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Abstract: Data from laboratory evaluations of seven fish bioenergetics models (BEMs) were used to investigate possi-
ble associations between BEM prediction error in relative growth rate (RGRerror) and levels of model input variables:
mean daily food-consumption rate and fish body weight. Correlation between RGRerror and fish body weight was found
in three BEMs applied under submaintenance feeding conditions. A strong correlation between RGRerror and mean daily
consumption level was observed in all models over full consumption ranges; consumption level explained 70%–96% of
variation in RGRerror. All BEMs underestimated (by 2- to 5-fold) growth at lower consumption levels and overestimated
(by 2- to 3-fold) growth at higher consumption levels. RGRerror values associated with higher consumption levels were
greater (up to 22 cal·g–1·day–1) than those at lower consumption levels (up to 10 cal·g–1·day–1). Correlation between
consumption rate and RGRerror in all seven models indicates widespread systematic error among BEMs that likely
arises from deficiencies in consumption-dependent model parameters. Results indicate that many BEMs are substan-
tially inaccurate when predicting fish growth from higher feeding rates or estimating consumption from higher growth
rates, even when higher consumption levels or growth episodes are of short duration. Findings obtained under
submaintenance feeding conditions indicate that additional body-weight- and consumption-dependent terms should be
added to BEM subequations for routine metabolism to account for metabolic reduction.

Résumé : Les données des évaluations en laboratoire de sept modèles bioénergétiques (BEM) de poissons nous ont servi
à étudier les associations possibles entre l’erreur de prédiction par les BEM du taux relatif de croissance (RGRerreur),
d’une part, et la valeur des variables d’entrée des modèles, soit le taux journalier moyen de consommation de nourri-
ture et la masse corporelle des poissons, d’autre part. Il existe une corrélation entre RGRerreur et la masse corporelle
des poissons dans trois des BEM utilisés dans des conditions d’alimentation inférieures au niveau de maintien (SMFC).
Il y a aussi une forte corrélation entre RGRerreur et le taux journalier moyen de consommation dans tous les modèles
sur toute l’étendue des taux de consommation; le taux de consommation explique 70 – 96 % de la variation de
RGRerreur. Tous les BEM sous-estiment la croissance (par un facteur de 2–5) aux faibles taux de consommation et la
surestiment (par un facteur de 2–3) aux taux de consommation plus élevés. Les RGRerreur associées aux taux plus
élevés de consommation sont plus grandes (pouvant atteindre 22 cal·g–1·jour–1) que celles liées aux taux de consomma-
tion plus faibles (atteignant 10 cal·g–1·jour–1). La corrélation entre le taux de consommation et RGRerreur dans les sept
modèles indique qu’il y a une erreur systématique générale dans les BEM qui provient vraisemblablement
d’imprécisions des paramètres des modèles reliés à la consommation. Nos résultats montrent que plusieurs BEM sont
erronés dans la prédiction de la croissance des poissons à partir des taux d’alimentation élevés et dans l’estimation de
la consommation à partir de taux de croissance élevés, même lorsque les épisodes de forte consommation ou de forte
croissance sont de courte durée. Dans les conditions SMFC, nos résultats indiquent qu’on doit ajouter aux sous-
équations du métabolisme ordinaire des BEM des termes additionnels pour la masse corporelle et la consommation,
afin de tenir compte de la réduction du métabolisme.

[Traduit par la Rédaction] Bajer et al. 2167

Introduction

Construction and application of fish bioenergetics models
(BEMs) have increased substantially in the last decade
(Hewett and Johnson 1987; Hanson et al. 1997; Bajer et al.
2004). Models for almost 40 fish species are now readily

available through user-friendly software (Hanson et al. 1997)
while many others exist in various formats. BEMs are ap-
pealing because they are based on balanced, energy-fate
equations that have been thought to promote reasonable pre-
dictive behavior. These models have been widely used to
evaluate factors that constrain fish growth (Hayward and
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Margraf 1987; Hill and Magnuson 1990), impacts of fish
predation on prey populations (Jones et al. 1993; Rand et al.
1995; Kershner et al. 1999), contaminant bioaccumulation in
fishes (Jackson 1996), and waste loads from aquaculture
(Axler et al. 1994). They have also been applied to enhance
understanding of basic ecological processes such as the role
of fish in lake nutrient cycling (Schindler and Eby 1997),
and commonly serve as subcomponents of individual-based
models of fish life history and population dynamics (Trebitz
1991; Rose and Cowan 1993) and other model types (Hayes
et al. 2000; Burke and Rice 2002). Unquestionably, BEMs
are contributing significantly to current perceptions of what
is true in many of the less directly observable aspects of
aquatic ecology, fisheries management, and aquaculture.

In fact, however, most BEMs have not been well evalu-
ated over the ranges of conditions to which they have been
applied. Rigorous, independent evaluations of BEMs under
controlled laboratory conditions are disproportionately rare
relative to the high and increasing number of times they
have been applied. Laboratory-based tests of BEMs can
greatly reduce the uncertainty inherent in field-based evalua-
tions, because model input and output variables, including
daily food consumption, growth rate, diet composition, pred-
ator and prey caloric densities, and fish thermal experience
can be determined with much greater accuracy. Because lab-
oratory evaluations are more likely to correctly identify er-
rors in BEMs, they are essential for assuring model accuracy
and for facilitating model improvement (Ney 1993; Bajer et
al. 2003). Despite their limited number relative to field-
based evaluations, laboratory evaluations of fish BEMs have
provided valuable insights into model strengths and weak-
nesses. Such evaluations have indicated that BEM predic-
tions may not be equally accurate over the ranges of
conditions to which they are applied. For example, BEMs
have exhibited varying degrees of performance associated
with different ration levels (Cui and Wootton 1989;
Whitledge and Hayward 1997), fish body weights (Bajer et
al. 2004), and temperatures (Hartman and Brandt 1993; Chipps
et al. 2000). However, experimental designs and analytical
approaches used in laboratory evaluations have tended not to
facilitate identification of error sources in BEMs, so model-
improvement efforts have been rare.

A recent evaluation of two BEMs based on laboratory-
derived consumption and growth data for yellow perch
(Perca flavescens) (Bajer et al. 2003) showed that growth-
prediction error was strongly correlated with mean daily food
consumption (a BEM input variable) in both models. Both
BEMs underestimated growth rate at lower consumption lev-
els and overestimated growth rate at higher consumption lev-
els, albeit to differing degrees. Madenjian and O’Connor
(1999) found similar error in a lake trout (Salvelinus namay-
cush) BEM. Identification of consumption-dependent predic-
tion error in these three BEMs suggests that their internal
subequations for calculating energy costs of egestion, excre-
tion, and specific dynamic action are likely error sources,
because each involves consumption dependence (Bajer et al.
2003). In a yet more recent laboratory evaluation (Bajer et
al. 2004), mean daily consumption level was again found to
be correlated with growth-prediction error in a white crappie
(Pomoxis annularis) BEM, explaining approximately 80% of
total model prediction error. In this BEM, fish body weight

was also found to be correlated with growth-prediction error,
particularly for fish feeding at submaintenance levels.

Finding a similar correlation between growth-prediction
error and consumption level in four BEMs suggested that
consumption-dependent systematic error may be widespread
among BEMs. To further substantiate this, we reevaluated
data from published laboratory evaluations of three addi-
tional BEMs for the presence of consumption-dependent er-
ror. The presence of body-weight-dependent error, as was
observed in the white crappie model, was also further ex-
plored in six BEMs. We show the frequency of occurrence
of consumption- and body-weight-dependent error across a
total of seven BEMs, and portray the range of magnitude of
consumption-dependent error that exists among these mod-
els. Through modeling we also demonstrate the importance
of consumption-dependent error in BEMs and show why its
presence may often be overlooked in model evaluations. Types
of BEM applications that may be most prone to this error are
suggested, and insights are given into potential error sources
within BEMs. Our findings demonstrate a critical need to
evaluate and improve predictive accuracies of fish BEMs.

Materials and methods

We reevaluated data from published laboratory evalua-
tions of three BEMs that provided sufficient information to
explore possible consumption-dependent growth-prediction
error. These include evaluations of BEMs for largemouth
bass (Micropterus salmoides) (Whitledge and Hayward 1997),
smallmouth bass (Micropterus dolomieu) (Whitledge et al.
2003), and bluegill (Lepomis macrochirus) (Whitledge et al.
1998). Data from laboratory evaluations of four additional
BEMs for which consumption-dependent growth-prediction
error has previously been identified were included so that
the nature of this type of error could be broadly portrayed
across a total of seven BEMs. These four evaluations in-
volved BEMs for lake trout (Madenjian and O’Connor
1999), yellow perch and Eurasian perch (Perca fluviatilis)
(Bajer et al. 2003), and white crappie (Bajer et al. (2004)
this issue). Body-weight dependence of growth-prediction
error, previously detected only in the white crappie BEM
(Bajer et al. 2004), was explored in the six other BEMs
identified above. We did not assess temperature influences
(another primary BEM input variable) on prediction errors in
the seven BEMs because, for the most part, laboratory evalu-
ations of these models were performed over narrow tempera-
ture ranges (but see Bajer et al. 2004).

For each model, observed (RGRO; cal·g–1·day–1, 1 cal =
4.184 J) and predicted (RGRP; cal·g–1·day–1) relative growth
rates were determined as

(1) RGR EDO
f i

predator=
−

⋅
O O

n O

and

(2) RGR EDP
f i

predator=
−

⋅
P O

n O

where Of, Pf, and Oi are the observed and predicted final
weights and observed initial fish weight for each modeling
interval, respectively; O is the mean observed fish weight
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during the interval; n is the number of days in the modeling
interval; and EDpredator is fish energy density (cal·g–1). The
relative growth-rate-prediction error (RGRerror; cal·g–1·day–1)
was calculated as the difference between predicted and ob-
served relative growth rates (RGRerror = RGRP – RGRO) for
each model.

For all but the lake trout model, values of RGRO, RGRP,
and RGRerror were determined from multiple model-predicted
and laboratory-observed growth trajectories of individual
fish. For the lake trout model these values were calculated
from group means of initial and final fish body weights re-
ported in Madenjian and O’Connor (1999, their tables 3 and
4). Durations of modeling intervals used for calculating
RGRO, RGRP, and RGRerror were the same as those used in
the original evaluation studies (Table 1); some studies (lake
trout, Madenjian and O’Connor 1999; hybrid bluegill,
Whitledge et al. 1998) used single modeling intervals that
spanned the full durations of experiments, while others in-
volved multiple subintervals for which temperature and fish
feeding levels were consistent (Table 1).

To permit direct comparisons of error among models,
RGRerror values were expressed in cal·g–1·day–1 (converted
from g·g–1·day–1) to standardize for differences in fish en-
ergy densities across the seven model-evaluation data sets.
Values of fish energy density were determined as in the orig-
inal BEM-evaluation studies. Fish energy densities were
modeled as constant values in published laboratory evalua-
tions of the bluegill, largemouth bass, and smallmouth bass
BEMs. Various values of fish energy density were used in
the published evaluations of BEMs for lake trout, yellow
perch, Eurasian perch, and white crappie.

For each BEM, RGRerror values were regressed against
corresponding mean observed daily consumption rates
(cal·g–1·day–1) across all modeling intervals. Regressions of
RGRO and RGRP values against corresponding mean ob-
served daily consumption rates were also performed for each
BEM so that both proportional and absolute BEM prediction
error could be determined across consumption levels. A third
set of regressions was performed to explore possible rela-
tionships between RGRerror values and corresponding mean
observed fish body weights for each model. For each BEM,
regressions involving fish body weight were run over full

ranges of consumption level and separately over sub-
maintenance feeding conditions when these were present.

Errors for BEM estimates of consumption were not evalu-
ated because these have consistently been of similar magni-
tude as RGRerror values over broad ranges of conditions, but
in the opposite direction (Bajer et al. 2003; Bajer et al.
2004). When significant relationships have been observed
between RGRerror and consumption level or fish body
weight, corresponding relationships between consumption-
prediction error and these two input variables have been
likewise significant but with slopes of opposite sign (Bajer
et al. 2004).

We demonstrate the effect that even short periods of rela-
tively high consumption level can have on growth-prediction
error when a BEM containing consumption-dependent error
is used. We used the bluegill BEM (Hanson et al. 1997) to
predict observed 22-day growth trajectories for two groups
of hybrid bluegill (F1 female Lepomis cyanellus ×
male L. macrochirus), one in which fish fed consistently at
low to moderate rates (control group) and a second in which
fish fed at relatively high rates over an early portion of the
22-day interval (treatment group). Daily food-consumption
and growth data for the hybrid bluegill were obtained from a
selected 22-day segment of a 105-day laboratory experiment
(Whitledge et al. 1998). Control fish that had been fed con-
tinually ad libitum before and during the 22-day period con-
sumed only 1.0%–1.9% body weight·day–1, on average,
throughout the 22 days. In contrast, the treatment group that
was food-deprived for 14 days just prior to the 22-day pe-
riod consumed, on average, 8.0% body weight·day–1 on the
first day of refeeding, whereupon consumption rates declined
to 3.5% and 1.6% (moderate feeding levels) by days 12 and
22, respectively. Mean body weights of control and treat-
ment fish were similar (15.9 and 17.3 g, respectively), and
both groups experienced a constant temperature of 24 °C. A
mean body weight trajectory (g) was predicted by the blue-
gill BEM for each group based on known temperature and
directly determined group-specific mean daily food con-
sumption (g). The accuracy of growth predictions was evalu-
ated by comparing predicted and observed mean growth
trajectories for each group. Predictive error was presented as
the percent difference between predicted and observed mean
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BEM
Duration of
exp. (days)

Total
modeling
interval

Fish body
weight (g)

Daily consumption
(% body weight·day–1;
cal·g–1·day–1)†

Temp.
(°C) Model source

Largemouth bass 63* 24 141–292 1.4 –3.8 (17–46) 22, 27 Hanson et al. 1997
Smallmouth bass 63* 21 121–262 1.7–5.2 (16–48) 22, 27 Whitledge et al. 2003
Bluegill 105–112 42 9–52 0.6–2.2 (15–56) 24 Hanson et al. 1997
Lake trout 320–407 12 713–3240 0.2–1.2 (3.5–18) 3.1–10.2 Hanson et al. 1997
Yellow perch 125–144* 347 18–35 0–3.5 (0–77) 21 Hanson et al. 1997
Eurasian perch 125–144* 347 18–35 0–3.5 (0–77) 21 Karås and Thoresson 1992
White crappie 63–70* 39 72–341 0.5–7.3 (4.3–91) 23–30 Bajer et al. 2004

*Study for which values of relative growth rate error (RGRerror; cal·g–1·day–1) were determined separately over multiple 10- to 21-day experiment
subintervals for which temperature and applied ration levels were constant. For other studies RGRerror values were determined over the full modeled
growth trajectories. In such cases the number of modeled intervals equals the number of fish used in experiments. References containing details on each
BEM are provided.

†1 cal = 4.184 J.

Table 1. Experiment durations, total number of modeling intervals (number of fish × number of experimental intervals), and ranges of
fish body weight, daily consumption level, and temperature for laboratory evaluations of bioenergetics models (BEMs).



body weights (g) on each day of the 22-day modeling inter-
val for both groups.

Results

Significant positive regression relationships were observed
between RGRerror values and corresponding mean daily con-
sumption levels for all seven BEMs (Table 2). Mean daily
consumption level accounted for between 70% (Eurasian
perch BEM) and 96% (lake trout BEM) of the total variation
in RGRerror across all models. All BEMs underestimated
growth rates at lower ration levels and overestimated growth
at higher ration levels (Fig. 1), clearly demonstrating the
widespread presence of systematic model error. Models ex-
hibited zero RGRerror at intermediate consumption levels,
which varied among the models for different species, and
ranged from 8 cal·g–1·day–1 for the lake trout model to about
35 cal·g–1·day–1 for the bluegill and yellow perch models.
Slopes of regression models relating RGRerror to mean daily
consumption level varied more than 2-fold across the seven
BEMs (Table 2); higher slope values indicated a greater ten-
dency for a BEM to over- and under-estimate growth rates at
higher and lower consumption levels, respectively. Regres-
sion slopes were lowest for the bluegill (0.17) and lake trout
(0.19) models and highest for the yellow perch (0.45) and
largemouth bass (0.42) models.

Over- and under-estimation of growth rates at high and
low ration levels were substantial. At higher consumption
levels (35–80 cal·g–1·day–1) the most-error-prone yellow perch
model overestimated observed relative growth rates by 2- to
3-fold (5–21 cal·g–1·day–1), while the least-error-prone blue-
gill model overestimated growth rates by 15%–50% (0.7–5
cal·g–1·day–1; Fig. 2). At lower consumption levels
(<12 cal·g–1·day–1) RGRerror values expressed on proportional
bases were even greater; the yellow perch and bluegill
BEMs underestimated observed growth rates by 5- and 2.5-
fold, respectively. However, these higher proportional errors
at low consumption levels arose mainly from the effect of
lower observed growth rates in denominators; absolute er-
rors associated with low consumption levels were generally
lower (approximately 6 cal·g–1·day–1) than those associated
with higher consumption levels (Fig. 2). RGRerror values ob-

served for the other five models were intermediate to those
determined for the yellow perch and bluegill models.

The white crappie BEM had exhibited a significant posi-
tive relationship (p ≤ 0.0001) between RGRerror and observed
mean body weight, but only under conditions where fish
were feeding at submaintenance levels (see Bajer et al. 2004).
Likewise, no significant body-weight dependence of RGRerror
was found for any of the six other BEMs (p > 0.05) when
evaluation data sets included broad ranges of consumption
levels. However, the yellow perch and Eurasian perch mod-
els, whose evaluations also included fish fed at sub-
maintenance levels, both also showed significant positive
linear relationships (p < 0.05) between RGRerror and mean
body weight under submaintenance feeding conditions. For
both models, as for the white crappie model, weight loss was
more substantially overpredicted for smaller fish than for
larger fish. Hence, all three of the BEMs whose evaluations
included submaintenance feeding showed similar body-weight
dependencies under these conditions.

When applied to the control hybrid bluegill group that fed
continually at low to moderate levels (1.0%–1.9% body
weight·day–1), the least-error-prone bluegill BEM accurately
predicted mean growth rate over the 22-day period. The
growth prediction error remained below 2.5% of observed
mean body weight (Fig. 3a). However, the same model se-
verely overestimated growth of the treatment hybrid bluegills,
whose consumption level was initially high (8% body
weight·day–1) but then declined over the 22-day period to
levels similar to those of control fish. The growth prediction
error for this group reached 29% of observed mean body
weight by the end of the 22-day simulation (Fig. 3b). Of the
total growth-prediction error that had accumulated by the
end of the 22-day model run for treatment fish, 66% and
93% developed within the first 7 and 14 days of the simula-
tion, when daily consumption levels averaged 5.75% and
3.39% body weight·day–1, respectively (Fig. 4). Relatively
little additional error accumulated during the final 8 days of
simulation, when consumption levels were mostly moderate
(between 1.64% and 2.77% body weight·day–1), indicating
that model predictions were essentially in agreement with
the observed growth pattern during this time. The substantial
error that accumulated during simulation days 1–14 under
higher consumption levels was not diminished by the lower
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BEM β 0 β1 F df r2

Largemouth bass –7.58 0.42 104.9 1, 22 0.82
Smallmouth bass –6.87 0.28 56.2 1, 19 0.74
Bluegill –21.1 (–5.65) 6.11 (0.17) 561.5 1, 40 0.93
Lake trout –3.43 (–1.60) 1.76 (0.19) 235.1 1, 10 0.96
Yellow perch –11.5 0.45 1808.9 1, 345 0.83
Eurasian perch –8.32 0.26 815.2 1, 345 0.70
White crappie –5.99 0.32 180.3 1, 37 0.83

Note: All regression relationships were highly significant (p < 0.0001). Regression relationships for all
BEMs were linear (RGRerror = β 0 + β 1 · MCON), except for the lake trout and bluegill models, which were of
the form RGRerror = β 0 + β 1 · ln(MCON). To facilitate comparisons of coefficient values among all seven
models, β 0 and β 1 values for linear regression models are also shown parenthetically for the bluegill and lake
trout models (linear models fit the data reasonably well for these two BEMs).

Table 2. Coefficients and statistics for regression relationships between RGRerror (cal·g–1·day–1;
1 cal = 4.184 J) and mean daily consumption rate (MCON; cal·g–1·day–1) for each of the seven
BEMs evaluated.



consumption levels that followed in the final 8 days of the
modeling interval.

Discussion

Results showed that all seven of the examined BEMs con-
tained systematic error that was associated with consump-
tion rate. Finding significant positive relationships between
food-consumption level and RGRerror that transected zero-
error reference lines in all seven models indicates that con-
sumption-dependent error is common among BEMs. This
apparently widespread error can be substantial, resulting in
over- or under-estimation of growth rates by as much as 2-
to 5-fold when these models are applied under conditions in-
volving relatively high or low consumption levels. Less, but
potentially important error can occur at intermediate con-

sumption levels as well. We expect that the errors in predict-
ing fish growth rates that we observed will be of similar
magnitude when BEMs are used to estimate consumption
levels from high or low growth rates, except in the opposite
direction, as demonstrated for the white crappie model by
Bajer et al. (2004). Symmetry of consumption- and growth-
prediction error (relative to the zero-error axis) tends to re-
sult under a given set of growth conditions because growth
and consumption variables occur on opposite sides of the
energy-balance equation at the core of BEMs; for example,
underestimation of a fish’s energy costs by a BEM will lead
to overestimation of its growth and underestimation of its
energy consumption.

Although our findings showed that BEM predictions of
growth rate became substantially inaccurate at both high and
low consumption levels, predictive inaccuracy was greatest
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Fig. 1. Relationships between relative growth rate prediction error (RGRerror; the difference between predicted and observed relative
growth rates (cal·g–1·day–1; 1 cal = 4.184 J)) and mean daily consumption rate (also cal·g–1·day–1) determined from laboratory evalua-
tions of seven bioenergetics models (BEMs). (a) Bluegill, Lepomis macrochirus (Whitledge et al. 1998). (b) Lake trout, Salvelinus
namaycush (Madenjian and O’Connor 1999). (c) Largemouth bass, Micropterus salmoides (Whitledge and Hayward 1997).
(d) Smallmouth bass, Micropterus dolomieu (Whitledge et al. 2003). (e) Yellow perch, Perca flavescens (�), and Eurasian perch, Perca
fluviatilis (�) (Bajer et al. 2003). (f) White crappie, Pomoxis annularis (Bajer et al. 2004).



under conditions of higher consumption because here, abso-
lute error rates were highest even though relative error was
often greater under low-consumption conditions. For exam-
ple, the yellow perch BEM under- and over-estimated ob-
served growth rates by the same relative magnitude (2.9-fold)
at consumption levels of 21 and 60 cal·g–1·day–1, respec-
tively. However, in absolute terms (in cal·g–1·day–1), predic-
tive error was nearly 20 times greater at the higher versus
the lower consumption level (16 and 0.9 cal·g–1·day–1, re-
spectively). Likewise, we expect that predictions of con-
sumption will be most severely underestimated when high
growth rates are entered into BEMs.

Because of the high magnitude of BEM prediction errors un-
der conditions of high growth or consumption rates, even rela-

tively short episodes of these conditions within a modeling
interval can result in substantial overall predictive inaccu-
racy. Moreover, such error effects of high growth or con-
sumption conditions, once incurred, are not likely to
diminish even if lower growth rates and consumption levels
follow in the modeling interval, because of their lesser op-
posing effects. When the bluegill BEM was applied to the
treatment-group hybrid bluegill, growth of these fish, which
fed at high rates (4.0%–8.0% body weight·day–1) over the
initial 7 days of the 22-day modeling interval, was substan-
tially overestimated. Despite subsequent declining consump-
tion rates that ultimately reached lower levels over the
remaining 15 days, the prediction error that had mostly ac-
cumulated early on, persisted throughout the entire modeling
interval. Hence, initially accumulated error was not offset by
the subsequent improvement of model performance. In con-
trast, model predictions for the control group of hybrid blue-
gills that did not experience initially high consumption rates
were very accurate. These results also demonstrate that a re-
stricted period of high consumption can lead to substantial
and sustained inaccuracy of BEM predictions, even for mod-
els that are otherwise capable of producing accurate growth
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Fig. 2. Comparisons of observed (�) and BEM-predicted (�) rel-
ative growth rates (cal·g–1·day–1; 1 cal = 4.184 J) in relation to
mean daily consumption rates (also cal·g–1·day–1) determined from
laboratory evaluations of BEMs for bluegill, Lepomis macrochirus
(Whitledge et al. 1998) (a), and yellow perch (Bajer et al. 2003)
(b). Among all seven BEMs considered, the accuracy of growth
predictions versus consumption level was greatest (the least differ-
ence between observed and predicted regression lines) for the
bluegill model and lowest for the yellow perch model.

Fig. 3. Observed 22-day mean body weight trajectories for hybrid
bluegill (F1; female Lepomis cyanellus × male L. macrochirus)
(solid lines) and corresponding predicted trajectories from a blue-
gill (L. macrochirus) BEM (broken lines) for the control group
(a) and treatment group (b). Control fish consumed food at uni-
form low to moderate rates (1.0%–1.9% body weight·day–1) over
the 22 days; treatment fish were caused to become hyperphagic
and initially consumed food at high rates over days 1–7 (8.0%–
3.8% body weight·day–1), after which their consumption rates
gradually declined to those of the control fish.



predictions under more moderate consumption levels. The
same would be expected for estimates of a fish’s cumulative
consumption over modeling intervals that include short epi-
sodes of rapid growth. The observations highlight the impor-
tance of evaluating BEMs over the full ranges of growth
conditions under which they may be applied, to avoid the
misperceptions of overall BEM predictive accuracy that can
result if models are tested only under conditions of moderate
growth and consumption.

Modeling of hybrid bluegill growth also demonstrated that
even the BEM containing the least systematic error among
the seven evaluated, the bluegill BEM, was capable of pro-
ducing substantially erroneous predictions when applied to a
relatively short episode of high consumption rate. Prediction
errors from the six other BEMs would have been greater if
they had been applied under comparable conditions. In gen-
eral, users should not assume that BEMs will yield equally
accurate predictions across all consumption levels and should
be cautious about applying them beyond the ranges of condi-
tions under which their performance has been rigorously
evaluated.

That many BEMs may be substantially inaccurate, partic-
ularly when applied under high or low consumption and
growth conditions, suggests a number of common applica-
tion settings where important predictive error would be ex-
pected. First, however, in-situ estimates of the consumption
rates of fish (i.e., not from BEMs) indicate that episodes of
both high and low consumption levels may commonly occur
in a variety of natural aquatic environments (e.g., Hayward
and Margraf 1987; Weiland and Hayward 1997; Whitledge
and Hayward 2000). Consequently, applications of BEMs to
natural fish populations in general are likely to involve epi-
sodes of high and low consumption levels, particularly dur-

ing growing seasons, when water temperatures permit fish
consumption levels to range broadly.

BEMs used to estimate the predatory demand of fish pop-
ulations would appear to be particularly vulnerable to sub-
stantial inaccuracy. Predatory demand is the amount of food
required by individual fish, and ultimately whole popula-
tions, to achieve maximum growth rates. This metric is used
to estimate the prey biomass that a population would con-
sume over a time period if sufficient prey were available
(Ney 1993). The inference from our results is that BEMs
could yield substantial underestimates of predatory demand
because when growth rates are high, corresponding consump-
tion rates would be severely underestimated. Consequently,
BEM-based estimates of predator population biomasses that
could be supported by local prey populations would be sub-
stantially overestimated. Management policies based on such
results could pose a serious risk of overexploiting local prey
populations and destabilizing existing predator–prey balances.
The ecological and economic implications of such modeling
errors could be serious, particularly for large systems such
as the Great Lakes, where large-scale BEM-based predictions
of predatory demand have been applied to ecologically and
commercially important fish species.

The accuracy of spatially explicit modeling of fish growth
rate potentials could also be impacted by BEM error trends
observed in our evaluations. Such modeling combines the re-
sults of BEMs and foraging models implemented with spa-
tially (the environment is divided into grid cells) and
temporally varying inputs of temperature, prey abundance,
and prey size to produce maps of spatial growth potentials.
Our results indicate that modeled growth potentials for envi-
ronmental cells offering very good and poor consumption
conditions could be substantially over- and under-estimated,
respectively, leading to overrepresentation of the extent to
which growth conditions vary over space and time.

Applications of BEMs in aquaculture settings, where fish
are typically fed and grown at high rates, may also be partic-
ularly error-prone. Uses of BEMs not only to predict fish
growth and consumption rates but also to assess the impacts
of aquaculture on, for example, water quality according to
modeled fish egestion and excretion rates may be affected.
Also, BEMs are being used increasingly as components of
broader models relating to fisheries management, aquatic
ecology, and aquaculture. The impacts of the systematic error
that we have observed in BEMs on the accuracy of predic-
tions and the insights generated by models that incorporate
BEMs are likely variable and currently unknown. Potential ef-
fects of widespread systematic error in BEMs should be care-
fully considered when either constructing or applying models
that contain BEMs as subcomponents.

If the subequation that calculates energy cost or loss for a
given parameter within a BEM is erroneous, the overall
prediction error of the BEM will tend to be correlated with
the input variable that drives the erroneous subequation.
Consequently, the consumption-dependent prediction error
observed in the seven BEMs likely emanates from inaccura-
cies in subequations for calculating egestion (F), excretion
(U), or specific dynamic action (SDA), because these are
consumption-dependent parameters in the seven models, and
in most other BEMs. Brett and Groves (1979) provided labo-
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Fig. 4. Cumulative error (percentage of observed body weight)
for bluegill (Lepomis macrochirus) BEM predictions of the ob-
served 22-day mean weight trajectory of treatment-group hybrid
bluegill (F1; female Lepomis cyanellus × male L. macrochirus).
Hybrid bluegill were fed at high levels (8.0%–3.8% body
weight·day–1) during days 1–7, moderate levels (4.25%–2.11%)
during days 8–14, and lower levels (2.77%–1.64%) throughout
the remaining 8 days.



ratory evidence that fish fed at near-maximum rates have
SDA costs that approach those of resting routine metabo-
lism. That such levels of SDA were observed under high-
consumption conditions in the seven models that we evalu-
ated, including the most-error-prone yellow perch model
(Bajer et al. 2003, their Figs. 4b and 4d), suggests that SDA
was appropriately calculated under conditions where BEM
errors were greatest. However, Beamish and Trippel (1990)
advised that SDA could represent substantial portions of fish
energy budgets and vary widely (3%– 41%) in response to a
number of variables including energy intake, fish body
weight, composition of the diet, and environmental factors
such as temperature. They suggested that the practice of cal-
culating SDA costs as constant proportions of gross or
digestible energy intake in BEMs may be inappropriate over-
simplification. Given the substantial role that SDA can play
in energy budgets and the uncertainty with which it is accu-
rately determined in BEMs, its potential involvement in the
consumption-dependent error in BEMs cannot be dismissed.

BEM outputs have been reported as being relatively insen-
sitive to modest percent changes in parameter values for de-
termining F and U (Kitchell et al. 1977; Bartell et al. 1986;
Adams and Breck 1990). This view has fostered a tendency
to not put forth new efforts to develop best possible species-
specific estimators of F and U when new BEMs have been
constructed (to a certain extent this applies to SDA as well).
Instead, equation forms and even coefficient values for de-
termining F and U have been liberally “borrowed” (sensu
Ney 1993) across BEMs. All of the BEMs that we evaluated,
with the exception of the Eurasian perch model (Karås and
Thoresson 1992), estimate F and U largely from equations
developed by Elliott (1976) for brown trout (Salmo trutta) or
from a simplified version of these (Kitchell et al. 1977). We
suspect that BEM inaccuracies due to errors in calculating F
and U may not always be negligible as has been suggested.
The relatively minor effects of inaccurate determinations of
F and U at low to moderate consumption levels may become
more pronounced if these parameters sometimes reach much
higher levels. Recently, Bajer et al. (2003) found indirect ev-
idence that energy losses associated with F and U consti-
tuted substantial portions of yellow perch energy budgets
(being higher than both routine metabolism and SDA) at
higher consumption levels (3% body weight·day–1), indicat-
ing a setting for potentially greater impacts when these
parameters are inaccurately determined. Perhaps most in-
sightful, however, is an observation from a recent reexami-
nation of the methods of Elliott (1976), the source study for
most F and U calculations in BEMs. It was observed that
test fish were food-deprived for up to 3 days prior to feeding,
an experimental condition that may have resulted in the deter-
mination of anomalously low egestion rates, including at
higher consumption levels (James Breck, Michigan Depart-
ment of Natural Resources, 1109 North University Avenue,
Ann Arbor, MI 48109-1084, USA, personal communication).

Unaccounted-for activity costs that may increase with
food-consumption level and declining relative prey size
(e.g., Kerr 1971; Brett and Groves 1979; Sherwood et al.
2002) cannot be totally dismissed as potential contributors to
the consumption-dependent error that we observed in the
seven BEMs. However, we consider these unlikely sources

of this error. Consumption-dependent prediction error was
observed when BEMs were applied to fish consuming eva-
sive (other fish) as well as non-evasive (mealworms) prey
types; the magnitudes of model prediction errors were in
some cases higher when applied to fish consuming non-
evasive prey. We also found no relationship between the
magnitude of BEM error (slope of error regressions) and the
relative size of prey used in experiments. Such a relationship
might be expected if increased feeding-activity cost was in-
curred as fish were forced to eat prey of progressively
smaller relative size, owing to the need to consume more
prey items (Sherwood et al. 2002). Moreover, we note that
increases in fish activity costs would have had to be very
substantial to account for observed growth-prediction errors
at high consumption levels. For example, we determined
that white crappie metabolic rates would have had to in-
crease substantially (activity multiplier >2) relative to rou-
tine resting metabolism to account for the observed growth-
prediction errors at high consumption levels. This amount of
activity-cost increase seems highly unlikely considering that
the fish used to evaluate the white crappie BEM were held
individually (without costs of aggression) in relatively small
experimental chambers (where movement was limited), and
had ready access to their prey. We routinely observed these
fish and saw little evidence of substantial activity. Fish used
to evaluate five of the six other BEMs (largemouth bass,
smallmouth bass, bluegill, yellow perch, and Eurasian perch)
were also held individually in chambers that limited their
movement during evaluation experiments. Consequently, we
believe that efforts to fundamentally improve BEMs should
focus first on laboratory studies to develop better estimators
of F and U that are applicable over broad ranges of con-
sumption level, fish body weight, temperature, and prey type.

Growth-rate underestimation by BEMs occurred when fish
were provided substantially restricted rations. Under low-
consumption conditions, BEM errors associated with F, U,
and SDA should be low because each of these parameters is
calculated as a fraction of consumption level. We suspect
that model error under these conditions is related to the general
inability of BEMs to accommodate the reductions in resting
routine metabolism that are known to occur in many fish spe-
cies during periods of submaintenance feeding in order to con-
serve energy (Beamish 1964; Glass 1968; Mehner and Wieser
1994). Our finding of consistent body-weight-dependent over-
prediction of weight loss under submaintenance conditions
also indicates that smaller fish reduce their metabolic rates
more substantially under weight-loss conditions than do their
larger counterparts. Development of consumption- and body-
weight-dependent subequations that describe reductions in
routine metabolic costs under submaintenance feeding con-
ditions would improve predictions of growth and consump-
tion by BEMs under these conditions.

An efficient approach for reducing systematic error in
BEMs that is associated with consumption level or other in-
put variables (e.g., fish body weight and temperature) may
be to develop correction equations as was done for the white
crappie model (Bajer et al. 2004). Regression-based error-
correcting equations were developed for the white crappie
BEM from model prediction errors determined from com-
parisons of predicted and observed growth responses when
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white crappie of a range of sizes were reared at different
feeding levels and temperatures. The correction approach is
efficient because (i) a model’s overall error is reduced with-
out the need to consider specific error sources, and (ii) the
data set used to initially evaluate a BEM can also provide
the information required to develop correction equations. In
contrast, efforts to fundamentally improve BEMs will likely
require one data set to evaluate a model’s prediction error
and distinct data sets to improve the subequations for each
erroneous parameter.

Finally, we note that the experimental designs in the pub-
lished laboratory studies used to evaluate most of the BEMs
were incomplete, as they did not encompass the full arrays
of conditions under which these models may be applied.
Most notably, analyses of possible temperature effects on
model performance were not possible in most cases. In addi-
tion, testing of models under conditions where fish fed at
submaintenance levels was restricted to a few models, all of
which showed body-weight dependence of growth-prediction
error under these conditions. Laboratory evaluations of
BEMs should include conditions of weight loss. Also, possi-
ble effects of food type on model performance could not be
fully evaluated because single prey types were used during
each of the model evaluations. Further work is needed to
evaluate temperature, submaintenance-feeding, and prey-type
effects on the performance of BEMs, as well as possible in-
fluences of activity level. More optimal experimental de-
signs for BEM evaluation are described by Bajer et al. (2004).
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