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Energy is needed in various stages of
desalination.  Energy consumption directly
affects the cost-effectiveness and

feasibility of using desalination technologies for
drinking water production. This chapter presents
energy types, use, methods of conservation, and
the potential use of renewable energy resources
for desalination. Some of the information provided
in this chapter may not be applicable to today’s
desalination energy issues. However, the
information provides a comparison between costs
associated with various energy sources as applied
to desalination worldwide, and can be used as a
reference for future energy development and use
for desalination.

Energy Needs and Consumption

Energy is needed in various stages of desalination.
Desalination technologies use pumps in various
stages of desalination, i.e., feedwater intake,
treatment process, and discharge of product water
and concentrate. Pumps consume a significant
amount of energy. RO plants use pumps to
pressurize feedwater passing through the
membranes.  Ion exchange plants use pumps to pass
the feedwater over the resin, and use backwash
pumps to clean and recharge resin beads.  In
electrodialysis, pumps pressurize feedwater to
generate flow across the surface of the membranes.
The amount of energy pumps consume depends on
the type of process, the TDS concentration in the
feedwater, the capacity of the treatment plant, the
temperature of the feedwater, and the location of
the plant with respect to the location of the intake
water and concentrate disposal site.

Each desalination technology is unique in design and
mode of operation and it is rather difficult to compare
energy consumption for different types of desalination
technologies. Table 1 is a generalization of typical energy
consumption for various technologies.

The energy consumption for reverse osmosis
plants depends on the salinity of the feedwater and
the recovery rate.  Seawater reverse osmosis plants
require higher amounts of energy due to the higher
osmotic pressure of seawater compared to brackish
water reverse osmosis plants. The osmotic pressure
is related to the TDS concentration of the feedwater.
Electrodialysis plants use electric energy to desalt
the water.  For electrodialysis, the energy required
is directly related to the TDS concentration in the
water.  Electrodialysis is economical only for
brackish waters (TDS < 4000 mg/L).

Energy Conservation and Recovery

A system’s ability to conserve or recover energy
is critical for implementing an economical desalination
technology. The section below describes various
energy conservation and recovery techniques.

Methods of Energy Conservation
Pelton impulse turbines (PIT) and hydraulic

turbochargers (HTC) are the most widely used
devices for energy conservation in desalination plants
(Manth et al. 2003). Reverse running pumps may
be found in older facilities, but these pumps are least
effective for energy conservation.

Figure 1 shows the integration of a PIT with a
reverse osmosis plant. Normally, the motor uses
electric energy to drive the feed pump. For energy
conservation purposes, a shaft is used to connect
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Table 1. Energy Consumption for Various Desalination Technologies

Technology Type of Energy Work Consumed, Reference Type of Feedwater
Btu/Gal (kWh/m3)

RO Mechanical Energy 0.0827 (6.4) 1 BW & SW*
0.1034 (8.0) 2
0.1293 (10.0)
0.1138 (8.8) 3
0.0543 (4.2) 4

With Cogeneration 0.0750 (5.8) 5 SW
& Steam 0.0297 (2.3)

ED Electric Energy 0.0220 (1.7) 6 BW
MSF Thermal Energy 0.2431 (18.8) 7 SW

 + Mechanical Energy 0.3000 (23.2)
With Cogeneration 0.0608 (4.7) 5

LT- MEE Thermal & mechanical energy 0.0647 (5.0) 8 SW
With Cogeneration 0.0272 (2.1) 5

0.0595 (4.6)
MEE-TVC Thermal and mechanical energy 0.1164 (9.0) 9 SW

0.2198 (17.0)
MVC Mechanical Energy 0.0776 (6.0) 10 SW

0.1293 (10.0) 2
0.2392 (18.5)

Hybrid RO/ME Thermal & Mechanical energy 1.35-1.6 5 SW

* RO can be used for BW or SW.  Higher energy consumption is equated with SW.
LT—Low temperature top Brine <194 oF       BW—Brackish water       SW—Seawater

Figure 1.  Integration of RO with PIT
Source: Manth et al. 2003

the PIT to the motor. The feed pump is run at a
constant speed and the pressure energy in the brine
is used to rotate the PIT.  As the turbine rotates, it
converts the brine pressure energy to mechanical
energy. The mechanical energy from the PIT is then
directed to the motor shaft that, in turn, drives the
feed pump. Therefore, the motor requires less energy

Figure 2 shows the integration of the hydraulic
turbocharger (HTC) system into a reverse osmosis
plant. The HTC serves as a feed pump and energy
recovery turbine. The HTC directs any remaining
pressure energy in the brine to feed pressure.  Thus,
it boosts the pressure of the feedwater and reduces
the energy used by the first feed pump. The brine
bypass valve is the control device for this system.
This allows the amount of recovered energy to be
managed in order to equate the energy used by the
first feed pump and the added energy to the HTC
with the appropriate pressure energy needed to push
feedwater through the membrane.

Different combinations of turbines, pumps, and
control devices can be used to minimize specific
energy consumption.  One proven combination called
PROP incorporates a variable frequency drive
(VFD)-pump and a Pelton turbine. The advantage

from the electricity grid to drive the feed pump than
it would without the PIT.
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of using a VFD-pump is a significant energy savings
realized from the reduced pump horsepower
requirement. With this arrangement, the turbine
recovers as much energy as possible and the VFD
pump compensates for a marginal energy need. The
size of the VFD pump is decreased significantly
making it much more affordable (Manth et al. 2003).

Control Mechanisms
Membrane systems operate best under

continuous, constant conditions. However, the
characteristics of the natural environment may not
be constant; in fact, they are usually variable.
Salinity and temperature of the feedwater can vary
according to weather and seasonal changes.  It is
necessary to incorporate some type of control to
maintain constant conditions.  Control methods are
of two types, energy dissipation and energy control.

Energy dissipation techniques work by consistently
applying extra energy to membrane pumps.  If the
salinity increases, the extra energy is used to increase
the pressure of the feedwater to keep the flows
constant through the membrane. All excess energy in
the system is dissipated in order to keep the pressure
constant.  This method requires that more energy than
is necessary is consistently applied to the system,
which assures that there is never a lack of energy for
the pumps. Obviously, this approach to dissipating
excess energy is wasteful.  Though it is capable of
keeping the plant operations constant, it is not effective
for conserving energy (Manth et al. 2003).  The brine
bypass valve is an example of an energy dissipation
technique (Figure 2).

The energy control method uses variable frequency
drive (VFD) pumps. These pumps use only as much
energy as is needed, making it much less wasteful
than the dissipation of energy technique. The use of
VFD pumps is most desirable in facilities that have

highly variable operating conditions. The disadvantage
to their use is high investment costs. These pumps
are used in reverse osmosis and electrodialysis plants
(Manth et al 2003).

Cogeneration Plants
It is becoming a common practice to combine

power plants with desalination plants in order to
reduce energy consumption. Combined power and
desalination plants are called cogeneration plants.
The typical power plant produces steam at high
pressure and high temperature.This steam is
expanded, and the pressure difference from the
expansion drives the turbine to form mechanical
energy, and then electrical energy (combustion
turbine power generation cycle). The expanded
steam is typically rejected from the power plant as
waste.  A cogeneration plant, however, uses this low-
grade steam for desalination.

Cogeneration is beneficial to power plants and
desalination plants. The power plant gains extra
income by selling the waste steam to the desalination
plant.  The desalination plant does not have to pay
for the construction and operation of its own boilers,
thus also saving money.  The desalination plant will
use low-grade steam , which saves fossil fuel costs.
A noted disadvantage of cogeneration plants is that
the energy demand varies and the power plant’s
power generation is not constant, which has an impact
on the desalination plant unless mitigation methods
are applied to limit this impact. Researchers report
that cogeneration can achieve cost savings (Darwish
and Al-Najem 2000, Hung et al. 2003).

Co-Located Plants
In this process, a seawater reverse osmosis

(SWRO) plant is co-located with a power plant. In
general, coastal power plants draw large volumes
of cooling water directly from the ocean. A co-
located SWRO plant draws heated seawater from
the power plant’s cooling water loop as feedwater
for RO and then discharges the concentrate stream
into the power plant’s cooling water outflow (Alspach
and Watson 2004). Because the SWRO facility
“piggybacks” on the existing cooling water loop, it
can substantially reduce construction and operating
costs. It also provides a method for diluting the
SWRO brine stream before it is discharged into the
ocean. A co-located SWRO plant has the advantages
of a cogeneration plant.  Also, with co-located plants,

Figure 2.  Integration of RO with HTC
Source: Manth et al. 2003
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because of higher water temperature, less energy is
needed. The disadvantage of the co-located plant is that
it entirely depends on the power plant for its existence.

Hybrid Plants
Hybrid plants use a combination of treatment

technologies—such as using RO and thermal
technologies simultaneously—to take advantage of
benefits of different treatment technologies. This
enables the system to reuse energy, reduce energy
costs, and achieve optimized performance (Van der
Bruggen and Vandecasteele 2002, Cardona et al.
2002).  The necessity for a hybrid facility can be
considered on a case-by-case basis.

Case Studies of Energy Conservation
The following case studies describe how turbines,

cogeneration and hybrid plants reduce energy
consumption in desalination plants.

Cape Hatteras, North Carolina has operated a
hybrid RO/Ion exchange plant since 2000. This
desalination plant withdraws water from separate wells
with different water properties. The high salinity water
from well 1 is processed by the RO and the water
with high organic material from well 2 is processed
by Ion Exchange. The treated water from the RO
and Ion exchange processes are blended for the final
product water. This plant has incorporated an energy
recovery turbine (Turbo supplied by Pump
Engineering) into the RO treatment process.   The
expected payback at the power rate of $0.04/1000
Btu ($0.12/kWh) is 4.5 years (Duranceau 2001).

Studies in Kuwait compared two gas turbines with
different combinations of heat recovery (Darwish
and Al-Najem 2000).  For a simple gas turbine power

Table 2. Comparison of different hybrid facilities

Hybrid Process Capacity TDSmg/L Energy Btu/Gal Diesel Fuel Hybrid
MGD (kWh/m3) Savings tons/yr Options

SWRO/MES (LT-TVC) 3.78 395 124 (9.58) 4,937 1
SWRO/BPT/MES (LT-TVC) 3.92 468 119 (9.23) 5,319 2
SWRO/BPT/SWRO 3.88 500 121 (9.34) 4,162 3
MVC/MES (LT-TVC) 5 50 94 (7.27) 11,094 4
SWRO 2.9 500 162 (12.5)  - -

SWRO Seawater reverse osmosis
MES Multiple-effect evaporation
BPT Back pressure turbine
MVC Mechanical vapor compression
LT-TVC Low temperature - Thermal vapor compression
Source: Aly 1999

plant operating in cogeneration with reverse osmosis,
the fuel energy consumption is 39.9 Btu/lb (92.78
kJ/kg). If a heat recovery steam generator is added
to each gas turbine, supplying MSF units with
recovered steam, the energy consumption is lowered
to 37.4 Btu/lb (86.88 kJ/kg). If a condensing steam
turbine and a heat recovery steam generator are
added to each gas turbine, the energy consumption
is further decreased to 27.4 Btu/lb (63.6 kJ/kg).  This
study shows how different combinations of turbines
and technologies affect energy consumption.

Another study, conducted in several Middle
Eastern cities, investigated different plant
arrangements operating from the waste heat of a
gas turbine power plant (Aly 1999).  In this study,
low-temperature thermal vapor compression (LT-
TVC) heat pumps were used to boost the gas
turbine performance, because of their ability to
recover energy in the form of heat.  Table 2
compares RO (no hybrid used) energy consumption
with four different hybrid combinations (Aly 1999).
All four options proved to be better, economically,
than SWRO alone.  Option 4 (MVC/MES) proved
to be the most energy saving combination, in which
the thermal efficiency increased 55.9 percent when
compared with SWRO. This option included
mechanical vapor compression with multiple-effect
distillation and low-temperature thermal vapor
compression.  In option 3, the thermal efficiency
increased 55.9 percent when compared with
SWRO. It was the only process that did not
incorporate the vapor compression heat recovery
in its design.

A study of an existing RO plant in Egypt that
uses turbines for energy recovery analyzed the
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plant’s performance after the plant was running for
six years (Rayan et al. 2002).  The energy
consumption in this plant amounted to 35-60 percent
of the total production costs, but the recovered
mechanical energy reduced the required pump
energy. Overall, it reduced costs (Rayan et al. 2002).

Renewable Energy Sources for
Desalination

The most common renewable energy sources
are solar, wind, geothermal, and ocean.  At present,
uses of renewable energy sources for desalination
are very limited. The world’s share of total
renewable energy sources used for desalination is
only about 0.02 percent of the total energy used
(Garcia-Rodriquez 2002). However, renewable
energies have potential for powering future
desalination plants. Tables 3-5 list desalination
plants in various countries that use renewable
energies (solar, photovoltaic, and wind) found in
existing literature. Desalination powered by
renewable energies can be an ideal solution for
some small communities where an affordable fossil
fuel supply for desalination is not available.

Solar Energy
Solar energy is a promising renewable energy

source to power desalination plants.  Solar energy
can be used directly for simple distillation or indirectly
through the use of collectors.

Direct Solar Energy. Solar stills take advantage
of direct solar energy via the greenhouse effect.
The process is as follows. A black-painted basin,
sealed tightly with a transparent cover, stores the
saline water. As the sun heats the water, the basin
water evaporates and vapor comes into contact with
the cool glass ceiling where it condenses to form
pure water (Bouchekima 2002). The water is drained
from the solar still for potable use. The maximum
efficiency of solar stills is 35 percent of the energy
entering the still effectively utilized to evaporate the
water (Kalogirou 1997).  This technology is optimized
when running at capacities of near 200 gal/d.  Using
heat recovery devices and hybrid systems may make
solar stills more cost-competitive (Manwell and
McGowan 1994). Research has indicated that
multiple-effect stills increase water production by
40-55 percent when stacked in a vertical

arrangement (Kalogirou 1997, Boukar and Harmim
2003).  Solar stills require large amounts of land and
can only handle small quantities of water. They are
not a viable option for most areas in the U.S.
(Bouchekima 2002).

Indirect Solar Energy. MSF and MEE
technologies use solar collectors as an indirect means
of solar energy to develop the thermal energy needed
to drive the desalination process.  Other applicable
technologies using indirect solar energy are RO,
vapor compression, and freeze desalination.  Solar
collectors have been used successfully in Saudi
Arabia for freeze separation technologies. The
steam created from the solar collectors drives a steam
turbine that provides power to a vapor compression
system. Energy in the exhaust steam from the
turbine provides refrigeration for the freezing
(Manwell and McGowan 1994).

Photovoltaic. Currently, the most promising solar
energy technology is photovoltaic (PV) arrays.
Photovoltaic arrays convert solar energy into
electricity through the transfer of electrons. The
arrays are made of silicon chips. Silicon is the best
material for generating the transfer of electrons.
When sun rays shine on the silicon chips, the
electrons jump to another orbit.  This movement then
creates a voltage that can be used to power pumps
for desalination, mostly for membrane technologies
(Garcia-Rodriquez 2002).

Hundreds of small photovoltaic power plants have
been developed. Reverse osmosis systems
connected to photovoltaic plants are already
commercialized and considered the most promising
combination of solar energy with desalination
(Thomson and Infield 2002).  Also, some pilot plants
have been developed to study electrodialysis with
PV cells (Garcia-Rodriquez 2002). Some
disadvantages of PV systems include low efficiency
(typically ranging from 10-15 percent), high
manufacturing costs, the requirement of large arrays
for RO systems, and the general use of lead-acid
batteries (Garcia-Rodriquez 2002, Thomson and
Infield 2002).

Solar Energy Concentrators and Collectors.
Using flat mirrors with a heliostat is a technique used
to concentrate light.  These mirrors are arranged in
a curved configuration. The heliostat attracts the
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rays of sun and maintains the focus of the reflection
on the mirrors to a focal point. It alters itself
according to the position of the mirrors to the sun,
since this position changes throughout the day.
Concentrated light is directed to pipes filled with air
or water in order to create steam or heated air that
can be used for power (Manwell and McGowan
1994). An alternative technique is using flat plates
to collect low-intensity radiation.  Flat plate collectors
are well adapted to absorb diffused radiation opposed
to concentrated radiation and can produce low-grade
thermal energy.  The main disadvantage of a flat
plate collector is the requirement for large amounts
of space (Manwell and McGowan 1994).

Parabolic trough radiation collectors are another
option.  These collectors are able to withstand high
temperatures without degradation of the collector
efficiency and for this reason are preferred for solar
steam generation (Kalogirou 1998).  Solar ponds can
also be used as radiation collectors.  Research has
shown that a solar pond is able to preheat the intake
water (Safi 1998).  Some researchers consider solar
pond-powered desalination one of the most cost-
effective methods (Garcia-Rodriquez 2002).

Table 3. Desalination Plants Incorporating Solar Energy

Location Type of Solar Energy Type of Desalination Capacity (gal/d)

El Paso, TX Solar Pond MSF 4,227
La Paz, Mexico Flat Plate & Concentrating MSF 2,642

Collectors
Yanbu, Saudi Arabia Dish Collectors FS 52,830
Gillen Bore, Central Australia Solar Panels BWRO 317
La Desired Island, French Caribbean Solar-Evacuated tube ME 10,570
Abu Dhabi, UAE Solar-Evacuated tube ME 31,700
Kuwait Solar Electricity Generation MSF+ RO 6,604 + 11,890

System
Arabian Gulf Solar-Parabolic Trough ME 1,585,000
Al-Ain, UAE Solar-Parabolic Trough ME, MSF 132,100
Takami Island, Japan Solar-Parabolic Trough ME 4,227
PSA, Almeria, Spain Solar-Parabolic Trough ME-Heat Pump 19,020
Margarita de Savoya, Italy Solar Pond MSF 13,210-15,850
Islands of Cape Verde Solar Pond Atlantis “AutoFlash” 79,250
University of Ancona, Italy Solar Pond ME-VC 7,385
Near Dead Sea Solar Pond MED 792,500
Lampedusa Island, Italy Solar-Low Concentration MSF 19,020 + 12,680
Gran Canaria, Spain Solar-Low Concentration MSF 2,642
Area of Hzag, Tunisia Solar Collector Distillation 2,692
Safat, Kuwait Solar Collector MSF 2,642

Sources: Harrison et al. 1997, Garcia-Rodriquez 2002

One recent design takes advantage of the heat
storage capacity of air.  Solar heat is used to heat air,
which becomes humidified when cooling water is
injected into it.  When the humid air is cooled, the water
is separated from the salts.  This process has not been
developed commercially and is still being researched
(Chafik 2002).  Other research focuses on optimizing
systems so that solar panels are sized appropriately
and battery storage is not needed (Thomson,and Infield
2002), as well as using solar energy to power smaller
system heat pumps such as absorption vapor
compression (Garcia-Rodriquez 2002).

Wind Energy
Wind energy rotates wind turbines and creates

mechanical energy that can be converted to
electrical energy. Wind turbines come in both
vertical axis arrangements, and multiple axis,
horizontal arrangements. Turbines utilizing wind
energy for low power (34 –341 103 Btu/hr or 10-
100 kW), medium power (341 – 1707 103 Btu/hr or
100 kW-0.5 MW), and high power (> 1707 103 Btu/
hr or 0.5 MW) are mature technologies (Garcia-
Rodriquez 2002).
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Table 5. Desalination Plants Incorporating Wind Energy

Location Power Generated  103 Btu/hr (kW) Type of Desalination Capacity gal/d

Shark Bay, Western Australia 109 (32) BWRO 44,380 & 34,340
Island in North Sea 20 (6) SWRO 1,600
Borj-Cedria, Tunisia  RO + ED  
Island of St. Nicolas, West France  RO  
Fuerteventura Island, Spain  RO 14,794
Middle East  RO 6,604
Drepanon, Achaia  RO  
Ile du Planier, France Pacific Islands  RO 3,170
Helgoland, Germany  RO 6,086,000
Island of Drenec, France 34 (10) RO  
Borkum Island, North Sea  MVC 1,902-12,680
Ruegen Island, Germany 683 (200) MVC 31,700-79,250
Gran Canaria, Spain  RO 52,830

Sources: Harrison et al. 1997, Garcia-Rodriquez 2002

Table 4. Desalination Plants Incorporating Photovoltaic Energy

Location Power Generated 103 Btu/hr (kW) Type of Desalination Capacity GAL/DAY

Perth, Western Australia 4.1 (1.2) RO 634-3170
Jeddah, Saudi Arabia 27 (8.0) SWRO 845
Concepcion del Oro, Mexico 8.5 (2.5) BWRO 396
North of Jawa, Indonesia 87 (25.5) BWRO 3,170
Vancouver, Canada*  16 (4.8) SWRO 264
Red Sea, Egypt 68 (19.84) +2.2 (0.64) BWRO 13210
Hassi-Khebi, Argelie 8.8 (2.59) BWRO 6,023
Cituis West, Jawa, Indonesia 85 (25) BWRO 9,510
Doha, Qatar 38(11.2) SWRO 1,506
Thar Desert, India 1.5 (0.45) BWRO 264
North west of Sicily, Italy 33 (9.8)  + 102 (30) diesel SWRO —
St. Lucie Inlet State Park, FL, USA 9.2 (2.7)+ diesel SWRO 159
Lipari Island, Italy 215 (63) SWRO 12,680
Lampedusa Island, Italy 341(100) SWRO 19,020 + 12,680
University of Almeria, Spain 80 (23.5) BWRO 15,850
Borj-Cedria, Tunisia 14 (4) + Wind Distillation/RO/BWED 26/1,585
Spencer Valley, NM*  ED 740
Thar Desert, India*  ED 264
Oshima Island, Nagasaki, Japan*  SWED 2,642
Fukue City, Nagasaki, Japan* 222 (65) BWED 52,813

* Pilot or Demonstration Plants
Sources: Manwell and McGowan 1994, Garcia-Rodriquez 2002

In the United States, wind currents are strongest
in the central states and along the coasts of Alaska
and New England, as well as parts of California.  The
global trend shows stronger currents in coastal areas
(Mustoe 1984, Belessiotis and Delyannis 2000).

Wind energy can be converted to shaft power
that directly goes toward powering the desalination,
or is sent to the local grid or batteries and stored
until needed (Garcia-Rodriquez 2002).
Electrodialysis and MVC systems are well suited to
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operate using direct wind energy (Garcia-Rodriquez
2002). Using direct wind energy to power RO
systems is limited because RO systems do not
operate well under non-continuous conditions. Table
5 shows a list of desalination plants around the world
that are powered by wind energy.

Some researchers have studied the potential of
hybrid wind/diesel and hybrid solar/wind plants.  In
the wind/diesel case, the wind power is transferred
to the shaft of the diesel generator, thus reducing
the fuel needed for the generator to work at a constant
load. These systems can maintain a constant load, a
solution for the intermittent nature of wind energy.
For the solar/wind case, distillation devices can be
used to desalt water; the solar energy can provide
needed thermal energy and the wind turbines can
provide needed mechanical energy. Hybrid
renewable energy systems have been researched
at the University of Massachusetts and the Center
for Renewable Energy Systems in Greece (Manwell
and McGowan 1994).

Geothermal Energy
Heat energy exists at depths of hundreds and even

thousands of feet below the surface of the earth. In
the inner core of the earth, the temperature ranges
from 6,700 °F to 11,000 °F. Geothermal energy
resources exist in three forms:  thermal, hydraulic,
and methane gas. Geothermal energy can be
harnessed and applied to produce electricity that is
sent to local grids, or to directly power thermal
desalination plants. Today, the world’s power
capacity from geothermal energy is 20.5 x 109 Btu/
hr (6000 MW) used for electricity and 51.2 x109

Btu/hr (15,000 MW) used for space heating
(Belessiotis and Delyannis 2000). Geothermal power
plants exist in New Zealand, Mexico, Japan, Iceland
and the United States. Reykjavik, the capital of
Iceland, uses geothermal energy to provide 99
percent of its heating energy needs (Garcia-
Rodriquez 2002). The U.S. retrieves 0.2 percent of
its power through this method. Figure 3 shows
geothermal basins in the United States.

Currently, 99 percent of geothermal energy in the
U.S. is produced in three sites in California:  Geysers
north of San Francisco, the China Lake in Los
Angeles, and the Imperial Valley north of Los
Angeles (Wiser 2000). There is a great potential for
developing geothermal energy sources in other parts
of the United States. According to the U.S.

Geological Survey, power amounts ranging from 79
x109 Btu/hr to 819 x 109 Btu/hr (23,000 MWe to
240,000 MWe) can be attained from geothermal
resources in areas around the Gulf of Mexico for
the next 30 years. Application of geothermal
resources to desalination has not yet been practiced.
Greece is planning a desalination plant to use
geothermal energy (Garcia-Rodriquez 2002).

Ocean Energy
The category of ocean energy can be divided into

tidal energy, wave energy, and ocean thermal energy
conversion (OTEC) methods. Tidal power is the
most-developed technology in this category.

Tidal Power. Tidal energy takes advantage of
the hydraulic head difference between low tide and
high tide.  Typically, elevation differences from low
to high tide are between 4 ft. and 6 ft. In certain
areas of the world, elevation differences are much
greater.  In these areas, power plants have been or
can be installed to take advantage of the large
differences in hydraulic head that occur there. Table
6 shows a few examples of tidal power plants
(Belessiotis and Delyannis 2000).

Because tidal movements occur only at certain
periods throughout the day, the energy is not
constant. Therefore, when attaining energy from
tidal changes, the energy must be stored on some
sort of community power grid so that it can be
accessed as needed. Tidal energy plants have an
approximate efficiency of 20 percent; only this
proportion of the tidal energy is available as usable
energy. Tidal power plants are three times as
expensive as coal power plants.

Wave Energy. Waves develop because of wind
interacting with water. The energy held in waves
can be converted to useful energy. The monthly

Table 6. High Tidal Differences and Power Generated

Location Elevation Power produced
Difference 106 Btu/hr (MW)

La Rance, France 37 ft 819 (240)
Severn, Great Britain 37 ft 1,263 (370)
Bay of Fundy, Canada 36 ft 61 (18)
Chaussey, France 40 ft -
Passamaquoddy, Maine 24 ft -
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average wave power is a function of the height of
the waves and can be measured by using the average
height of the highest third of all waves. In Santa
Cruz, California the average wave height is 7.9 ft,
which gives them total wave energy potential equal
to 88,764 Btu/hr per foot of coastline (26 kW per
meter of coastline) (Kim 1997).  In the best locations,
wave energy can provide as much as 238,980 Btu/
hr per foot of coastline (70 kW per meter of
coastline) (Crerar and Pritchard 1991).

There are different devices for recovering energy
from the waves. These devices can be categorized
into heaving, heaving and pitching, pitching, oscillating
water columns, and surging. A pilot desalination plant
in Coffin Island, Puerto Rico incorporates heaving
technology using a hose and a buoy.  The movement
of the buoy with the waves drives the pump. This
mechanism is able to convert wave energy to
mechanical energy that is used to drive the 350 gal/d
reverse osmosis plant (Kim 1997). A seawater
desalination study tested a vapor compression
technology combined with a pitching device able to
harness wave energy (Crerar and Pritchard 1991).
The waves put a device called a “duck” in motion.
This drives a large fluid piston at wave frequencies
of (0.1-0.2 Hz).  Higher-pressure vapor is condensed

in a falling film evaporator/condenser.  A portion of
the seawater vaporizes as a result of this heat
exchange. The vapor spaces alternate between
compression and expansion according to the up and
down “nods” of the “duck.”  The research showed
that using this method could desalinate 0.255 MGD
of water (Crerar and Pritchard 1991).

Ocean Thermal Energy Conversion. The
ocean thermal energy conversion (OTEC)
technique uses the temperature difference between
the warmer surface water of the ocean and the
cooler deep ocean water. The temperature
difference is used to alternately condense and
evaporate a working fluid, thus generating water
volume and pressure changes that can rotate
turbines and produce electricity (Heydt 1993).

The main problem with ocean thermal energy is
the relatively small temperature differences found
between surface water and deep ocean water.
Another problem is the depths at which cooler water
is found, which requires large volumes of water to
be pumped. These facilities need to either have long,
large seawater pipes, or a floating platform. Ocean
thermal energy has a maximum efficiency of 7
percent and is generally around 2 percent.  It is also

Figure 3.  Geopressured Basins in the United States
Source: Lunis 1990
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about three times more expensive than coal energy
(Wiser 2000).

The tropics are potential areas under consideration
for developing and using this type of energy.  In the
tropics, ocean temperatures can reach anywhere
from 40° F to 75° F (Wiser 2000). Nauru, an
independent island nation, used OTEC to produce
102,420 Btu/hr (30 kW) net power for the island,
until the power plant was damaged in a storm. The
project is continuing with designs for 3.4 x 106 Btu/
hr (1 MW) and 341 x 106 Btu/hr (10 MW) facilities
(Heydt 1993).  Also, a 170,700 Btu/hr (50 kW) power
demonstration plant in the Hawaiian Islands is
studying the harnessing of thermal ocean gradients.
Other research and development is occurring in the
UK, France, the Netherlands, and Japan. In the U.S.,
the Solar Energy Research Institute, along with the
National Renewable Energy Laboratory, U.S.
Department of Energy is researching OTEC design.

The combination of OTEC with desalination has
been considered (Heydt 1993). This facility would
be an open-cycle configuration that uses seawater
as the working fluid.  Some of the seawater is flashed
into vapor at low pressure. This removes the salts
from the seawater, producing potable water.  Also,
another option is a hybrid process using seawater
and another fluid such as ammonia. In this process,
seawater is flashed into steam and condensed to
form potable water. The other fluid is incorporated
into the evaporation and condensation process in such
a way that the phase change of the seawater/
ammonia mixture is able to drive a low-pressure
turbine (Heydt 1993).

Energy Storage and Control Options

A major disadvantage of renewable energies is
the lack of continuity and consistency in the supply.
To compensate, some sort of control system or
energy storage unit is required, especially if no
backup energy is available.

Batteries are one option for storing energy, but
they are not preferred because of their short
lifetimes; in addition the large number of batteries
that would be needed to store the required energy
could be very costly. Another method for storing
energy is connecting renewable energy sources to
diesel generators or electricity grids that power the
desalination plant. With this method, fuel
consumption can be reduced, but generally more

maintenance will be required and problems will
develop if there is a fuel shortage (Miranda and
Infield 2002). For intermittent wind energy supply,
turbine de-rating mechanisms can be used to control
the rotation angle of the turbine blades. Turbine de-
rating mechanisms maneuver the pitch of the blades
according to the power being supplied and the
current water demand. The rotation angle of the
blades determines the amount of mechanical energy
produced which is often a very expensive option
(Miranda, and Infield 2002).

Nuclear Energy

Using nuclear energy to power desalination plants
is a developing technology. Currently, research is being
conducted to determine the feasibility of developing
dual-purpose power and desalination plants.

Nuclear power plants generate power using the
concept of fission, i.e., energy is released when a
larger atom splits into smaller atoms.  The released
energy is controlled and contained to heat a coolant
material and ultimately generates steam that drives
turbines, which rotate a coil in a magnetic field to
produce electricity. The main components of a
nuclear power plant are the fuel rods that hold the
fissionable material, the moderator material that
controls the speed of the neutrons, the control rods
that absorb the neutrons to control the rate of the
reaction, and the coolant that absorbs the heat that
is passed onto the turbines (Wiser 2000).

Combining nuclear power plants with desalination
plants is economical because two-thirds of thermal
power generated is waste heat (Nisan et al. 2002).
Typically, this waste heat is sent to surrounding
waters or air.  Researchers have found that it is
economical to send this heat to desalination plants
instead.  In addition, power plants are able to provide
immediate electricity to the desalination plant.

The International Atomic Energy Agency has
developed a team of researchers to study seawater
desalination combined with nuclear reactors.  One
research project incorporated nine countries in its
efforts to optimize the coupling of nuclear reactor
and desalination systems in 1998. They determined
that the costs are in the same range as fossil fuel
costs. New plants are envisioned for South Korea,
Russia, and India.  Countries looking into nuclear/
desalination plants are Indonesia, Tunisia, Pakistan,
and Iran.  The technical industry leaders in this field
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are South Korea, Russian Federation, Argentina,
Canada, France, and China.  Morocco and Egypt
are also conducting studies.  A desalination plant in
southeast India that began operating in 1998
produced 10 MGD of freshwater in 2003.  It is a
hybrid MSF-RO demonstration plant coupled to a
pressurized water reactor at Madras Atomic Power
Station in Kalpakkam (Konishi et al. 2002).

A project called EURODESAL incorporated
researchers from different countries and
backgrounds to study nuclear powered desalination
as compared with fossil fuel powered desalination
facilities. It also compared reverse osmosis
technologies with distillation technologies. The
results from this study showed that even under the
most unfavorable circumstances, the nuclear power
plant/desalination plant proved more economical
than the fossil fuel power plant/desalination plant.
It also determined that using preheated water with
the reverse osmosis technology was the cheapest
technology to use, independent of the power plant
it is connected with. They noted that the cost
decreased as the capacity of the plant increased
(Nisan et al. 2002).

There are many factors to weigh when
considering nuclear energy. It creates no air pollution;
therefore, it does not contribute to greenhouse effect
concerns.  However, it operates at low efficiency,
and generates nuclear waste.  Storing nuclear waste
is a problem because of its extremely long decay
time. At present, nuclear energy power plants are
not cost-effective in the United States because of
the strict regulations imposed by the federal
government after the Chernobyl accident. The last
order for construction of a nuclear power plant was
in 1978 (Wiser 2000).  Other countries are much
more accepting of nuclear power.  In France, there
are 58 PWR plants making up 76.6 percent of the
countries’ total electricity supply (Nisan et al. 2002).
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