LATTICE MODEL OF THE WEIL REPRESENTATION AND THE HOWE DUALITY CONJECTURE, A TALK BY SHUICHIRO TAKEDA

NOTES BY JOSEPH HUNDLEY

Contents

1.	Theta lifting	1
2.	Previous Results	2
3.	New results	2
4.	Construction of the Weil representation ω_{ψ} .	3
4.1	l. Heisenberg group	3
5.	The lattice model of the Weil representation	3
6.	References	4
References		4

1. Theta lifting

Let F be a non-arch local field of characteristic zero and residual characteristic p. (I.e., a finite extension of \mathbb{Q}_p).

Let V be an F vector space of dimension 2m, and let \langle , \rangle_1 be a symmetric bilinear form $V \times V \to F$. Let W be an F vector space of dimension 2n and let \langle , \rangle_2 be a symplectic form on W.

We define O(V) to be the

$$O(V) := \{g \in GL(V) : \langle gv, gv' \rangle_1 = \langle v, v' \rangle_1 \forall v, v' \in V \}$$

and

$$Sp(W) := \{g \in GL(W) : \langle gw, gw' \rangle_2 = \langle w, w' \rangle_2 \forall w, w' \in W \}$$

Define $\mathbb{W} := V \otimes W$, and equip it with the symplectic form defined on pure tensors by

$$\langle v \otimes w, v' \otimes w' \rangle = \langle v, v' \rangle_1 \langle w, w' \rangle_2, \qquad (v, v' \in V, w, w' \in W).$$

Clearly dim $\mathbb{W} = 4mn$. Moreover $O(V) \times Sp(W) \hookrightarrow Sp(\mathbb{W})$. Now, $Sp(\mathbb{W})$ has a nice representation which is called the Weil representation.

Locally, the theta correspondence is defined by looking at the restriction of the Weil representation to $O(V) \times Sp(W) \hookrightarrow Sp(W)$.

Theorem 1.0.1. There is a unique nontrivial¹ two-fold cover of $Sp(\mathbb{W})$ so that

$$0 \to \{\pm 1\} \to Mp(\mathbb{W}) \to Sp(\mathbb{W}) \to 0$$

and, for each additive character of F, a nice representation of $Mp(\mathbb{W})$ denoted ω_{ψ} called the Weil representation.

Question: What is so nice about this representation?

We'll get to that. But it will take a moment.

Date: March 31, 2012.

¹the trivial two-fold cover is $Sp(\mathbb{W}) \times \{\pm 1\}$; uniqueness is of course up to isomorphism

Theorem 1.0.2. The group $O(V) \times Sp(W)$ splits in $Mp(\mathbb{W})$, i.e., there is a group homomorphism $O(V) \times Sp(W) \hookrightarrow Mp(\mathbb{W})$ such that the composition with the canonical projection $Mp(\mathbb{W}) \to Sp(\mathbb{W})$ is the inclusion $O(V) \times Sp(W) \hookrightarrow Sp(\mathbb{W})$.

Therefore we may view ω_{ψ} as a representation of $O(V) \times Sp(W)$.

Definition 1.0.3. Let π be an irreducible admissible representation of O(V). We define $\Theta_{\psi}(\pi)$ the maximal π -isotypic quotient of ω_{ψ} , i.e., the largest representation $\Theta_{\psi}(\pi)$ such that a $O(V) \times Sp(W)$ intertwining map $\omega_{\psi} \to \pi \otimes \Theta_{\psi}(\pi)$ exists. So, its dual is $\operatorname{Hom}_{O(V)}(\omega_{\psi}, \pi)$.

Remark 1.0.4. It can happen that $\Theta_{\psi}(\pi) = 0$.

Conjecture 1.0.5 (Howe duality conjecture). If $\Theta_{\psi}(\pi) \neq 0$ then $\Theta_{\psi}(\pi)$ has a unique irreducible quotient.

2. Previous Results

Theorem 2.0.6 (Howe, Waldspurger). The Howe duality conjecture holds if the residual characteristic of F is odd.

Theorem 2.0.7 (Kudla). If π is supercuspidal, then Howe duality holds.

Theorem 2.0.8. If dim V and dim W are very small (2, 4 maybe 6), then Howe duality holds.

3. New results

Definition 3.0.9. Let π_F be the uniformizer of F and \mathfrak{o}_F the ring of integers of F. For each integer k let I(k) be the kernel of the reduction map

$$O(V)(\mathfrak{o}_F) \to O(V)\left(\mathfrak{o}_F/\pi_F^{2k}\mathfrak{o}_F\right).$$

We say that π has level k if

- $\pi^{I(k)} \neq 0$
- $\pi^{K} = 0$ for any open compact subgroup which properly contains I(k).

Remark 3.0.10. It is certainly possible for a representation to have no level. That is, there is no reason why the set of maximal elements in

$${K \text{ compact open} : \pi^K \neq 0}^2$$

should contain one of the groups I(k).

Theorem 3.0.11 (T). Assume that dim $V = \dim W$, that O(V) is unramified, and that the residual characteristic is even. Then Howe duality holds as long as π has level $k \ge 1 + e$, where e is the ramification index of 2 in F.

²Here, π^{K} denotes the space of K-fixed vectors of the representation π . The representation π is said to be smooth if every vector is in π^{K} for some K. Thus, if π is smooth one knows that π^{K} is nonempty for some K, and even that the spaces π^{K} (as K varies) exhaust π . When studying representations of p-adic groups, it is very uncommon to consider representations which are not smooth.

4.1. Heisenberg group. Define $H(\mathbb{W})$ to be the group with $\mathbb{W} \times F$ as the underlying set and an operation defined by

$$(w_1, z_1) \cdot (w_2, z_2) = (w_1 + w_2, z_1 + z_2 + \frac{1}{2} \langle w_1, w_2 \rangle).$$

Theorem 4.1.1 (Stone-Von Neumann). Up to isomorphism, $H(\mathbb{W})$ has a unique irreducible representation ρ_{ψ} with central character ψ for each nontrivial character ψ of F.

Now, $Sp(\mathbb{W})$ has a natural action on $H(\mathbb{W})$, because the action of $Sp(\mathbb{W})$ on \mathbb{W} preserves \langle , \rangle and consequently gives a group automorphism of $H(\mathbb{W})$.

Let us now choose a particular realization³ of the representation ρ_{ψ} on a vector space S. For each $a \in Sn(\mathbb{W})$ we define $a^{g}: H(\mathbb{W}) \to CL(S)$ to be the action defined by

For each $g \in Sp(\mathbb{W})$, we define $\rho_{\psi}^g : H(\mathbb{W}) \to GL(S)$ to be the action defined by

$$\rho_{\psi}^{g}(w,z) = \rho_{\psi}(g \cdot (w,z)).$$

One easily checks that ρ_{ψ}^{g} still has central character ψ . So $\rho_{\pi}^{g} \cong \rho_{\psi}$. That is, there exists an operator $M_{g}: S \to S$ such that

$$\rho_{\psi}(w,z)M_g = M_g \circ \rho_{\psi}^g(w,z). \qquad (*)$$

Of course M_q is not unique. It's only unique up to scalar.

Definition 4.1.2. $\widetilde{Sp}(\mathbb{W}) = \{(g, M_g) : g \in \widetilde{Sp}(\mathbb{W}), \text{ and } M_g \text{ satisfies } (*)\}$

Then $\widetilde{Sp}(\mathbb{W})$ is a group, and has a projection to $Sp(\mathbb{W})$.

The group $Mp(\mathbb{W})$ can be defined as a subgroup of $Sp(\mathbb{W})$ such that the following diagram commutes

$$1 \longrightarrow \pm 1 \longrightarrow Mp(\mathbb{W}) \longrightarrow Sp(\mathbb{W}) \longrightarrow 1$$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
$$1 \longrightarrow \mathbb{C}^{\times} \longrightarrow \widetilde{Sp}(\mathbb{W}) \longrightarrow Sp(\mathbb{W}) \longrightarrow 1$$

Remark 4.1.3. That is, $Mp(\mathbb{W})$ is a subgroup of $\widetilde{Sp}(\mathbb{W})$ such that the intersection with \mathbb{C}^{\times} (viz., with the kernel of the projection to $Sp(\mathbb{W})$) is $\{\pm 1\}$. It is far from obvious that there should be a subgroup of $\widetilde{Sp}(\mathbb{W})$ with this property. But it is true.

The natural projection $(g, M_g) \mapsto M_g \in GL(S)$ is a representation of $\widetilde{Sp}(\mathbb{W})$ on the same space S used to realize ρ_{ψ} . We denote this representation ω_{ψ} .

Upshot: to have a nice realization of ω_{ψ} , start with a nice realization of ρ_{ψ} .

5. The lattice model of the Weil Representation

Remark 5.0.4. (In this context "model" is roughly interchangeable with "realization." That is "the" Weil representation is really an isomorphism class and its "models" or "realizations" are the elements of the class.)

Let $A \subset \mathbb{W}$ be a lattice, i.e. a free \mathfrak{o}_F -module of rank 4mn. I.e., the \mathfrak{o}_F span of some basis of \mathbb{W} . Define $A^{\perp} = \{w \in \mathbb{W} : \langle a, w \rangle \in \mathfrak{o}_F, \forall a \in A\}$. We say that A is self dual if $A = A^{\perp}$.

Example: a basis $\{e_1, \ldots, e_{2nm}, f_1, \ldots, f_{2nm}\}$ with $\langle e_i, e_j \rangle = \langle f_i, f_j \rangle = 0$ and $\langle e_i, f_j \rangle = \delta_{i,j}$ will give a self-dual lattice.

Note that if A is self dual then $\langle a, a' \rangle \in \mathfrak{o}_F \forall a, a' \in A$.

³we have introduced ρ_{ψ} as an "abstract" object which is unique up to isomorphism; properly speaking what we have is an isomorphism class, and we need now to choose a particular element of it.

Assume now that $\psi|_{\mathfrak{o}_F}$ is trivial, and that ψ is not trivial on $\pi_F^{-1}\mathfrak{o}_F$. Consider $A \times F \subset \mathbb{W} \times F$. Define $\psi_A : A \times F \to \mathbb{C}^{\times}$ by $\psi_A(a, z) = \psi(z)$.

Proposition 5.0.5. ψ_A is a character on $A \times F$ if the residual characteristic of F is odd. *Proof.*

$$\psi_A((a_1, z_1)(a_2, z_2)) = \psi(z_1 + z_2 + \frac{1}{2} \langle a_1, a_2 \rangle)$$

$$\psi_A(a_1, z_1) \psi_A(a_2, z_2) = \psi(z_1) \psi(z_2).$$

The two are equal provided $\frac{1}{2}$ is a unit in \mathfrak{o}_F , and this is the case precisely when the residual characteristic is odd.

Theorem 5.0.6.

 $\operatorname{ind}_{A \times F}^{\mathbb{W} \times F} \psi_A$ is a model for ρ_{ψ} .

This is called the lattice model for ρ_{ψ} .

Now, if F has even residual characteristic, one can define $\beta : \mathbb{W} \times \mathbb{W} \to F$ by

$$\beta(w_1, w_2) = \langle w_1^+, w_2^- \rangle$$

where $\mathbb{W} = \mathbb{W}^+ \oplus \mathbb{W}^-$ is a polarization. One can then define $H_{\beta}(\mathbb{W})$, a modified version of the Heisenberg group with the group law being

$$(w_1, z_1)(w_2, z_2) = (w_1 + w_2, z_2 + \beta(w_1, w_2))$$

However, the action of $Sp(\mathbb{W})$ on \mathbb{W} does not preserve β , and as a result, does not give rise to an action of $Sp(\mathbb{W})$ on $H_{\beta}(\mathbb{W})$.

6. References

The paper of Weil that introduces the Weil representation is [W]. It's not very easy to read. The theory is also developed in Bump's book. [B] Another standard reference for the local theta correspondence is some notes of Kudla [K]. Dipendra Prasad also has some expository notes on the subject [P], in which he recommends [MVW] for the *p*-adic theory and [H1] and [H2] for the real case. His notes also point us to [Wa] for the completion of the proof of theorem 2.0.6 and to [K2] for that of theorem 2.0.7.

References

- [B] D. Bump, Automorphic forms and representations, Cambridge University Press.
- [H1] R.Howe, Transcending classical invariant theory, J. of the Amer. Math. Soc. vol.2, no.3 (1989), pp. 535-552.
- [H2] R.Howe, Remarks on classical invariant theory, Transactions of AMS 313, vol 2 (1989), pp. 539-570.
- [K] S. Kudla, Notes on the local theta correspondence
- [K2] S.Kudla,On the Local Theta Correspondence, Inv. Math. 83(1986), pp. 229-255.
- [MVW] C. Moeglin, M.-F.Vigneras and J.L.Waldspurger, Correspondence de Howe sur un corps p-adique, LNM 1291, Springer-Verlag(1987)
- [P] D. Prasad, Weil Representation, Howe Duality, and the Theta correspondence
- [Wa] J.L.Waldspurger, Demonstration dune conjecture de duality de Howe dans le cas p-adique, p ?= 2, In: Festschrift in honor of Piatetski-Shapiro, Israel Math. Conf. Proc., vol 2, pp. 267-324 (1990).
- [W] Weil, André Sur certains groupes d'opérateurs unitaires. (French) Acta Math. 111 1964 143211.

E-mail address: jhundley@math.siu.edu

MATH. DEPARTMENT, MAILCODE 4408, SOUTHERN ILLINOIS UNIVERSITY CARBONDALE, 1245 LINCOLN DRIVE CARBONDALE, IL 62901