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LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY

SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG

Abstract. In this paper, we develop a large deviations principle for stochastic delay equations driven by
small multiplicative white noise. Both upper and lower large deviations estimates are established.

1. Introduction. Large deviations were studied by many authors beginning with the fundamental work of

Donsker and Varadhan [4],[5],[6]. Subsequently several issues concerning large deviation principles and their

applications to stochastic differential equations were studied by many authors, e.g. Freidlin and Wentzell

[8], Stroock [18], Deuschel and Stroock [3], den Hollander [2], and others.

However, there is little published work on large deviations for stochastic systems with memory. The

problem of large deviations for such systems was first studied by M. Scheutzow [16] within the context of

additive white noise.

Stochastic systems with memory (or stochastic differential delay equations (sdde’s)) serve as viable

models in a variety of applications, ranging from economics and finance to signal processing (Elsanosi,

∅ksendal and Sulem [7], Kolmanovskii and Myshkis [10]). The origins of the qualitative theory of stochastic

systems with memory goes back to work by Itô and Nisio [9], Kushner [11], Mizel and Trutzer [13], Mohammed

[14], Scheutzow [17], Mao [12] and others.

In this paper we examine the question of small random perturbations of systems with memory and the

associated problem of large deviations. Our analysis allows for multiplicative noise with possible dependence

on the history in the diffusion coefficient. Our approach is similar to that in [1] and [18], but introduces a

new induction argument in order to handle the delay.

2. Basic Setting and Notation. Let Wt :=
(
W 1

t ,W 2
t , ..., W l

t

)
denote a standard l-dimensional Brownian

motion on a complete filtered probability space (Ω,F , (Ft)t≥0, P ), with W0 = 0. Let b = (b1, b2, ..., bd) :

R+ ×Rd ×Rd → Rd, σ = (σij)i=1,···d,j=1,··· ,l : R+ ×Rd ×Rd → Rd ⊗Rl be Borel measurable functions.

We introduce the following conditions:

The research of the first author is supported in part by NSF grants DMS-9703596, DMS-9980209 and DMS-0203368.
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(A1) The functions b, σ satisfy a Lipschitz condition. That is, there exist constants L1, L2 such that

for all x1, x2, y1, y2 and t ∈ [0,∞),

||σ(t, x1, y1)− σ(t, x2, y2)||Rd⊗Rl ≤ L1(|x1 − x2|+ |y1 − y2|), (1)

||b(t, x1, y1)− b(t, x2, y2)||Rd ≤ L2(|x1 − x2|+ |y1 − y2|). (2)

(A2) The functions b(·, x, y), σ(·, x, y) are continuous on [0,∞), uniformly in x, y ∈ Rd, i.e.,

lim
s→t

sup
x,y∈Rd

|b(s, x, y)− b(t, x, y)| = 0, (3)

lim
s→t

sup
x,y∈Rd

|σ(s, x, y)− σ(t, x, y)| = 0. (4)

Let τ > 0 be a fixed delay, and ψ be a given continuous function on [−τ, 0]. Consider the following differential

delay equation (dde):
dX(t) = b(t,X(t), X(t− τ)) dt, t ∈ (0,∞)

X(t) = ψ(t), t ∈ [−τ, 0],
(5)

and the associated perturbed sdde:

dXε(t) = b
(
t,Xε(t), Xε(t− τ)

)
dt + ε

1
2 σ

(
t,Xε(t), Xε(t− τ)

)
dWt, t ∈ (0,∞)

Xε(t) = ψ(t), t ∈ [−τ, 0],
(6)

with solution Xε.

Throughout this paper, we will assume, without loss of generality, that the delay τ is equal to 1.

3. Statement of the Main Theorem and Proofs. Let C0

(
[0,m],Rl

)
denote the space of all continuous

functions g : [0,m] → Rl with g(0) = 0. If g ∈ C0

(
[0,m],Rl

)
is absolutely continuous, set e(g) =

∫ m

0
|ġ(t)|2dt.

Otherwise, define e(g) = ∞. Let F (g) be the solution to the dde

F (g)(t) = F (g)(0) +
∫ t

0

b
(
s, F (g)(s), F (g)(s− 1)

)
ds

+
∫ t

0

σ
(
s, F (g)(s), F (g)(s− 1)

)
ġ(s)ds, 0 < t ≤ m

F (g)(t) = ψ(t), −1 ≤ t ≤ 0.

(7)

Denote by Cψ

(
[−1,m],Rd

)
the set of all continuous functions f : [−1,m] → Rd such that f(t) = ψ(t)

for all t ∈ [−1, 0].

Theorem 3.1. Let µε be the law of Xε(·) on Cψ

(
[−1,m],Rd

)
, equipped with the uniform topology. The

family {µε, ε > 0} satisfies a large deviation principle with the following good rate function

I(f) := inf
{

1
2
e(g); F (g) = f

}
, f ∈ Cψ([−1, m],Rd). (8)

That is,
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(i) for any closed subset C ⊂ Cψ([−1, m],Rd),

lim sup
ε→0

ε log µε(C) ≤ − inf
f∈C

I(f), (9)

(ii) for any open subset G ⊂ Cψ([−1, m],Rd),

lim inf
ε→0

ε log µε(G) ≥ − inf
f∈G

I(f). (10)

The rest of the paper is devoted to the proof of this result. The proof is split into several lemmas.

For any ε > 0 and any n ≥ 1, denote by Xε
n(·) the solution to the sdde:

Xε
n(t) = Xε

n(0) +
∫ t

0

b
(
s, Xε

n(s), Xε
n(s− 1)

)
ds

+ ε
1
2

∫ t

0

σ

(
[ns]
n

,Xε
n

(
[ns]
n

)
, Xε

n

(
[ns]
n

− 1
))

dWs, t > 0,

Xε
n(t) = ψ(t), t ∈ [−1, 0].

(11)

We need the following lemma from Stroock [18] (p. 81).

Lemma 3.2. Let α : [0,∞) × Ω → Rd ⊗Rl and β : [0,∞) × Ω → Rd be (Ft)t≥0-progressively measurable

processes. Assume that ||α(·)|| ≤ A and ||β(·)|| ≤ B, where the norm of α is the Hilbert-Schmidt norm and

the norm of β is the usual norm in Rd. Set ξ(t) :=
∫ t

0
α(s)dWs +

∫ t

0
β(s)ds for t ≥ 0. Let T > 0 and R > 0

satisfy d
1
2 BT < R. Then

P
(

sup
0≤t≤T

|ξ(t)| ≥ R
) ≤ 2d exp

(− (R− d
1
2 BT )2/2A2dT

)
. (12)

Lemma 3.3. In addition to (A.1) and (A.2), assume that b, σ are bounded. Then for any m ≥ 1, δ > 0, the

following is true:

lim
n→∞

lim sup
ε→0

ε log P
(

sup
−1≤t≤m

|Xε(t)−Xε
n(t)| > δ

)
= −∞. (13)

Proof. We prove (13) by induction on m. We first prove it for m = 1. Set Y ε
n (t) := Xε(t) −Xε

n(t), t ≥ 0.

Then

Y ε
n (t) =

∫ t

0

[
b
(
s,Xε(s), Xε(s− 1)

)− b
(
s,Xε

n(s), Xε
n(s− 1)

)]
ds

+ ε
1
2

∫ t

0

[
σ

(
s, Xε(s), Xε(s− 1)

)
− σ

(
[ns]
n

,Xε
n

(
[ns]
n

)
,

Xε
n

(
[ns]
n

− 1
))]

dWs, t ≥ 0.

(14)

For ρ > 0, define τε
n,ρ := inf{t ≥ 0; |Xε

n(t) − Xε
n( [nt]

n )| ≥ ρ}, and set Y ε
n,ρ(t) := Y ε

n (t ∧ τε
n,ρ), t ≥ 0,

ξε
n,ρ := inf{t ≥ 0, |Y ε

n,ρ(t)| ≥ δ}. Then

P
(

sup
0≤t≤1

|Y ε
n (t)| > δ

)
= P

(
sup

0≤t≤1
|Y ε

n (t)| > δ, τ ε
n,ρ ≤ 1

)

+ P
(

sup
0≤t≤1

|Y ε
n (t)| > δ, τ ε

n,ρ > 1
)

≤ P (τε
n,ρ ≤ 1) + P (ξε

n,ρ ≤ 1).

(15)
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Observe that

P (τ ε
n,ρ ≤ 1) ≤

n∑

k=1

P

(
sup

k−1
n ≤t≤ k

n

|Xε
n(t)−Xε

n

(
k − 1

n

)
| ≥ ρ

)
. (16)

Using Lemma 3.2, there exists a constant cρ > 0 such that

P (τε
n,ρ ≤ 1) ≤ n exp(−ncρ/ε), n ≥ 1. (17)

Hence,

lim
n→∞

lim sup
ε→0

ε log P (τ ε
n,ρ ≤ 1) = −∞. (18)

For λ > 0, define φλ(y) := (ρ2 + |y|2)λ, y ∈ Rd. By Itô’s formula,

Mn,ρ
t := φλ(Y ε

n,ρ(t))−
∫ t∧τε

n,ρ

0

γε
λ(s)ds− ρ2λ (19)

is a martingale with initial value zero, where,

γε
λ(s) := 2λ(ρ2 + |Y ε

n (s)|2)λ−1〈Y ε
n (s), b(s, Xε(s), Xε(s− 1))

− b
(
s,Xε

n(s), Xε
n(s− 1)

)〉

+ 2λ(λ− 1)ε(ρ2 + |Y ε
n (s)|2)λ−2

∣∣(σ(
s,Xε(s), Xε(s− 1)

)

− σ

(
[ns]
n

,Xε
n

(
[ns]
n

)
, Xε

n(
[ns]
n

− 1)
))∗

Y ε
n (s)

∣∣2

+ λε
(
ρ2 + |Y ε

n (s)|2)λ−1|
∣∣σ(

s,Xε(s), Xε(s− 1)
)

− σ

(
[ns]
n

,Xε
n

(
[ns]
n

)
, Xε

n

(
[ns]
n

− 1
))∗∣∣2

H.S
.

for s ≤ t ∧ τε
n,ρ. Noticing that Xε

n(u) = ψ(u) and Xε(u) = ψ(u) for u ≤ 0, we see that

γε
λ(s) ≤ cλφλ(Y ε

n (s))

+
{
4λ(λ− 1)ε

(
ρ2 + |Y ε

n (s)|2)λ−2|Y ε
n (s)|2 + 2λε

(
ρ2 + |Y ε

n (s)|2)λ−1}

×
{(

σ(s, Xε(s), Xε(s− 1)
)− σ

(
[ns]
n

,Xε(s), Xε(s− 1)
))2

+ |Y ε
n (s)|2 +

∣∣Xε
n(s)−Xε

n

(
[ns]
n

)
|2 +

∣∣ψ(s− 1)− ψ

(
[ns]
n

− 1
)∣∣2

}
.

(20)

By uniform continuity, there exists an integer N so that

∣∣σ(s,Xε(s), Xε(s− 1))− σ
( [ns]

n
,Xε(s), Xε(s− 1)

)∣∣ < ρ

and
∣∣ψ(s− 1)− ψ

( [ns]
n

− 1
)∣∣ < ρ

for s ≤ 1 and all n ≥ N . Thus for n ≥ N ,

γε
λ(s) ≤ c(λ + λε + λ2ε)φλ(Y ε

n (s)). (21)

Choose λ = 1
ε and take expectations in (19) to obtain

E[(ρ2 + |Y ε
n,ρ(t)|2)1/ε] ≤ ρ2/ε +

C

ε

∫ t

0

E[(ρ2 + |Y ε
n,ρ(s)|2)1/ε]ds.
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Hence,

E[(ρ2 + |Y ε
n,ρ(t)|2)1/ε] ≤ ρ2/εe

Ct
ε .

Since

(ρ2 + δ2)
1
ε P (ξε

n,ρ ≤ 1) ≤ E[(ρ2 + |Y ε
n,ρ(1)|2)1/ε],

we have

P (ξε
n,ρ ≤ 1) ≤

(
ρ2

ρ2 + δ2

) 1
ε

e
C
ε . (22)

Therefore,

lim sup
ε→0

ε log P (ξε
n,ρ ≤ 1) ≤ log

(
ρ2

ρ2 + δ2

)
+ C. (23)

Given M > 0, first choose ρ sufficiently small so that log( ρ2

ρ2+δ2 ) + C ≤ −2M , and then use (18) to choose

N so that lim supε→0 ε log P (τε
n,ρ ≤ 1) ≤ −2M for n ≥ N . Combining these two facts gives

lim
n→∞

lim sup
ε→0

ε log P
(

sup
−1≤t≤1

|Xε(t)−Xε
n(t)| > δ

) ≤ −M.

Since M is arbitrary, we have proved (13) for m = 1. Assume now (13) holds for some integer m. We will

prove it is also true for m + 1. Let Y ε
n , τε

n,ρ be defined as before. In addition, introduce two new stopping

times:

τ1,ε
n,ρ := inf{t ≥ 0; |Xε(t− 1)−Xε

n(t− 1)| ≥ ρ},

τ2,ε
n,ρ := inf

{
t ≥ 0;

∣∣Xε
n(t− 1)−Xε

n

(
[nt]
n
− 1

)∣∣ ≥ ρ

}
,

and define Zε
n,ρ(t) := Y ε

n (t ∧ τ1,ε
n,ρ ∧ τ2,ε

n,ρ ∧ τε
n,ρ) and ξ̄ε

n,ρ := inf{t ≥ 0; |Zε
n,ρ(t)| ≥ δ}. We then have

P
(

sup
t≤m+1

|Y ε
n (t)| > δ

) ≤ P (τ1,ε
n,ρ ∧ τ2,ε

n,ρ ∧ τε
n,ρ ≤ m + 1)

+ P ( sup
t≤m+1

|Y ε
n (t)| > δ, τ1,ε

n,ρ ∧ τ2,ε
n,ρ ∧ τ ε

n,ρ > m + 1
)

≤ P (τ1,ε
n,ρ ≤ m + 1) + P (τ ε

n,ρ ∧ τ2,ε
n,ρ ≤ m + 1) + P (ξ̄ε

n,ρ ≤ m + 1).

(24)

As in the proof of (18),

lim
n→∞

lim sup
ε→0

ε log P (τε
n,ρ ∧ τ2,ε

n,ρ ≤ m + 1) = −∞. (25)

By the induction hypothesis,

lim
n→∞

lim sup
ε→0

ε log P (τ1,ε
n,ρ ≤ m + 1)

≤ lim
n→∞

lim sup
ε→0

ε log P
(

sup
−1≤t≤m

|Xε(t)−Xε
n(t)| > ρ

)
= −∞.

(26)

Again by Itô’s formula,

M̄n,ρ
t := φλ(Zε

n,ρ(t))−
∫ t∧τε

n,ρ∧τ1,ε
n,ρ∧τ2,ε

n,ρ

0

γε
λ(s)ds− ρ2λ (27)
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is a martingale with M̄n,ρ
0 = 0, where

γε
λ(s) ≤ 2λ(ρ2 + |Y ε

n (s)|2)λ−1|Y ε
n (s)|(|Y ε

n (s)|+ |Xε(s− 1)−Xε
n(s− 1)|)

+
{
4λ(λ− 1)ε(ρ2 + |Y ε

n (s)|2)λ−2|Y ε
n (s)|2 + 2λε(ρ2 + |Y ε

n (s)|2)λ−1
}

×
{

(
σ(s,Xε(s), Xε(s− 1)

)− σ

(
[ns]
n

,Xε(s), Xε(s− 1)
)2

+ |Y ε
n (s)|2 +

∣∣Xε
n(s)−Xε

n

(
[ns]
n

)∣∣2

+
∣∣Xε

n(s− 1)−Xε
n

(
[ns]
n

− 1
)∣∣2 + |Xε(s− 1)−Xε

n(s− 1)|2
}

≤ 2λ(ρ2 + Y ε
n (s)2)λ−1|Y ε

n (s)|(|Y ε
n (s)|+ ρ)

+
{
4λ(λ− 1)ε(ρ2 + |Y ε

n (s)|2)λ−2|Y ε
n (s)|2 + 2λε(ρ2 + |Y ε

n (s)|2)λ−1
}

× (|Y ε
n (s)|2 + 4ρ2)

≤ c(λ + λε + λ2ε)φ(Y ε
n (s))

(28)

for s ≤ τ ε
n,ρ ∧ τ1,ε

n,ρ ∧ τ2,ε
n,ρ ∧ (m + 1), and sufficiently large n.

Using (25), (26) and following the proof of the case for m = 1, we see that (13) is also true for m + 1.

This completes the proof of the lemma.

For n ≥ 1, define the map Fn(·) : C0([0, m],Rl) → Cψ([−1,m],Rd) by

Fn(ω)(t) := ψ(t), −1 ≤ t ≤ 0

Fn(ω)(t) := Fn(ω)
(

k

n

)
+

∫ t

k
n

b(s, Fn(ω)(s), Fn(ω)(s− 1))ds

+ σ

(
k

n
, Fn(ω)

(
k

n

)
, Fn(ω)

(
k

n
− 1

))(
ω(t)− ω

(
k

n

))
(29)

for k
n ≤ t ≤ k+1

n . It is easy to see that Fn : C0([0,m],Rl) → Cψ([−1, m],Rd) is continuous.

Lemma 3.4. lim
n→∞

sup
{g;e(g)≤α}

sup
−1≤t≤m

|Fn(g)(t)− F (g)(t)| = 0.

Proof. Note that for g with e(g) ≤ α,

Fn(g)(t) =Fn(g)(0) +
∫ t

0

b
(
s, Fn(g)(s), Fn(g)(s− 1)

)
ds

+
∫ t

0

σ

(
[ns]
n

, Fn(g)
(

[ns]
n

)
, Fn(g)

(
[ns]
n

− 1
))

ġ(s)ds.

(30)

Thus,
Fn(g)(t)− F (g)(t)

=
∫ t

0

[
b(s, Fn(g)(s), Fn(g)(s− 1))− b

(
s, F (g)(s), F (g)(s− 1)

)]
ds

+
∫ t

0

[
σ

(
[ns]
n

, Fn(g)
(

[ns]
n

)
, Fn(g)

(
[ns]
n

− 1
))

− σ
(
s, F (g)(s), F (g)(s− 1)

)]
ġ(s)ds.

(31)
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By the linear growth condition on b and σ, we have

|Fn(g)(t)| ≤ |ψ(0)|+ C

∫ t

0

(
1 + 2 sup

−1≤u≤s
|Fn(g)(u)|)ds

+ C

∫ t

0

(
1 + 2 sup

−1≤u≤s
|Fn(g)(u)|)|ġ|(s)ds.

Using Grownwall’s inequality, this implies that

sup
n≥1

sup
−1≤u≤m

|Fn(g)|(u) ≤ C exp
(
2m + 2e(g)

)
. (32)

In particular,

Mα = sup
g;e(g)≤α

sup
n≥1

sup
−1≤u≤m

|Fn(g)(u)|)| ≤ C exp(2m + 2α) < ∞. (33)

Again by the linear growth condition and (30), we have

∣∣Fn(g)(t)− Fn(g)
(

[ns]
n

)∣∣ ≤
∫ t

[nt]
n

|b(s, Fn(g)(s), Fn(g)(s− 1)
)|ds

+
∫ t

[nt]
n

∣∣σ
(

[ns]
n

, Fn(g)
(

[ns]
n

)
, Fn(g)

(
[ns]
n

− 1
))∣∣|ġ|(s)ds

≤ CαMα

(
1
n

) 1
2

→ 0

(34)

uniformly over the set {g; e(g) ≤ α}. Thus,

|Fn(g)(t)− F (g)(t)|

≤ C

∫ t

0

|Fn(g)(s)− F (g)(s)|ds

+ C

∫ t

0

|Fn(g)(s− 1)− F (g)(s− 1)|ds

+
∫ t

0

sup
x,y

∣∣σ
(

[ns]
n

, x, y

)
− σ(s, x, y)

∣∣|ġ|(s)ds

+ C

∫ t

0

[|Fn(g)(s− 1)− F (g)(s− 1)|

+ |Fn(g)(s)− F (g)(s)|]|ġ|(s)ds

+
∫ t

0

[∣∣Fn(g)(s)− Fn(g)
(

[ns]
n

)∣∣

+
∣∣Fn(g)(s− 1)− Fn(g)

(
[ns]
n

− 1
)∣∣

]
|ġ|(s)ds (35)

≤ Cα

[(
1
n

) 1
2

+ sup
s

sup
x,y

∣∣σ
(

[ns]
n

, x, y

)
− σ(s, x, y)

∣∣2
]

+ 2
∫ t

0

sup
−1≤u≤s

||Fn(g)(u)− F (g)(u)|ds

+ 2
∫ t

0

sup
−1≤u≤s

||Fn(g)(u)− F (g)(u)||ġ|(s)ds. (36)
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This gives,

sup
−1≤u≤m

|Fn(g)(u)− F (g)(u)|

≤ C̃Cα

[(
1
n

) 1
2

+
∣∣ sup

s
sup
x,y

∣∣σ
(

[ns]
n

, x, y

)
− σ(s, x, y)

∣∣2
]

.
(37)

Hence,

lim
n→∞

sup
{g;e(g)≤α}

sup
−1≤t≤m

|Fn(g)(t)− F (g)(t)| = 0.

This proves the lemma.

Proof of Theorem 3.1 when b, σ are bounded. Notice that Xε
n(s) = Fn(ε

1
2 W )(s), where W is the Brownian

motion. The theorem follows from Lemma 3.3, Lemma 3.4 and the generalized contraction principle (Theo-

rem 4.2.23 [1]) in large deviations theory..

Next, we remove the boundedness assumptions on b and σ. We begin with

Proposition 3.5. Assume that

|σ(t, x, y)| ≤ C(1 + |x|+ |y|), (38)

|b(t, x, y)| ≤ C(1 + |x|+ |y|), (39)

for all x, y ∈ Rd. Then for each integer m ≥ 1,

lim
R→∞

lim sup
ε→0

ε log P
(

sup
−1≤t≤m

|Xε(t)| > R
)

= −∞ (40)

where Xε(·) is the solution to equation (6).

Proof. We use induction on m. We first prove (40) for m = 1. For λ > 0, set φλ(y) := (1 + |y|2)λ, y ∈ Rd.

By Itô’s formula, the process

Mλ
t := φλ(Xε(t))−

∫ t

0

γε
λ(s)ds− (1 + |x|2)λ, t ≥ 0, (41)

is a martingale with initial value zero, where

γε
λ(s) = 2λ

(
1 + |Xε(s)|2)λ−1〈

Xε(s), b
(
s,Xε(s), Xε(s− 1)

)〉

+ 2λ(λ− 1)ε
(
1 + |Xε(s)|2)λ−2|(σ(s, Xε(s), Xε(s− 1)

)∗
Xε(s)|2

+ λε
(
1 + |Xε(s)|2)λ−1||σ(

s,Xε(s), Xε(s− 1)
)∗|2H.S ,
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for s ≤ 1. Since Xε(u) = ψ(u) for u ≤ 0, it follows that

γε
λ(s) ≤ 2λ

(
1 + |Xε(s)|2)λ−1|Xε(s)|[1 + |Xε(s)|+ sup

−1≤t≤0
|ψ(t)|]

+ 2λ(λ− 1)ε
(
1 + |Xε(s)|2)λ−2|Xε(s)|[1 + |Xε(s)|

+ sup
−1≤t≤0

|ψ(t)|]2 + λε
(
1 + |Xε(s)|2)λ−1[1 + |Xε(s)|

+ sup
−1≤t≤0

|ψ(t)|]2 ≤ Cψ

(
λ + λ(λ + 1)ε

)
φλ

(
Xε(s)

)
.

(42)

Let ξε
R := inf{t ≥ 0, |Xε(t)| > R}. Choosing λ = 1

ε , it follows from (42) that

E
[
(1 + |Xε

(
t ∧ ξε

R)|2)
1
ε
]

≤ (1 + |x|2) 1
ε +

C

ε

∫ t

0

E
[
(1 + |Xε(s ∧ ξε

R)|2) 1
ε

]
ds.

(43)

Hence,

E
[
(1 + |Xε(t ∧ ξε

R)|2) 1
ε

] ≤ (1 + |x|2) 1
ε e

C
ε . (44)

This implies
P ( sup

−1≤t≤1
|Xε(t)| > R) ≤ P

(
ξε
R ≤ 1

)

≤ (1 + R2)
1
2 (1 + |x|2) 1

ε e
C
ε .

(45)

Hence,

lim
R→∞

lim sup
ε→0

ε log P
(

sup
−1≤t≤1

|Xε(t)| > R
)

= −∞. (46)

Assume now that (40) holds for some m. We will prove that it is also true for m + 1. For R1 > 0, set

ξε
1 := inf{t ≥ 0, |Xε(t− 1)| ≥ R1} and Xε

1(t) := Xε(t ∧ ξε
1). Define ξε

R := inf{t ≥ 0, |Xε
1(t)| ≥ R}. Then,

P ( sup
−1≤t≤m+1

|Xε(t)| > R) (47)

≤ P (ξε
1 ≤ m + 1) + P (ξε

R ≤ m + 1) (48)

= P ( sup
−1≤t≤m

|Xε(t)| > R1) + P (ξε
R ≤ m + 1). (49)

As before, by Itô’s formula,

M̄λ
t := φλ(Xε

1(t))−
∫ t∧ξε

1

0

γε
λ(s)ds− (1 + |x|2)λ, t ≥ 0, (50)

is a martingale with initial value zero, where

γε
λ(s) ≤ 2λ

(
1 + |Xε(s)|2)λ−1|Xε(s)|[1 + |Xε(s)|+ R1

]

+ 4λ(λ− 1)ε(1 + |Xε(s)|2)λ−2|Xε(s)|2[1 + |Xε(s)|+ R1]2

+ 2λε
(
1 + |Xε(s)|2)λ−1[1 + |Xε(s)|+ R1

]2

≤ CR1

(
λ + λ(λ + 1)ε

)
φλ

(
Xε(s)

)
.

(51)

for s ≤ 1 ∧ ξε
1.
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Using (51) and the proof of (46), we get

lim sup
ε→0

ε log P (ξε
R ≤ m + 1)

≤ − log(1 + R2) + log(1 + |x|2) + CR1(m + 1).
(52)

Thus it follows from (49) that

lim sup
ε→0

ε log P ( sup
t≤m+1

|Xε(t)| ≥ R)

≤ (lim sup
ε→0

ε log P
(

sup
t≤m

|Xε(t)| ≥ R1)
)

∨ (− log(1 + R2) + log(1 + |x|2) + CR1(m + 1)
)
.

(53)

Hence,

lim
R→∞

lim sup
ε→0

ε log P ( sup
t≤m+1

|Xε(t)| ≥ R)

≤ lim sup
ε→0

ε log P (sup
t≤m

|Xε(t)| ≥ R1).

Using the induction hypothesis and letting R1 →∞ we obtain (40) for m + 1. This completes the proof of

the proposition.

For R > 0, define mR := sup{|b(t, x, y)|, |σ(t, x, y)|; t ∈ [0,m], |x| ≤ R, |y| ≤ R} and bR
i := (−mR −

1) ∨ bi ∧ (mR + 1), σR
i,j := (−mR − 1) ∨ σi,j ∧ (mR + 1), 1 ≤ i, j ≤ d. Put bR := (bR

1 , bR
2 , ..., bR

d ) and

σR := (σR
i,j)1≤i,j≤d. Then

bR(t, x, y) = b(t, x, y), σR(t, x, y) = σ(t, x, y),

for t ∈ [0,m], |x| ≤ R, |y| ≤ R. Furthermore, bR and σR satisfy the Lipschitz condition (A.1) with the same

Lipschitz constant.

Let Xε
R(·) be the solution to the sdde

Xε
R(t) = Xε

R(0) +
∫ t

0

bR(s,Xε
R(s), Xε

R(s− 1))ds

+ ε
1
2

∫ t

0

σR(s,Xε
R(s), Xε

R(s− 1))dWs, t > 0,

Xε
R(t) = ψ(t), t ∈ [−1, 0].

(54)

Proposition 3.6. Fix m ≥ 1. Then

lim
R→∞

lim sup
ε→0

ε log P ( sup
−1≤t≤m

|Xε(t)−Xε
R(t)| > δ) = −∞. (55)

Proof. Again we will use induction. We omit the proof for the case m = 1 since it is similar to that of

Lemma 3.3. Let us assume that (55) holds for some m. We will prove that it also holds for m + 1. Set
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Y ε
R(t) := Xε(t)−Xε

R(t). For R1 > 0, define ξε
R1

:= inf{t ≥ 0; |Xε(t)| ≥ R1}. For any R ≥ R1 we have

Y ε
R(t ∧ ξε

R1
)

=
∫ t∧ξε

R1

0

[
bR(s,Xε(s), Xε(s− 1)− bR(s,Xε

R(s), Xε
R(s− 1)

]
ds

+ ε
1
2

∫ t∧ξε
R1

0

[
σR

(
s,Xε(s), Xε(s− 1)

)

− σR

(
s,Xε

R(s), Xε
R(s− 1)

)]
dWs, t ≥ 0.

(56)

For ρ > 0 , let φλ(y) := (ρ2 + |y|2)λ and τ ε
R,ρ := inf{t ≥ 0; |Xε(t − 1) − Xε

R(t − 1)| ≥ ρ}. Set Y ε
R,ρ(t) :=

Y ε
R(t ∧ ξε

R1
∧ τ ε

R,ρ) and ξε
R,ρ := inf{t ≥ 0; |Y ε

R,ρ(t)| ≥ δ}. Then

P

(
sup

−1≤t≤m+1
|Y ε

R(t)| > δ

)
≤ P (ξε

R1
≤ m + 1)

+ P (τε
R,ρ ≤ m + 1) + P (ξε

R,ρ ≤ m + 1)

≤ P

(
sup

−1≤t≤m+1
|Xε(t)| > R1

)

+ P ( sup
−1≤t≤m

|Xε(t)−Xε
R(t)| > ρ) + P (ξε

R,ρ ≤ m + 1).

(57)

By the induction hypothesis,

lim
R→∞

lim sup
ε→0

ε log P

(
sup

−1≤t≤m
|Xε(t)−Xε

R(t)| > ρ

)
= −∞. (58)

By Itô’s formula,

φλ(Y ε
R,ρ(t))−

∫ t∧ξε
R1
∧τε

R,ρ

0

γε
λ(s)ds− ρ2λ = MR,ρ

t (59)

is a martingale with initial value zero, where, as in the proof of Lemma 3.3, for s ≤ t ∧ ξε
R1
∧ τε

R,ρ,

γε
λ(s) ≤ C(λ + λ(λ + 1)ε)φλ(Y ε

R(s)). (60)

As before, this implies that

lim sup
ε→0

ε log P (ξε
R,ρ ≤ m + 1) ≤ log

(
ρ2

ρ2 + δ2

)
+ C. (61)

Hence, it follows from (57), (58) and (60) that

lim
R→∞

lim sup
ε→0

ε log P ( sup
−1≤t≤m+1

|Y ε
R(t)| > δ)

≤ (
lim sup

ε→0
ε log P ( sup

−1≤t≤m+1
|Xε(t)| > R1)

)

∨
{

log
(

ρ2

ρ2 + δ2

)
+ C

}
.

(62)

By Proposition 3.5, letting first ρ → 0 and then, R1 →∞, we obtain (55) for m+1. The proof of Proposition

3.6 is complete.
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For g with e(g) < ∞, let FR(g) be the solution to the dde

FR(g)(t) = FR(g)(0) +
∫ t

0

bR

(
s, FR(g)(s), FR(g)(s− 1)

)
ds

+
∫ t

0

σR

(
s, FR(g)(s), FR(g)(s− 1)

)
ġ(s)ds

FR(g)(t) = ψ(t), −1 ≤ t ≤ 0.

(63)

Define

IR(f) := inf
{

1
2
e(g); FR(g) = f

}
(64)

for each f ∈ Cψ

(
[−1,m] → Rd

)
. If sup

−1≤t≤m
|F (g)(t)| ≤ R, then F (g) = FR(g). Therefore,

I(f) = IR(f), for all f with sup
−1≤t≤m

|f(t)| ≤ R. (65)

Lemma 3.7. I(·) is a good rate function on Cψ([−1,m],Rd); that is, for any α ≥ 0, the level set {f ; I(f) ≤
α} is compact.

Proof. As in Lemma 3.4, we can show that lim
R→∞

sup
e(g)≤α

|FR(g) − F (g)| = 0. In particular, this implies that

F (·) is continuous on each level set {g; e(g) ≤ α}. Since e(·) is a good rate function, this is sufficient to

conclude that I(·) is also a good rate function.

Proof of Theorem 3.1 in the unbounded case. For R > 0 and a closed subset C ⊂ Cψ([−1, m],Rl), set CR =

C ∩ {f ; ||f ||∞ ≤ R}. Cδ
R denotes the δ-neighborhood of CR. Denote by µR

ε the law of Xε
R. Then we have

µε(C) ≤ µε(CR1) + P ( sup
−1≤t≤m

|Xε(t)| > R1)

≤ µR
ε (Cδ

R1
) + P ( sup

−1≤t≤m
|Xε(t)−Xε

R(t)| > δ)

+ P ( sup
−1≤t≤m

|Xε(t)| > R1).

(66)

Using the large deviation principle for {µR
ε , ε > 0}, we obtain

lim sup
ε→0

ε log µε(C)

≤ (− inf
f∈Cδ

R1

IR(f)
) ∨ (

lim sup
ε→0

ε log P ( sup
−1≤t≤m

|Xε(t)| > R1)
)

∨ (lim sup
ε→0

ε log P ( sup
−1≤t≤m

|Xε(t)−Xε
R(t)| > δ).

(67)

Sending R to infinity gives

lim sup
ε→0

ε log µε(C)

≤ (− inf
f∈Cδ

R1

I(f)
) ∨ (

lim sup
ε→0

ε log P ( sup
−1≤t≤m

|Xε(t)| > R1)
)
.

(68)

Letting first δ → 0, and then R1 →∞, we obtain

lim sup
ε→0

ε log µε(C) ≤ − inf
f∈C

I(f)

which is the upper bound (9) in Theorem 3.1.
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Let G be an open subset of Cψ([−1,m] → Rd). Fix any φ0 ∈ G and choose δ > 0 such that

B(φ0, δ) = {f ; ||f − φ0||∞ ≤ δ} ⊂ G. Then

−IR(φ0) ≤ lim sup
ε→0

ε log µR
ε

(
B(φ0,

δ

2
)
)

≤ (
lim sup

ε→0
ε log µε(G)

)

∨
(

(lim sup
ε→0

ε log P

(
sup

−1≤t≤m
|Xε(t)−Xε

R(t)| > δ

2

))
.

(69)

Note that IR(φ0) = I(φ0) for all R ≥ ||φ0||∞. So, letting R →∞ in the above inequality, we get

−I(φ0) ≤ lim sup
ε→0

ε log µε(G). (70)

Since φ0 is arbitrary, it follows that

− inf
f∈G

I(f) ≤ lim sup
ε→0

ε log µε(G)

which is the lower bound (10) in Theorem 3.1. The proof of Theorem 3.1 is now complete.

Remark. The results in this paper can be easily extended to the case, where different delays τ1, τ2 are

allowed in (6):

dXε(t) = b
(
t,Xε(t), Xε(t− τ1)

)
dt + ε

1
2 σ

(
t,Xε(t), Xε(t− τ2)

)
dWt, t ∈ (0,∞),

Xε(t) = ψ(t), t ∈ [−(τ1 ∨ τ2), 0].
(71)
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