Southern Illinois University Carbondale

OpenSIUC

Department of Electrical and Computer

Conference Proceedings i i
Engineering

3-2008

A Low-Power Double-Edge-Triggered Address
Pointer Circuit for FIFO Memory Design

Saravanan Ramamoorthy
Southern Illinois University Carbondale

Haibo Wang
Southern Illinois University Carbondale, haibo@engr.siu.edu

Sarma Vrudhula
Arizona State University at the Tempe Campus

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece confs

Published in Ramamoorthy, S., Wang, H., & Vrudhula, S. (2008). A low-power double-edge-
triggered address pointer circuit for FIFO memory design. 9th International Symposium on Quality
Electronic Design, 2008 (ISQED 2008), 123-126. doi: 10.1109/ISQED.2008.4479711 ©2008
IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Copyright and all rights therein are retained by authors or by other
copyright holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder.

Recommended Citation

Ramamoorthy, Saravanan; Wang, Haibo; and Vrudhula, Sarma, "A Low-Power Double-Edge-Triggered Address Pointer Circuit for
FIFO Memory Design" (2008). Conference Proceedings. Paper S1.
http://opensiuc.lib.siu.edu/ece confs/51

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted

for inclusion in Conference Proceedings by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.


http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs/51?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

9th International Symposium on Quality Electronic Design

A Low-Power Double-Edge-Triggered Address Pointer Circuit for FIFO
Memory Design

Saravanan Ramamoorthy and Haibo Wang

Dept. of Electrical and Computer Engineering
Southern Illinois University
Carbondale, IL 62901

Abstract

This paper presents a novel design of address pointer
for FIFO memory circuits. Advantages of the proposed
design include: reduced capacitive load on the pointer
clock path, the use of a true single-phase clock, and double-
edge-triggering clock scheme. The circuit has low power
consumption, is immune to circuit racing conditions and
suitable for high-speed operations. Techniques to imple-
ment clock gating in pointer circuit design for further re-
ducing power consumption are also discussed. The pro-
posed circuit is implemented with a 65nm CMOS tech-
nology and its performance is compared with previous
pointer circuits.

1 Introduction

First-in first-out (FIFO) memories have been widely
used in modern electronic systems. A high-speed FIFO
is usually implemented using a two-port RAM array (one
port for read operation and the other for write operation)
and two address pointers for tracing the read and write
memory accesses [ 1,2, 3, 4]. An address pointer functions
as a token-passing circuit which passes a logic 1 (the to-
ken) along its outputs, which control the word-line drivers
or column selection circuits of the RAM array. A straight-
forward implementation of the address pointer is a cyclic
shift register chain. Since the number of flip-flops in the
shift register increases with the size of the RAM array,
address pointers designed for large RAM arrays normally
occupy large silicon areas and have heavy cumulative ca-
pacitive load on the clock signal paths, resulting in large
power consumption and degraded circuit speed.

Previously, several circuit techniques have been pro-
posed to reduce pointer circuit area and the capacitive load
on the clock paths of pointer circuits. D flip-flops (DFFs)
without clear inputs are used in address pointer design [4],
which results in a 17% layout area saving. However, due
to the lack of a global clear input, the address pointer must
go through a length multi-cycle reset operation for initial-
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ization. To reduce the pointer clock load, the pointer cir-
cuit presented in [1] uses pass-transistors, instead of com-
plementary transmission gates, in the DFF circuit. While
resulting in significant power reduction, this approach po-
tentially suffers from notable speed degradation when low
voltage supply is used. D latches are used in address pointer
circuit presented in [5]. The latches are classified as odd
latches and even latches according to their positions in the
pointer circuit. Odd and even latches fetch data at differ-
ent clock phases. Thus, a double-edge-triggering (DET)
clock scheme is achieved. Since pass-transistors are also
used in the latch circuits of the above design, it is not suit-
able for low-voltage application neither.

In this work, we present a novel address pointer de-
sign. At each stage of the proposed pointer circuit, only
one transistor is connected to the pointer clock. Thus, the
clock load is dramatically reduced in the proposed circuit.
Unlike most of the previous pointer circuits that use both
clock (clk) and its complementary signal (clk), the pro-
posed circuit only needs a true single-phase clock signal
and hence is immune to circuit racing conditions caused
by clock skew between clk and clk [6]. In addition, the
proposed design uses a DET clock scheme to accommo-
date the double date rate technique, which is now widely
used in high-throughput system design. Finally, clock gat-
ing techniques are presented in the paper to further reduce
power consumption of the address pointer circuit. Exper-
imental results are presented to compare the performance
of the proposed circuit with other designs.

The rest of the paper is organized as follows. Section 2
describes the proposed circuit. Clock gating techniques
for pointer circuits are discussed in Section 3. Experi-
mental results are presented in Section 4 and the paper is
concluded in Section 5.

2 Proposed Design

The proposed address pointer circuit consists of two
types of basic cells, referred to as n-cell and p-cell, respec-
tively. The circuit structures of n-cell and p-cell are shown
in Figure 1. Each type of cell circuit contains three inputs:
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clock (CK), data (D), and clear (CLR) ports. In addition,
each cell has an output port Q and its complementary out-
put port QB. For an n-cell, its output Q is set to 1 only
when the clock and data input D both are high. Q is re-
set to 0 when CLR=0. To ensure proper circuit operation
and avoid a large DC current, the pull-up and pull-down
network of the n-cell can never be activated simultane-
ously. The operation of a p-cell is the exactly reverse to
the operation of the n-cell. The output port Q of the p-
cell is set to 1 when both clock and data input D are low,
and Q is reset to 0 when CLR=1. Similarly, the pull-up
and pull-down network of the p-cell are never turned on
at the same time. The inverters in the feedback paths of
n-cells and p-cells are weak inverters (to be implemented
by devices with small W/ L ratios), which prevent circuit
nodes from floating when both the pull-up and pull-down
networks of n- or p-cells are off. Because of the sporadic
nature of FIFO write and read operations, it is important
to avoid floating circuit nodes (dynamic circuit behaviors)
in address pointers. Otherwise, leakage current may cor-
rupt the logic value on the floating node and cause circuit
malfunction.

QB p 40050 Q
CLR —
P 200/50 P 200/50
200/50 NTOO50 o 100/50 ] N 100/50
— CK 1 ﬂ
o J N Qs
200/5 - .-
100/50 L~
P 100/250 CLR P 1001250

N100/250 N100/250

D_'|
200750

N-Cell P-Cell

Figure 1. Schematic of the proposed n- and
p-cells.

The connections of n- and p-cells as well as the overall
circuit structure, including the starting circuit are shown
in Figure 2. The key points of this structure are:

1. All the cells are initialized to 0 before starting oper-
ation. (This can be done by a multi-cycle reset op-
eration similar to the one in [4] or adding a global
reset input to all the cells.)

. A starting circuit provides the 1 to be injected into
the pointer circuit in the first shifting operation. When
the 1 reaches the second cell, the SR latch is reset
and from that point onwards, the D input of the first
cell is logically connected to the output of the last
cell.

. The data input of a p-cell is connected to the com-
plementary output of the previous n-cell so that the
p-cell is set to 1 on the falling edge of the clock
when the previous cell output is 1.

The data input of a n-cell is connected to the non-
inverting output of the previous p-cell in order that
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the n-cell is set to 1 on the rising edge of the clock
when the previous cell output is 1.

. Whenever a cell output is set to 1, its complemen-
tary output will turn off the previous pointer output.

. The CLR (clear) input of the n-cell in position j is
connected to the complementary output of the n-
cell in position j + 2. If the n-cell in position j
received a 1 on the j;, clock transition, then on the
next rising clock transition, the 1 will appear in cell
j + 2. Hence the complementary output (which is
0) of cell j + 2 resets cell j to 0. Similarly, the CLR
input of the p-cell in position ¢ is connected to the
non-inverting output of the p-cell in position: ¢ + 2.

AND, AND,

P: 200/50

To AND.
° N N: 200/50

N-cell

D, Q

QB

! CLR;
|

P-cell

b, Q,
R

From QB
From Q;

LR

ToCLR,,
To CLREN

Clock

(a) Connections between n- and p-cells.

Q2N

-

CLRyy

Q2

CLR2N Input of

AND o\

(b) The overall circuit connection.
Figure 2. The proposed pointer circuit.

The proposed address pointer circuit has a number of
advantages. First, each cell in the proposed design con-
tributes only one gate capacitance to the clock net. Also,
the proposed design uses less number of transistors than
most of the previous designs. It results in a smaller layout
area and, consequently, a shorter clock routing path with
smaller interconnect parasitic capacitance. These factors
will dramatically decrease the capacitive load on the pointer
clock path. Second, the pointer circuit only needs a true
single-phase clock. Thus, it is immune to racing condi-
tions, which makes it particularly suitable for high-speed
design. The circuit avoids the use of single-channel pass-
transistors and, hence, no threshold voltage loss occurs
during signal propagation, making it attractive in designs
with reduced power supply voltage.

3 Clock Gating Technique in Pointer Design

Further power reduction for the pointer circuit can be
achieved by partitioning the whole circuit into several blocks

Authorized licensed use limited to: Southern lllinois University Carbondale. Downloaded on May 29, 2009 at 12:13 from IEEE Xplore. Restrictions apply.



and the clock signal is connected only to the block in
which the logic 1 is shifted. This clock gating technique
can be easily implemented by using RS-latches and AND
gates as shown in Figure 3. The clock is fed into a block
only when the output of the corresponding latch is logic 1.
The operation of the clock gating circuit is explained by
the following example. If the output of the My, RS-latch
is high, the clock signal is connected to the My, block and
logic 1 is being shifted within this block. When the last
pointer output in this block is set to 1, the My, RS-latch is
reset and the clock signal is disconnected from this block.
Meanwhile, the (M + 1), RS-latch is set and clock sig-
nal is connected to the (M + 1)y, block. Therefore, after
next clock transition, logic 1 is transferred from the My,
block to the (M + 1)1, block. As the pointer circuit is a
cyclic structure, the set port of the first RS-latch is con-
nected to the last pointer output. Before starting opera-
tion, all the RS-latches are reset to 0, except for the first
latch, which is set to logic 1. Since both a positive and
a negative edge can trigger shifting operation, the circuit
should be designed carefully to prevent additional tran-
sitions from being generated at the output of AND gates.
Thus, switching the clock signal from one block to another
block must be always scheduled during the low period of
the clock. This implies that the first and last cell of each
block should be an n-cell and a p-cell, respectively, result-
ing in an even number of cells in each block.

The last output of

sub-block M Ed I_ sub-block M+1

—>| Block M |——'| Block M+1 I——’

Sub-clock Sub-clock

The last output of

Q Q

Set by the
previous
sub-block —#>—

Set next
-5 sub-block

Global Clock Signal
Figure 3. Clock gating technique in pointer
circuit.

4 Experimental Results

To compare the proposed design with other pointer im-
plementations, four 256-bit DET pointer circuits, referred
to as Proposed design, Ref. design I, Ref. design 2, and
Ref. design 3, are implemented using a 65nm CMOS tech-
nology. The proposed design uses the technique discussed
in this paper. The Ref. design 1 is based on the technique
presented in [5]. The Ref. design 2 and 3 are shift register
based implementations with using DET DFFs presented
in [7, 8], respectively. Transistor sizes used in all the de-
signs are selected according to the following principle: the
equivalent resistance of every pull-up or pull-down path
in the circuits is approximately the same as the equivalent
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resistance of a minimum sized NMOS device of the given
technology. Circuit simulations are performed to verify
the function of the proposed circuit and compare its per-
formance with reference designs. A 1V power supply and
500MHz clock signal are used in the simulation. Figure 4
shows the waveforms of the clock signal and the first three
outputs of the proposed pointer circuit. It clearly shows
the DET pointer function is realized by the proposed cir-
cuit structure.

19 v /ne@420

Clock,
500m, ~J
20
aie = /netS3
,—}/Frm pointer output
Secana painter output
~|
Third pointer output
s Pt
- 100m

00 Ton 200 Son o0 Son
me (=)

(v)

’;aml

-100m

11 e /meisz

T seem

11 o /nets

Figure 4. Simulated pointer outputs.

The power consumption, clock to output delay, and
power-delay product of the four implementations are also
compared through circuit simulations. For more accurate
comparison, parasitic capacitance on clock routing paths
are estimated and included in circuit simulations. The pro-
cedure to estimate the wire load capacitance is briefly dis-
cussed as follows. First, according to circuit stick dia-
grams and design rules of the selected technology we es-
timate the width of each stage of the four pointer circuits.
Second, we use the clock routing scheme as shown in Fig-
ure 5. We partition the 256 cells into 16 groups and each
group contains 16 cells. Cells within a group share a sin-
gle group clock buffer and a global clock buffer drives the
16 group clock buffers. Third, we assume clock intercon-
nects are twice of the minimum wire width and located in
low-k trenches. To consider the congested routing chan-
nels, we assume there are metal layers over and beneath
the clock routing layer. With the above assumptions, the
wire load capacitance are estimated according to capacitor
parameters of the given technology. The estimated capac-
itor values are listed in Columns 2 and 3 in Table 1. Ref.
design 1 uses the least number of transistors and has the
smallest area. Thus, it has the smallest wire load on its
clock path. On the contrary, Ref. design 3 has the largest
wire load capacitance due to the use of complicated DET
DFFs.

The power, delay and power-delay product are obtained
from simulation and listed in the third, fourth and fifth
columns of Table 1. It shows the proposed circuit has
the smallest power consumption and clock to output delay,
thanks to the reduced overall clock load and avoiding the
use of single-channel pass-transistors. Compared to Ref.
designs 1, 2, and 3, the proposed circuit reduces power
consumption by 15.6%, 65.6%, and 86.3%, respectively.
The clock to output delay is also improved in the pro-
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Figure 5. Clock routing path in the pointer
circuit.

Buffer

posed design by the percentages of 6%, 31%, and 44.7%.
The power delay product is improved by the percentage
of 19.6%, 76.4%, and 92.4% compared to the reference
designs.

Table 1. Circuit performance comparison
with estimated wire load.

Circuits C1 Co Power | Delay PDP
@ | @B | @W) | @s) | uW - ps)
Prop. Design 96 6 151 240 36,240
Ref. Design 1 89.6 5.6 179 256 45,056
Ref. Design 2 | 166.4 | 10.4 439 350 153,650
Ref. Design 3 | 244.8 | 15.3 1102 434 478,268

Simulations are also performed to study circuit perfor-
mance when a reduced power supply voltage is used. The
obtained clock to output delays at 0.9V and 0.8V power
supply voltage are listed in Table 2. The second and fourth
columns of the table shows the delays of the four designs.
The third and fifth columns list the delay improvement
by using the proposed circuit. For example, the number
9.4%, at the third column and the row corresponding to
Ref. design 1, means that 9.4% delay improvement is ob-
tained by using the proposed design when compared to
using Ref. design 1. At 0.8V power supply, Ref. design
4 fails to operate with a SO0MHz clock. This is primar-
ily due to its large parasitic capacitance on the clock path
and the clock outputs from the clock buffers are severely
degraded. The simulation results demonstrate that the pro-
posed circuit is more suitable for low-voltage applications
than the three reference designs.

Table 2. Circuit Delay with reduced supply
voltage.

Circuits Vpp = 0.9V Vpp = 0.8V
Delay | Improv. | Delay | Improv.
(ps) (ps)

Prop. Design 290 - 377 -

Ref. Design 1 320 9.4% 438 13.9%

Ref. Design 2 425 31.8% 555 32.1%

Ref. Design 3 546 46.9% N/A N/A

Finally, circuit simulations are performed to demon-
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strate the proposed clock gating technique. Figure 6 shows
a snapshot of the clock waveforms obtained from simu-
lation. The top waveform is the main clock before the
clock gating logic. The second and third waveforms are
the clock signals going to the first and second partitioned
pointer blocks. The fourth waveform is the last output of
the first pointer block and the fifth waveform is the first
output of the second pointer block. Clearly, the pointer
function is not affected by the clock gating scheme. Simu-
lation results show that 51% power reduction can be achieve
by the clock gating technique.

Figure 6. Simulated clock signals and
pointer outputs with clock gating circuits.

5 Conclusions

A novel double-edge-triggered address pointer is de-
veloped for FIFO memory design. The proposed design
results in significant reduction on the cumulative capac-
itive load on the pointer clock path and hence consume
less power consumption compared to previous design, It
uses a true single-phase clock and is immune to circuit rac-
ing conditions. The proposed design is suitable for low-
voltage and high-speed applications.
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