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TEMPERED REPRESENTATIONS

CHRIS JANTZEN (NOTES TAKEN BY JOE HUNDLEY)
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1. Tempered Representations

Tempered representations play important role in automorphic forms, harmonic analysis, and also
representation theory itself. We consider tempered representations of some p-adic group G.

The category of admissible representations of G is filtered according to the growth properties of
matrix coefficients. This can be described in terms of inclusions of the corresponding duals.

Ĝsc ⊂ Ĝds ⊂ Ĝtemp ⊂ Ĝadm

supercuspidal⇒ discrete series ⇒ tempered ⇒ admissible

compact support ⇐ L2 ⇐ L2+ε∀ε⇐ (no condition)

Representations in each class are described in terms of representations induced from the previous
step. Supercuspidals are treated as “atomic.”

The tempered to admissible step is the Langlands classification, and is general. For the others,
we want to work specifically with classical groups. Moeglin-Tadic have a description of that first
step.

The discrete series to tempered step has a description in terms of R-groups, based on work of
Goldberg. But it’s not convenient for certain applications. The goal of this work is to produce an
alternate description which is more convenient for his purposes.

2. Classical groups

2.1. GL(n, F ). If P = MU is a standard parabolic subgroup, then M ∼= GL(n1) × · · · × GL(nk),
for some partition n = n1 + · · ·+ nk of n.

Classical groups, for us, means Sp(2n, F ), SO(2n, F ) and O(2n, F ).
We’ll write everything out tonight only in the case of the symplectic group.
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A parabolic subgroup P = MU satisfies M ∼= GL(n1)×· · ·×GL(nk)×Sp(2n0), for some partition
n = n0 + n1 + · · ·+ nk of n. We define Sp relative to the form for the matrix

J ′ =


1

. . .
1

−1
. . .

−1


and take the torus to consist of all the diagonal elements in the group and the Borel to consist of
all the upper triangular ones.

Then standard parabolics are block upper triangular, standard Levis are block diagonal.

3. Discrete series

Take ρ an irreducible unitary supercuspidal of GL(n, F ) and b − a ∈ N ∪ {0} and then the
representation

IndGP

(
| det |bρ⊗ | det |b−1ρ . . . | det |aρ

)
of GL(kn, F ) has a unique irreducible subrepresentation denoted δ([νaρ, νbρ]), which is essentially
discrete series, and every discrete series is of this form.

For Sp(2n, F ), Moeglin and Tadic have classified discrete series in terms of triples, (Jord, σ, ε).
Roughly, δ ↪→ IndGP δ([ν

−a1ρ1, ν
b1ρ])⊗ · · · ⊗ δ([ν−akρk, νbkρk])⊗ σ, where σ is the σ above, and

is unique.
Jord consists of {(ρi, 2ai + 1), (ρi, 2bi + 1)}, plus some terms which depend on σ. Note that each

can appear at most once.
Suitably interpreted, ε is a function Jord → {±1} (in order to view it this way ”there is an

equivalence relation floating around in the background”).
Key property: for (ρ, a) ∈ Jord, let a− be the next smaller number such that (ρ, a−) ∈ Jord .

Then ε(ρ, a) = ε(ρ, a−) ⇐⇒ δ ↪→ δ([ν
−a−+1

2 ρ, ν
a−1
2 ρ]) o θ for some irreducible representation θ.

4. Tempered Representations

Suppose T irreducible tempered of Sp(2n, F ). Then

T ↪→ δ
(

[ν
−c1+1

2 ρ1, ν
c1−1

2 ]
)
× · · · × δ

(
[ν

−ck+1

2 ρk, ν
ck−1

2 ρk]
)
o δ

some supercuspidals and some discrete series δ of a smaller symplectic group.
We would prefer to have a characterization more along the lines of Moeglin-Tadic.
To extend Moeglin-Tadic, we attach to tempered T a quadruple (Jord, σ, ε,m) with σ being the

σ for δ, Jord(T ) = Jord(δ) ∪ {(ρ1, c1), . . . , (ρk, ck)}, and

m(ρ, d) = 2

(
#{i | (ρi, ci) ∼= (ρ, d)}

)
+

{
1 (ρ, d) ∈ Jord(δ)

0 not

Extend εδ to Jord(T ) so that

ε(ρ, a) = ε(ρ, a−) ⇐⇒ T ↪→ δ(ρ, a−, a)m(ρ,a) o θ for some θ.
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