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1. Disclaimer

Please attribute any errors to the note-taker. And if you have time, send an email about them.

2. The Riemann zeta function

2.1. Definition as an infinite sum. For Re(s) > 1, we define a function ζ(s) by the following
infinite sum, which is absolutely convergent for Re(s) > 1:

ζ(s) =
∞∑
n=1

1

ns
= 1 +

1

2s
+

1

3s
+ . . .

2.2. Meromorphic continuation. The function ζ(s) admits a meromorphic continuation to all
C. That is, there is a meromorphic function C → C which is given by the above formula for
Re(s) > 1.

2.3. Euler product. The function ζ(s) also has an Euler product

ζ(s) =
∏

p prime

1

1− p−s
=

∏
p prime

(1 + p−s + p−2s + p−3s + . . . ).

The equality between this and the original definiton of ζ amounts to existence and uniqueness of
prime factorizations n−s = (pe11 p

e2
2 . . . pekk )−s.
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2.4. Functional equation. Let ξ(s) = π−s/2Γ(s/2)ζ(s). Here Γ is the Gamma function. For

techinical reasons, π−s/2Γ(s/2) is called the “archimedean factor” and ξ(s) is called the “complete
zeta function.” It has the very nice relation:

ξ(s) = ξ(1− s)

2.5. Poles. The function ζ(s) is analytic except for a simple pole at s = 1.

2.6. Zeros. Now, ξ(s) 6= 0 for Re(s) > 1 (one checks using definition as an infinite sum), so ξ(s) 6= 0
for Re(s) < 0 (by functional equation). Hence all zeros of ξ(s) lie in the strip 0 ≤ Re(s) ≤ 1, which
is known as the critical strip. The Riemann hypothesis states that ξ(s) = 0 =⇒ Re(s) = 1

2 .

2.7. Key points.

(0) Absolute convergence for Re(s)� 0,
(1) Meromorphic continuation
(2) Euler product
(3) Functional Equation
(4) Essentially bounded in vertical strips, i.e. ξ(s) is bounded in the vertical strip σ1 ≤ Re(s) ≤

σ1 for all real numbers σ1, σ2, except when σ1 ≤ 1 ≤ σ2, in which case is is bounded in the
complement of a neighborhood of the pole.

(5) Location of poles.

3. Dirichlet L function

Let χ : (Z/NZ)× → C1 := {z ∈ C : |z| = 1} be a group homomorphism. Extend χ to a function
Z/NZ→ C1 ∪ {0}, by declaring that χ(n) = 0 whenever gcd(n,N) 6= 1. Pull it back to a function
Z→ C. We denote this function Z→ C by χ as well. Define

L(s, χ) =
∞∑
n=1

χ(n)

ns
.

Note that if you take N = 1, you will get the sum defining ζ(s). This function is called a Dirichlet
L function. Like the Riemann zeta function, the sum definition is valid for Re(s) > 1, but the
function may be defined on the whole complex plane by meromorphic continuation, and has an
Euler product

L(s, χ) =
∏

p prime

1

1− χ(p)
ps

Let

Λ(s, χ) = π−(s+ε)/2Γ

(
s+ ε

2

)
L(s, χ)

where ε is the element of {0, 1} such that χ(−1) = (−1)ε. Then Λ(s, χ) = (−i)ετ(χ)N−sΛ(1−s, χ),

with τ(χ) = Gauss sum =
∑

n mod N χ(n)e2πin/N .
In this case, there are no poles to the analytic continuation. This function is also bounded in

vertical strips (and this time one does not have to insert a caveat about a pole).

Remark 3.0.1. Both ζ(s) and L(s, χ) are “degree 1” L-functions, in the sense that the denominator
of the term corresponding to a prime p in the Euler product is a polynomial in p−s which is of
degree ≤ 1 are all primes and exactly 1 at all but finitely many primes.
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4. Modular Forms

Let H = {z ∈ C : Im(z) > 0}, and SL(2,Z) = {
(
a b
c d

)
: a, b, c, d ∈ Z, ad− bc = 1}. For z ∈ H

and

(
a b
c d

)
∈ SL(2,Z) define (

a b
c d

)
· z =

az + b

cz + d
.

This defines an action of SL(2,Z) on H.

Definition 4.0.2. Take k ∈ Z. A holomorphic function f : H → C is called a modular form of
weight k if it is bounded on {x+ iy : |x| ≤ 1

2 , y > N} for some (and hence any) N > 0, and

(4.0.3) f

(
az + b

cz + d

)
= (cz + d)kf(z)

(
∀
(
a b
c d

)
∈ SL(2,Z)

)
Remark 4.0.4. The boundedness condition is equivalent to a more natural condition introduced
below.

Remark 4.0.5. One should take k ≥ 2. For k odd one can prove fairly easily that a modular form
of weight k is zero. (Plug the matrix

(−1 0
0 −1

)
into (4.0.3).) For k = 0 one can prove with a bit of

work that a modular form of weight k is constant. For k < 0 one can prove with a bit of work that
a modular form of weight k is zero. The last two facts depend on the fact that a bounded entire
function is constant.

Example 4.0.6 (Ramanujan).

f(z) = q

∞∏
n=1

(1− qn)24, q = e2πiz, z ∈ H.

=
∞∑
n=1

τ(n)qn,

where τ(n) is the Ramanujan τ function. (One may take this equation as the definition of τ.) Then
f is a modular form of weight 12.

4.1. Fourier expansion. By taking

(
a b
c d

)
=

(
1 1
0 1

)
in (4.0.3), we deduce that any modular

form satisfies f(z + 1) = f(z). This gives rise to a Fourier expansion

f(z) =
∞∑
n=0

anq
n, an ∈ C, q ∈ e2πiz.

The sum starts at zero because of the boundedness condition. Note that the function z 7→ q is a
bijection between a neighborhood of ∞ in H and a punctured disk centered at 0. This is the more
natural interpretation of the growth condition: it says that f extends to a holomorphic function
on the full (unpunctured) disk. I.e., f is “holomorphic at infinity.”

(0) The infinite sum

L(s, f) =

∞∑
n=1

an
ns

is absolutely convergent for Re(s) sufficiently large,
(1) It also has meromorphic continuation to C,
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(2) The space of modular forms is a vector space which has a nice basis consisting of Hecke
eigenforms, and if we take f to be one of these basis vectors, then

L(s, f) =
∏
p

1

1− app−s + pk−1−2s

(3) As usual, in order to get a nice functional equation we need to put the right “archimedean
factor” involving Γ. In this case it is

Λ(s, f) = (2π)−sΓ(s)L(s, f) =⇒ Λ(s, f) = (−1)k/2Λ(k − s, f).

(4) Bounded in vertical strips
(5) No poles, provided a0 = 0.1 If a0 = 0, one says that f is cuspidal, or that it is a cusp

form.

Problem 4.1.1. Given a sequence (an)∞n=1, when is

f(z) =

∞∑
n=1

ane
2πinz

a modular form?

Theorem 4.1.2 (Hecke). Define

L(s) =
∞∑
n=1

an
ns
.

Then f(z) is a modular form if and only if L(s) satisfies (0)-(4).

Theorem 4.1.3 (Shimura-Taniyama Conjecture, proved by Wiles2, which implies Fermat’s last
theorem). For each elliptic curve E over Q there is a modular form f such that the L function
attached to f is equal to the Hasse-Weil L function attached to the elliptic curve. (Which we don’t
define.)

5. Automorphic representation of GLn

The concept of an automorphic representation generalizes the concept of a modular form, and
also that of a Dirichlet character.

Let A be the adele ring of Q. This is a ring which is defined as a restricted topological product
of all the topologically distinct completions of Q. One has the usual completion of Q as R and a
completion Qp corresponding to each prime p. Regarding restricted topological products, we content
ourselves with two points:

(1) a restricted topological product of locally compact groups is locally compact (and each
completion of Q is locally compact), and

(2) a restricted topological product is larger than the corresponding direct sum and smaller
than the corresponding Cartesian product.

R⊕
⊕
p

Qp ⊂ A = R×
′∏
p

Qp

restricted topological product

⊂ R×
∏
p

Qp

We have an embedding Q ↪→ A on the diagonal: a 7→ (a, a, a . . . , a, ). We consider

GLn(A) =
{
A =

(
aij
)

: detA ∈ A×, aij ∈ A
}
.

1I’m not sure I took notes correctly on this point, but I’m sure this is true. If a0 6= 0, I believe one will get at
least one pole, but only finitely many. Possibly only one.

2and others, Wiles proved enough of it to deduce Fermat’s last theorem
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We have GLn(Q) ↪→ GLn(A). The group GLn(A) is a locally compact group, and has a “nice”
measure called the Haar measure. Using it, one can consider

L2 := L2 (GLn(Q)Z(A)\GLn(A))

=

{
f : GLn(Q)\GLn(A)→ C :

∫
GLn(Q)Z(A)\GLn(A)

|f(x)|2 dx <∞

}
.

The group GLn(A) acts on L2 by right translation, i.e.

g · f(x) = f(xg) (x, g ∈ GLn(A), f ∈ L2).

This gives a representation of GLn(A).
We study the decomposition of this representation. The theory of Eisenstein series gives a method

of cooking up elements of L2(Z(A)GLn(F )\GLn(A)) from elements of

{L2(Z(A)GLm(F )\GLm(A)) : 1 ≤ m < n}.
As a representation of GLn(A), the space L2 breaks up into three conceptually distinct pieces

L2 = L2
0 ⊕ L2

res ⊕ L2
cont︸ ︷︷ ︸

constructed from L2(GLm) for m<n

.

Since we don’t want to get into the theory of Eisenstein series, we shall not try to define L2
res or

L2
cont. For our purposes, it suffices to say that they are cooked up from functions living on smaller

groups. So L2
0 can be thought of as the orthogonal complement of the subspace of L2 generated by

things which can be obtained from smaller building blocks. It is called the space of cusp forms, or
the cuspidal spectrum, and it decomposes as a direct sum of irreducible subrepresentations.

Definition 5.0.4. Each constituent π ⊂ L2
0 is called a cuspidal automorphic representation

of GLn(A).

Theorem 5.0.5. To each cuspidal modular form f, one can canonically associate a cuspidal auto-
morphic representation πf of GL2(A).

Theorem 5.0.6 (Flath, tensor product theorem). Given π an irreducible automorphic represen-
tation of GLn(A), we have a factorization of π

π ∼= π∞ ⊗
⊗
p

′πp,

as a certain type of infinite restricted tensor product, where π∞ is a representation of GLn(R)
and πp is a representation of GLn(Qp) for each prime p. Moreover, for all but finitely many p, the
representation πp has a GLn(Zp)-fixed vector.

Remark 5.0.7. This is by no means obvious, but it is “expected” given the product structure of
GLn(A) = GLn(R)×

∏′
pGLn(Qp). Like the precise definition of the restricted topological product,

the precise nature of the restricted tensor product is something we skip over.

Remark 5.0.8. A representation of GLn(Qp) is said to be unramified or spherical if it has a
GLn(Zp)-fixed vector. Such a vector is known to be unique up to scalar if the representation is
irreducible.

Theorem 5.0.9 (Satake). There is a natural surjection from Cn to the set of isomorphism of classes
of spherical representations of GLn(Qp), such that the fibers are orbits for the natural action of
the symmetric group Sn on Cn. Thus, a spherical representation of GLn(Qp) is determined by n
complex numbers {ap,1, ap,2, . . . , ap,n} called the Satake parameters.

5



Definition 5.0.10. Let π be a cuspidal automorphic representation of GLn(Qp) and let S be a
finite set of primes containing all those where πp is not spherical. Define

LS(s, π) =
∏
p/∈S

n∏
i=1

1

(1− ai,pp−s)
,

LS(s, π,Sym2⊗χ) =
∏
p/∈S

∏
1≤i≤j≤n

1

1− ap,iap,jχ(p)p−s
.

It is possible to define L(s, π) and L(s, π,Sym2⊗χ) by filling in the correct terms at the primes
where πp is not spherical. However, discussion of the techniques required to do that takes on a bit
far afield.

Theorem 5.0.11 (Takeda). The L function L(s, π,Sym2⊗χ) has no pole for Re(s) > 1.

6. References

This talk used some concepts such as “meromorphic,” “pole,” and “meromorphic continuation”
from complex analysis. A good reference for complex analysis is Ahlfors book Complex Analysis.
It also contains a definition of the gamma function if that was not familiar and a good deal of
material on the Riemann zeta function.

For modular forms, there are a lot of approaches to the subject and a lot of books. From my own
experience, I can recommend Iwaniec’s Topics in Classical Automorphic Forms, as well as Bump’s
book (below). I suspect that Shimura’s books Modular Forms: Basics and Beyond and Arithmetic
Theory of Automorphic Functions, and Stein’s Modular forms, a computational approach would be
good. For a more analytic flavor one might look at Sarnak’s book Some applications of modular
forms. Iwaniec also has a second book. For a more combinatorial flavor, one might try Ken Ono’s
The web of modularity. or the book by Brunier.

For automorphic forms and representations of GLn(A) and associated L functions, the references
of which I am aware are Bump’s Automorphic forms and representations, Borel’s Introduction to au-
tomorphic forms, Gelbart’s Automorphic forms on Adele groups, and Automorphic representations
and L functions for the General Linear group, Volumes I and II by Goldfeld and Hundley.

E-mail address: jhundley@math.siu.edu

Math. Department, Mailcode 4408, Southern Illinois University Carbondale, 1245 Lincoln Drive
Carbondale, IL 62901
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