t))

belong to L1,4
d respectively.
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Remarks 9.2 Suppose we consider the SFDE (9.3). Theorem 8.3 and 8.6 hold for all initial

values η ∈ C([−r, 0]) if the derivative ∂f
∂η

(t, η, ~x) of f(t, η, ~x) belongs to C1([−r, 0]) for all

(t, η, ~x) ∈ T × V ×Rm.

Proof Suppose ψ ∈ C([−r, 0]), ∂f
∂ψ

(s, ψ, ψ(0)) belongs to C1([−r, 0]) and η ∈ C([−r, 0]) is

absolute continuous. By the change of integration formula,

∫ 0

−r

∂f

∂ψ
(s, ψ, ψ(0))(α)η′(α) dα

=
∂f

∂ψ
(s, ψ, ψ(0))(0)η(0) − ∂f

∂ψ
(s, ψ, ψ(−r))(−r)η(−r)

−
∫ 0

−r

∂2f

∂α∂ψ
(s, ψ, ψ(0))(α)η(α) dα.

Now for any η ∈ C([−r, 0]), let ηn be a sequence of absolute continuous functions that

converge to η in C([−r, 0]). We can define the integral

∫ 0

−r

∂f

∂ψ
(s, ψ, ψ(0))(α) dη(α)

as the limit of

∂f

∂ψ
(s, ψ, ψ(0))(0)ηn(0) − ∂f

∂ψ
(s, ψ, ψ(−r))(−r)ηn(−r)

−
∫ 0

−r

∂2f

∂α∂ψ
(s, ψ, ψ(0))(α)ηn(α) dα.

Let Xn(t) be the solution of the SFDE (9.3) with initial value ηn. We can see Theorem 8.3

and 8.6 hold by letting n→ ∞.

We now derive the generator A associated with the SFDE (9.3). Then we can express the

operator S (hence A) as sum of differential operators by applying Itô’s formula (Theorem

8.6),

just as the ordinary stochastic differential equation case.

Lemma 9.3 Suppose f ∈ C2
b (V ×Rm) belongs to the domain of A, Gi ∈ C2

b (V × Rm;Rd)

and H ∈ C1
b (V × Rm;Rm). Assume η ∈ V , ~x ∈ Rm, and {X(t)} is the solution of SFDE

(9.3). Let {ej : j = 1, . . . , d} be a normalized basis of Rd. Then for all 0 ≤ t < a,

Af(Xt, X(t)) = Sf(Xt, X(t)) + f2(Xt, X(t))H(Xt, X(t))

+
1

2

d∑

j=1

f22(Xt, X(t))[(G(Xt, X(t))ej) ⊗ (G(Xt, X(t))ej)].

Proof First we assume that η is absolutely continuous and η(0) = x. Set

u(t) =

{
G(Xt, X(t)), t ≥ 0

0, −r ≤ t < 0,
and v(t) =

{
H(Xt, X(t)), t ≥ 0

η′(t), −r ≤ t < 0.
(9.4)
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Fix 0 ≤ t0 < a. Let φ := Xt0 and φ̂xt be defined by (9.2).

E(f(Xt, X(t)) − f(Xt0 , X(t0))|Xt0 , X(t0))

= E(f(φ̂xt0 , X(t0)) − f(Xt0 , X(t0))|Xt0 , X(t0))

+ E(f(φ̂xt0 , X(t)) − f(φ̂xt0 , X(t0))|Xt0 , X(t0))

+ E(f(Xt, X(t)) − f(φ̂xt0 , X(t))|Xt0 , X(t0))

= E1 +E2 +E3.

By the definition of S, E1/(t− t0) converges to Sf(Xt0 , X(t0)) as t→ t0. By classical Itô’s

formula, as t→ t0, E2/(t− t0) converges to

f2(Xt0 , X(t0))H(Xt0 , X(t0))

+
1

2

d∑

j=1

f22(Xt0 , X(t0))[(G(Xt0 , X(t0))ej) ⊗ (G(Xt0 , X(t0))ej)].

By Taylor’s formula,

f(Xt, X(t)) − f(φ̂xt0 , X(t)) = f1(φ̂xt0 , X(t))(Xt − φ̂xt0 ) +R(t0, t),

where

R(t0, t) =

∫ 1

0

(1 − α)f11(φ̂xt0 + α(Xt − φ̂xt0))(Xt − φ̂xt0 , Xt − φ̂xt0) du.

Thus E3/(t − t0) converges to 0 as t → t0. We proved the lemma for the case the initial

function η is absolutely continuous and the initial value ~x is η(0).

For any (η, ~x) ∈ V × Rm, there exists a sequence of absolutely continuous functions

{ηn} ⊂ V such that

lim
n→∞

||ηn − η||V = 0.

Define a sequence of linear approximation of (η, ~x) by

η̄n(s) =

{
ηn(s), −r ≤ s ≤ − 1

n

~x+ ns(~x− ηn(s)), − 1
n
< s ≤ 0.

(9.5)

Then η̄n is absolutely continuous and

lim
n→∞

||(η̄n, ηn(0)) − (η, ~x)||V×Rm = 0.

Let Xn be the solution of SFDE (9.3) with initial function ηn and initial value ηn(0). By

above argument, the lemma holds for each n, i.e.,

Af(Xn
t , X

n(t)) = Sf(Xn
t , X

n(t)) + f2(X
n
t , X

n(t))H(Xn
t , X

n(t))

+
1

2

d∑

j=1

f22(X
n
t , X

n(t))[(G(Xn
t , X

n(t))ej) ⊗ (G(Xn
t , X

n(t))ej)].
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The proof is completed by letting n→ ∞.

We can extend the definition of A and S to f ∈ C2
b (T × V ×Rm). For t ∈ T , let

f t(η, ~x) := f(t, η, ~x). We define Af(t, η, ~x) := Af t(η, ~x) and Sf(t, η, ~x) := Sf t(η, ~x).

We can also prove the lemma by applying Itô’s formula (Theorem 8.6) [22].

By Itô’s formula (Theorem 8.6) and Lemma 9.3 we can express the operator S (hence A)

as sum of differential operators. We can also extend Itô’s formula for SFDE for any initial

value η ∈ V . First we need to define the integral

∫ 0

−r

f1(η, ~x)(α) dη(α),

where η ∈ V , f ∈ C1(V × Rm), f1 is the derivative of f with respect to the first variable.

It turns out the above integral is the same as Sf(η, ~x). To see this, we first assume η is

absolute continuous and ~x = η(0).

Sf(η, η(0)) = lim
t→0

(f(η̂xt , ~x) − f(η, ~x))/t

= lim
t→0

∫ 0

−r

f1(η̃, η(0))
η̂xt (α) − η(α)

t
dα

=

∫ 0

−r

f1(η, η(0))η′(α) dα =

∫ 0

−r

f1(η, η(0)) dη(α),

Let ηn be defined by (9.5). Then

Sf(η, ~x) = lim
n→∞

Sf(ηn, ηn(0)).

We define

< f1(η, ~x), dη >V =

∫ 0

−r

f1(η, ~x)(α) dη(α) := Sf(η, ~x). (9.6)

Since Sf is continuous, by (9.6), the following result holds:

lim
φ→η

< f1(φ, ~x), dφ >V =< f1(η, ~x), dη >V . (9.7)

Corollary 9.4 Suppose X(t) is the solution of the SFDE (9.3), and u(t) is defined by (9.4).

Under the same assumption as Theorem 8.6, if 0 ≤ s ≤ a,

Sf(s,Xs, X(s)) = 〈∂f
∂η

(s,Xs, X(s)), dXs〉V

+
∂2f

∂η2
(s,Xs, X(s))(Θs) +

∂2f

∂η∂~x
(s,Xs, X(s))[(uΛ)sX(s)],

where Θs and (uΛ)sX(s) are defined in the statements of Theorem 8.3 and Theorem 8.6,

respectively, and 〈 ∂f
∂η

(s,Xs, X(s)), dXs〉V is defined by (9.6).
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Proof Let

q(t) :=

∫ t

0

〈∂f
∂η

(s,Xs, X(s)), dXs〉V . (9.8)

By Itô’s formula (Theorem 8.6) and Lemma 9.3, and the factX(t) is adaptive andDsX(s) =

0 a.s., we only need to verify that for all t1 < t2,

lim
t2↓t1

E(
q(t2) − q(t1)

t2 − t1
|Ft1) = 〈∂f

∂η
(t1, Xt1 , X(t1)), dXt1〉V . (9.9)

By the stochastic Fubini Theorem (Lemma 4.2) and the definition of segment integral,

q(t2) − q(t1) =

∫ 0

−r

∫ t2

t1

∂f

∂η
(s,Xs, X(s))(α) dX(s+ α) dα

=

∫ 0

−r

∫ t2

t1

∂f

∂η
(s,Xs, X(s))(α)I{s+α≤t1} dX(s+ α) dα

+

∫ 0

−r

∫ t2

t1

∂f

∂η
(s,Xs, X(s))(α)I{s+α>t1} dX(s+ α) dα

= J1 + J2.

We can further decompose J2:

J2 =

∫ 0

−r

∫ t2

t1

∂f

∂η
(s,Xs, X(s))(α)I{s+α>t1}v(s+ α) ds dα

+

∫ 0

−r

∫ t2

t1

∂f

∂η
(s,Xs, X(s))(α)I{s+α>t1}u(s+ α) dW (s+ α) dα

= J21 + J22.

Let us consider the SFDE

Y (t) =

{
~x+

∫ t
t1
G(Ys, Y (s)) dB(s) +

∫ t
t1
H(Ys, Y (s)) ds, t ≥ t1

X(t), −r ≤ t < t1,
(9.10)

where the the Brownian motion B vanishes on [−r, t1]. Hence 〈∂f
∂η

(t1, Xt1 , X(t1)), dXt1〉V
can be defined by (9.6). We can see that

lim
t2↓t1

E(
J1

t2 − t1
|Ft1) = 〈∂f

∂η
(t1, Xt1 , X(t1)), dXt1〉V , (9.11)

lim
t2↓t1

E(
J21

t2 − t1
|Ft1) = 0, (9.12)

and E(J22|Ft1) = 0.

Note that if Sδn
f(t, η, ~x) → S(f)(t, η, ~x) as n → ∞ uniformly for η ∈ V and ~x ∈ Rm,

where δn = t/n. Then we can prove the Itô formula expressed using S (or A) directly ([22]).

Next we shall derive the Feynman-Kac formula for SFDE’s.
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Theorem 9.5 (The Feynman-Kac formula) Suppose g is a function defined on V ×Rm. If

a function f ∈ C2
b (T × V ×Rm) satisfies the partial functional differential equation:

−∂f
∂t

(t, η, ~x) = Sf(t, η, ~x) +
∂f

∂~x
(t, η, ~x)G(η, ~x)

+
1

2

d∑

j=1

∂2f

∂~x2
(t, η, ~x))[(G(η, ~x)ej) ⊗ (G(η, ~x)ej)],

with final value f(a, η, ~x) = g(η, ~x), then

f(t, η, ~x) = E(g(Xa, X(a))|Xt = η,X(t) = ~x) ∀0 ≤ t ≤ a. (9.13)

The reverse is also true if we assume g ∈ C2(V ×Rm).

Proof Without loss of generality we assume m = 1. If g ∈ C2(V ×Rm), then f(t, ·, ·) ∈

C2(V ×Rm) for all t and f(·, η, ~x) ∈ C1(T ) for all (η, ~x). By Itô’s formula (8.17)

f(t,Xt, X(t)) − f(t0, Xt0 , X(t0))

=

∫ t

t0

∂f

∂s
(s,Xs, X(s)) ds+

∫ t

t0

〈∂f
∂η

(s,Xs, X(s)), dXs〉V

+

∫ t

t0

∂f

∂~x
(s,Xs, X(s)) dX(s) +

∫ t

t0

∂2f

∂η2
(s,Xs, X(s))(Θs) ds

+

∫ t

t0

∂2f

∂η∂~x
(s,Xs, X(s))[(uΛ)sX(s)] ds+

∫ t

t0

∂2f

∂~x∂η
(s,Xs, X(s))[u(s)DsXs] ds

+
1

2

d∑

i=1

∫ t

t0

∂2f

∂~x2
(s,Xs, X(s))[5i

+X)(s) ⊗ u·i(s)] ds,

By the property of Itô integral,

E(

∫ t

t0

∂f

∂~x
(s,Xs, X(s))u(s) dW (s)|Xt0 = η,X(t0) = ~x) = 0.

Suppose equation (9.13) is true. If 0 ≤ t < t2 ≤ a, by the Markov property of the segment

process [14],

E(f(t2, Xt2 , X(t2)) − f(t,Xt, X(t))|Xt, X(t))

= E[E(g(Xa, X(a))|Xt2 , X(t2)) −E(g(Xa, X(a))|Xt, X(t))|Xt, X(t))]

= E[E(g(Xa, X(a))|Ft2) −E(g(Xa, X(a))|Ft)|Ft] = 0.

By Corollary 9.4, for (η, x) ∈ V ×R, the Feynman-Kac PDE holds.

On the other hand, we need to show that f satisfies the PDE implies

f(t, η, ~x) = E(g(Xa, X(a))|Xt = η,X(t) = ~x) ∀0 ≤ t ≤ a.
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Fix 0 ≤ t0 < a. Define for all t0 ≤ t ≤ a

q(t) := E(f(t,Xt, X(t))|Ft0). (9.14)

We shall show that q(t) is a constant a.s. on Ft0 . If t0 ≤ t1 < t2 ≤ a,

q(t2) − q(t1) = E[E(f(t2, Xt2 , X(t2)) − f(t1, Xt1 , X(t1))|Ft1)|Ft0 ]. (9.15)

Let J1, J21 and J22 be defined in the proof of Corrolary (9.4). Then E(J22|Ft1) = 0. It is

easy to see that the following limits hold:

lim
t2↓t1

E(
J1

t2 − t1
|Ft1) = 〈∂f

∂η
(t1, Xt1 , X(t1)), dXt1〉V , (9.16)

lim
t2↓t1

E(
J21

t2 − t1
|Ft1) = 0, (9.17)

Thus the right derivative of q

q′+(t1) = lim
t2↓t1

q(t2) − q(t1)

t2 − t1
= 0 a.s. on Ft0 . (9.18)

Thus the function q is continuous and has continuous right derivatives. By a well-known

lemma ([23], P 239), q is differentiable and hence a constant. We conclude that

q(t0) = q(a) = E(f(a,Xa, X(a))|Ft0) = E(g(Xa, X(a))|Ft0) (9.19)

and complete the proof of the Feynman-Kac equation.

Note 9.6 It is unclear whether we can assume a weaker condition on the boundary function

g than the condition g ∈ C2(V × Rm) in Theorem 9.5. Unlike the finite dimensional case,

it is hard to describe a ”smooth” density function in an infinite dimensional space V since

we can not define a Lebesgue measure on V .

The functional PDE in Theorem 9.5 (the Feynman-Kac formula) can be solved numer-

ically using forward finite difference scheme. On the other hand, it can be solved using

Monte Carlo simulation (c.f. [7, 22]).

Because the Feynman-Kac equation is derived from a dynamic system with memory

driven by finite dimensional Brownian motions, the variation of η is governed by the forward

shift operator S. For example, suppose we try to solve the Feynman-Kac functional PDE

using finite difference scheme, the variation of the infinite dimensional variable η is ”finite-

dimensional” instead of ”infinite-dimensional”, as defined by equation (9.2). This behavior

is different than that of evolutionary equations.
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As an application of the Feynman-Kac formula, we shall derive the functional Black-

Scholes PDE under the SFDE setting. Suppose there is an European option on a portfolio of

m assets whose prices movement follow the SFDE (9.3). The pay-off function is g(Xa, X(a))

when the option expires at t = a, where g ∈ C2(V × Rm). Note that this option is path

dependent if the function g is non-singular on the first variable. For simplicity, we assume

interest rate is zero. The value of the option at time t is f(t, η, ~x) = E(g(Xa, X(a))|Xt =

η,X(t) = ~x). From the Feynman-Kac formula, f(t, η, ~x) satisfies the functional Black-

Scholes PDE

−∂f
∂t

(t, η, ~x) = Sf(t, η, ~x) +
∂f

∂~x
(t, η, ~x)G(η, ~x)

+
1

2

d∑

j=1

∂2f

∂~x2
(t, η, ~x))[(G(η, ~x)ej) ⊗ (G(η, ~x)ej)],

with final value f(a, η, ~x) = g(η, ~x).

This paper was inspired by the works of Mohammed ([13]), Nualart ([17]), Nualart and

Pardoux ([16]), in stochastic functional differential equations and anticipating stochastic

calculus.

Appendix A. Tensor products of Hilbert spaces.

Let H1 and H2 be two Hilbert spaces. We first consider the algebraic tensor product

space of all formal finite sums represented by

z =

n∑

i=1

(xi ⊗ yi), xi ∈ H1, yi ∈ H2. (9.20)

We endow this space with the inner product

〈
n1∑

i=1

(xi ⊗ yi),

n2∑

j=1

(sj ⊗ tj)〉 =

n1∑

i=1

n2∑

j=1

〈xi, sj〉〈yi, tj〉. (9.21)

The indices n1 and n2 may be taken to be same without loss of generality by adding zero

entries. Note that the inner product is independent of the tensor representation. We denote

this inner product space by H1 ⊗2 H2, and the completion of this space by H1⊗̂2H2 under

the norm induced by the inner product. The n-fold tensor product H1⊗̂2 . . . ⊗̂2Hn is defined

as the tensor product of H1⊗̂2 . . . ⊗̂2Hn−1 and Hn.

Remark A.1 The inner product above induces a topology (ε−topology) which is weaker

than the projective topology (π−topology) on H1 ⊗ H2 ([21] Section 43). If H1 ⊗ H2 is

endowed with the π−topology, we denote the space and its completion as H1 ⊗1 H2 and



40 F. Yan and S. Mohammed

H1⊗̂1H2 respectively. If η1, η2 ∈ H1, then (c.f. [21] Proposition 43.11)

||η1 ⊗ η2||(2) = ||η1 ⊗ η2||(1) = ||η1||H1
||η2||H1

. (9.22)

Denote by L(2)(H) and L(1)(H) the spaces of all Hilbert-Schimdt operators and trace

class operators on H , respectively. Clearly L(1)(H) ∼= H⊗̂1H and L(2)(H) ∼= H⊗̂2H ([21]

Section 47). For every A ∈ L(1)(H), the sum

trace(A) :=

∞∑

n=1

〈Aen, en〉H (9.23)

converges for every basis {en} of H and independent of the choice of {en}. We call trace(A)

the trace of the operator A. The function ||A||(1) := trace(A) is a norm on L(1)(H), with

respect to which this space is a Banach space.

Remark A.2

(1) The composition of two Hilbert-Schmidt operator A,B belonging to L(2)(H) is of trace

class.

(2) If H = L2(T ) and A has kernel a(s, t), then A∗ has kernel a(t, s).

Lemma A.3 Suppose Πk : −r = s0 < · · · < sk = 0 is a sequence of partitions of [−r, 0],

with ||Πk|| → 0 as k → ∞. Denote Ji = (si−1, si] and ∆i = si − si−1. If Y belongs to

V ⊗̂1V and Y is symmetric, set Yk := Ik2 ◦Qsk2 (Y ), then ||Yk||(1) ≤ ||Y ||(1) and

lim
k→∞

||Yk − Y ||(1) = 0.

Proof We also use Y to denote the operator (of trace class) associated with kernel

Y = Y (s, t) on V . Let {φn}∞n=1 be the normalized eigenvectors of Y , (||φn||V = 1). Then

Y =
∑∞

n=1(Y, φn ⊗ φn)φn ⊗ φn and

Yk =

∞∑

n=1

(Y, φn ⊗ φn)Ik2 ◦Qsk2 (φn ⊗ φn)

=

∞∑

n=1

(Y, φn ⊗ φn)Ik ◦Qsk(φn) ⊗ Ik ◦Qsk(φn).

Thus

||Yk||(1) ≤
∞∑

n=1

|(Y, φn ⊗ φn)|||Ik ◦Qsk (φn)||2V

≤
∞∑

n=1

|(Y, φn ⊗ φn)|||φn||2V = ||Y ||(1).

Fix ε > 0, there exist N = N(ε) > 0 such that

∑

n>N

|(Y, φn ⊗ φn)| <
ε

4
.
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There exists K = K(ε,N(ε)) > 0, such that if k > K, then

||Ik ◦Qsk(φn) − φn||V <
ε

4||Y ||(1)
, for all n ≤ N.

If k > K, then

||Yk − Y ||(1)

≤
∞∑

n=1

|(Y, φn ⊗ φn)|||Ik ◦Qsk(φn) ⊗ Ik ◦Qsk(φn) − φn ⊗ φn||(1)

≤
∑

n>N

|(Y, φn ⊗ φn)|{||Ik ◦Qsk(φn) ⊗ Ik ◦Qsk(φn)||(1) + ||φn ⊗ φn||(1)}

+

N∑

n=1

|(Y, φn ⊗ φn)|||Ik ◦Qsk(φn) ⊗ Ik ◦Qsk(φn) − φn ⊗ φn||(1)

≤ 2
∑

n>N

|(Y, φn ⊗ φn)| +
N∑

n=1

|(Y, φn ⊗ φn)|

× ||(Ik ◦Qsk(φn) − φn) ⊗ Ik ◦Qsk (φn) + φn ⊗ (Ik ◦Qsk (φn) − φn)||(1)

<
ε

2
+ 2

N∑

n=1

|(Y, φn ⊗ φn)|||Ik ◦Qsk(φn) − φn||V < ε.
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