AUTOMORPHIC REPRESENTATIONS OF GL_n AND THEIR L FUNCTIONS, A TALK BY SHUICHIRO TAKEDA

NOTES BY JOSEPH HUNDLEY

CONTENTS

1. Disclaimer

Please attribute any errors to the note-taker. And if you have time, send an email about them.

2. THE RIEMANN ZETA FUNCTION

2.1. Definition as an infinite sum. For $\text{Re}(s) > 1$, we define a function $\zeta(s)$ by the following infinite sum, which is absolutely convergent for $Re(s) > 1$:

$$
\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \dots
$$

2.2. Meromorphic continuation. The function $\zeta(s)$ admits a meromorphic continuation to all C. That is, there is a meromorphic function $\mathbb{C} \to \mathbb{C}$ which is given by the above formula for $Re(s) > 1.$

2.3. Euler product. The function $\zeta(s)$ also has an Euler product

$$
\zeta(s) = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}} = \prod_{p \text{ prime}} (1 + p^{-s} + p^{-2s} + p^{-3s} + \dots).
$$

The equality between this and the original definiton of ζ amounts to existence and uniqueness of prime factorizations $n^{-s} = (p_1^{e_1} p_2^{e_2} \dots p_k^{e_k})^{-s}$.

Date: March 30, 2012.

2.4. Functional equation. Let $\xi(s) = \pi^{-s/2} \Gamma(s/2) \zeta(s)$. Here Γ is the Gamma function. For techinical reasons, $\pi^{-s/2}\Gamma(s/2)$ is called the "archimedean factor" and $\xi(s)$ is called the "complete" zeta function." It has the very nice relation:

$$
\xi(s) = \xi(1-s)
$$

2.5. Poles. The function $\zeta(s)$ is analytic except for a simple pole at $s = 1$.

2.6. Zeros. Now, $\xi(s) \neq 0$ for Re(s) > 1 (one checks using definition as an infinite sum), so $\xi(s) \neq 0$ for $\text{Re}(s) < 0$ (by functional equation). Hence all zeros of $\xi(s)$ lie in the strip $0 \leq \text{Re}(s) \leq 1$, which is known as the **critical strip.** The **Riemann hypothesis** states that $\xi(s) = 0 \implies \text{Re}(s) = \frac{1}{2}$.

2.7. Key points.

- (0) Absolute convergence for $\text{Re}(s) \gg 0$,
- (1) Meromorphic continuation
- (2) Euler product
- (3) Functional Equation
- (4) Essentially bounded in vertical strips, i.e. $\xi(s)$ is bounded in the vertical strip $\sigma_1 \leq \text{Re}(s) \leq$ σ_1 for all real numbers σ_1, σ_2 , except when $\sigma_1 \leq 1 \leq \sigma_2$, in which case is is bounded in the complement of a neighborhood of the pole.
- (5) Location of poles.

3. DIRICHLET L function

Let $\chi: (\mathbb{Z}/N\mathbb{Z})^{\times} \to \mathbb{C}^1 := \{z \in \mathbb{C} : |z| = 1\}$ be a group homomorphism. Extend χ to a function $\mathbb{Z}/N\mathbb{Z} \to \mathbb{C}^1 \cup \{0\}$, by declaring that $\chi(n) = 0$ whenever $gcd(n, N) \neq 1$. Pull it back to a function $\mathbb{Z} \to \mathbb{C}$. We denote this function $\mathbb{Z} \to \mathbb{C}$ by χ as well. Define

$$
L(s,\chi)=\sum_{n=1}^{\infty}\frac{\chi(n)}{n^s}.
$$

Note that if you take $N = 1$, you will get the sum defining $\zeta(s)$. This function is called a Dirichlet L function. Like the Riemann zeta function, the sum definition is valid for $Re(s) > 1$, but the function may be defined on the whole complex plane by meromorphic continuation, and has an Euler product

$$
L(s,\chi)=\prod_{p\text{ prime}}\frac{1}{1-\frac{\chi(p)}{p^s}}
$$

Let

$$
\Lambda(s,\chi) = \pi^{-(s+\varepsilon)/2} \Gamma\left(\frac{s+\varepsilon}{2}\right) L(s,\chi)
$$

where ε is the element of $\{0,1\}$ such that $\chi(-1) = (-1)^{\varepsilon}$. Then $\Lambda(s,\chi) = (-i)^{\varepsilon} \tau(\chi) N^{-s} \Lambda(1-s,\overline{\chi}),$ with $\tau(\chi) = \text{Gauss sum} = \sum_{n \mod N} \chi(n) e^{2\pi i n/N}$.

In this case, there are no poles to the analytic continuation. This function is also bounded in vertical strips (and this time one does not have to insert a caveat about a pole).

Remark 3.0.1. Both $\zeta(s)$ and $L(s, \chi)$ are "degree 1" L-functions, in the sense that the denominator of the term corresponding to a prime p in the Euler product is a polynomial in p^{-s} which is of degree ≤ 1 are all primes and exactly 1 at all but finitely many primes.

4. Modular Forms

Let $\mathcal{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}$, and $SL(2, \mathbb{Z}) = \{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = 1 \}$. For $z \in \mathcal{H}$ and $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z})$ define

$$
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}.
$$

This defines an action of $SL(2,\mathbb{Z})$ on \mathcal{H} .

Definition 4.0.2. Take $k \in \mathbb{Z}$. A holomorphic function $f : \mathcal{H} \to \mathbb{C}$ is called a **modular form of** weight k if it is bounded on $\{x+iy : |x| \leq \frac{1}{2}, y > N\}$ for some (and hence any) $N > 0$, and

(4.0.3)
$$
f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z) \qquad \left(\forall \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z})\right)
$$

Remark 4.0.4. The boundedness condition is equivalent to a more natural condition introduced below.

Remark 4.0.5. One should take $k \geq 2$. For k odd one can prove fairly easily that a modular form of weight k is zero. (Plug the matrix $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ into $(4.0.3)$.) For $k = 0$ one can prove with a bit of work that a modular form of weight k is constant. For $k < 0$ one can prove with a bit of work that a modular form of weight k is zero. The last two facts depend on the fact that a bounded entire function is constant.

Example 4.0.6 (Ramanujan).

$$
f(z) = q \prod_{n=1}^{\infty} (1 - q^n)^{24}, \qquad q = e^{2\pi i z}, \ z \in \mathcal{H}.
$$

$$
= \sum_{n=1}^{\infty} \tau(n) q^n,
$$

where $\tau(n)$ is the Ramanujan τ function. (One may take this equation as the definition of τ .) Then f is a modular form of weight 12.

4.1. Fourier expansion. By taking $\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ in [\(4.0.3\)](#page-2-2), we deduce that any modular form satisfies $f(z + 1) = f(z)$. This gives rise to a Fourier expansion

$$
f(z) = \sum_{n=0}^{\infty} a_n q^n, \qquad a_n \in \mathbb{C}, \ q \in e^{2\pi i z}.
$$

The sum starts at zero because of the boundedness condition. Note that the function $z \mapsto q$ is a bijection between a neighborhood of ∞ in H and a punctured disk centered at 0. This is the more natural interpretation of the growth condition: it says that f extends to a holomorphic function on the full (unpunctured) disk. I.e., f is "holomorphic at infinity."

(0) The infinite sum

$$
L(s, f) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}
$$

is absolutely convergent for $\text{Re}(s)$ sufficiently large,

(1) It also has meromorphic continuation to \mathbb{C} ,

(2) The space of modular forms is a vector space which has a nice basis consisting of Hecke eigenforms, and if we take f to be one of these basis vectors, then

$$
L(s,f) = \prod_{p} \frac{1}{1 - a_p p^{-s} + p^{k-1-2s}}
$$

(3) As usual, in order to get a nice functional equation we need to put the right "archimedean factor" involving Γ. In this case it is

$$
\Lambda(s,f) = (2\pi)^{-s} \Gamma(s) L(s,f) \implies \Lambda(s,f) = (-1)^{k/2} \Lambda(k-s,f).
$$

- (4) Bounded in vertical strips
- (5) No poles, provided $a_0 = 0$.^{[1](#page-3-1)} If $a_0 = 0$, one says that f is **cuspidal**, or that it is **a cusp** form.

Problem 4.1.1. Given a sequence $(a_n)_{n=1}^{\infty}$, when is

$$
f(z) = \sum_{n=1}^{\infty} a_n e^{2\pi i n z}
$$

a modular form?

Theorem 4.1.2 (Hecke). Define

$$
L(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}.
$$

Then $f(z)$ is a modular form if and only if $L(s)$ satisfies (0)-(4).

Theorem 4.1.3 (Shimura-Taniyama Conjecture, proved by Wiles^{[2](#page-3-2)}, which implies Fermat's last theorem). For each elliptic curve E over $\mathbb Q$ there is a modular form f such that the L function attached to f is equal to the Hasse-Weil L function attached to the elliptic curve. (Which we don't define.)

5. AUTOMORPHIC REPRESENTATION OF GL_n

The concept of an automorphic representation generalizes the concept of a modular form, and also that of a Dirichlet character.

Let A be the adele ring of \mathbb{O} . This is a ring which is defined as a restricted topological product of all the topologically distinct completions of $\mathbb Q$. One has the usual completion of $\mathbb Q$ as $\mathbb R$ and a completion \mathbb{Q}_p corresponding to each prime p. Regarding restricted topological products, we content ourselves with two points:

- (1) a restricted topological product of locally compact groups is locally compact (and each completion of Q is locally compact), and
- (2) a restricted topological product is larger than the corresponding direct sum and smaller than the corresponding Cartesian product.

$$
\mathbb{R} \oplus \bigoplus_{p} \mathbb{Q}_p \subset \mathbb{A} = \qquad \qquad \mathbb{R} \times \prod_{p}^{\prime} \mathbb{Q}_p \qquad \qquad \subset \mathbb{R} \times \prod_{p} \mathbb{Q}_p
$$

restricted topological product

We have an embedding $\mathbb{Q} \hookrightarrow \mathbb{A}$ on the diagonal: $a \mapsto (a, a, a \dots, a,).$ We consider

$$
GL_n(\mathbb{A}) = \left\{ A = \left(a_{ij} \right) : \det A \in \mathbb{A}^{\times}, a_{ij} \in \mathbb{A} \right\}.
$$

¹I'm not sure I took notes correctly on this point, but I'm sure this is true. If $a_0 \neq 0$, I believe one will get at least one pole, but only finitely many. Possibly only one.

² and others, Wiles proved enough of it to deduce Fermat's last theorem

We have $GL_n(\mathbb{Q}) \hookrightarrow GL_n(\mathbb{A})$. The group $GL_n(\mathbb{A})$ is a locally compact group, and has a "nice" measure called the Haar measure. Using it, one can consider

$$
L^{2} := L^{2} (GL_{n}(\mathbb{Q})Z(\mathbb{A})\backslash GL_{n}(\mathbb{A}))
$$

= $\left\{ f : GL_{n}(\mathbb{Q})\backslash GL_{n}(\mathbb{A}) \to \mathbb{C} : \int_{GL_{n}(\mathbb{Q})Z(\mathbb{A})\backslash GL_{n}(\mathbb{A})} |f(x)|^{2} dx < \infty \right\}.$

The group $GL_n(\mathbb{A})$ acts on L^2 by right translation, i.e.

$$
g \cdot f(x) = f(xg) \qquad (x, g \in GL_n(\mathbb{A}), f \in L^2).
$$

This gives a representation of $GL_n(\mathbb{A})$.

We study the decomposition of this representation. The theory of Eisenstein series gives a method of cooking up elements of $L^2(Z(\mathbb{A})GL_n(F)\backslash GL_n(\mathbb{A}))$ from elements of

 ${L^2(Z(\mathbb{A})GL_m(F)\backslash GL_m(\mathbb{A})) : 1 \leq m < n}.$

As a representation of $GL_n(\mathbb{A})$, the space L^2 breaks up into three conceptually distinct pieces

$$
L^2 = L_0^2 \oplus \underbrace{L_{\text{res}}^2 \oplus L_{\text{cont}}^2}_{\text{constructed from } L^2(GL_m) \text{ for } m < n}
$$

.

Since we don't want to get into the theory of Eisenstein series, we shall not try to define L^2_{res} or L^2_{cont} . For our purposes, it suffices to say that they are cooked up from functions living on smaller groups. So L_0^2 can be thought of as the orthogonal complement of the subspace of L^2 generated by things which can be obtained from smaller building blocks. It is called the space of cusp forms, or the cuspidal spectrum, and it decomposes as a direct sum of irreducible subrepresentations.

Definition 5.0.4. Each constituent $\pi \subset L^2_0$ is called a cuspidal automorphic representation of $GL_n(\mathbb{A})$.

Theorem 5.0.5. To each cuspidal modular form f , one can canonically associate a cuspidal automorphic representation π_f of $GL_2(\mathbb{A})$.

Theorem 5.0.6 (Flath, tensor product theorem). Given π an irreducible automorphic representation of $GL_n(\mathbb{A})$, we have a factorization of π

$$
\pi \cong \pi_{\infty} \otimes \bigotimes_{p} {}'\pi_{p},
$$

as a certain type of infinite restricted tensor product, where π_{∞} is a representation of $GL_n(\mathbb{R})$ and π_p is a representation of $GL_n(\mathbb{Q}_p)$ for each prime p. Moreover, for all but finitely many p, the representation π_p has a $GL_n(\mathbb{Z}_p)$ -fixed vector.

Remark 5.0.7. This is by no means obvious, but it is "expected" given the product structure of $GL_n(\mathbb{A}) = GL_n(\mathbb{R}) \times \prod'_p GL_n(\mathbb{Q}_p)$. Like the precise definition of the restricted topological product, the precise nature of the restricted tensor product is something we skip over.

Remark 5.0.8. A representation of $GL_n(\mathbb{Q}_p)$ is said to be **unramified** or **spherical** if it has a $GL_n(\mathbb{Z}_p)$ -fixed vector. Such a vector is known to be unique up to scalar if the representation is irreducible.

Theorem 5.0.9 (Satake). There is a natural surjection from \mathbb{C}^n to the set of isomorphism of classes of spherical representations of $GL_n(\mathbb{Q}_p)$, such that the fibers are orbits for the natural action of the symmetric group S_n on \mathbb{C}^n . Thus, a spherical representation of $GL_n(\mathbb{Q}_p)$ is determined by n complex numbers $\{a_{p,1}, a_{p,2}, \ldots, a_{p,n}\}\$ called the **Satake parameters.**

Definition 5.0.10. Let π be a cuspidal automorphic representation of $GL_n(\mathbb{Q}_p)$ and let S be a finite set of primes containing all those where π_p is not spherical. Define

$$
L^{S}(s,\pi) = \prod_{p \notin S} \prod_{i=1}^{n} \frac{1}{(1 - a_{i,p}p^{-s})},
$$

$$
L^{S}(s,\pi, \text{Sym}^{2} \otimes \chi) = \prod_{p \notin S} \prod_{1 \leq i \leq j \leq n} \frac{1}{1 - a_{p,i}a_{p,j}\chi(p)p^{-s}}.
$$

It is possible to define $L(s,\pi)$ and $L(s,\pi,\mathrm{Sym}^2 \otimes \chi)$ by filling in the correct terms at the primes where π_p is not spherical. However, discussion of the techniques required to do that takes on a bit far afield.

Theorem 5.0.11 (Takeda). The L function $L(s, \pi, \text{Sym}^2 \otimes \chi)$ has no pole for $\text{Re}(s) > 1$.

6. References

This talk used some concepts such as "meromorphic," "pole," and "meromorphic continuation" from complex analysis. A good reference for complex analysis is Ahlfors book Complex Analysis. It also contains a definition of the gamma function if that was not familiar and a good deal of material on the Riemann zeta function.

For modular forms, there are a lot of approaches to the subject and a lot of books. From my own experience, I can recommend Iwaniec's Topics in Classical Automorphic Forms, as well as Bump's book (below). I suspect that Shimura's books Modular Forms: Basics and Beyond and Arithmetic Theory of Automorphic Functions, and Stein's Modular forms, a computational approach would be good. For a more analytic flavor one might look at Sarnak's book Some applications of modular forms. Iwaniec also has a second book. For a more combinatorial flavor, one might try Ken Ono's The web of modularity, or the book by Brunier.

For automorphic forms and representations of $GL_n(\mathbb{A})$ and associated L functions, the references of which I am aware are Bump's Automorphic forms and representations, Borel's Introduction to automorphic forms, Gelbart's Automorphic forms on Adele groups, and Automorphic representations and L functions for the General Linear group, Volumes I and II by Goldfeld and Hundley. E-mail address: jhundley@math.siu.edu

Math. Department, Mailcode 4408, Southern Illinois University Carbondale, 1245 Lincoln Drive CARBONDALE, IL 62901